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Abstract. This article is the first in a series devoted to Kato’s Euler system arising from
p-adic families of Beilinson elements in the K-theory of modular curves. It proves a p-adic
Beilinson formula relating the syntomic regulator (in the sense of Coleman-de Shalit and
Besser) of certain distinguished elements in the K-theory of modular curves to the special
values at integer points ≥ 2 of the Mazur-Swinnerton-Dyer p-adic L-function attached to cusp
forms of weight 2. When combined with the explicit relation between syntomic regulators
and p-adic étale cohomology, this leads to an alternate proof of the main results of [Br2] and
[Ge] which is independent of Kato’s explicit reciprocity law.
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1. Introduction

This article is the first in a series devoted to Kato’s Euler system arising from p-adic families
of Beilinson elements in the K-theory of modular curves. In a simple but prototypical setting,
Kato’s construction [Kato], [Colz2] yields a global class κ in H 1(Q, Vp(E)), where Vp(E) is the
p-adic Galois representation attached to a modular elliptic curve E/Q. Kato’s reciprocity law
implies that κ is crystalline, and hence belongs to the p-adic Selmer group of E, precisely when
the Hasse-Weil L-series L(E, s) vanishes at s = 1. In this case, Perrin-Riou [PR1] conjectures
that the image resp(κ) in H1

f (Qp, Vp(E)) is non-zero if and only if L′(E, 1) is non-zero, and

predicts a precise relation between the logarithm of resp(κ) and the formal group logarithm
of a global point in E(Q).
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The ultimate goal of this series is the proof of Perrin-Riou’s conjecture, which will be
described in [BD3]. One of the cornerstones of our strategy is a proof of a p-adic Beilinson
formula relating the syntomic regulators (in the sense of Coleman-de Shalit and Besser) of
certain distinguished elements in the K-theory of modular curves to the special values at
integer points ≥ 2 of the Mazur-Swinnerton-Dyer p-adic L-function attached to a cusp form
f of weight 2. This proof is independent of Kato’s reciprocity law, and will in fact be used in
[BD2] to re-derive it. It is based instead on the direct evaluation (Theorems 4.4 and 5.1) of
the p-adic Rankin L-function attached to a Hida family interpolating f introduced in Section
3.1. The p-adic Beilinson formula then follows from the factorisation of this p-adic Rankin
L-function into a product of two Mazur-Kitagawa p-adic L-functions (Theorem 3.4).

In the complex setting, the connection between regulators and values of L(E, s) at integers
` ≥ 2 was described in the work of Beilinson [Bei], and in prior work of Bloch [Bl] for elliptic
curves with complex multiplication. The first p-adic avatar of this formula was obtained
by Coleman and de Shalit [CodS] in the CM setting considered by Bloch. The work of
Brunault [Br2] for ` = 2 and Gealy [Ge] for ` ≥ 2 extended this p-adic Beilinson formula to
all (modular) elliptic curves as a consequence of Kato’s general machinery. Our approach,
which is somewhat more direct, relies instead on Besser’s description ([Bes1] and [Bes2]) of
the Coleman-de Shalit p-adic regulator and on the techniques developed in [DR] for relating
p-adic Abel-Jacobi images of diagonal cycles to values of Garrett-Rankin triple product p-adic
L-functions. The results of [DR]—and, by extension, of the present work as well as of [BDR]—
were inspired by the study undertaken earlier in [BDP], which the reader may consult for an
analogous formula in the setting of Heegner points (resp. “generalised Heegner cycles”) on
modular curves (resp. on products of Kuga-Sato varieties with powers of CM elliptic curves).

After this paper was submitted, the authors’ attention was drawn to the earlier work of
Maximilian Niklas [Nik] which also provides a direct proof of the p-adic Beilinson formula
based on a description of the rigid syntomic regulator given in [BK]. The principal novelty
of the present work—and, arguably, its main interest—lies in the explicit connection that it
draws with

(1) the results of [DR] relating the p-adic Abel-Jacobi images of diagonal cycles on triple
products of Kuga-Sato varieties to special values of Harris-Tilouine’s p-adic L-functions
attached to the Garrett-Rankin convolution of three Hida families of cusp forms;

(2) the results in [BDR] relating the syntomic regulators of Beilinson-Flach elements in
higher Chow groups of products of two modular curves to special values of Hida’s
p-adic L-functions attached to the Rankin-Selberg convolution of two cusp forms;

(3) the results in [BDP] relating the p-adic logarithms of Heegner points on modular
curves to special values of the p-adic L-functions attached to the Rankin convolution
of a weight two cusp form and a theta series of an imaginary quadratic field, based on
a formula of Waldspurger.

The authors’ strategy for proving Perrin-Riou’s conjecture is based on a comparison between
Kato’s Euler system and those arising in the above settings.

Acknowledgements: The authors thank Victor Rotger for numerous exchanges related to this
article, and François Brunault and Pierre Colmez for helpful advice on improving its presen-
tation. They are also grateful to the anonymous referee for a number of suggestions which
helped them to clarify the exposition, and for drawing their attention to the related work of
M. Niklas [Nik].

2. Complex L-series

This section provides explicit formulae (see equations (20) and (23)) for the special values
of the complex Rankin L-functions associated to the convolution of cusp forms and Eisen-
stein series, based on Rankin’s method and the reducibility of the Galois representations of
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Eisenstein series. These formulae are crucial in the definition and study of the Rankin p-adic
L-functions of Section 3. Along the way, we briefly recall the application of Rankin’s method
to the proof of the original complex Beilinson formula (cf. Proposition 2.3).

The Poincaré upper half plane of complex numbers with strictly positive imaginary part is
denoted H, and the variable on H is written as z = x+ iy with x ∈ R and y ∈ R>0.

A Dirichlet character of modulus N is a homomorphism ψ : (Z/NZ)× −→ C×, extended
to a function on Z by the convention that ψ(n) = 0 whenever gcd(n,N) 6= 1. The conductor

of ψ is the smallest positive integer M for which there is a Dirichlet character of modulus M
agreeing with ψ on the integers that are relatively prime to N . A Dirichlet character is said
to be primitive if its conductor is equal to its modulus. If N = N1N2 is a factorisation of N
into co-prime positive integers N1 and N2, frequent use will be made of the fact (following
from the Chinese remainder theorem) that a character ψ of modulus (resp. conductor) N can
be uniquely expressed as ψ = ψ1ψ2, where ψj is of modulus (resp. of conductor) Nj .

We denote by Sk(N,χ) ⊂ Mk(N,χ) the spaces of holomorphic cusp forms and modular
forms of weight k, level N and character χ, and by San

k (N,χ) ⊂M an
k (N,χ) their real analytic

counterparts consisting of real analytic functions on H with the same transformation proper-
ties under Γ0(N), and having bounded growth (resp. rapid decay) at the cusps for elements
of Man

k (N,χ) (resp. San
k (N,χ)). Likewise, for any congruence subgroup Γ of SL2(Z), the

spaces Sk(Γ) ⊂ Mk(Γ) and San
k (Γ) ⊂ Man

k (Γ) are given their obvious meanings. The only
cases arising in this article are where Γ is one of the standard Hecke congruence groups Γ0(N)
or Γ1(N).

