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1. Introduction

The aim of this article is to present a new proof of a theorem of Karl Rubin (see [Ru] and Thm. 1 below)
relating values of the Katz p-adic L-function of an imaginary quadratic field at certain points outside its
range of classical interpolation to the formal group logarithms of rational points on CM elliptic curves.
This theorem has been seminal in providing a motivation for Perrin-Riou’s formulation ([PR2], [PR3]) of
the p-adic Beilinson conjectures. The new proof described in this work is based on the p-adic Gross-Zagier
type formula of [BDP-gz], and only makes use of Heegner points (as opposed to the original proof which
relied on on a comparison between Heegner points and elliptic units). Hence it should be adaptable to
more general situations, for example to the setting of general CM fields.

Let A be an elliptic curve over Q with complex multiplication by the ring of integers of a quadratic
imaginary field K. A classical result of Deuring identifies the Hasse-Weil L-series L(A, s) of A with the L-
series L(νA, s) attached to a Hecke character νA of K of infinity type (1, 0). When p is a prime which splits
in K and does not divide the conductor of A, the Hecke L-function L(νA, s) has a p-adic analog, namely the
Katz two-variable p-adic L-function attached to K. It is a p-adic analytic function, denoted ν 7→ Lp(ν),
on the space of Hecke characters equipped with its natural p-adic analytic structure. Section 3.1 recalls
the definition of this L-function: the values Lp(ν) at Hecke characters of infinity type (1 + j1,−j2) with
j1, j2 ≥ 0 are defined by interpolation of the classical L-values L(ν−1, 0). Letting ν∗ := ν ◦ c, where
c denotes complex conjugation on the ideals of K, it is readily seen by comparing Euler factors that
L(ν, s) = L(ν∗, s). A similar equality need not hold in the p-adic setting, because the involution ν 7→ ν∗

corresponds to the map (j1, j2) 7→ (j2, j1) on weight space and therefore does not preserve the lower right
quadrant of weights of Hecke characters that lie in the range of classical interpolation. Since νA lies in the
domain of classical interpolation, the p-adic L-value Lp(νA) is a simple multiple of L(ν−1

A , 0) = L(A, 1).
Suppose that it vanishes. (This implies, by the Birch and Swinnerton-Dyer conjecture, that A(Q) is
infinite.) The value Lp(ν

∗
A) is a second, a priori more mysterious p-adic avatar of the leading term of

L(A, s) at s = 1. Rubin’s theorem gives a formula for this quantity:

Theorem 1 (Rubin). Let νA be a Hecke character of type (1, 0) attached to an elliptic curve A/Q with
complex multiplication. Then there exists a global point P ∈ A(Q) such that

(1.1) Lp(ν
∗
A) = Ωp(A)−1 logωA

(P )2 (mod K×),

where

• Ωp(A) is the p-adic period attached to A as in Section 2.3;
• ωA ∈ Ω1(A/Q) is a regular differential on A over Q, and logωA

: A(Qp)−→Qp denotes the p-adic
formal group logarithm with respect to ωA.

The point P is of infinite order if and only if L(A, s) has a simple zero at s = 1.

(For a more precise statement without the K× ambiguity, see [Ru].) Formula (1.1) is peculiar to the p-
adic world and suggests that p-adic L-functions encode arithmetic information that is not readily apparent
in their complex counterparts.

The proof of Theorem 1 given in [Ru] breaks up naturally into two parts:
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(1) Rubin exploits the Euler system of elliptic units to construct a global cohomology class κA be-
longing to a pro-p Selmer group Selp(A/Q) attached to A. The close connection between elliptic
units and the Katz L-function is then parlayed into the explicit evaluation of two natural p-adic
invariants attached to κA: the p-adic formal group logarithm logA,p(κA) and the cyclotomic p-adic
height 〈κA, κA〉:

logA,p(κA) = (1 − β−1
p )−1

Lp(ν
∗
A)Ωp(A),(1.2)

〈κA, κA〉 = (1 − α−1
p )−2

L
′
p(νA)Lp(ν

∗
A),(1.3)

where
• αp and βp denote the roots of the Hasse polynomial x2 − ap(A)x + p, ordered in such a way

that ordp(αp) = 0 and ordp(βp) = 1;
• the quantity L ′

p(νA) denotes the derivative of Lp at νA in the direction of the cyclotomic
character.

If L ′
p(νA) is non-zero, then an argument based on Perrin-Riou’s p-adic analogue of the Gross-Zagier

formula and the work of Kolyvagin implies that Selp(A/Q) ⊗ Q is a one-dimensional Qp-vector
space with κA as a generator. (Cf. Thm. 8.1 and Cor. 8.3 of [Ru].) Equations (1.2) and (1.3)
then make it possible to evaluate the ratio

(1.4)
log2

A,p(κ)

〈κ, κ〉 =
(1 − β−1

p )−2Lp(ν
∗
A)Ωp(A)2

(1 − α−1
p )−2L ′

p(νA)
,

a quantity which does not depend on the choice of generator κ of the Qp-vector space Selp(A/Q)⊗Q.
(2) Independently of the construction of κA, the theory of Heegner points can be used to construct a

canonical point P ∈ A(Q), which is of infinite order when L ′
p(νA) 6= 0. Its image κP ∈ Selp(A/Q)

under the connecting homomorphism of Kummer theory supplies us with a second generator for
Selp(A/Q) ⊗ Q. Furthermore, the p-adic analogue of the Gross-Zagier formula proved by Perrin-
Riou in [PR1] shows that

(1.5) 〈κP , κP 〉 = L
′
p(νA)Ωp(A)−1 (mod K×).

Rubin obtains Theorem 1 by setting κ = κP in (1.4) and using (1.5) to eliminate the quantities involving
〈κP , κP 〉 and L ′

p(νA).

The reader will note the key role that is played in Rubin’s proof by both the Euler systems of elliptic
units and of Heegner points. The new approach to Theorem 1 described in this paper relies solely on
Heegner points, and requires neither elliptic units nor Perrin-Riou’s p-adic height calculations. Instead,
the key ingredient in this approach is the p-adic variant of the Gross-Zagier formula arising from the results
of [BDP-gz] which is stated in Theorem 3.12. This formula expresses p-adic logarithms of Heegner points
in terms of the special values of a p-adic Rankin L-function attached to a cusp form f and an imaginary
quadratic field K, and may be of some independent interest insofar as it exhibits a strong analogy with
Rubin’s formula but applies to arbitrary—not necessarily CM—elliptic curves over Q. When f is the theta
series attached to a Hecke character of K, Theorem 1 follows from the factorisation of the associated p-adic
Rankin L-function into a product of two Katz L-functions, a factorisation which is a simple manifestation
of the Artin formalism for these p-adic L-series.

One might expect that the statement of Theorem 1 should generalise to the setting where νA is replaced
by an algebraic Hecke character ν of infinity type (1, 0) of a quadratic imaginary field K (of arbitrary class
number) satisfying

(1.6) ν|AQ
= εK · N,

where εK denotes the quadratic Dirichlet character associated to K/Q and N : A×
Q−→R× is the adèlic

norm character. Chapter 3 treats this more general setting, which (although probably amenable as well
to the original methods of [Ru]) is not yet covered in the literature. Assumption (1.6) implies that the
classical functional equation relates L(ν, s) to L(ν, 2−s). Assume further that the sign wν in this functional
equation satisfies

(1.7) wν = −1,



p-ADIC RANKIN L-SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES 3

so that L(ν, s) vanishes to odd order at s = 1. For technical reasons, it will also be convenient to make
two further assumptions. Firstly, we assume that

(1.8) The discriminant −D of K is odd.

Secondly, we note that assumption (1.6) implies that dK :=
√
−D necessarily divides the conductor of ν,

and we further restrict the setting by imposing the assumption that

(1.9) The conductor of ν is exactly divisible by dK .

The statement of Theorem 2 below requires some further notions which we now introduce. Let Eν be
the subfield of C generated by the values of the Hecke character ν, and let Tν be its ring of integers. A
general construction which is recalled in Sections 2.2 and 3.6 attaches to ν an abelian variety Bν over K
of dimension [Eν : K], equipped with inclusions

Tν ⊂ EndK(Bν), Eν ⊂ EndK(Bν) ⊗ Q.

Given λ ∈ Tν , denote by [λ] the corresponding endomorphism of Bν , and set

Ω1(Bν/Eν)Tν :=
{

ω ∈ Ω1(Bν/Eν) such that [λ]∗ω = λω, ∀λ ∈ Tν

}

,(1.10)

(Bν(K) ⊗ Eν)Tν := {P ∈ Bν(K) ⊗Z Eν such that [λ]P = λP, ∀λ ∈ Tν} .(1.11)

The vector space Ω1(Bν/Eν)Tν is one-dimensional over Eν . The results of Gross-Zagier and Kolyvagin,
which continue to hold in the setting of abelian variety quotients of modular curves, also imply that
(Bν(K) ⊗ Eν)Tν is one-dimensional over Eν when L(ν, s) has a simple zero at s = 1.

After fixing a p-adic embedding K ⊂ Qp, the formal group logarithm on Bν gives rise to a bilinear
pairing

〈 , 〉 : Ω1(Bν/K) × Bν(K) −→ Qp

(ω, P ) 7→ logω P,

satisfying 〈[λ]∗ω, P 〉 = 〈ω, [λ]P 〉 for all λ ∈ Tν . This pairing can be extended by Eν-linearity to an
Eν ⊗ Qp-valued pairing between Ω1(Bν/Eν) and Bν(K) ⊗ Eν . When ω and P belong to these Eν-vector
spaces, we will continue to write logω(P ) for 〈ω, P 〉.
Theorem 2. Let ν be an algebraic Hecke character of infinity type (1, 0) satisfying (1.6), (1.7), (1.8) and
(1.9) above. Then there exists Pν ∈ Bν(K) such that

Lp(ν
∗) = Ωp(ν

∗)−1 logων
(Pν)2 (mod E×

ν ),

where Ωp(ν
∗) ∈ Cp is the p-adic period attached to ν in Definition 2.13, and ων is a non-zero element of

Ω1(Bν/Eν)Tν . The point Pν is non-zero if and only if L′(ν, 1) 6= 0.

Remark 3. Assumptions (1.8) and (1.9) could certainly be relaxed with more work. For instance, (1.8)
is needed since the main theorem of [BDP-gz] is only proved for imaginary quadratic fields of odd dis-
criminant. Likewise, removing (1.9) would require generalizing the main result of loc. cit. to the case of
Shimura curves over Q.

Remark 4. In [BDP-ch], we give a conjectural construction of rational points on CM elliptic curves
(called Chow-Heegner points) using cycles on higher dimensional varieties. While this construction of
points is contingent on a certain case of the Tate conjecture, the corresponding contruction at the level
of cohomology classes can be made unconditionally. The results of this paper, combined with those of
[BDP-gz], are used in [BDP-ch] to establish that these cohomology classes indeed correspond to global
points via the Kummer map.

Remark 5. The methods used in the proof of Theorem 2 also give information about the special values
Lp(ν

∗) for Hecke characters ν of type (1 + j,−j) satisfying (1.6) with j ≥ 0. A discussion of this point
will be taken up in future work. (See [BDP-co].)

2. Hecke characters and periods

Throughout this article, all number fields that arise are viewed as embedded in a fixed algebraic closure
Q̄ of Q. A complex embedding Q̄−→C and p-adic embeddings Q̄−→Cp for each rational prime p are also
fixed from the outset, so that any finite extension of Q is simultaneously realised as a subfield of C and of
Cp.
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2.1. Algebraic Hecke characters. We will recall briefly some key definitions regarding algebraic Hecke
characters, mainly to fix notation. The reader is referred to [Scha] Ch. 0 for more details. Let K and E
be number fields. Given a Z-linear combination

φ =
∑

σ

nσσ ∈ Z[Hom(K, Q̄)]

of embeddings of K into Q̄, we define

αφ :=
∏

σ

(σα)nσ ,

for all α ∈ K×. Let If denote the group of fractional ideals of K which are prime to a given integral ideal
f of K, and let

Jf := {(α) such that α >> 0 and α − 1 ∈ f} ⊆ If.

