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Introduction

This article studies a distinguished collection of algebraic cycles on varieties which are fibered over
modular curves. The cycles in question generalise the Heegner cycles on Kuga-Sato varieties that are
studied in [Sch], [Ne2] and [Zh], and will henceforth be referred to as generalised Heegner cycles. The
main result (Theorem 5.13 of Chapter 5.3) is a p-adic analogue of the Gross-Zagier formula which relates
the images of generalised Heegner cycles under a p-adic Abel-Jacobi map to the special values of certain
p-adic Rankin L-series at critical points that lie outside the range of p-adic interpolation. Even in the
0-dimensional limit case where generalised Heegner cycles are nothing but Heegner divisors on modular
curves, this analogue differs from the p-adic Gross-Zagier formula proved in [PR1], and provides a concrete
instance of the p-adic Beilinson conjectures of [PR2], [PR3]. It can also be viewed as the direct analogue
of Leopoldt’s evaluation at s = 1 of the classical p-adic L-function attached to an even Dirichlet character
in terms of p-adic logarithms of cyclotomic units. In this analogy, the Kubota-Leopoldt p-adic L-function
is replaced by the p-adic Rankin L-function attached to a cusp form and a theta series of an imaginary
quadratic field, and the cyclotomic units are replaced by (generalised) Heegner cycles.

Recall that the Kuga-Sato variety Wr is a smooth compactification of the r-fold product of the universal
generalised elliptic curve over a modular curve C = CΓ attached to Γ = Γ1(N). It is naturally fibered over
C, with generic fiber isomorphic to an r-fold product of elliptic curves. The variety W2r is equipped with
a supply of so-called Heegner cycles (in the Chow group with rational coefficients) of dimension r, which
were introduced in [GZ], §V.4. (See also [Ne2], §II.3.6, where a more precise definition is given.) These
cycles are supported on fibers above CM points of C and are defined over abelian extensions of imaginary
quadratic fields. The main theorem of [Zh] relates their heights to the central critical derivatives of Rankin
convolution L-series of cusp forms of weight 2r + 2 with weight one binary theta series attached to finite
order Hecke characters of an imaginary quadratic field. In the case r = 0, where the Heegner cycles are
Heegner points on the modular curve C = W0, this is the theorem of Gross and Zagier [GZ]. A p-adic
analogue of these formulae has also been established (in [PR1] for r = 0 and in [Ne2] for general r) in
which the Arakelov height pairing is replaced by a p-adic height pairing and the complex L-series by a
suitable two-variable p-adic L-function.

The present work replaces the Kuga-Sato variety W2r by the (2r+1)-dimensional variety

Xr := Wr ×Ar,

where A is a fixed elliptic curve with complex multiplication by the ring of integers of an imaginary
quadratic field K, defined, say, over the Hilbert class field H of K. Like W2r, the variety Xr is fibered
over the modular curve C and is also equipped with an infinite collection of special cycles defined over
abelian extensions of K. These generalised Heegner cycles are naturally indexed by isogenies ϕ : A−→A′.
The cycle attached to ϕ, denoted ∆ϕ, is supported on the fiber (A′)r ×Ar above a point of C attached to
A′, and is essentially equal to the r-fold self-product of the graph of ϕ.

Section 2.3 of Chapter 2 defines the cycles ∆ϕ precisely and establishes some of their basic properties.
In particular, it shows that generalised Heegner cycles are homologically trivial. One can therefore consider
their images under various (étale, p-adic, and also complex) Abel-Jacobi maps defined on homologically
trivial cycles modulo rational equivalence. Moreover, it is observed in Section 2.4 that the classical Heegner
cycles on W2r attached to the imaginary quadratic field K can be obtained as the images of generalised
Heegner cycles onX2r under a suitable algebraic correspondence. It follows that generalised Heegner cycles
carry at least as much arithmetic information as Heegner cycles on Kuga-Sato varieties. One expects that
they carry substantially more: namely, that their heights should encode the central critical derivatives of
Rankin L-series attached to the convolution of cusp forms of weight k := r + 2 on Γ with theta series of
weight ≤ k−1 attached to certain Hecke characters of K (and not just with those arising from finite order
characters).