2.1. Eisenstein series. The non-holomorphic Eisenstein series of weight k and level N at-
tached to the primitive character χ : (Z/NZ)× −→ C× is the function on H × C defined
by

(1) Ẽk,χ(z, s) =
′∑

(m,n)∈NZ×Z

χ−1(n)

(mz + n)k
·

ys

|mz + n|2s
,

where the superscript ′ indicates that the sum is taken over the non-zero lattice vectors
(m,n) ∈ NZ × Z.

The series defining Ẽk,χ(z, s) converges for <(s) > 1 − k/2 but admits a meromorphic
continuation to all s ∈ C. A direct calculation shows that

Ẽk,χ

(
az + b

cz + d
, s

)
= χ(d)(cz + d)kẼk,χ(z, s), for all

(
a b
c d

)
∈ Γ0(N),

i.e., Ẽk,χ(z, s) transforms like a modular form of weight k and character χ on Γ0(N) when
viewed as a function of z, and hence belongs to M an

k (N,χ). In particular, if k > 2

Ẽk,χ(z) := Ẽk,χ(z, 0) belongs to Mk(N,χ).

(The same conclusion holds for k ≥ 1, provided that χ is non-trivial.) Assume from now on
that χ satisfies the parity condition

(2) χ(−1) = (−1)k,

which guarantees that Ẽk,χ(z) is non-zero. We introduce (cf. [Hi93], p. 128) the normalised

Eisenstein series Ek,χ(z), related to Ẽk,χ(z) by the equation

(3) Ẽk,χ(z) = 2N−kτ(χ−1)
(−2πi)k

(k − 1)!
Ek,χ(z),
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where

τ(χ) =

Nχ∑

a=1

χ(a)e2πia/Nχ , Nχ = cond(χ)

is the Gauss sum attached to χ, and the q-expansion of Ek,χ(z) is given by

(4) Ek,χ(z) = 2−1L(χ, 1 − k) +

∞∑

n=1

σk−1,χ(n)qn, σk−1,χ(n) =
∑

d|n

χ(d)dk−1.

The Shimura-Maass derivative operator

δk :=
1

2πi

(
d

dz
+
ik

2y

)

sends M an
k (N,χ) to M an

k+2(N,χ). A direct calculation (see also loc.cit., page 317, formula
(13)) reveals that

(5) δkẼk,χ(z, s) = −
(s+ k)

4π
Ẽk+2,χ(z, s− 1).

Denoting by δtk := δk+2t−2 · · · δk+2δk the t-fold iterate of the Shimura-Maass derivative, it
follows that

δtkẼk,χ(z, s) =
(−1)t

(4π)t
(s+ k) · · · (s+ k + t− 1)Ẽk+2t,χ(z, s− t).

Replacing k by k − 2t and setting s = 0 in the above equation, we find

(6) Ẽk,χ(z,−t) =
(k − 2t− 1)!

(k − t− 1)!
(−4π)tδtk−2tẼk−2t,χ(z).

In particular, if 0 ≤ t ≤ k/2−1, then the Eisenstein series Ẽk,χ(z,−t), while not holomorphic,
is an example of a nearly holomorphic modular form in the sense of [Sh2].

We will also have a need for the more general Eisenstein series Ek(χ1
, χ

2
) ∈ Mk(N,χ1

χ
2
),

attached to a pair χ
1

and χ
2

of Dirichlet characters of modulus N1 and N2, respectively, with
N1N2 = N . Recall that condition (2) is in force, i.e., χ

1
χ

2
(−1) = (−1)k. Then, for k ≥ 1 and

(χ
1
, χ

2
) 6= (1,1), the q-expansion of Ek(χ1

, χ
2
) is given by

(7) Ek(χ1
, χ

2
)(z) = δχ

1
L(χ−1

1
χ

2
, 1 − k) +

∞∑

n=1

σk−1(χ1
, χ

2
)(n)qn,

where δχ
1

= 1/2 if N1 = 1 and 0 otherwise, and

σk−1(χ1
, χ

2
)(n) =

∑

d|n

χ
1
(n/d)χ

2
(d)dk−1.

Thus, Ek(1, χ) is equal to Ek,χ. Note that Ek(χ1
, χ

2
) is a simultaneous eigenvector for all the

Hecke operators, and satisfies

(8) L(Ek(χ1
, χ

2
), s) = L(χ

1
, s)L(χ

2
, s− k + 1).

2.2. Rankin’s method. Let

f :=

∞∑

n=1

an(f)qn ∈ Sk(N,χf )

be a cusp form of weight k, level N and character χf , and let

g :=
∞∑

n=0

an(g)q
n ∈M`(N,χg)
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be a modular form of weight ` < k and character χg. We do not assume for now that f or g
are eigenforms. Let

D(f, g, s) :=
∑

an(f)an(g)n
−s

denote the Rankin L-series attached to f and g. Recall the Petersson scalar product defined
on San

k (N,χ) ×M an
k (N,χ). It is given by the formula

(9) 〈f1, f2〉k,N :=

∫

Γ0(N)\H
ykf1(z)f2(z)

dxdy

y2
,

and is hermitian linear in the first argument and C-linear in the second. Let χ := χ−1
f χ−1

g ,

and denote by f ∗ ∈ Sk(N,χ
−1
f ) the modular form satisfying an(f

∗) = an. Since the forms

f∗(z) and Ẽk−`,χ(z, s)g(z) belong to Sk(N,χ
−1
f ) and Man

k (N,χ−1
f ) respectively, it is natural

to consider their Petersson scalar product.

Proposition 2.1 (Shimura). For all s ∈ C with <(s) >> 0,
〈
f∗(z) , Ẽk−`,χ(z, s) · g(z)

〉
k,N

= 2
Γ(s+ k − 1)

(4π)s+k−1
L(χ−1, 2s+ k − `) ×D(f, g, s+ k − 1).

Proof. See formula (2.4) of [Sh1], where this result is proved by an application of Rankin’s
method. See also [Hi93], page 317, formula (1), for a statement in the form given here. �

Replacing s by s− k + 1 in Proposition 2.1 and rearranging the factors, we obtain

(10) L(χ−1, 2s− k − `+ 2)D(f, g, s) =
1

2

(4π)s

Γ(s)

〈
f∗(z), Ẽk−`,χ(z, s− k + 1) · g(z)

〉
k,N

.

Assume now that the modular forms f and g are normalised eigenforms of level N . We do
not assume that they are new of this level, but we do assume that they are simultaneous
eigenvectors for the Hecke operators Tr with gcd(r,N) = 1 as well as the operators Ur
attached to the primes r dividing N . For each prime p, let αp(f) and βp(f) be the roots of

the Hecke polynomial x2−ap(f)x+χf(p)p
k−1, choosing (αp(f), βp(f)) = (ap(f), 0) when p|N .

Similarly, we let αp(g) and βp(g) denote the roots of the polynomial x2 − ap(g)x+χg(p)p
`−1.

Then the coefficients of the L-series D(f, g, s) are weakly multiplicative and hence D(f, g, s)
has an Euler product factorisation over the rational primes p:

(11) D(f, g, s) =
∏

p

D(p)(f, g, s), where D(p)(f, g, s) =

∞∑

n=0

apn(f)apn(g)p−s.

Let

L(f ⊗ g, s) :=
∏

p

L(p)(f ⊗ g, s), where

L(p)(f ⊗ g, s) := (1 − αp(f)αp(g)p
−s)−1(1 − αp(f)βp(g)p

−s)−1

×(1 − βp(f)αp(g)p
−s)−1(1 − βp(f)βp(g)p

−s)−1.