Definition 2.1. An E-valued algebraic Hecke character (or simply Hecke character) of K of infinity type
φ and conductor dividing f is a homomorphism

χ : If → E×

such that

(2.1) χ((α)) = αφ, for all (α) ∈ Jf.

The smallest integral ideal g such that χ can be extended to a Hecke character of conductor dividing g is
called the conductor of χ, and is denoted fχ.

The most basic examples of algebraic Hecke characters are the norm characters on Q and on K respec-
tively, which are given by

N((a)) = |a|, NK := N ◦ NK
Q .

Note that the infinity type φ of a Hecke character χ must be trivial on all totally positive units congruent
to 1 mod f. Hence the existence of such a χ implies there is an integer w(χ) (called the weight of χ or of
φ) such that for any choice of embedding of Q into C,

nσ + nσ̄ = w(χ), for all σ ∈ Hom(K, Q̄).

Let Uf ⊂ U ′
f ⊂ A×

K be the subgroups defined by

U ′
f :=

{

(xv) ∈ A×
K such that

xv ≡ 1 (mod f), for all v|f,
xv > 0, for all real v

}

,

and

Uf := {(xv) ∈ U ′
f such that xv ∈ O×

Kv
, for all non-archimedean v}.

A Hecke character χ of conductor dividing f may also be viewed as a character on A×
K/Uf (denoted by the

same symbol by a common abuse of notation),

(2.2) χ : A×
K/Uf → E×, satisfying χ|K× = φ.

To wit, given x ∈ A×
K , we define χ(x) by choosing α ∈ K× such that αx belongs to U ′

f , and setting

(2.3) χ(x) = χ(i(αx))φ(α)−1,

where the symbol i(x) denotes the fractional ideal of K associated to x. This definition is independent of
the choice of α by (2.1). In the opposite direction, given a character χ as in (2.2), we can set

χ(a) = χ(x), for any x ∈ U ′
f such that i(x) = a.

The subfield of E generated by the values of χ on If is easily seen to be independent of the choice of f and
will be denoted Eχ.

Definition 2.2. The central character εη of a Hecke character η of K is the finite order character of Q
given by

η|A×

Q

= εη · Nw(η).
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The infinity type φ defines a homomorphism ResK/Q(Gm) → ResE/Q(Gm) of algebraic groups and
therefore induces a homomorphism

φA : A×
K → A×

E

on adelic points. Given a Hecke character χ with values in E and a place λ of E (either finite or infinite),
we may use φA to define an idèle class character

χλ : A×
K/K× → E×

λ ,

by setting
χλ(x) = χ(x)/φA(x)λ.

If λ is an infinite place, the character χλ is a Grossencharacter of K of type A0. If λ is a finite place, then
χλ factors through Gab

K and gives a Galois character (denoted ρχ,λ) valued in E×
λ , satisfying

ρχ,λ(Frobp) = χ(p)

for any prime ideal p of K not dividing fλ.

Let g be any integral ideal of K. The L-function (and L-function with modulus g) attached to χ are
defined by

L(χ, s) =
∏

p

(

1 − χ(p)

Nps

)−1

, Lg(χ, s) =
∏

p∤g

(

1 − χ(p)

Nps

)−1

.

Note that L(χ, s) = Lfχ
(χ, s).

The following definition will only be used in Sec. 3.6.

Definition 2.3. Let E =
∏

i Ei be a product of number fields. An E-valued algebraic Hecke character of
conductor dividing f is a character

χ : If → E×

whose projection to each component Ei is an algebraic Hecke character in the sense defined above.

2.2. Abelian varieties associated to characters of type (1, 0). In this section, we limit the discussion
to the case where K is an imaginary quadratic field. Let τ : K 7→ C be the given complex embedding of
K. A Hecke character of infinity type φ = nτ τ + nτ̄ τ̄ will also be said to be of infinity type (nτ , nτ̄ ).

Let ν be a Hecke character of K of infinity type (1, 0) and conductor fν , let Eν ⊃ K denote the subfield
of Q̄ generated by its values, and let Tν be the ring of integers of Eν . The Hecke character ν gives rise to
a compatible system of one-dimensional ℓ-adic representations of GK with values in (Eν ⊗ Qℓ)

×, denoted
ρν,ℓ, satisfying

ρν,ℓ(σa) = ν(a), for all a ∈ Ifνℓ,

where σa ∈ Gal(K̄/K) denotes Frobenius conjugacy class attached to a. The theory of complex multipli-
cation realises the representations ρν,ℓ on the division points of CM abelian varieties:

Definition 2.4. A CM abelian variety over K is a pair (B,E) where

(1) B is an abelian variety over K;
(2) E is a product of CM fields equipped the structure of a K-algebra and an inclusion

i : E−→EndK(B) ⊗ Q,

satisfying dimK(E) = dim B;
(3) for all λ ∈ K ⊂ E, the endomorphism i(λ) acts on the cotangent space Ω1(B/K) as multiplication

by λ.

The abelian varieties (B,E) over K with complex multiplication by a fixed E form a category denoted
CMK,E in which a morphism from B1 to B2 is a morphism j : B1−→B2 of abelian varieties over K for
which the diagrams

B1
j

//

e

²²

B2

e

²²

B1
j

// B2
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commute, for all e ∈ E which belong to both EndK(B1) and EndK(B2). An isogeny in CMK,E is simply
a morphism in this category arising from an isogeny on the underlying abelian varieties.

If (B,E) is a CM abelian variety, its endomorphism ring over K contains a finite index subring T 0 of
the integral closure T of Z in E. After replacing B by the K-isogenous abelian variety HomT0

(T,B), we
can assume that EndK(B) contains T . This assumption, which is occasionally convenient, will consistently
be made from now on.

Let (B,E) be a CM-abelian variety with E a field, and let E′ ⊃ E be a finite extension of E with ring
of integers T ′. The abelian variety B ⊗T T ′ is defined to be the variety whose L-rational points, for any
L ⊃ K, are given by

(B ⊗T T ′)(L) = (B(Q̄) ⊗T T ′)Gal(Q̄/L).

This abelian variety is equipped with an action of T ′ by K-rational endomorphisms, described by multi-
plication on the right, and therefore (B⊗T T ′, E′) is an object of CMK,E′ . Note that B⊗T T ′ is isogenous
to t := dimE(E′) copies of B, and that the action of T on B ⊗T T ′ agrees with the “diagonal” action of
T on Bt.

Let ℓ be a rational prime. For each CM abelian variety (B,E), let

Tℓ(B) := lim
←,n

B[ℓn](K̄), Vℓ(B) := Tℓ(B) ⊗Zℓ
Qℓ

be the ℓ-adic Tate module and ℓ-adic representation of GK attached to B. The Qℓ-vector space Vℓ(B)
is a free E ⊗ Qℓ-module of rank one via the action of E by endomorphisms. The natural action of
GK := Gal(K̄/K) on Vℓ(B) commutes with this E ⊗Qℓ-action, and the collection {Vℓ(B)} thus gives rise
to a compatible system of one-dimensional ℓ-adic representations of GK with values in (E⊗Qℓ)

×, denoted
ρB,ℓ. We note in passing that for any extension E′ ⊃ E where T ′ is the integral closure of T in E′, we
have

Tℓ(B ⊗T T ′) = Tℓ(B) ⊗T T ′, Vℓ(B ⊗T T ′) = Vℓ(B) ⊗E E′.

The following result is due to Casselman (cf. Theorem 6 of [Shi]).

Theorem 2.5. Let ν be a Hecke character of K of type (1, 0) as above, and let ρν,ℓ be the associated
one-dimensional ℓ-adic representation with values in (Eν ⊗ Qℓ)

×. Then

(1) There exists a CM abelian variety (Bν , Eν) satisfying

ρBν ,ℓ ≃ ρν,ℓ.

(2) The CM abelian variety Bν is unique up to isogeny over K. More generally, if (B,E) is any CM
abelian variety with E ⊃ Eν satisfying ρB,ℓ ≃ ρν,ℓ ⊗Eν

E as (E ⊗ Qℓ)[GK ]-modules, then there is
an isogeny in CMK,E from B to Bν ⊗Tν

T .

Let ψ be a Hecke character of infinity type (1, 0), and let χ be a finite order Hecke character of K, so
that ψχ−1 also has infinity type (1, 0). In comparing the abelian varieties Bψ and Bψχ−1 , it is useful to
introduce a CM abelian variety Bψ,χ over K, which we now describe.

Let Eχ denote the field generated by K and the values of χ. We denote by Eψ,χ the compositum of
Eψ and Eχ, and by Tψ,χ ⊂ Eψ,χ its ring of integers. We also write Hχ for the abelian extension of K
which is cut out by χ viewed as a Galois character of GK . Consider first the abelian variety over K with
endomorphisms by Tψ,χ:

B0
ψ,χ := Bψ ⊗Tψ

Tψ,χ.

The natural inclusion iψ : Tψ−→Tψ,χ induces a morphism

(2.4) i : Bψ−→B0
ψ,χ

with finite kernel, which is compatible with the Tψ-actions on both sides and is given by

i(P ) = P ⊗ 1.
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Lemma 2.6. Let F be any number field containing Eψ,χ. With notations as in equation (1.10) of the
Introduction, the restriction map i∗ induces an isomorphism

(2.5) i∗ : Ω1(B0
ψ,χ/F )Tψ,χ−→Ω1(Bψ/F )Tψ

of one-dimensional F -vector spaces.

Proof. The fact that Bψ and B0
ψ,χ are CM abelian varieties over F implies that the spaces Ω1(Bψ/F ) and

Ω1(B0
ψ,χ/F ) of regular differentials over F are free of rank one over Tψ⊗OK

F and Tψ,χ⊗OK
F respectively.

In particular, the source and target in (2.5) are both one-dimensional over F . The space Ω1(B0
ψ,χ/F ) is

canonically identified with HomTψ
(Tψ,χ,Ω1(Bψ/F )), and under this identification, the pullback

i∗ : Ω1(B0
ψ,χ/F )−→Ω1(Bψ/F )

corresponds to the natural restriction

HomTψ
(Tψ,χ,Ω1(Bψ/F ))−→Ω1(Bψ/F )

sending the function ϕ to ϕ(1). (To see this, consider the map i∗ on tangent spaces and dualize.) It follows
directly from this description that ker(i∗) ∩ Ω1(B0

ψ,χ/F )Tψ,χ = 0, and hence that the restriction of i∗ to

the one-dimensional F -vector space Ω1(B0
ψ,χ/F )Tψ,χ is injective. ¤

We define ω0
ψ,χ ∈ Ω1(B0

ψ,χ/Q̄)Tψ,χ by

(2.6) i∗(ω0
ψ,χ) = ωψ, where ωψ ∈ Ω1(Bψ/Eψ)Tψ .

It follows from Lemma 2.6 that ω0
ψ,χ exists and is unique (once ωψ has been chosen), and that ω0

ψ,χ belongs

to Ω1(B0
ψ,χ/Eψ,χ).

The character χ−1 : Gal(Hχ/K)−→T×
χ can be viewed as a one-cocycle in

H1(Gal(Hχ/K), T×
ψ,χ) ⊂ H1(Gal(Hχ/K),AutK(B0

ψ,χ)).