The calculation of the Euler factors D(p)(f, g, s) – a mildly tedious exercise in manipulation
and rearranging of infinite series – shows that, for all primes p,

(12) D(p)(f, g, s) = (1 − χ−1(p)pk+`−2−2s)L(p)(f ⊗ g, s),

so that

(13) L(f ⊗ g, s) = L(χ−1, 2s− k − `+ 2)D(f, g, s).

By combining (10) and (13), we find that

(14) L(f ⊗ g, s) =
1

2

(4π)s

Γ(s)

〈
f∗(z), Ẽk−`,χ(z, s− k + 1) · g(z)

〉
k,N

.
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Choose integers m and t satisfying

k = `+m+ 2t,

and set

c :=
k + `+m− 2

2
= k − t− 1.

By specialising equation (14) at s = c, we find

(15) L(f ⊗ g, c) =
1

2

(4π)c

Γ(c)

〈
f∗(z), Ẽk−`,χ(z,−t) · g(z)

〉
k,N

.

If m ≥ 1 and t ≥ 0, then replacing k by k − ` in equation (6), we obtain

(16) Ẽk−`,χ(z,−t) =
(m− 1)!

(m+ t− 1)!
(−4π)tδtmẼm,χ(z).

Combining (15) with (16) gives

(17) L(f ⊗ g, c) =
1

2
(−1)t(4π)c+t

(m− 1)!

(m+ t− 1)!(c − 1)!

〈
f∗(z), δtmẼm,χ(z) · g(z)

〉
k,N

.

Furthermore, in light of equation (3), we have

(18) L(f ⊗ g, c) =
(−1)t2k−1(2π)k+m−1(iN)−mτ(χ−1)

(m+ t− 1)!(c − 1)!

〈
f∗(z), δtmEm,χ(z) · g(z)

〉
k,N

.

Equation (18) is equivalent to Theorem 2 of [Sh1]. Note that the normalisations of Eisenstein
series used in loc.cit. are different from those adopted here.

2.3. A factorisation of critical values. Let now g be the Eisenstein series E`(χ1
, χ

2
) of

equation (7), and assume that

χg (= χ
1
χ

2
) = χ−1

f χ−1.

In light of (8), the left hand side of (18) becomes

(19) L(f ⊗E`(χ1
, χ

2
), c) = L(f, χ

1
, c) · L(f, χ

2
, c− `+ 1).

Assumption 2.2. The following assumptions on (k, `,m) and (f, χ
1
, χ

2
) will be enforced for

the rest of the paper:

(1) ` = m,
(2) χf = 1, so that f ∗ = f and χ = χ̄

1
χ̄

2
,

(3) χ is primitive, so that |τ(χ)|2 = N ,
(4) (N1, N2) = 1, so that Nχ

1
= N1 and Nχ

2
= N2, and

τ(χ) = τ(χ̄
1
)τ(χ̄

2
)χ

1
(N2)χ2

(N1) = τ(χ
1
) τ(χ

2
)χ(−1)χ

1
(N2)χ2

(N1).

Under the above assumptions, f is an eigenform on Γ0(N) of even weight k = 2` + 2t. If
furthermore t ≥ 0, then c = k/2+`−1 is a critical point for the L-functions L(f⊗E`(χ1

, χ
2
), s)

and L(f, χ
1
, s), and (19) becomes

(20) L(f ⊗E`(χ1
, χ

2
), k/2 + `− 1) = L(f, χ

1
, k/2 + `− 1) · L(f, χ

2
, k/2).

Note that k/2 is the central critical point for L(f, χ
2
, s). We choose complex periods Ω+

f and

Ω−
f as in Proposition 1.1 of [BD1]. These periods satisfy

(21) Ω+
f Ω−

f = (2π)2 〈f, f〉k,N ,

and, for 1 ≤ j ≤ k − 1,

(22) L∗(f, ψ, j) :=
(j − 1)!τ(ψ̄)

(−2πi)j−1Ωε
f

L(f, ψ, j) belongs to Qf,ψ,
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where ψ is any Dirichlet character, ε = ψ(−1)(−1)j−1 and Qf,ψ is the field generated by the
Fourier coefficients of f and the values of ψ. (See Proposition 1.3 of loc. cit., where ψ = ψ̄.)
By combining equations (18), (20) and (22), we find

(23) L∗(f, χ
1
, k/2+`−1) · L∗(f, χ

2
, k/2) = Cf,χ

1
,χ

2
·

〈
f, (δ

k/2−`
` E`,χ) ·E`(χ1

, χ
2
)
〉
k,N

〈f, f〉k,N
,

where

(24) Cf,χ
1
,χ

2
:=

i2k−1

N `−1
χ

1
(N2)χ2

(N1).

2.4. Beilinson’s formula. We now focus on the case k = ` = 2 (so that c = 2 and t = −1)
and deduce a complex Beilinson formula for the non critical value of L(f, s) at s = 2.

By equation (15) with g = E2(χ1
, χ

2
),

(25) L(f ⊗E2(χ1
, χ

2
), 2) =

1

2
(4π)2

〈
f(z), Ẽ0,χ(z, 1) · E2(χ1

, χ
2
)(z)

〉
2,N

.

By specialising equation (5) to the case k = 0 and s = 1, and invoking (3), we obtain

(26)
1

2πi

d

dz
Ẽ0,χ(z, 1) = −

1

4π
Ẽ2,χ(z) = 2πN−2τ(χ−1)E2,χ(z).

Given a field F , let Eis`(Γ1(N), F ) denote the subspace of M`(Γ1(N), F ) spanned by the
weight ` Eisenstein series with coefficients in F . Let Y1 = Y1(N) denote the usual open
modular curve of level N over Q whose complex points are identified with Γ1(N)\H, and let
Ȳ1 = Ȳ1(N) denote its extension to Q̄. The logarithmic derivative

dlog(u) :=
1

2πi

u′(z)

u(z)

gives a surjective homomorphism

(27) O(Ȳ1(N))× ⊗ F
dlog

// Eis2(Γ1(N), F ).

Take F to be a finite extension of Q containing the values of all characters of conductor
dividing N . Let uχ and u(χ

1
, χ

2
) be units satisfying

(28) dlog(uχ) = E2,χ, dlog(u(χ
1
, χ

2
)) = E2(χ1

, χ
2
).

It can be shown that u(χ
1
, χ

2
) belongs to the χ

1
-eigenspace (O(Ȳ1)

× ⊗ F )χ1 for the natural
action of GQ on the space of modular units. The unit uχ is only determined up to a multiplica-
tive constant. It can be shown (see for example [Br1], Section 5) that uχ can be normalised
in such a way that the equality

(29) Ẽ0,χ(z, 1) = 2πN−2τ(χ−1) log |uχ(z)|

holds. Note that equation (29) is consistent with (26). By combining (25) with (29) and (28),
we obtain

(30) L(f ⊗E2(χ1
, χ

2
), 2) = 16π3N−2τ(χ−1) 〈f(z), log |uχ(z)| · dlog(u(χ

1
, χ

2
)(z))〉2,N .