Let

(2.7) Bψ,χ := (B0
ψ,χ)χ−1

denote the twist of B0
ψ,χ by this cocycle. There is a natural identification B0

ψ,χ(K̄) = Bψ,χ(K̄) of sets,
arising from an isomorphism of varieties over Hχ, where Hχ is the extension of K cut out by χ. The
actions of GK on B0

ψ,χ(K̄) and Bψ,χ(K̄), denoted ∗0 and ∗ respectively, are related by

(2.8) σ ∗ P = (σ ∗0 P ) ⊗ χ−1(σ), for all σ ∈ GK .

In particular, for any L ⊃ K, we have:

Bψ,χ(L) =
{

P ∈ Bψ(Q̄) ⊗Tψ
Tψ,χ such that σP = P ⊗ χ(σ), ∀σ ∈ Gal(Q̄/L)

}

.(2.9)

Likewise, the natural actions of GK on Ω1(B0
ψ,χ/K̄) and on Ω1(Bψ,χ/K̄) are related by

(2.10) σ ∗ ω = [χ−1(σ)]∗(σ ∗0 ω) for all σ ∈ GK .

The isomorphism of B0
ψ,χ and Bψ,χ as CM abelian varieties over Hχ gives natural identifications

Ω1(B0
ψ,χ/Hχ) = Ω1(Bψ,χ/Hχ), Ω1(B0

ψ,χ/E′
ψ,χ)Tψ,χ = Ω1(Bψ,χ/E′

ψ,χ)Tψ,χ ,

where E′
ψ,χ denotes the subfield of Q̄ generated by Hχ and Eψ,χ. Let ω0

ψ,χ and ωψ,χ be Eψ,χ vector space

generators of Ω1(B0
ψ,χ/Eψ,χ)Tψ,χ and Ω1(Bψ,χ/Eψ,χ)Tψ,χ respectively, the former being chosen to satisfy

(2.6) above. Since they both generate Ω1(Bψ,χ/E′
ψ,χ)Tψ,χ as an E′

ψ,χ-vector space, they necessarily differ

by a non-zero scalar in E′
ψ,χ.

To spell out the relation between ω0
ψ,χ and ωψ,χ more precisely, it will be useful to introduce the notion

of a generalised Gauss sum attached to any finite order character χ of GK . Given such a character, let

E{χ} := {λ ∈ EχHχ such that λσ = χ(σ)λ, ∀σ ∈ Gal(EχHχ/Eχ)}.
This set is a one-dimensional Eχ-vector space in a natural way. It is not closed under multiplication, but

(2.11) E{χ1} · E{χ2} = E{χ1χ2} (mod (Eχ1
Eχ2

)×).
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Definition 2.7. An Eχ-vector space generator of E{χ} is called a Gauss sum attached to the character
χ, and is denoted g(χ).

By definition, the Gauss sum g(χ) belongs to E{χ} ∩ (EχHχ)×, but is only well-defined up to multi-
plication by E×

χ . It follows from (2.11) that

(2.12) g(χ1χ2) = g(χ1)g(χ2) (mod (Eχ1
Eχ2

)×), g(χ−1) = g(χ)−1 (mod E×
χ ).

The following lemma pins down the relationship between the differentials ω0
ψ,χ and ωψ,χ.

Lemma 2.8. For all Hecke characters ψ and χ as above,

ωψ,χ = g(χ)ω0
ψ,χ (mod E×

ψ,χ).

Proof. Let λ ∈ (HχEψ,χ)× be the scalar satisfying

(2.13) ωψ,χ = λω0
ψ,χ.

Since ωψ,χ is an Eψ,χ-rational differential on Bψ,χ, for all σ ∈ Gal(K̄/Eψ,χ) we have

(2.14) ωψ,χ = σ ∗ ωψ,χ = [χ−1(σ)]∗σ ∗0 ωψ,χ = χ−1(σ)λσω0
ψ,χ,

where the second equality follows from equation (2.10) and the last from the fact that the differential
ω0

ψ,χ belongs to Ω1(B0
ψ,χ/Eψ,χ)Tψ,χ . Comparing (2.13) and (2.14) gives λσ = χ(σ)λ, and hence λ = g(χ)

(mod E×
ψ,χ). ¤

The following lemma relates the abelian varieties Bψ,χ and Bν , where ν = ψχ−1.

Lemma 2.9. There is an isogeny defined over K:

iν : Bψ,χ−→Bν ⊗Tν
Tψ,χ

which is compatible with the action of Tψ,χ by endomorphisms on both sides.

Proof. The pair (B0
ψ,χ, Eψ,χ) is a CM abelian variety having ψ (viewed as taking values in Eψ,χ) as its

associated Hecke character. The Hecke character attached to the Galois twist Bψ,χ is therefore ψχ−1 = ν.
The second part of Theorem 2.5 implies that Bψ,χ and Bν ⊗Tν

Tψ,χ are isogenous over K as CM abelian
varieties. ¤

2.3. Complex periods and special values of L-functions. This section recalls certain periods at-
tached to the quadratic imaginary field K and to Hecke characters of this field. We begin by fixing:

(1) An elliptic curve A with complex multiplication by OK , defined over a finite extension F of K.
(Note that F necessarily contains the Hilbert class field of K.)

(2) A regular differential ωA ∈ Ω1(A/F ).
(3) A non-zero element γ of H1(A(C), Q).

The complex period attached to this data is defined by

(2.15) Ω(A) :=
1

2πi

∫

γ

ωA (mod F×).

Note that Ω(A) depends on the pair (ω, γ). A different choice of ω or γ has the effect of multiplying Ω(A)
by a scalar in F×, and therefore Ω(A) can be viewed as a well-defined element of C×/F×.

For any Hecke character ψ of K, recall that ψ∗ is the Hecke character defined as in the Introduction
by ψ∗(x) = ψ(x̄). Suppose that ψ is of infinity type (1, 0), and as before let Eψ ⊂ Q̄ ⊂ C denote the field
generated by the values of ψ (or, equivalently, ψ∗). Choose (arbitrary) non-zero elements

ωψ ∈ Ω1(Bψ/Eψ)Tψ , γ ∈ H1(Bψ(C), Q),

where Bψ is the CM abelian variety attached to ψ by Theorem 2.5, and Ω1(Bψ/Eψ)Tψ is defined in
equation (1.10) of the Introduction. The period Ω(ψ∗) attached to ψ∗ is defined by setting

Ω(ψ∗) =
1

2πi

∫

γ

ωψ (mod E×
ψ ).

Note that the complex number Ω(ψ∗) does not depend, up to multiplication by E×
ψ , on the choices of ωψ

and γ that were made to define it.
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Lemma 2.10. If ψ is a Hecke character of infinity type (1, 0), and χ is a finite order character, then

(2.16) Ω(ψ∗χ) = Ω(ψ∗)g(χ∗)−1 (mod E×
ψ,χ).

Proof. Choose a non-zero generator γ of H1(B
0
ψ,χ(C), Q) = H1(Bψ,χ(C), Q) (viewed as a one-dimensional

Eψ,χ vector space via the endomorphism action). By definition,

Ω((ψχ−1)∗) =

∫

γ

ωψ,χ = g(χ)

∫

γ

ω0
ψ,χ = g(χ)Ω(ψ∗) (mod E×

ψ,χ),

where the second equality follows from Lemma 2.8. The result now follows after substituting χ∗−1 for
χ. ¤

As in [Scha] §1.8, one can also attach a period Ω(ψ) to an arbitrary Hecke character ψ of K; these
satisfy the following relations:

Proposition 2.11. Let ψ be a Hecke character of infinity type (k, j). Then

(1) The ratio
Ω(ψ∗)

(2πi)jΩ(A)k−j

is algebraic.
(2) For all ψ and ψ′,

Ω(ψψ′) = Ω(ψ)Ω(ψ′) (mod E×
ψ,ψ′),

where Eψ,ψ′ is the subfield of Q̄ generated by Eψ and Eψ′ .

The following theorem is due to Goldstein and Schappacher [GS] in certain cases and Blasius [Bl] in
the general case (even CM fields).

Theorem 2.12. Suppose that ψ has infinity type (k, j) with k > j, and that m is a critical integer for
L(ψ−1, s). Then

L(ψ−1,m)

(2πi)mΩ(ψ∗)
belongs to Eψ,

and for all τ ∈ Gal(Eψ/K),
(

L(ψ−1,m)

(2πi)mΩ(ψ∗)

)τ

=
L((ψ−1)τ ,m)

(2πi)mΩ((ψ∗)τ )
.

2.4. p-adic periods. Fix a prime p that splits in K. We will need p-adic analogs of the periods Ω(A)
and Ω(ν∗). The p-adic analogue Ωp(A) of Ω(A) is obtained by considering the base change ACp

of A to
Cp (via our fixed embedding of F into Cp). Assume that A has good reduction at the maximal ideal of

OCp
, i.e., that ACp

extends to a smooth proper model AOCp
over OCp

. The p-adic completion ÂOCp
of A

along its special fiber is isomorphic to Ĝm. Following [deS] II, §4.4, choose an isomorphism ιp : Â−→Ĝm

over OCp
, and define Ωp(A) ∈ C×

p by the rule

(2.17) ωA = Ωp(A) · ι∗p(du/u),

where u is the standard coordinate on Ĝm. The invariant Ωp(A) ∈ C×
p thus defined depends on the choices

of ωA and ιp, but only up to multiplication by a scalar in F×. Observe also that Ω(A) and Ωp(A) each
depend linearly in the same way on the choice of the global differential ωA.

The p-adic period Ωp(A) can be used to define p-adic analogs of the complex periods that appear in
the statement of Theorem 2.12.

Definition 2.13. Let ν be a Hecke character of K of type (1, 0). The p-adic period Ωp(ν
∗) is defined by

Ωp(ν
∗) := Ωp(A) · Ω(ν∗)

Ω(A)
.

More generally, for any character ν of infinity type (k, j), we define

Ωp(ν
∗) := Ωp(A)k−j · Ω(ν∗)

(2πi)jΩ(A)k−j
.
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It can be seen from this definition that the period Ωp(ν
∗), like its complex counterpart Ω(ν∗), is well-

defined up to multiplication by a scalar in E×
ν . The following p-adic analog of Lemma 2.10 is a direct

consequence of this lemma combined with the definition of Ωp(ψ):

Lemma 2.14. If ψ is a Hecke character of infinity type (1, 0), and χ is a finite order character, then

(2.18) Ωp(ψ
∗χ) = Ωp(ψ

∗)g(χ∗)−1 (mod E×
ψ,χ).

Likewise, Proposition 2.11 implies:

Proposition 2.15. Let ψ be a Hecke character of infinity type (k, j). Then

(1) The ratio
Ωp(ψ

∗)

(2πi)jΩp(A)k−j

is algebraic.
(2) For all ψ and ψ′,

(2.19) Ωp(ψψ′) = Ωp(ψ)Ωp(ψ
′) (mod E×

ψ,ψ′).

3. p-adic L-functions and Rubin’s formula

3.1. The Katz p-adic L-function. Throughout this chapter, we will fix a prime p that is split in K. Let
c be an integral ideal of K which is prime to p, and let Σ(c) denote the set of all Hecke characters of K of
conductor dividing c. Denote by p the prime above p corresponding to the chosen embedding K →֒ Q̄p.

A character ν ∈ Σ(c) is called a critical character if L(ν−1, 0) is a critical value in the sense of Deligne,
i.e., if the Γ-factors that arise in the functional equation for L(ν−1, s) are non-vanishing and have no poles
at s = 0. The set Σcrit(c) of critical characters can be expressed as the disjoint union

Σcrit(c) = Σ
(1)
crit(c) ∪ Σ

(2)
crit(c),

where

Σ
(1)
crit(c) = {ν ∈ Σ(c) of type (ℓ1, ℓ2) with ℓ1 ≤ 0, ℓ2 ≥ 1} ,

Σ
(2)
crit(c) = {ν ∈ Σ(c) of type (ℓ1, ℓ2) with ℓ1 ≥ 1, ℓ2 ≤ 0} .

The possible infinity types of Hecke characters in these two critical regions are sketched in Figure 1.

Note in particular that when c = c̄, the regions Σ
(1)
crit(c) and Σ

(2)
crit(c) are interchanged by the involution

ν 7→ ν∗. The set Σcrit(c) is endowed with a natural p-adic topology as described in Section 5.2 of [BDP-gz].

The subsets Σ
(1)
crit(c) and Σ

(2)
crit(c) are dense in the completion Σ̂crit(c) relative to this topology.

Recall that p is the prime above p induced by our chosen embedding of K into Cp. The following
theorem on the existence of the p-adic L-function is due to Katz. The statement below is a restatement
of [deS] (II, Thm. 4.14) with a minor correction, and restricted to characters unramified at p. We remark
that since our characters are unramified at p, the Gauss sum in the interpolation formula in loc. cit. is
equal to 1.

Theorem 3.1. There exists a p-adic analytic function ν 7→ Lp,c(ν) (valued in Cp) on Σ̂crit(c) which is
determined by the interpolation property:

(3.1)
Lp,c(ν)

Ωp(A)ℓ1−ℓ2
=

(√
D

2π

)ℓ2

(ℓ1 − 1)!(1 − ν(p)/p)(1 − ν−1(p̄))
Lc(ν

−1, 0)

Ω(A)ℓ1−ℓ2
,

for all critical characters ν ∈ Σ
(2)
crit(c) of infinity type (ℓ1, ℓ2).

The right hand side of (3.1) belongs to Q̄, by Part 1 of Proposition 2.11 and Theorem 2.12 with m = 0.
Equation (3.1) should be interpreted to mean that the left hand side also belongs to Q̄, viewed as a subfield
of Cp under the chosen embeddings, and agrees with the right hand side. Note that although both sides of
(3.1) depend on the choice of the differential ωA that was made in the definition of the periods Ω(A) and
Ωp(A), the quantity Lp,c(ν), just like its complex counterpart Lc(ν

−1, 0), does not depend on this choice.
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Figure 1. Critical infinity types for the Katz p-adic L-function

Remark 3.2. Once a choice of c is fixed, we shall often drop the subscript c and simply write Lp for the
p-adic L-function.

The following corollary is the p-adic counterpart of Thm. 2.12.

Corollary 3.3. Suppose that ν ∈ Σ
(2)
crit(c). Then

Lp,c(ν)

Ωp(ν∗)
belongs to Eν .

Proof. Suppose that ν has infinity type (ℓ1, ℓ2). By the definition of Ωp(ν
∗) and the the interpolation

property of the Katz p-adic L-function in Thm. 3.1, we have

Lp,c(ν)

Ωp(ν∗)
=

Lp,c(ν)

Ωp(A)ℓ1−ℓ2
× (2πi)ℓ2Ω(A)ℓ1−ℓ2

Ω(ν∗)

=
√
−D

ℓ2 · (ℓ1 − 1)!(1 − ν(p))(1 − ν−1(p̄))
Lc(ν

−1, 0)

Ω(ν∗)
.

The result is now a direct consequence of Theorem 2.12 with m = 0. ¤

Cor. 3.3 expresses Lp,c(ν) as an Eν-multiple of a p-adic period Ωp(ν
∗), when ν lies in the range Σ

(2)
crit(c)

of classical interpolation for the Katz p-adic L-function. On the other hand, the characters in Σ
(1)
crit(c) are

outside the range of interpolation, and so Cor. 3.3 does not directly say anything about these values, and

indeed the main goal of this paper is to obtain analogous results for certain characters in Σ
(1)
crit(c). It turns

out that the methods of this paper only allow us to study Lp,c(ν) for characters ν in Σ
(2)
crit(c) satisfying

the following auxiliary (but not unnatural) condition:

(3.2) ν is a self-dual Hecke character with εν = εK .
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For the benefit of the reader, we now recall this key definition.

Definition 3.4. A Hecke character ν ∈ Σcrit(c) is said to be self-dual or anticyclotomic if

νν∗ = NK .

The reason for the terminology in Definition 3.4 is that the functional equation for the L-series L(ν−1, s)
relates L(ν−1, s) to L(ν−1,−s), and therefore s = 0 is the central critical point for this complex L-series.
Note that a self-dual character is necessarily of infinity type (1+j,−j) for some j ∈ Z. Also the conductor
of a self-dual character is clearly invariant under complex conjugation. If c is an integral ideal such that
c = c̄, we denote by Σsd(c) the set of self-dual Hecke characters of conductor exactly c, and write

Σ
(1)
sd (c) = Σ

(1)
crit(c) ∩ Σsd(c), Σ

(2)
sd (c) = Σ

(2)
crit(c) ∩ Σsd(c).

In particular, the possible infinity types of characters in Σ
(2)
sd (c) correspond to the black dots in Figure 1.

For convenience, we restate Thm. 3.1 for self-dual characters.

Proposition 3.5. For all characters ν ∈ Σ
(2)
sd (c) of infinity type (1 + j,−j) with j ≥ 0,

(3.3)
Lp,c(ν)

Ωp(A)1+2j
= (1 − ν−1(p̄))2 × j!(2π)jLc(ν

−1, 0)
√

D
j
Ω(A)1+2j

.

Remark 3.6. In the proposition above, we could equally write L(ν−1, 0) instead of Lc(ν
−1, 0) since ν has

conductor exactly equal to c.

Remark 3.7. The central character of such a ν is very restricted. Indeed, for any Hecke character ν it is
clear that εν̄ = εν , while εν∗ = εν . If further ν is a self-dual character, it follows that for any x ∈ A×

K ,

ν(NK
Q (x)) = ν(xx̄) = (νν∗)(x) = NK(x) = N(NK

Q (x)).

Hence
ν|NK

Q
A×

K
= N and εν |NK

Q
A×

K
= 1.

This implies that the central character εν of a self-dual character ν is either 1 or εK , where εK denotes
the quadratic Dirichlet character corresponding to the extension K/Q. Conversely, it is easy to see that if
ν is a Hecke character with w(ν) = 1 and εν = 1 or εK , then ν is a self-dual character.

We define:

(3.4) Σsd(c)+ := {ν ∈ Σsd(c); εν = 1}, Σsd(c)− := {ν ∈ Σsd(c); εν = εK}.
The sets Σ

(1)
sd (c)± and Σ

(2)
sd (c)± are defined similarly.

Our approach to studying Lp,c(ν) for characters ν satisfying (3.2), i.e., those ν lying in Σ
(1)
sd (c)− for some

c, relies on a different kind of p-adic L-function. This latter p-adic L-function is attached to Rankin-Selberg
L-series and is recalled in the following section.

3.2. p-adic Rankin L-series. In this section, we consider p-adic L-functions obtained by interpolating
special values of Rankin-Selberg L-series associated to modular forms and Hecke characters of a quadratic
imaginary field K of odd discriminant. We briefly recall the definition of this p-adic L-function that is
given in Sec. 5 of [BDP-gz], referring the reader to loc.cit. for a more detailed description.

Let Sk(Γ0(N), ε) denote the space of cusp forms of weight k ≥ 2 and character ε on Γ0(N). Let
f ∈ Sk(Γ0(N), ε) be a normalized newform and let Ef denote the subfield of C generated by its Fourier
coefficients.

Definition 3.8. The pair (f,K) is said to satisfy the Heegner hypothesis if OK contains a cyclic ideal of
norm N , i.e., an integral ideal N of OK with OK/N = Z/NZ.

Assume from now on that (f,K) satisfies the Heegner hypothesis, and let N be a cyclic OK-ideal of
norm N . We write Nε for the unique ideal dividing N of norm Nε.

Definition 3.9. A Hecke character χ of K of infinity type (ℓ1, ℓ2) is said to be central critical for f if

ℓ1 + ℓ2 = k and εχ = ε.



p-ADIC RANKIN L-SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES 13

The reason for the terminology of Definition 3.9 is that when χ satisfies these hypotheses, the complex
Rankin L-series L(f, χ−1, s) is self-dual and s = 0 is its central (critical) point.

Definition 3.10. Let c be a rational integer prime to pN . Then Σcc(c,N, ε) is defined to be the set of
Hecke characters χ of K such that

(1) χ is central critical for f .
(2) fχ = c · Nε.
(3) The local sign εq(f, χ−1) = +1 for all finite primes q.

It is easily checked that this agrees with the definition of Σcc(c,N, ε) given in [BDP-gz] §4.1 where
this is just denoted Σcc(N). Further, as in loc. cit., given conditions (1) and (2) above, condition (3) is
automatic except possibly for primes q lying in the set Sf defined by:

Sf := {q : q | (N,D), q ∤ Nε}.
The set Σcc(c,N, ε) can be expressed as a disjoint union

Σcc(c,N, ε) = Σ(1)
cc (c,N, ε) ∪ Σ(2)

cc (c,N, ε),

where Σ
(1)
cc (c,N, ε) and Σ

(2)
cc (c,N, ε) denote the subsets consisting of characters of infinity type (k + j,−j)

with 1 − k ≤ j ≤ −1 and j ≥ 0 respectively. We shall also denote by Σ̂cc(c,N, ε) the completion of
Σcc(c,N, ε) relative to the p-adic compact open topology on Σcc(c,N, ε) which is defined in Section 5.2 of

[BDP-gz]. The infinity types of Hecke characters in Σ
(1)
cc (c,N, ε) and Σ

(2)
cc (c,N, ε) correspond respectively

to the white and black dots in the shaded regions in Figure 2. We note that the set Σ
(2)
cc (c,N, ε) of classical

central critical characters “of type 2” is dense in Σ̂cc(c,N, ε).

For all χ ∈ Σ
(2)
cc (c,N, ε) of infinity type (k+j,−j) with j ≥ 0, let Ef,χ denote the subfield of C generated

by Ef and the values of χ, and let Ef,χ,ε be the field generated by Ef,χ and by the abelian extension of
Q cut out by ε. The algebraic part of L(f, χ−1, 0) is defined by the rule

(3.5) Lalg(f, χ−1, 0) := w(f, χ)−1C(f, χ, c) · L(f, χ−1, 0)

Ω(A)2(k+2j)
,

where w(f, χ)−1 ∈ Ef,χ,ε and C(f, χ, c) are respectively the scalar (of complex norm 1) and the explicit
real constant defined in equation (5.1.11) and Theorem 4.6 of [BDP-gz]; we have

(3.6) C(f, χ, c) =
2k+2j−2πk+2j−1j!(k + j − 1)!wK√

D
k+2j−1

ck+2j−1

∏

q|c

q − εK(q)

q − 1
,

where wK = #O×
K is the number of roots of unity in K. Thm. 5.5 and Thm. 5.10 of loc. cit. show

respectively that the values Lalg(f, χ−1, 0) belongs to Q, and that they interpolate p-adically:

Proposition 3.11. Let χ 7→ Lp(f, χ) be the function on Σ
(2)
cc (c,N, ε) defined by

(3.7) Lp(f, χ) := Ωp(A)2(k+2j)(1 − χ−1(p̄)ap(f) + χ−2(p̄)ε(p)pk−1)2Lalg(f, χ−1, 0),

for χ of infinity type (k + j,−j) with j ≥ 0. This function extends (uniquely) to a p-adically continuous

function on Σ̂cc(c,N, ε).

The function χ 7→ Lp(f, χ) on Σ̂cc(c,N, ε) will be referred to as the p-adic Rankin L-function attached
to the cusp form f .