Extend definition (22) of L∗(f, ψ, j) to integers j lying outside of the critical range. By the
formulae in Section 2.3, we may rewrite (30) as

(31) L∗(f, χ
1
, 2) · L∗(f, χ

2
, 1) =

Cf,χ
1
,χ

2

〈f, f〉2,N
·

∫

Γ0(N)\H
f̄ · log |uχ| · dlog(u(χ

1
, χ

2
))dxdy.

Define the anti-holomorphic differential attached to f to be

(32) ηah
f :=

f̄(z)dz̄

〈f, f〉2,N
.
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Up to the constant Cf,χ
1
,χ

2
, the right-hand-side of (31) is the value on the class of ηah

f of the

complex regulator regC{uχ, u(χ1
, χ

2
)} attached to the symbol

{uχ, u(χ1
, χ

2
)} ∈ K2(C(Ȳ1(N)).

We obtain the following proposition, which generalizes slightly the explicit version of Beilin-
son’s theorem proved in [Br1].

Proposition 2.3.

L∗(f, χ
1
, 2) · L∗(f, χ

2
, 1) = Cf,χ

1
,χ

2
· regC{uχ, u(χ1

, χ
2
)}(ηah

f ).

This is the formula whose precise p-adic counterpart is obtained in Corollary 5.2 below.

2.5. Algebraicity. The modular form

(33) Ξk,`(χ1
, χ

2
) := (δ

k/2−`
` E`,χ) · E`(χ1

, χ
2
)

belongs to the space Mnh
k (N,Qχ

1
χ

2
) of nearly-holomorphic modular forms defined over Qχ

1
χ

2

in the sense of Shimura (cf. Section 2.3 of [DR]). Hence, its image

(34) Ξhol
k,`(χ1

, χ
2
) := Πhol

N (Ξk,`(χ1
, χ

2
))

under the holomorphic projection Πhol
N of loc. cit. belongs to Mk(N,Qχ

1
χ

2
). The ratio ap-

pearing in the right-hand side of (23) can then be re-written as

(35)

〈
f,Ξk,`(χ1

, χ
2
)
〉
k,N

〈f, f〉k,N
=

〈
f,Ξhol

k,`(χ1
, χ

2
)
〉
k,N

〈f, f〉k,N
,

and hence belongs to Qf,χ
1
χ

2
. One recovers Shimura’s approach [Sh1] to the algebraicity of

L∗(f, ψ, j), which differs from the approach based on modular symbols followed in [BD1].
For the purposes of making the connection with p-adic regulators, it is useful to describe

the right-hand side of (35) more algebraically, in terms of the Poincaré duality on the deRham
cohomology of the open modular curve with values in appropriate sheaves with connection
(as described in Section 2.2 of [DR]). More precisely, let Y , resp. X be the open modular
curve Y0(N), resp. the complete modular curve X0(N), and let K be any field containing
Qf,χ

1
χ

2
. Denote by E −→ Y the universal elliptic curve over Y , and by ω the sheaf of

relative differentials on E over Y , extended to X = X0(N) as in Section 1.1 of [BDP]. Recall
the Kodaira-Spencer isomorphism ω2 = Ω1

X(log cusps), where Ω1
X(log cusps) is the sheaf of

regular differentials on Y with log poles at the cusps. A modular form φ on Γ0(N) of weight
k = r + 2 with Fourier coefficients in K corresponds to a global section of the sheaf ωr+2 =
ωr ⊗ Ω1

X(log cusps) over XK .
The sheaf ωr can be viewed as a subsheaf of Lr := Symr L, where

L := R1π∗(E −→ Y )

is the relative de Rham cohomology sheaf on Y , suitably extended to X, equipped with the
filtration

(36) 0 −→ ω −→ L −→ ω−1 −→ 0

arising from the Hodge filtration on the fibers. The sheaf Lr is a coherent sheaf over X of
rank r+1, endowed with the Gauss-Manin connection

∇ : Lr −→ Lr ⊗ Ω1
X(log cusps).

Let H1
dR(YK ,Lr,∇), resp. H1

dR,c(YK ,Lr,∇) be the de Rham cohomology, resp. the de Rham
cohomology with compact support of Lr. These two groups are related by the perfect Poincaré
pairing

(37) 〈 , 〉k,Y : H1
dR,c(YK ,Lr,∇) ×H1

dR(YK ,Lr,∇) −→ K.
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There are exact sequences

(38) 0 −→ H0(XK , ω
r ⊗ Ω1

X) −→ H1
dR,c(YK ,Lr,∇) −→ H1(XK , ω

−r ⊗ I) −→ 0,

(39) 0 −→ H0(XK , ω
r ⊗ Ω1

X(log cusps)) −→ H1
dR(YK ,Lr,∇) −→ H1(XK , ω

−r) −→ 0,

where I is the ideal sheaf of the cusps (cf. Sections 2 and 3 of [Col94]). The left-most terms
of these two sequences are mutually isotropic, and hence (37) induces a perfect pairing

(40) 〈 , 〉k,Y : H1(XK , ω
−r ⊗ I) ×H0(XK , ω

r ⊗ Ω1
X(log cusps)) −→ K,

which is denoted by the same symbol by a slight abuse of notation.
The antiholomorphic differential ηah

f of equation (32) gives rise to a class inH1
dR,c(YC,Lr,∇),

whose image ηf in H1(XC, ω
−r⊗I) belongs to H1(XK , ω

−r⊗I) (cf. Corollary 2.13 of [DR]).
Recalling the concrete definition of (40) via complex integration given in (9), we find that the
right-hand side of (35) is equal to

(41)

〈
f,Ξhol

k,`(χ1
, χ

2
)
〉
k,N

〈f, f〉k,N
=

〈
ηf ,Ξ

hol
k,` (χ1

, χ
2
)
〉
k,Y

.

3. p-adic L-functions

This section defines the Rankin p-adic L-function associated to the convolution of two Hida
families of cusp forms and Eisenstein series (cf. equation (46)). Furthermore, it shows that
this p-adic L-function factors as a product of two Mazur-Kitagawa p-adic L-functions (cf.
Theorem 3.4).

A similar p-adic L-function, associated to the convolution of two Hida families of cusp forms,
has been constructed by Hida [Hi93]. For the sake of brevity, we follow here the approach of
[DR], which constructs the p-adic L-function associated to a triple product of Hida families
of cusp forms, referring to the calculations of this article whenever possible.

3.1. Rankin’s p-adic L-functions. Let p ≥ 3 be a prime, and fix an embedding of K into
Cp. From now on we will be working under the following

Assumption 3.1. The eigenform f is ordinary at p, and p - N .

The f -isotypic part of the exact sequence (38) with K = Cp then admits a canonical unit

root splitting, arising from the action of Frobenius on the de Rham cohomology. Let ηur
f be

the lift of ηf to the unit root subspace H1
dR,c(YCp ,Lr,∇)f,ur. The right-hand side of (41) is

then equal to

(42)
〈
ηf ,Ξ

hol
k,`(χ1

, χ
2
)
〉

k,Y
=

〈
ηur
f ,Ξ

hol
k,`(χ1

, χ
2
)
〉

k,Y
.

After viewing Ξhol
k,`(χ1

, χ
2
) as an overconvergent p-adic modular form, Lemma 2.10 of [DR]

identifies its ordinary projection eordΞ
hol
k,`(χ1

, χ
2
) with a cohomology class inH1

dR(YK ,Lr,∇)ord.

By Proposition 2.11 of loc.cit., the right-hand side of (42) can be re-written as

(43)
〈
ηur
f ,Ξ

hol
k,`(χ1

, χ
2
)
〉
k,Y

=
〈
ηur
f , eordΞhol

k,`(χ1
, χ

2
)
〉
k,Y

.

By Proposition 2.8 of loc.cit.,

(44) Ξord
k,` (χ1

, χ
2
) := eordΞhol

k,`(χ1
, χ

2
) = eord((d

k/2−`E`,χ) · E`(χ1
, χ

2
)),

where d = q ddq is Serre’s derivative operator on p-adic modular forms.

Note that the ordinary p-stabilisation of E`(χ1
, χ

2
) is the weight ` specialisation of a Hida

family of Eisenstein series denoted E(χ
1
, χ

2
). Likewise, let f be a Hida family of eigenforms on

Γ0(N), indexed by a weight variable k in a suitable neighborhood Uf of (Z/(p−1)Z)×Zp, which
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is contained in a single residue class modulo p−1. For k ∈ Uf∩Z≥2, let fk ∈ Sk(N) = Sk(N,1)
be the classical modular form whose p-stabilisation is the weight k specialisation of f .

Given a p-adic modular form g =
∑
bnq

n, let

g[p] :=
∑

p-n

bnq
n

denote its “p-depletion”. The family of p-adic modular forms

(45) Ξord,p
k,` (χ

1
, χ

2
) := eord((d

k/2−`E
[p]
`,χ) · E`(χ1

, χ
2
))

has Fourier coefficients which extend analytically to Uf × (Z/(p − 1)Z × Zp), as functions in
k and `. See for example [Hi93] and [DR], Section 2.6.

Proposition 3.2. Let efk
be the projector to the fk-isotypic subspace H1

dR(YK ,Lr,∇)fk . For

all k ≥ 2 and 2 ≤ ` ≤ k/2,

efk
Ξord,p
k,` (χ

1
, χ

2
) =

E(fk, χ1
, χ

2
, `)

E(fk)
· efk

Ξord
k,` (χ1

, χ
2
),

where

E(fk, χ1
, χ

2
, `) = (1 − βp(fk)χ1

(p)p−k/2−(`−1))(1 − βp(fk)χ̄1
(p)p−k/2+(`−1))

×(1 − βp(fk)χ2
(p)p−k/2)(1 − βp(fk)χ̄2

(p)p−k/2),

E(fk) = 1 − βp(fk)
2p−k,

Proof. This follows from Corollary 4.13 of [DR], in light of Proposition 2.8 of loc. cit. �

Set

E∗(fk) := 1 − βp(fk)
2p1−k.

Proposition 4.6 of loc. cit. shows that the expression

(46) Lp(f ,E(χ
1
, χ

2
))(k, `) :=

1

E∗(fk)

〈
ηur
fk
,Ξord,p

k,` (χ
1
, χ

2
)
〉
k,Y

,

defined for k in Uf ∩Z≥2 and 2 ≤ ` ≤ k/2 extends to an analytic function Lp(f ,E(χ
1
, χ

2
)) on

Uf × (Z/(p− 1)Z ×Zp), which we refer to as the p-adic Rankin L-function attached to f and
E(χ

1
, χ

2
).

3.2. Factorisation of p-adic L-functions. Let Lp(fk, ψ, s) be the Mazur-Swinnerton-Dyer
p-adic L-function attached to (fk, ψ), with ψ equal to χ

1
or χ

2
(cf. Section 14 of [MTT]). We

normalise Lp(fk, ψ, s) so that it satisfies the interpolation property for 1 ≤ j ≤ k − 1:

(47) Lp(fk, ψ, j) = (1 − ψ(p)βp(fk)p
−j) × (1 − ψ(p)βp(fk)p

−(k−j)) × L∗(fk, ψ, j).

Note that the values Lp(fk, χ1
, j) and Lp(fk, χ2

, j+ `− 1) depend on the choice of periods Ω±
f

and Ω∓
f that was made in Section 2.3, but their product does not, in light of the normalising

condition imposed in (21), since χ
1
χ

2
(−1) = (−1)`.

Proposition 3.3. For all k ∈ Uf ∩ Z≥2 and for all 2 ≤ ` ≤ k/2, we have

Lp(f ,E(χ
1
, χ

2
))(k, `) = (Cfk ,χ1 ,χ2

E(fk)E
∗(fk))

−1 × Lp(fk, χ1
, k/2+`−1) × Lp(fk, χ2

, k/2).
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Proof. We have the sequence of equalities:

Lp(f ,E(χ
1
, χ

2
))(k, `) =

1

E∗(fk)

〈
ηur
fk
,Ξord,p

k,` (χ
1
, χ

2
)
〉
k,Y

by (46)

=
E(fk, χ1

, χ
2
, `)

E(fk)E∗(fk)

〈
ηur
fk
,Ξord

k,` (χ1
, χ

2
)
〉
k,Y

by Prop. 3.2

=
E(fk, χ1

, χ
2
, `)

E(fk)E∗(fk)

〈
ηfk

,Ξhol
k,`(χ1

, χ
2
)
〉

k,Y
by (43) and (42)

=
E(fk, χ1

, χ
2
, `)

E(fk)E∗(fk)

〈
fk,Ξk,`(χ1

, χ
2
)
〉
k,N

〈fk, fk〉k,N
by (41) and (35).

By (23), the last term can be re-written as

E(fk, χ1
, χ

2
, `)

E(fk)E∗(fk)Cfk,χ1 ,χ2

L∗(fk, χ1
, k/2+`−1) · L∗(fk, χ2

, k/2),

so that Theorem 3.3 follows by combining (47) with the exact shape of E(fk, χ1
, χ

2
, `) stated

in Proposition 3.2. �

Fix k0 ∈ Uf ∩Z≥2. Recall the Mazur-Kitagawa two-variable p-adic L-function Lp(f , ψ)(k, s)
defined in [Ki]. It is related to Lp(fk, ψ, s) by the equation

(48) Lp(f , ψ)(k, s) = λ±(k) · Lp(fk, ψ, s), k ∈ Uf ∩ Z≥2,

where λ±(k) ∈ Cp is a p-adic period, arising from the p-adic interpolation of modular symbols,
such that λ±(k0) = 1 (cf. Section 1.4 of [BD1]). In particular, while we will see that λ±(k)
need not extend to a p-adically continuous function of k ∈ Uf , we nonetheless know that
λ±(k) 6= 0 for k in a neighborhood of k0.

By combining (48) with Proposition 3.3, we obtain:

Theorem 3.4. There exists an analytic function η(k) on a neighborhood Uf ,k0 of k0, such

that for all (k, `) in Uf ,k0 × (Z/(p− 1)Z × Zp),

Lp(f ,E(χ
1
, χ

2
))(k, `) = η(k) × Lp(f , χ1

)(k, k/2+`−1) × Lp(f , χ2
)(k, k/2).

The function η(k) satisfies

(49) η(k) = (Cfk,χ1 ,χ2
E(fk)E

∗(fk)λ
+(k)λ−(k))−1

for (k, `) in (Uf ,k0 ∩ Z≥2) × (Z/(p− 1)Z × Zp), and in particular

η(k0) = (Cfk0
,χ

1
,χ

2
E(fk0)E

∗(fk0))
−1.