3.3. A p-adic Gross-Zagier formula. In this section, we specialise to the case where the newform f is
of weight k = 2, and assume that χ is a finite order Hecke character of K satisfying

χNK belongs to Σ(1)
cc (c,N, ε).

In particular, the character χNK lies outside the domain Σ
(2)
cc (c,N, ε) of classical interpolation defining

Lp(f,−). The p-adic Gross-Zagier formula alluded to in the title of this section relates the special value
Lp(f, χNK) to the formal group logarithm of a Heegner point on the modular abelian variety attached to
f .
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Figure 2. Critical infinity types for the p-adic Rankin L-function

The Eichler-Shimura construction associates to f an abelian variety Bf with endomorphism by an order
in the ring of integers Tf ⊂ Ef , and a surjective morphism

Φf : J1(N)−→Bf

of abelian varieties over Q, called the modular parametrisation, which is well-defined up to a rational
isogeny. Let

ωf = 2πif(τ)dτ ∈ Ω1(X1(N)/Ef )

be the differential form on X1(N) attached to f ; we use the same symbol ωf to denote the associated
one-form on J1(N). Let ωBf

∈ Ω1(Bf/Ef )Tf be the unique one-form satisfying

(3.8) Φ∗
f (ωBf

) = ωf .

Let A′ be an elliptic curve with endomorphism ring isomorphic to the order Oc = Z+cOK of conductor
c, defined over the ring class field Hc of conductor c. The pair (A′, A′[N]) corresponds to a point on
X0(N)(Hc). Let t be any generator of A′[N]. Then the triple (A′, A′[N], t) corresponds to a point in
X1(N), whose field of definition Hc,N is an abelian extension of K, independent of the choice of t, and the
finite order Hecke character χ can be viewed as a character

χ : Gal(Hc,N/K)−→Eχ.

Fix a cusp ∞ of X1(N) which is defined over Q, and let

(3.9) ∆ = [A′, A′[N], t] − (∞) ∈ J1(N)(Hc,N).
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To the pair (f, χ) we associate a Heegner point by letting G = Gal(Hc,N/K) and setting

(3.10) Pf (χ) :=
∑

σ∈G

χ−1(σ)Φf (∆σ) ∈ Bf (Hc,N) ⊗Tf
Ef,χ.

Note that, since Pf (χ)σ = Pf (χ) for any σ ∈ Gal(Hc,N/Hχ), the point Pf (χ) lies in the subspace
Bf (Hχ) ⊗Tf

Ef,χ. The embedding of Q̄ into Cp that was fixed from the outset allows us to consider
the formal group logarithm

logωBf
: Bf (Hc,N)−→Cp.

We extend this function to Bf (Hc,N) ⊗Tf
Ef,χ by Ef,χ-linearity.

Theorem 3.12. With notations and assumptions as above,

Lp(f, χNK) = (1 − χ−1(p̄)p−1ap(f) + χ−2(p̄)ε(p)p−1)2 log2
ωBf

(Pf (χ)).

Proof. Let

E (f, χ) := (1 − χ−1(p̄)p−1ap(f) + χ−2(p̄)ε(p)p−1)2 ∈ E×
f,χ

be the Euler factor appearing in the statement of Theorem 3.12. Let F ′ denote the p-adic completion of
Hc,N. Theorem 5.13 of [BDP-gz] in the case k = 2 and r = j = 0, with χ replaced by χNK , gives

(3.11) Lp(f, χNK) = E (f, χ) ×
(

∑

σ∈G

χ−1(σ) · AJF ′(∆σ)(ωf )

)2

.

Note that in this context, the p-adic Abel-Jacobi map AJF ′ that appears in (3.11) is related to the formal
group logarithm by

AJF ′(∆)(ωf ) = logωf
(∆).

Therefore,

(3.12) Lp(f, χNK) = E (f, χ)

(

∑

σ∈G

χ−1(σ) logωf
(∆σ)

)2

.

Theorem 3.12 follows from this formula and the fact that, by (3.8),

logωf
(∆) = logΦ∗

f
(ωBf

)(∆) = logωBf
(Φf (∆)).

¤

In the special case where f has rational Fourier coefficients and χ = 1 is the trivial character, the
abelian variety Bf is an elliptic curve quotient of J0(N) and the Heegner point Pf := Pf (1) belongs to
Bf (K). Theorem 3.12 implies in this case that

(3.13) Lp(f,NK) =

(

p + 1 − ap(f)

p

)2

log2(Pf ),

where log : Bf (Kp)−→Kp is the formal group logarithm attached to a rational differential on Bf/Q.
Equation (3.13) exhibits a strong analogy with Theorem 1 of the Introduction, although it applies to
arbitrary (modular) elliptic curves and not just elliptic curves with complex multiplication.

The remainder of Chapter 3 explains how Theorem 3.12 can in fact be used to prove Theorems 1 and
2 of the Introduction. The key to this proof is a relation between the Katz p-adic L-function of Section
3.1 and the p-adic Rankin L-function Lp(f, χ) of Section 3.2 in the special case where f is a theta series
attached to a Hecke character of the imaginary quadratic field K. This explicit relation is described in
the following section.
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3.4. A factorisation of the p-adic Rankin L-series. This section focuses on the Rankin L-function
Lp(f, χ) of f and K in the special case where f is a theta series associated to a Hecke character of the
same imaginary quadratic field K.

More precisely, let ψ be a fixed Hecke character of K of infinity type (k − 1, 0) with k = r + 2 ≥ 2.
Consider the associated theta series:

θψ :=
∑

a

ψ(a)qNa =

∞
∑

n=1

an(θψ)qn,

where the first sum is taken over integral ideals of K. The Fourier coefficients of θψ generate a number
field Eθψ

which is clearly contained in Eψ.
The following classical proposition is due to Hecke and Schoenberg. (Cf. [Ogg] or Sec. 3.2 of [Za]).

Proposition 3.13. The theta series θψ belongs to Sk(Γ0(N), ε), where

(1) The level N is equal to DM , with M = NK
Q fψ,

(2) The Nebentypus character ε is equal to εKεψ.

Lemma 3.14. If the conductor fψ of ψ is a cyclic ideal m of norm M prime to D, then f := θψ satisfies
the Heegner hypothesis relative to K.

Proof. In this case, the modular form θψ is of level N = DM , by Proposition 3.13. But then the ideal

(3.14) N := dKm,

with dK := (
√
−DK) is a cyclic ideal of K of norm N . ¤

We will assume from now on that the condition in Lemma 3.14 is satisfied. Furthermore, we will always
take N to be the ideal in (3.14).

The goal of this section is to factor the p-adic Rankin L-function Lp(θψ, ·) as a product of two Katz
p-adic L-functions. As a preparation to stating the main result we record the following lemma:

Lemma 3.15. Let c be an integer prime to pN and let χ be any character in Σcc(c,N, ε).

(1) If χ belongs to Σ
(2)
cc (c,N, ε), then ψ−1χ belongs to Σ

(2)
sd (cdK)− and ψ∗−1χ belongs to Σ

(2)
sd (cdKM)−.

(2) If χ belongs to Σ
(1)
cc (c,N, ε), then ψ−1χ belongs to Σ

(1)
sd (cdK)− and ψ∗−1χ belongs to Σ

(2)
sd (cdKM)−.

Proof. We first note that when χ is of type (k + j,−j) then ψ−1χ is of infinity type (1+ j,−j) and ψ∗−1χ
is of infinity type (k + j, 1 − (k + j)). Since χ ∈ Σcc(c,N, ε), we have

εχ = ε = εψ · εK .

Thus εψ−1χ equals εK and the same holds for εψ∗−1χ since εψ∗ = εψ. It follows then from Remark 3.7

that ψ−1χ and ψ∗−1χ are self-dual characters.
Let q be a rational prime dividing M . Since m is a cyclic OK-ideal, it follows that q = qq̄ must be split

in K, and exactly one of q,q̄ divides m. From this it is easy to see that εψ has conductor exactly M , hence
ε has conductor exactly N and Nε = N. Thus fχ = cN = cdKm and fψ∗−1χ = cdKmm̄ = cdKM . On the
other hand, since εχ = εψεK , it follows that fψ−1χ = cdK .

The preceding remarks imply that if χ is in Σcc(c,N, ε), then ψ−1χ lies in Σsd(cdK)− and ψ∗−1χ

lies in Σsd(cdKM)−. To finish we note that if j ≥ 0, then both ψ−1χ and ψ∗−1χ lie in Σ
(2)
sd , while if

−(k − 1) ≤ j ≤ −1, then ψ∗−1χ is in Σ
(2)
sd while ψ−1χ lies in Σ

(1)
sd . ¤

Theorem 3.16. For all χ ∈ Σcc(c,N, ε),

(3.15) Lp(θψ, χ) =
w(θψ, χ)−1wK

2ck+2j−1

∏

q|c

q − εK(q)

q − 1
× Lp,cdK

(ψ−1χ) × Lp,cdKM (ψ∗−1χ).
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Proof. Since Σ
(2)
cc (c,N, ε) is dense in Σ̂

(2)
cc (c,N, ε), it suffices to prove the formula for the characters χ

in this range, where it follows directly from the interpolation properties defining the respective p-adic
L-functions. More precisely, by (3.7),

Lp(θψ, χ)

Ωp(A)2(k+2j)
=

(

(1 − ψχ−1(p̄))(1 − ψ∗χ−1(p̄)
)2

Lalg(θψ, χ−1, 0).(3.16)

Let δc :=
∏

q|c
q−εK(q)

q−1 . By the definition of Lalg(θψ, χ−1, 0) given in (3.5) and (3.6),

Lalg(θψ, χ−1, 0) = w(θψ, χ)−1C(θψ, χ, c)
L(θψ, χ−1, 0)

Ω(A)2(k+2j)

= w(θψ, χ)−1wKδc
2r+2jπk+2j−1j!(k + j − 1)!

√
D

k+2j−1
ck+2j−1

× L(ψχ−1, 0)L(ψ∗χ−1, 0)

Ω(A)2(k+2j)
(3.17)

=
w(θψ, χ)−1wKδc

2ck+2j−1

(

j!(2π)jL(ψχ−1, 0)
√

D
j
Ω(A)1+2j

)

×
(

(k + j − 1)!(2π)k+j−1L(ψ∗χ−1, 0)
√

D
k+j−1

Ω(A)1+2(k+j−1)

)

.

Combining (3.16) and (3.17) with the interpolation property of the Katz p-adic L-function given in Propo-
sition 3.5, we obtain

Lp(θψ, χ)

Ωp(A)2(k+2j)
=

w(θψ, χ)−1wKδc

2ck+2j−1
× Lp,cdK

(ψ−1χ)

Ωp(A)1+2j
× Lp,cdKM (ψ∗−1χ)

Ωp(A)1+2(k+j−1)
.(3.18)

Clearing the powers of Ωp(A) on both sides gives the desired result. ¤

The Nebentypus character ε can be viewed as a finite order Galois character of GQ. Recall that Eψ,χ,ε

denotes the smallest extension of Eψ,χ containing the field through which this character factors.

Corollary 3.17. For all χ ∈ Σcc(c,N, ε),

Lp(θψ, χ) = Lp,cdK
(ψ−1χ) × Lp,cdKM (ψ∗−1χ) (mod E×

ψ,χ,ε).