This is crucial for the calculations of the next sections, where both sides of (20) will be
evaluated at points outside the range of classical interpolation.

Remark 3.5. Equation (49) gives insight into the question raised in Remark 1.6 of [BD1]
about the behavior of the periods λ±. See also Proposition 5.2 of loc. cit., where the prod-
uct λ+λ− is compared with a less explicit p-adic period arising from the Jacquet-Langlands
correspondence to forms on definite quaternion algebras.

4. p-adic regulators

We will now describe the values of Lp(f ,E(χ
1
, χ

2
)) at integer points (k0, `0) outside the

range of classical interpolation in terms of certain p-adic regulators in K-theory. Recall that
the range of classical interpolation defining Lp(f ,E(χ

1
, χ

2
)) is k0 ∈ Uf∩Z≥2 and 2 ≤ `0 ≤ k0/2.
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Proposition 4.1. For all k0 ∈ Uf ∩ Z≥2 and `0 > k0/2,

(50) Lp(f ,E(χ
1
, χ

2
))(k0, `0) =

1

E∗(fk0)

〈
ηur
fk0

,Ξord,p
k0,`0

(χ
1
, χ

2
)
〉
k0,Y

.

Proof. The terms in the defining expression (46) for Lp(f ,E(χ
1
, χ

2
)) vary analytically with

` ∈ (Z/(p− 1)Z) × Zp. �

We will be particularly interested in the case where k0 = 2 and fk0 corresponds to an elliptic
curve A/Q. Let X1 = X1(N) denote the complete modular curve over Q of level N obtained
by adjoining to Y1 = Y1(N) the finite set of cusps, and write X̄1 = X̄1(N) for its extension to
an algebraic closure of Q.

4.1. The regulator on K2. Given modular units u1 and u2 in O(Ȳ1)
×, let

{u1, u2} ∈ K2(Ȳ1)

be the associated Steinberg symbol.
We recall Besser’s description [Bes2] of the p-adic regulator regp{u1, u2} ∈ H1

dR(Y1) of
Coleman-de Shalit [CodS]. Let ΦY1

denote the canonical lift of Frobenius on Y1. It is
a rigid morphism on a system {Wε} of wide open neighborhoods of the ordinary locus
A ⊂ Y1 obtained by deleting from Y1 both the supersingular and the cuspidal residue discs.
(See Section 4.5 of [BDP], for instance, for a brief review of the relevant definitions.) Let
ΦY1×Y1

= (ΦY1
,ΦY1

) be the corresponding lift of Frobenius on Y1 × Y1, and let P ∈ Q[x] be
any polynomial satisfying

(1) P (ΦY1×Y1
) annihilates the class of du1

u1
⊗ du2

u2
in H2

rig(Wε ×Wε),

(2) P (ΦY1
) acts invertibly on H1

rig(Wε).

The choice of P gives rise to a rigid 1-form ρ
P
(u1, u2) on Wε ×Wε satisfying

(51) dρ
P
(u1, u2) = P (ΦY1×Y1

)

(
du1

u1
⊗
du2

u2

)
,

which is well-defined up to closed rigid 1-forms on Wε × Wε. After choosing a base point
x ∈ Wε, let

δ : Wε ↪→ Wε×Wε, ix : Wε = Wε×{x} ↪→ Wε×Wε, jx : Wε = {x}×Wε ↪→ Wε×Wε,

denote the diagonal, horizontal, and vertical inclusions respectively, and set

ξ̃
P,x

(u1, u2) := (δ∗ − i∗x − j∗x)(ρP
(u1, u2)) ∈ Ω1

rig(Wε).

It follows from the Künneth formula (cf. also the argument in the proof of Lemma 3.5 of [DR])
that δ∗ − i∗x− j∗x induces the zero map from H1

rig(Wε×Wε) to H1
rig(Wε), and therefore that it

sends closed one-forms to exact one-forms. In particular, the natural image of ξ̃
P,x

(u1, u2) in

H1
rig(Wε), denoted ξ

P,x
(u1, u2), does not depend on the choice of one-form ρ

P
(u1, u2) satisfying

equation (51). Condition (2) imposed in the choice of the polynomial P then allows us to
define the class

ξx(u1, u2) := P (ΦY1
)−1ξ

P,x
(u1, u2) ∈ H1

rig(Wε),

which is independent of the choice of P as above.
The exact sequence

(52) 0 −→ H1
dR(X1) −→ H1

rig(Wε) −→ Cp(−1)σ−1 −→ 0

admits a canonical splitting that respects the Frobenius action. Let ξ(u1, u2) ∈ H1
dR(X1)

denote the image of ξx(u1, u2) under this splitting.

Lemma 4.2. The class ξ(u1, u2) does not depend on the choice of base point x.
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Proof. Write ΦY1×Y1
= Φh×Φv, where Φh (resp. Φv) is the rigid endomorphisms of Wε×Wε

acting as the canonical lift of Frobenius on the horizontal (resp. vertical) factor of the product
and trivially on the other factor. Following the proof of Proposition 3.3 of [Bes2], let t ≥ 1 be

such that (Φ/p)t fixes the classes of du1

u1
and du2

u2
, and choose

(53) P (x) = (1 − xt/p2t),

so that, after setting q := pt,

P (ΦY1×Y1
) = P (Φt

hΦ
t
v) =

(
1 −

Φt
h

q

)
Φt
v

q
+

(
1 −

Φt
v

q

)
.

After writing

u
(0)
j := uqj/Φ

t∗(uj),

we find that the rigid one-form on Wε ×Wε defined by

ρ
P
(u1, u2) =

1

q2
log u

(0)
1 Φ∗t

(
du2

u2

)
−

1

q

du1

u1
log u

(0)
2

satisfies equation (51). (Cf. for instance equation (3.2) of loc. cit.). With this choice of
primitive, we observe that

i∗x(ρP
(u1, u2)) = −

1

q

du1

u1
log u

(0)
2 (x), j∗x(ρP

(u1, u2)) =
1

q2
log u

(0)
1 (x)Φ∗t

(
du2

u2

)
.

The cohomology classes of these one-forms, being multiples of the classes attached to the
logarithmic derivatives of modular units, are in the kernel of the Frobenius splitting of (52)
used to define ξ(u1, u2), and the result follows. �

It follows from the proof of Lemma 4.2 above that the differential P1(ΦY1
)η0(f, g), where

η0(f, g) (with f = u1, g = u2) is the differential that appears in Proposition 3.3. of [Bes2],
represents the class ξ

P,x
(u1, u2), up to the addition of logarithmic derivatives of modular units

which are in the kernel of the splitting (52), and therefore that the image of the class η(f, g)
appearing in Proposition 3.3 of [Bes2] in H1

dR(X1) agrees with the class of ξ(u1, u2). We can
therefore define, following [Bes2],

(54) regp{u1, u2} := ξ(u1, u2).

In parallel with the complex notation of Proposition 2.3, we therefore have

regp{uχ, u(χ1
, χ

2
)}(ηur

f ) :=
〈
ηur
f , regp{uχ, u(χ1

, χ
2
)}

〉
2,Y

(where regp{uχ, u(χ1
, χ

2
)} is viewed as a class in the de Rham cohomology of Y ). We are

now ready to state one of the main results of our paper.

Theorem 4.3. For all χ
1

and χ
2

as in Assumption 2.2, and setting f = f2,

Lp(f ,E(χ
1
, χ

2
))(2, 2) =

E(f, χ
1
, χ

2
, 2)

E(f)E∗(f)
regp{uχ, u(χ1

, χ
2
)}(ηur

f ).

Proof. By the recipe for the p-adic regulator described before, we have

regp{uχ, u(χ1
, χ

2
)}(ηur

f ) =
〈
ηur
f , ξ(uχ, u(χ1

, χ
2
))

〉
2,Y

=
〈
ηur
f , P (ΦY )−1ξ

P,x
(uχ, u(χ1

, χ
2
))

〉
2,Y

.(55)

For any ξ ∈ H1
dR(Y ), note that

(56)
〈
ηur
f ,ΦY ξ

〉
Y,2

= αp(f)−1
〈
ΦY η

ur
f ,ΦY ξ

〉
Y,2

= pαp(f)−1
〈
ηur
f , ξ

〉
Y,2

= βp(f) ·
〈
ηur
f , ξ

〉
Y,2

.
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Combining (55) and (56), we find
〈
ηur
f , regp{uχ, u(χ1

, χ
2
)}

〉
2,Y

= P (βp(f))−1
〈
ηur
f , ξP,x

(uχ, u(χ1
, χ

2
))

〉
2,Y

= P (βp(f))−1
〈
ηur
f , efeordξP,x

(uχ, u(χ1
, χ

2
))

〉
2,Y

.(57)

Set

(58) P (x) := p−4(x− χ
1
(p))(x− χ̄

1
(p)p2)(x− χ

2
(p)p)(x− χ̄

2
(p)p).

Following Besser as in the proof of Lemma 4.2 above, a more optimal choice of P would have
been to take (x− χ̄

1
(p)p2), as (ΦY − χ̄

1
(p)p2) already annihilates the class of E2,χ⊗E2(χ1

, χ
2
)

in cohomology. However, the above choice of P allows us to directly invoke the calculations
that were already carried out in Section 3.4 of [DR], in the setting where E2,χ and E2(χ1

, χ
2
)

are replaced by cusp forms. (In such a setting, it became necessary to work with a degree 4
polynomial.) With our choice of P , and setting x = ∞, we have

(59) efeordξP,x
(uχ, u(χ1

, χ
2
)) = E∗(f)efeord(d

−1E
[p]
2,χ ×E2(χ1

, χ
2
)) = E∗(f)efΞ

ord,p(χ
1
, χ

2
).

This follows by replacing the cusp forms ğ and h̆ by the Eisenstein series E2,χ and E2(χ1
, χ

2
)

in Theorem 3.12 of loc. cit. Combining (57) and (59), and observing that P (βp(f)) =
E(f, χ

1
, χ

2
, 2), we obtain

(60)
〈
ηur
f , regp{uχ, u(χ1

, χ
2
)}

〉
2,Y

= E(f, χ
1
, χ

2
, 2)−1E∗(f)

〈
ηur
f , efΞ

ord,p(χ
1
, χ

2
)
〉

2,Y
.

Theorem 4.3 now follows from Proposition 4.1. �

4.2. The general case. Set `0 = r + 2, and assume in this section that r > 0. Let E1, E2

be weight `0 Eisenstein series in Eis`0(Γ1(N),Q). Besser’s description [Bes2] of the p-adic
regulator regp{u1, u2} ∈ H1

dR(Y1) admits a natural generalisation to the setting in which the
logarithmic derivatives of u1 and u2 are replaced by the Eisenstein series E1 and E2. More
precisely, note that (Lr,∇) is equipped with the structure of an overconvergent Frobenius
isocrystal in the sense of Definition 4.15 of [BDP]. In particular, the cohomology groups
H1

dR(Y1,Lr,∇) are endowed with an action of the Frobenius lift ΦY1
. Let P ∈ Q[x] be any

polynomial satisfying

(1) P (ΦY1×Y1
) annihilates the class of E1 ⊗E2 in H2

rig(Wε ×Wε,Lr ⊗Lr,∇),

(2) P (ΦY1
) acts invertibly on H1

rig(Wε)(r).

The choice of P gives rise to a L⊗2
r -valued rigid 1-form ρ

P
(E1, E2) on Wε ×Wε satisfying

ρ
P
(E1, E2) = P (ΦY1×Y1

)(E1 ⊗E2).

Note that ρ
P
(E1, E2) is well-defined only up to closed forms on Wε ×Wε. Let ξ

P
(E1, E2) ∈

H1
rig(Wε)(r) denote the class of the restriction of ρ

P
(E1, E2) to the diagonal, composed with

the pairing

Lr ×Lr −→ OY1
(r),

and set

ξ0(E1, E2) := P (ΦY1
)−1ξ

P
(E1, E2) ∈ H1

rig(Wε)(r).

As before, let ξ(E1, E2) denote the natural image of ξ0(E1, E2) in H1
dR(X1)(r) under the

Frobenius-equivariant splitting of the exact sequence (52). The p-adic regulator attached to
(E1, E2) is then defined to be

(61) regp{E1, E2} = ξ(E1, E2).

The following extends Theorem 4.3 to general ` = `0, where as before we have set

regp{E`,χ, E`(χ1
, χ

2
)}(ηur

f ) :=
〈
ηur
f , regp{E`,χ, E`(χ1

, χ
2
)}

〉
2,Y

.
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Theorem 4.4. For all χ
1

and χ
2

as in Assumption 2.2, and setting f = f2,

Lp(f ,E(χ
1
, χ

2
))(2, `) =

E(f, χ
1
, χ

2
, `)

E(f)E∗(f)
regp{E`,χ, E`(χ1

, χ
2
)}(ηur

f ).

Proof. The proof is the same as the proof of Theorem 4.3, using the calculations of Section
3.4 of [DR]. �

5. The p-adic Beilinson formula

5.1. The main results. We can now state the main results of this article, which apply to
any pair (χ

1
, χ

2
) of primitive Dirichlet characters with relatively prime conductors N1 and

N2, satisfying

N = N1N2, χ−1 := χ
1
χ

2
is even.

Theorem 5.1. For all ` ≥ 2,

Lp(f, χ1
, `) · L∗(f, χ

2
, 1) = Cf,χ

1
,χ

2
(1 − βp(f)χ

1
(p)p−`)(1 − βp(f)χ̄

1
(p)p−(2−`))

× regp{E`,χ, E`(χ1
, χ

2
)}(ηur

f ).

Proof. By comparing Theorem 3.4 with k0 = 2 and Theorem 4.4, we obtain

Lp(f, χ1
, `) × Lp(f, χ2

, 1) = Cf,χ
1
,χ

2
E(f, χ

1
, χ

2
, `) × regp{E`,χ, E`(χ1

, χ
2
)}(ηur

f ).

The theorem now follows from equation (47), giving the interpolation properties of the Mazur-
Swinnerton-Dyer p-adic L-function, and the definition of E(f, χ

1
, χ

2
, `) given in Proposition

3.2. �

For ` = 2, Theorem 5.1 relates the value Lp(f, χ1
, 2) to the p-adic regulator

regp{E2,χ, E2(χ1
, χ

2
)} := regp{uχ, u(χ1

, χ
2
)}

previously defined in terms of modular units.

Corollary 5.2.