Proof. This follows from Theorem 3.16 in light of the fact that the constant that appears on the right
hand side of (3.15) belongs to E×

ψ,χ,ε. ¤

3.5. Proof of Rubin’s Theorem. The goal of this section is to prove Theorem 2 of the Introduction.
Let c = c̄ be an integral ideal in OK invariant under complex conjugation and let ν ∈ Σsd(c)− be a Hecke
character of K of infinity type (1, 0). Since εν = εK , it follows that dK |c. We will also assume that ν
satisfies the following additional conditions:

(i) The sign wν of the functional equation of the L-function L(ν, s) is −1.
(ii) dK ||c. Thus c = (c)dK for a unique positive rational integer c that is prime to D.

Let p be a rational prime split in K that is prime to c.

Definition 3.18. A pair (ψ, χ) of Hecke characters is said to be good for ν if it satisfies the following
conditions.

(1) The character ψ is of type (1, 0) and has conductor m, where m is a cyclic OK-ideal prime to pD.
Thus θψ is a newform in S2(Γ0(N), ε) where N = MD and ε = εψεK is a Dirichlet character of
conductor exactly N . Let N := mdK .

(2) The character χ is of finite order, and χNK belongs to Σ
(1)
cc (c,N, ε). This implies (on account of

Lemma 3.15 applied to χNK) that ψ−1χNK lies in Σ
(1)
sd (c) and ψ∗−1χNK lies in Σ

(2)
sd (cM).

(3) The character ψχ−1 is equal to ν, i.e., ψ−1χNK = ν∗.
(4) The classical L-value L(ψ∗χ−1N−1

K , 0) is non-zero, i.e., Lp,cM (ψ∗−1χNK) 6= 0.

Remark 3.19. Suppose that a pair (ψ, χ) satisfies (1) and (3) above with m prime to c. Then such a
pair automatically satisfies (2) also. Indeed, the character χNK = ψν∗ is of type (1, 1) and its central
character is equal to

εχ = εψεν∗ = εψεK = ε,

where ε is the nebentype character attached to θψ. Further, fχ = fψfν∗ = m · cdK . It follows that the
character χNK belongs to Σcc(c,N, ε) with N = dKm. (The set Sθψ

in the discussion below Defn. 3.10 is
empty since D | Nε.)
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Remark 3.20. Suppose that a pair (ψ, χ) satisfies conditions (1), (2) and (3) above. Since χNK lies in

Σ
(1)
cc (c,N, ε), the sign in the functional equation of L(θψ, χ−1, s) is −1. As seen previously, this L-function

factors as

L(θψ, (χNK)−1, s) = L(ψχ−1N−1
K , s)L(ψ∗χ−1N−1

K , s) = L(νN−1
K , s)L(ψ∗χ−1N−1

K , s).

The normalization here is such that the central point is s = 0. Since the sign of L(ν, s) is −1, it follows
that the sign of L(ψ∗χ−1N−1

K , s) is +1. Hence condition (4) would be expected to hold generically.

The modular abelian variety Bθψ
attached to ψ is a CM abelian variety in the sense of Definition

2.4. Hence it is K-isogenous to the CM abelian variety Bψ constructed in Section 2.2. In particular, the
modular parametrisation Φψ := Φθψ

can be viewed as a surjective morphism of abelian varieties over K

(3.19) Φψ : J1(N)−→Bψ.

Given a good pair (ψ, χ), recall the Heegner divisor ∆ ∈ J1(N)(Hc,N) that was constructed in Section 3.3,
and the Heegner point

(3.20) Pψ(χ) := Pθψ
(χ) =

∑

σ∈G

χ−1(σ)Φψ(∆σ) ∈ Bψ(Hχ) ⊗Tψ
Eψ,χ

that was defined in equation (3.10) of that section with f = θψ. Recall also that ωψ is an Eψ-vector
space generator of Ω1(Bψ/Eψ)Tψ . Viewing the point Pψ(χ) as a formal linear combination of elements of
Bψ(Hχ) with coefficients in Eψ,χ, we define the expression logωψ

(Pψ(χ)) by Eψ,χ-linearity.

In the rest of this section, we will denote by E′
ψ,χ the subfield of Q̄ generated by Eψ, Eχ, and the

abelian extension H ′
χ of K cut out by the finite order characters χ and χ∗. The motivation for singling

out good pairs for a special definition lies in the following proposition.

Proposition 3.21. For any pair (ψ, χ) which is good for ν,

(3.21) Lp,c(ν
∗) = Ωp(ν

∗)−1 log2
ωψ

(Pψ(χ)) (mod (E′
ψ,χ)×),

where Ωp(ν
∗) is the p-adic period from Definition 2.13.

Proof. By Theorem 3.12 applied to f = θψ,

(3.22) Lp(θψ, χNK) = log2
ωψ

(Pψ(χ)) (mod E×
ψ,χ).

On the other hand, since E′
ψ,χ contains Eψ,χ,ε, Corollary 3.17 implies that

Lp(θψ, χNK) = Lp,c(ψ
−1χNK)Lp,cM (ψ∗−1χNK) (mod (E′

ψ,χ)×)

= Lp,c(ν
∗)Lp,cM (ψ∗−1χNK) (mod (E′

ψ,χ)×),(3.23)

where the second equality follows from condition 3 in the definition of a good pair. The value Lp,cM (ψ∗−1χNK)
is non-zero by condition 4 in the definition of a good pair. Therefore, by Cor. 3.3,

(3.24) Lp,cM (ψ∗−1χNK) = Ωp(ψ
−1χ∗NK) (mod E×

ψ,χ).

Since ψχ−1 = ν, we have

(3.25) Ωp(ψ
−1χ∗NK) = Ωp(ν

−1χ−1χ∗NK) = Ωp(ν
∗ · χ∗/χ) = Ωp(ν

∗) (mod (E′
ψ,χ)×),

where the last equality follows from from Lemma 2.14. The proposition now follows by combining the
equations (3.22) through (3.25). ¤

To go further, we will analyse the expression logωψ
(Pψ(χ)) and relate it to quantities depending solely

on ν and not on the good pair (ψ, χ). It will be useful to view the point Pψ(χ) appearing in (3.21) as an
element of B0

ψ,χ(Hc,N) or as a K-rational point on the abelian variety Bψ,χ that was introduced in Section
2.2. More precisely, after setting

(3.26) Pψ(χ) :=
∑

σ∈G

Φψ(∆σ) ⊗ χ−1(σ) ∈ Bψ(K̄) ⊗Tψ
Tψ,χ = B0

ψ,χ(K̄),
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we observe that, for all τ ∈ Gal(K̄/K),

τ ∗0 Pψ(χ) =
∑

σ∈G

Φψ(∆τσ) ⊗ χ−1(σ)

=
∑

σ∈G

Φψ(∆σ) ⊗ χ−1(στ−1) = Pψ(χ)χ(τ).

The point Pψ(χ) therefore belongs to Bψ,χ(K) by (2.9). For the following lemmas, recall the differentials
ω0

ψ,χ ∈ Ω1(B0
ψ,χ/Eψ,χ)Tψ,χ and ωψ,χ ∈ Ω1(Bψ,χ/Eψ,χ)Tψ,χ .

Lemma 3.22. For all good pairs (ψ, χ) attached to ν = ψχ−1,

logωψ
(Pψ(χ)) = logω0

ψ,χ
(Pψ(χ)).

Proof. Let G = Gal(Hc,N/K) and let P = Φψ(∆). Also, let i be the map defined in (2.4). Then

logωψ
(Pψ(χ)) =

∑

σ∈G

χ(σ)−1 logωψ
(P σ) =

∑

σ∈G

χ(σ)−1 logi∗(ω0

ψ,χ
)(P

σ)

=
∑

σ∈G

χ(σ)−1 logω0

ψ,χ
(P σ ⊗ 1) =

∑

σ∈G

logχ(σ)−1ω0

ψ,χ
(P σ ⊗ 1)

=
∑

σ∈G

logω0

ψ,χ
(P σ ⊗ χ(σ)−1) = logω0

ψ,χ

(

∑

σ∈G

P σ ⊗ χ(σ)−1

)

= logω0

ψ,χ
(Pψ,χ).

¤

Lemma 3.23.

logω0

ψ,χ
(Pψ(χ)) = logωψ,χ

(Pψ(χ)) (mod (E′
ψ,χ)×),

Proof. This follows from Lemma 2.8 since the Gauss sum g(χ) lies in (E′
ψ,χ)×. ¤

Lemma 3.24. There exists Pν ∈ Bν(K) and ων ∈ Ω1(Bν/Eν)Tν such that

logωψ,χ
(Pψ(χ)) = logων

(Pν) (mod (E′
ψ,χ)×).

Proof. Recall from Lemma 2.9 that there is a K-rational isogeny

Bν ⊗Tν
Tψ,χ−→Bψ,χ.

Composing it with the natural morphism Bν−→Bν ⊗Tν
Tψ,χ, we obtain a Tν-equivariant morphism j :

Bν−→Bψ,χ defined over K with finite kernel. The fact that L(ν, s) has a simple zero at s = 1 implies that
Bν(K)⊗Q is one-dimensional over Eν , and therefore that Bψ,χ(K)⊗Q is one-dimensional over Eψ,χ. In
particular, if Pν is any generator of Bν(K) ⊗ Q, we may write

Pψ(χ) = λj(Pν)

for some non-zero scalar λ ∈ E×
ψ,χ. But letting

ων = j∗(ωψ,χ) ∈ Ω1(Bν/E′
ψ,χ)Tν ,

we have

logωψ,χ
(Pψ(χ)) = logωψ,χ

(λj(Pν)) = logλ∗ωψ,χ
(j(Pν)) = λ logωψ,χ

(j(Pν))

= λ logj∗ωψ,χ
(Pν) = λ logων

(Pν).

The lemma now follows after multiplying ων by an appropriate scalar in (E′
ψ,χ)× so that it belongs to

Ω1(Bν/Eν)Tν . ¤

Proposition 3.25. There exists ων ∈ Ω1(Bν/Eν)Tν and Pν ∈ Bν(K) such that

(3.27) Lp,c(ν
∗) = Ωp(ν

∗)−1 log2
ων

(Pν) (mod (E′
ψ,χ)×),

for all good pairs (ψ, χ) attached to ν.

Proof. This follows immediately from Proposition 3.21 and Lemmas 3.22 through 3.24. ¤
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While Proposition 3.25 brings us close to Theorem 2 of the Introduction, it is somewhat more vague in
that both sides of the purported equality may differ a priori by a non-zero element of the typically larger
field E′

ψ,χ. The alert reader will also notice that this proposition is potentially vacuous for now, because
the existence of a good pair for ν has not yet been established! The next proposition repairs this omission,
and directly implies Theorem 2 of the Introduction.

Proposition 3.26. The set Sν of pairs (ψ, χ) that are good for ν is non-empty. Furthermore,

(3.28)
⋂

(ψ,χ)∈Sν

E′
ψ,χ = Eν .

The proof of Proposition 3.26 rests crucially on a non-vanishing result of Rohrlich and Greenberg ([Ro],
[Gre]) for the central critical values of Hecke L-series. In order to state it, we fix a rational prime ℓ which
is split in K and let

K−
∞ = ∪n≥0K

−
n

be the so-called anti-cyclotomic Zℓ extension of K; it is the unique Zℓ-extension of K which is Galois over
Q and for which Gal(K−

∞/Q) = Zℓ ⋊ (Z/2Z) is a generalised dihedral group.

Lemma 3.27 (Greenberg, Rohrlich). Let ψ0 be a self-dual Hecke character of K of infinity type (1, 0).
Assume that the sign wψ0

in the functional equation of L(ψ0, s) is equal to 1. Then there are infinitely
many finite-order characters χ of Gal(K−

∞/K) for which L(ψ0χ, 1) 6= 0.