Lp(f, χ1
, 2) · L∗(f, χ

2
, 1) = Cf,χ

1
,χ

2
(1 − βp(f)χ

1
(p)p−2)(1 − βp(f)χ̄

1
(p))

× regp{uχ, u(χ1
, χ

2
)}(ηur

f ).

Note the strong analogy between Corollary 5.2 and the complex Beilinson formula, as stated
in Proposition 2.3. The factor L∗(f, χ

2
, 1) belongs to the field Q(f, χ

2
), and χ

2
can be chosen

so that this factor does not vanish. Theorem 5.1 then expresses the value Lp(f, χ1
, `) of the

Mazur-Swinnerton-Dyer p-adic L-function at a point outside the range of classical interpola-
tion as the p-adic regulator attached to two Eisenstein series of weight `, times a non-zero
algebraic number.

5.2. Relation with the work of Brunault and Gealy. We conclude by explaining the
relation between the main results of this paper and the p-adic Beilinson formulae proved in
[Br2] (for the value at ` = 2) and [Ge] (for the value at general ` ≥ 2).

The syntomic regulators of Coleman-de Shalit and Besser have counterparts in p-adic étale
cohomology, whose definition we first recall for K2(Y1) and for the eigenspaces (K2(Ȳ1)⊗F )χ1

under the action of GQ, where F is an extension of Qp large enough to contain the values of
χ

1
and χ

2
. Kummer theory gives connecting homomorphisms

δ : O(Y1)
× −→ H1

et(Y1,Qp(1)), δ : (O(Ȳ1)
× ⊗ F )χ1 −→ H1

et(Y1, F (1)(χ
1
)).

The p-adic étale regulator of {u1, u2} is defined to be

reget{u1, u2} := δ(u1) ∪ δ(u2) ∈ H
2
et(Y1, F (2)(χ

1
)) = H1(Q,H1

et(Ȳ1, F (2)(χ
1
))),
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where the last identification follows from the Hochschild-Serre spectral sequence (cf. equation
(28) of [Br2]). The restriction of reget{u1, u2} to GQp = Gal (Q̄p/Qp) yields an element
resp(reget{u1, u2}) of

H1(Qp,H
1
et(Ȳ1, F (2)(χ

1
)) = Ext1RepQp

(Qp,H
1
et(Ȳ1, F (2)(χ

1
))),

where the group of extensions is taken in the category of continuous p-adic representations of
GQp which are cristalline. On the other hand, regp{u1, u2} belongs to

H1
dR(Y1) = H1

dR(Y1)/Fil2H1
dR(Y1) = Ext1ffm(Qp,H

1
dR(Y1)(2)),

where the group of extensions is taken in the category of admissible filtered Frobenius modules.
Fontaine’s comparison functor sets up an isomorphism

(62) Ext1RepQp
(Qp,H

1
et(Ȳ1, F (2)(χ

1
)))

comp
// Ext1ffm(Qp,H

1
dR(Y1)(2)).

More generally, the Eisenstein series E1 and E2 of weight `0 = r + 2 introduced in Section
4.2 give rise to classes

δ1 ∈ H1
et(Y1,L

et
r (1)), δ2 ∈ H1

et(Y1,L
et
r (1)(χ

1
)),

where Let
r is the étale p-adic sheaf associated to the local system (Lr,∇) of Section 2.5 (ten-

sored with the field F containing the values of the characters χ
1

and χ
2
). Imitating the

complex treatment of Beilinson [Bei], we define the p-adic étale regulator of (E1, E2) to be

reget{E1, E2} := δ1 ∪ δ2 ∈ H2
et(Y1, F (r + 2)(χ

1
)) = H1(Q,H1

et(Ȳ1, F (r + 2)(χ
1
))),

where we have used the pairing Let
r ×Let

r −→ F (r), and as before the last identification follows
from the Hochschild-Serre spectral sequence. Note that when r = 0, reget{E1, E2} is equal
to reget{u1, u2}, with Ej = dlog(uj). As in the case r = 0, there is an isomorphism

(63) Ext1RepQp
(Qp,H

1
et(Ȳ1, F (r + 2)(χ

1
)))

comp
// Ext1ffm(Qp,H

1
dR(Y1)(r + 2)),

and we have

Proposition 5.3. For all u1, u2 ∈ O(Y1)
×,

regp{u1, u2} = comp(resp(reget{u1, u2})).

More generally, for all E1, E2 ∈ Eis`0(Γ1(N),Q),

regp{E1, E2} = comp(resp(reget{E1, E2})).

Proof. See Proposition 9.11 and Corollary 9.10 of [Bes1], and the references therein. �

Proposition 5.3 leads to an alternate definition of the p-adic regulator, which is the one
that enters in the p-adic Beilinson formulae of [Br2] and [Ge]. Theorem 5.1 and Corollary
5.2 thus give a different proof of the main results of [Ge] and [Br2] respectively. The strategy
followed in loc. cit. builds on the work of Kato, in which a collection of norm-compatible
elements in the K2 of a tower of modular curves is used to construct a Λ-adic cohomology
class κ ∈ H1(Q,Vp(E)) with values in the Λ-adic representation Vp(E) of GQ interpolating
the Tate twists Vp(E)(j) for all j ∈ Z. Kato’s reciprocity law relates the image of κ in
H1(Qp,Vp(E)) to the p-adic L-function attached to E. Both [Br2] and [Ge] exploit deep
local results of Perrin-Riou ([PR2], [Colz1]) to parlay this relation into a precise connection
between the p-adic étale regulator of the Beilinson elements and the special values at ` ≥ 2
of the Mazur -Swinnerton-Dyer p-adic L-function. The proof proposed in the present work
can be viewed as somewhat more direct, insofar as it does not rely on Kato’s Λ-adic classes
or on any facts about the behaviour of the Bloch-Kato logarithm and dual exponential maps
in p-adic families.
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[CodS] R. F. Coleman, E. de Shalit, p-adic regulators on curves and special values of p-adic L-functions,

Inventiones Math. 93 (1988), 239-266.
[Col94] R.F. Coleman, A p-adic Shimura isomorphism and p-adic periods of modular forms. p-adic monodromy

and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 21–51, Contemp. Math., 165,
Amer. Math. Soc., Providence, RI, 1994.

[Colz1] Colmez, Pierre. Fonctions L p-adiques. Séminaire Bourbaki, Vol. 1998/99. Astérisque No. 266 (2000),
Exp. No. 851, 3, 21–58.

[Colz2] Colmez, Pierre La conjecture de Birch et Swinnerton-Dyer p-adique. (French) Astérisque No. 294
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[Ki] K. Kitagawa. On standard p-adic L-functions of families of elliptic cusp forms, in p-adic monodromy
and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 81-110, Contemp. Math. 165,
Amer. Math. Soc., Providence, RI, 1994.

[Nik] Niklas, Maximilian, Rigid syntomic regulators and the p-adic L-function of a modular form, Regens-
burg PhD Thesis, 2010, available at http://epub.uni-regensburg.de/19847/

[MTT] Mazur, B.; Tate, J.; Teitelbaum, J. On p-adic analogues of the conjectures of Birch and Swinnerton-

Dyer. Invent. Math. 84 (1986), no. 1, 1-48.
[PR1] Perrin-Riou, Bernadette Fonctions L p-adiques d’une courbe elliptique et points rationnels. Ann. Inst.

Fourier (Grenoble) 43 (1993), no. 4, 945-995.
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