Proof. Let c′ be the conductor of ψ0. In light of the hypothesis that wψ0
= 1, Theorem 1 of [Gre] implies

that the Katz p-adic L-function (with p = ℓ) does not vanish identically on any open ℓ-adic neighbourhood
of ψ0 in Σsd(c′). (Cf. the discussion in the first paragraph of the proof of Proposition 1 on p. 93 of [Gre].)
If U is any sufficiently small such neighbourhood, then

(1) The restriction to U of the Katz p-adic L-function is described by a power series with p-adically
bounded coefficients, and therefore admits only finitely many zeros by the Weierstrass preparation
theorem.

(2) The region U contains a dense subset of points of the form ψ0χ, where χ is a finite order character
of Gal(K−

∞/K).

Lemma 3.27 follows directly from these two facts. ¤

Proof of Proposition 3.26. Let S̄ν ⊃ Sν be the set of pairs satisfying conditions 1-3 in the definition of a
good pair, but without necessarily requiring the more subtle fourth condition. The proof of Proposition
3.26 will be broken down into four steps.

Step 1. The set S̄ν is non-empty.
To see this, let ψ be any Hecke character of K of infinity type (1, 0) and conductor m, where m is a

cyclic OK-ideal prime to c. Setting χ = ψν−1, the pair (ψ, χ) satisfies conditions 1 and 3 by construction,
and 2 as well on account of Remark 3.19. Therefore, the pair (ψ, χ) belongs to S̄ν .

Step 2. Given (ψ, χ) ∈ S̄ν , there exist (ψ1, χ1) and (ψ2, χ2) ∈ Sν with E′
ψ1,χ1

∩ E′
ψ2,χ2

⊂ E′
ψ,χ.

To see this, let ℓ = λλ̄ be a rational prime which splits in K and is relatively prime to the class number
of K and the conductors of ψ and χ, and which is unramified in E′

ψ,χ/Q. For such a prime, let

K∞ = ∪n≥0Kn, K ′
∞ = ∪n≥0K

′
n

be the unique Zℓ-extensions of K which are unramified outside of λ and λ̄ respectively, with [Kn : K] = ℓn

and likewise for K ′
n. The condition that ℓ does not divide the class number of K implies that the fields

Kn and K ′
n are totally ramified at λ and λ̄ respectively. If α is any character of Gal(K∞/K), the pair

(ψ1, χ1) := (ψα, χα) still belongs to S̄ν , with m in condition 1 replaced by mλn for a suitable n ≥ 0.
Furthermore,

(3.29) L(ψ∗
1χ−1

1 N−1
K , 0) = L(ψ∗χ−1N−1

K · (α∗/α), 0).

The character α∗/α is an anticyclotomic character of K of ℓ-power order and conductor, and all such
characters can be obtained by choosing α appropriately. The fact that (ψ, χ) satisfies conditions (1),(2)
and (3) of a good pair implies (see Remark 3.20) that the sign wψ∗χ−1 is equal to +1. Hence, by Lemma
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3.27, there exists a choice of α for which the L-value appearing on the right of (3.29) is non-vanishing.
The corresponding pair (ψ1, χ1) belongs to Sν and satisfies

E′
ψ1,χ1

⊂ E′
ψ,χ,ℓ,n := E′

ψ,χQ(ζℓn)KnK ′
n

for some n. Note that the extension E′
ψ,χ,ℓ,n/E′

ψ,χ has degree dividing ℓ∞(ℓ − 1). Repeating the same

construction with a different rational prime ℓ′ in place of ℓ such that ℓ′ − 1 is prime to ℓ yields a second
pair (ψ2, χ2) ∈ Sν and a corresponding extension E′

ψ,χ,ℓ′,n′ , whose degree over E′
ψ,χ divides ℓ′

∞
(ℓ′ − 1),

and such that

E′
ψ2,χ2

⊂ E′
ψ,χ,ℓ′,n′ .

Let

E′′ := E′
ψ,χ,ℓ,n ∩ E′

ψ,χ,ℓ′,n′ .

We see then using degrees that E′′/E′
ψ,χ has degree dividing (ℓ − 1), hence E′′ ⊆ E′

ψ,χQ(ζℓ). Since ℓ is

unramified in E′
ψ,χ/Q, the extension E′′/E′

ψ,χ must be totally ramified at the primes above ℓ. On the

other hand being a subextension of E′
ψ,χ,ℓ′,n′/E′

ψ,χ, it is also unramified at the primes above ℓ, hence

E′′ = E′
ψ,χ. It follows that E′

ψ1,χ1
∩ E′

ψ2,χ2
⊂ E′

ψ,χ.

Thanks to Step 2, we are reduced to showing that

(3.30)
⋂

(ψ,χ)∈S̄ν

E′
ψ,χ = Eν .

The next step shows that the fields E′
ψ,χ can be replaced by Eψ,χ in this equality.

Step 3. For all (ψ, χ) ∈ S̄ν , there exists a finite order character α of GK such that the pair (ψα, χα)
belongs to S̄ν and

(3.31) E′
ψ,χ ∩ E′

ψα,χα ⊆ Eψ,χ.

To see this, note that the finite order character χ has cyclic image, isomorphic to Z/nZ say. Pick α such
that conditions (i)-(iii) below are satisfied:

(i) α has order n and is ramified at a single prime λ of K which lies over a rational prime ℓ that is
split in K.

(ii) λ is prime to the conductors of χ and χ∗.
(iii) ℓ is unramified in E′

ψ,χ/Q.

Conditions (i) and (ii) imply:

(iv) The field Hχα/K is totally ramified at λ and unramified at λ∗ while Hχ∗α∗ is unramified at λ and
totally ramified at λ∗.

Taking

L = Eψ,χ, M1 = HχHχ∗ , M2 = HχαHχ∗α∗ ,

we see from (iii) and (iv) that

(v) LM1/L is unramified at all primes above ℓ, and

(vi) Any subextension of LM2/L is ramified at some prime above λ or λ∗.

Thus, LM1∩LM2 = L. But LM1 = Eψ,χHχHχ∗ = E′
ψ,χ. Also since α has order n, we have Eψ′,χ′ = Eψ,χ

and

LM2 = Eψ,χHχαHχ∗α∗ = Eψ′,χ′HχαHχ∗α∗ = E′
ψ′,χ′ ,

so (3.31) follows.

Step 4. We are now reduced to showing

(3.32)
⋂

(ψ,χ)∈S̄ν

Eψ,χ = Eν .

We will do this by showing

(3.33) There exists a pair (ψ, χ) ∈ S̄ν such that Eψ,χ = Eν .
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We begin by choosing an ideal m0 of OK with the property that OK/m0 = Z/MZ is cyclic, and an odd
quadratic Dirichlet character εM of conductor dividing M . Let ψ0 be any Hecke character satisfying

ψ0((a)) = εM (a mod m0)a

on principal ideals (a) of K. Such a ψ0 satisfies condition 1 in Definition 3.18, and therefore, after letting
χ0 be the finite order character satisfying

ν∗ = ψ−1
0 χ0NK ,

it follows that (ψ0, χ0) belongs to S̄ν . Furthermore, the restriction of ψ0 to the group of principal ideals
of K takes values in K, and therefore

(3.34) χ0(σ) ∈ Eν , for all σ ∈ GH := Gal(K̄/H).

The character ψ0 itself takes values in a CM field of degree [H : K], denoted E0, which need not be
contained in Eν in general. To remedy this problem, let H0 be the abelian extension of the Hilbert class
field H cut out by the character χ0. Next, let H ′

0 be any abelian extension of K containing H such that

(1) There is an isomorphism u : Gal(H ′
0/K)−→Gal(H0/K) of abstract groups such that the diagram

(3.35) 0 // Gal(H ′
0/H) //

²²

Gal(H ′
0/K) //

²²

Gal(H/K) // 0

0 // Gal(H0/H) // Gal(H0/K) // Gal(H/K) // 0

,

commutes, where the dotted arrows indicate the isomorphisms induced by u and the other arrows
are the canonical maps of Galois theory.

(2) The relative discriminant of H ′
0 over K is relatively prime to its conjugate (and therefore to the

discriminant of K, in particular).

If the bottom exact sequence of groups in (3.35) is split, then the extension H ′
0 is readily produced, using

class field theory. To handle the general case, we follow an approach that is suggested by the proof of
Prop. 2.1.7 in [Se]. Let Φ̃ := Gal(H0/K) and let Ψ : GK−→Φ̃ be the homomorphism attached to the
extension H0. Since H is everywhere unramified over K, the restriction Ψv of Ψ to a decomposition group
at any prime v of K maps the inertia subgroup Iv to C := Gal(H0/H). After viewing C as a module of
finite cardinality endowed with the trivial action of GK , let H1

S(K,C) := Hom(GK,S ,C) denote the group
of homomorphisms from GK to C which are unramified outside a given finite set S of primes of K, and let
H1

[S](K,C∗) denote the dual Selmer group attached to H1
S(K,C) in the sense of Theorem 2.18 of [DDT] for

example. Here C∗ := Hom(C,Gm) is the Kummer dual of C, which is isomorphic to µn when C = Z/nZ
is cyclic of order n. Kummer theory (along with the non-degeneracy of the local Tate pairing) identifies
H1

[S](K,µn) with the subgroup of K×/(K×)n consisting of elements α for which

ordv(α) = 0 (mod n) for all v, resv(α) ∈ (K×
v )n for all v ∈ S.

Let S be any finite set of primes of K at which Ψ is unramified, satisfying the further conditions

(3.36) v ∈ S ⇒ v̄ /∈ S, and H1
[S](K,C∗) = 0.

The existence of such a set S follows from the statement that for any α ∈ K× − (K×)n, there is a set of
primes v of K of positive Dirichlet density for which the image of α in K×

v is not an n-th power. (This
statement follows in turn from the Chebotarev density theorem applied to the extension K(µn, α1/n).)
Now let T be any finite set of places which is disjoint from S. Comparing the statement of Theorem 2.18
of [DDT] in the case M = C and L = S and L = S ∪ T respectively, and noting that both H1

[S](K,C∗)

and (a fortiori) H1
[S∪T ](K,C∗) are trivial, gives

#H1
S∪T (K,C)

#H1
S(K,C)

=
∏

v∈T

#H1(Kv,C)

#C
=

∏

v

#Hom(Iv,C).

It follows that the rightmost arrow in the tautological exact sequence

0−→H1
S(K,C)−→H1

S∪T (K,C)−→
∏

c∈T

Hom(Iv,C)
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is surjective. Letting T be the set of places at which Ψ is ramified, it follows that there is a homomorphism
ǫ : GK−→C satisfying

ǫv = Ψv on Iv, for all v /∈ S.

After possibly enlarging the set S satisfying (3.36) and translating ǫ by a suitable homomorphism unram-

ified outside S, we may further assume that the homomorphism Ψǫ−1 maps GK surjectively onto Φ̃; the
field H ′

0 can then be obtained as the fixed field of the kernel of the homomorphism Ψǫ−1.

With the extension H ′
0 in hand, let α : Gal(H ′

0/K)−→E×
χ be the finite order Hecke character given by

α(σ) = χ0(u(σ))−1,

and set (ψ, χ) = (ψ0α, χ0α). By construction, (ψ, χ) belongs to S̄ν . We claim that χ and ψ take values in
Eν . Since ν∗ = ψ−1χNK , it is enough to prove this statement for χ. Observe that, for all integral ideals
a prime to the conductors of χ0, χ, and ψ, we have

χ(a) = χ0(σa)/χ0(u(σa)) = χ0(σau(σa)
−1).

But the element σau(σa)
−1 belongs to Gal(H0/H) by construction, and hence χ0(σ

−1
a u(σa)) belongs to

Eν by (3.34). It follows that ψ and χ are Eν–valued, and therefore Eψ,χ = Eν , as claimed in (3.33). ¤

3.6. Elliptic curves with complex multiplication. Theorem 2 of the Introduction admits an alternate
formulation involving algebraic points on elliptic curves with complex multiplication rather than K-rational
points on the CM abelian varieties Bν of Theorem 2.5. The goal of this section is to describe this variant.
As in the introduction, we just write Lp for the p-adic L-function Lp,c, where c is the conductor of ν.

We begin by reviewing the explicit construction of Bν in terms of CM elliptic curves. The reader is
referred to §4 of [GS], whose treatment we largely follow, for a more detailed exposition. Let F be any
abelian extension of K for which

(3.37) νF := ν ◦ NF/K

becomes K-valued. There exists an elliptic curve A/F with complex multiplication by OK whose associated
Grossencharacter is νF . (Cf. Thm. 6 of [Shi] and its corollary on p. 512.) Let

B := ResF/K(A).

It is an abelian variety over K of dimension d := [F : K]. Let G := Gal(F/K) = HomK(F, Q̄), where the
natural identification between these two sets arises from the distinguished embedding of F into Q̄ that was
fixed from the outset. By definition of the restriction of scalars functor, there are natural isomorphisms

B/F =
∏

σ∈G

Aσ, B(K̄) = A(K̄ ⊗K F ) =
∏

σ∈G

Aσ(K̄)

of algebraic groups over F and abelian groups respectively. In particular, a point of B(K̄) is described by
a d-tuple (Pτ )τ∈G, with Pτ ∈ Aτ (K̄). Relative to this identification, the Galois group GK acts on B(K̄)
on the left by the rule

ξ(Pτ )τ = (ξPτ )ξτ , for all ξ ∈ GK .

Consider the “twisted group ring”

(3.38) T := ⊕σ∈G HomF (A,Aσ) =

{

∑

σ∈G

aσσ, with aσ ∈ HomF (A,Aσ)

}

,

with multiplication given by

(3.39) (aσσ)(aτ τ) = aσaσ
τ στ,

where the isogeny aσ
τ belongs to HomF (Aσ, Aστ ) and the composition of isogenies in (3.39) is to be taken

from left to right. The right action of T on B(K̄) defined by

(3.40) (Pτ )τ ∗ (aσσ) := (aτ
σ(Pτ ))τσ

commutes with the Galois action described in (3.6), and corresponds to a natural inclusion T →֒ EndK(B).
The K-algebra E := T ⊗Z Q is isomorphic to a finite product

E =
∏

i

Ei
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of CM fields, and dimK(E) = dim(B). Therefore, the pair (B,E) is a CM abelian variety in the sense of
Definition 2.4. The compatible system of ℓ-adic Galois representations attached to (B,E) corresponds to
an E-valued algebraic Hecke character ν̃ in the sense of Definition 2.3, satisfying the relation

(3.41) σa(P ) = P ∗ ν̃(a), for all a ∈ Ifℓ and P ∈ B(K̄)ℓ∞ ,

where σa ∈ Gab
K denotes as before the Artin symbol attached to a ∈ Ifℓ.

The element ν̃(a) ∈ T is of the form ϕaσa, where

(3.42) ϕa : A → Aσa ,

is an isogeny of degree Na satisfying

(3.43) ϕa(P ) = P σa ,

for any P ∈ A[g] with (g, a) = 1. Note that the isogenies ϕa satisfy the following cocycle condition:

(3.44) ϕab = ϕσa

b ◦ ϕa.

The following proposition relates the Hecke characters ν̃ and ν.

Proposition 3.28. Given any homomorphism j ∈ HomK(E, C), let νj := j ◦ ν̃ be the corresponding
C-valued Hecke character of K of infinity type (1, 0). The assignment j 7→ νj gives a bijection from
HomK(E, C) to the set Σν,F of Hecke characters ν′ of K (of infinity type (1, 0)) satisfying

ν′ ◦ NF/K = ν ◦ NF/K .

Proposition 3.28 implies that there is a unique homomorphism jν ∈ HomK(E, C) satisfying jν ◦ ν̃ = ν.
In particular, jν maps E to Eν and T to a finite index subring of Tν . The abelian variety Bν attached to
ν in Theorem 2.5 can now be defined as the quotient B ⊗T,jν

Tν . In subsequent constructions, it turns
out to be more useful to realise Bν as a subvariety of B, which can be done by setting

(3.45) Bν := B[ker jν ].

The natural action of T on Bν factors through the quotient T/ ker(jν), an integral domain having Eν as
field of fractions.

Consider the inclusion

(3.46) iν : Bν(K) →֒ B(K) = A(F ),

where the last identification arises from the functorial property of the restriction of scalars. The following
Proposition gives an explicit description of the image of (Bν(K) ⊗ Eν)Tν in A(F ) ⊗OK

Eν under the
inclusion iν obtained from (3.46).

Proposition 3.29. Let Ẽ be any field containing Eν . The inclusion iν of (3.46) identifies (Bν(K)⊗ Ẽ)Tν

with

(A(F ) ⊗OK
Ẽ)ν :=

{

P ∈ A(F ) ⊗OK
Ẽ such that ϕa(P ) = ν(a)P σa , for all a ∈ If

}

.

Proof. It follows from the definitions that B(K) is identified with the set of (Pτ ) with Pτ ∈ Aτ (K̄)
satisfying

(3.47) ξPτ = Pξτ , for all ξ ∈ GK .

Furthermore, if such a (Pτ ) belongs to (Bν(K) ⊗ Eν)Tν , then after setting ν̃(a) = ϕaσa as in (3.42), we
also have

(3.48) (ϕτ
a(Pτ ))τσa

= (Pτ )τ ∗ ν̃(a) = (ν(a)Pτ )τ .

Equating the σa-components of these two vectors gives

ϕa(P1) = ν(a)Pσa
= ν(a)σaP1,

where 1 is the identity embedding of F and the last equality follows from (3.47). The Proposition follows
directly from this, after noting that the identification of B(K) with A(F ) is simply the one sending (Pτ )τ

to P1. ¤

Given a global field F as in (3.37), let Fν denote the subfield of Q̄ generated by F and Eν . Recall that
ωA ∈ Ω1(A/F ) is a non-zero differential and that Ωp(A) is the associated p-adic period.
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Theorem 3.30. There exists a point PA,ν ∈ (A(F ) ⊗OK
Eν)ν such that

Lp(ν
∗) = Ωp(A)−1 log2

ωA
(PA,ν) (mod F×

ν ).

The point PA,ν is non-zero if and only if L′(ν, 1) 6= 0.

Proof. Theorem 2 of the Introduction asserts that

(3.49) Lp(ν
∗) = Ωp(ν

∗)−1 log2
ων

(Pν),

for some point Pν ∈ Bν(K) ⊗ Q which is non-trivial if and only if L′(ν, 1) 6= 0. By Lemma 2.14, we find

(3.50) Ωp(ν
∗)−1 = Ωp(A)−1 (mod F×

ν ).

Furthermore, by Prop. 3.29, we can view Pν as a point PA,ν ∈ (A(F ) ⊗OK
Eν)ν , and we have

(3.51) logων
(Pν) = logωA

(PA,ν) (mod F×
ν ).

Theorem 3.33 now follows by rewriting (3.49) using (3.50) and (3.51). ¤

3.7. A special case. This section is devoted to a more detailed and precise treatment of Theorem 3.30
under the following special assumptions:

(1) The quadratic imaginary field K has class number one, odd discriminant, and unit group of order
two. This implies that K = Q(

√
−D) where D := −Disc(K) belongs to the finite set

S := {7, 11, 19, 43, 67, 163}.
(2) ψ0 is the Hecke character of K of infinity type (1, 0) given by the formula

(3.52) ψ0((a)) = εK(a mod dK)a.

The character ψ0 determines (uniquely, up to an isogeny) an elliptic curve A/Q satisfying

EndK(A) = OK , L(A/Q, s) = L(ψ0, s).

After fixing A, we will also write ψA instead of ψ0. It can be checked that the conductor of ψA is
equal to dK , and that

ψ∗
A = ψ̄A, ψAψ∗

A = NK , εψA
= εK .

Remark 3.31. The rather stringent assumptions on K that we have imposed exclude the arithmetically
interesting, but somewhat idiosyncratic, cases where K = Q(

√
−3), Q(i), and Q(

√
−2).

With the above assumptions, the character ψA can be used to give an explicit description of the set
Σsd(cdK):

Lemma 3.32. Let c be an integer prime to D, and let ν be a Hecke character in Σsd(cdK). Then ν is of
the form

ν = ψAχ−1,

where χ is a finite order ring class character of K of conductor c.

Proof. The fact that ν and ψA both have central character εK implies that χ is a ring class character that
is unramified at dK , hence has conductor exactly c. ¤

Given a ring class character χ of conductor c as above with values in a field Eχ, let

(3.53) (A(Hc) ⊗OK
Eχ)χ := {P ∈ A(Hc) ⊗OK

Eχ such that σP = χ(σ)P, ∀σ ∈ Gal(Hc/K)}.
Finally, choose a nonzero differential ωA ∈ Ω1(A/K), and write Ωp(A) for the p-adic period attached
to this choice as in Section 3.1. Since A = Bψ0

is the abelian variety attached to ψ0, it follows that
Ωp(ψ

∗
A) = Ωp(A).

The following theorem is a more precise variant of Theorem 3.30.

Theorem 3.33. Let χ be a ring class character of K of conductor prime to dK . Then there exists a point
PA(χ) ∈ (A(Hχ) ⊗OK

Eχ)χ such that

Lp(ψ
∗
Aχ) = Ωp(A)−1g(χ) log2

ωA
(PA(χ)) (mod E×

χ ).

The point PA(χ) is non-zero if and only if L′(ψAχ−1, 1) 6= 0.
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Proof. By Theorem 2 of the Introduction,

(3.54) Lp(ψ
∗
Aχ) = Lp(ν

∗) = Ωp(ν
∗)−1 log2

ων
(Pν) (mod E×

ν ),

for some point Pν ∈ Bν(K) ⊗ Q which is non-trivial if and only if L′(ψAχ−1, 1) 6= 0. Since χ∗−1 = χ and
Eν = Eχ, we find from Lemma 2.14 that

(3.55) Ωp(ν
∗)−1 = Ωp(ψ

∗
Aχ∗−1)−1 = Ωp(A)−1g(χ)−1 (mod E×

χ ).

After noting that (as in equation (2.7)) Bν = Bψ,χ = (A ⊗OK
Tχ)χ−1

as abelian varieties over K, we
observe that ων = ωψ,χ and that the point Pν ∈ Bν(K) can be written as

Pν =
∑

σ∈G

P σ ⊗ χ−1(σ),

for some P ∈ A(Hc) ⊗ Q. Letting PA,χ be the corresponding element in A(Hc) ⊗OK
Eχ given by

PA,χ =
∑

σ∈G

χ−1(σ)P σ,

we have

(3.56) log2
ων

(Pν) = log2
ωψ,χ

(Pν) = g(χ)2 log2
ω0

ψ,χ
(Pν) = g(χ)2 log2

ωA
(PA,χ) (mod E×

χ ),

where the second equality follows from Lemma 2.8 and the last from Lemma 3.22. Theorem 3.33 now
follows by rewriting (3.54) using (3.55) and (3.56). ¤

In the special case where χ is a quadratic ring class character of K, cutting out an extension L = K(
√

a)
of K, we obtain

(3.57) Lp(ψ
∗
Aχ) = Ωp(A)−1

√
a log2

ωA
(P−

A,L) (mod K×),

where P−
A,L is a K-vector space generator of the trace 0 elements in A(L) ⊗ Q. Since in this case ψAχ is

the Hecke character attached to a CM elliptic curve over Q, from (3.57) one recovers Rubin’s Theorem 1
of the Introduction.
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