Chapter 3 describes the images of generalised Heegner cycles under the p-adic Abel-Jacobi map for a
prime p not dividing N . More precisely, Section 3.1 introduces the étale Abel-Jacobi map

(0.0.1) AJet
F : CHr+1(Xr)0,Q(F )−→H1(F,H2r+1

et (X̄r,Qp)(r+1))

attached to any field F containing H , where H1(F,M) denotes the (continuous) group cohomology of
GF := Gal(F̄ /F ) with values in a GF –module M . (Here and elsewhere, the subscript 0 stands for
homologically trivial and the subscript Q denotes the Chow group with rational coefficients.) As shown in
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Appendix A, the variety Xr admits a proper smooth model over SpecZ[ 1
N ] and hence the image of AJet

F

(for F a finite extension of Qp) is contained in the Bloch-Kato subspace H1
f . The comparison theorems

between p-adic étale cohomology and de Rham cohomology then allow us to view (0.0.1) as a map AJF
(called the p-adic Abel-Jacobi map)

(0.0.2) AJF : CHr+1(Xr)0,Q(F )−→Filr+1H2r+1
dR (Xr/F )∨.

Chapter 3 explains how this map can be computed analytically via Coleman’s theory of p-adic integration
of differential forms attached to certain classes in the de Rham cohomology H2r+1

dR (Xr/F ).
We now describe briefly the anticyclotomic p-adic L-function that is constructed in Chapters 4 and

5. Let Sk(Γ0(N), ε) denote the space of cusp forms of weight k, level N and character ε. The quadratic
imaginary field K is said to satisfy the Heegner hypothesis (relative to N) if OK possesses a cyclic ideal N

of norm N , i.e., an ideal for which

(0.0.3) OK/N = Z/NZ.

Assume that this hypothesis is satisfied, and fix a normalised newform f ∈ Sk(Γ0(N), εf ). Let χ be a
Hecke character of K of infinity type (j1, j2) with j1 + j2 = k and satisfying

(0.0.4) χ|A×
Q

= εf ·Nk

where N is the usual norm character. This condition implies that the Rankin L-series L(f, χ−1, s) is self-
dual and its functional equation relates its values at s to those at −s, so that 0 is the point of symmetry.
Such χ will be called central critical for f .

At the cost of possibly interchanging j1 and j2, we will assume that j1 ≥ 0. Let Σcc(N) denote the
set of central critical characters of conductor dividing N and satisfying (0.0.4), as well as the following
auxiliary condition: for all finite primes q, the epsilon factor εq(f, χ

−1) = +1. Given our other hypotheses,
this auxiliary condition is automatic except at those primes q ramified in K, that divide N but do not
divide the conductor of εf . (In the text, we allow more generally the conductor of χ to divide cN where c
is an auxiliary odd rational integer prime to NdK , where −dK is the discriminant of K.) The set Σcc(N)
can be written as the disjoint union of two subsets:

Σcc(N) = Σ(1)
cc (N) ∪ Σ(2)

cc (N),

where Σ
(1)
cc (N) consists of the characters of infinity type (k−1−j, 1+j) with 0 ≤ j ≤ r, and Σ

(2)
cc (N) consists

of those of infinity type (k + j,−j) with j ≥ 0. When χ ∈ Σ
(1)
cc (N), the sign ε∞(f, χ−1) equals −1, hence

the sign in the functional equation for L(f, χ−1, s) is also −1, and therefore the function χ 7→ L(f, χ−1, 0)

vanishes identically on Σ
(1)
cc (N). On the other hand, for χ ∈ Σ

(2)
cc (N), the sign ε∞(f, χ−1) equals +1 whence

the sign in the functional equation for L(f, χ−1, s) is +1 as well, and so one expects that the associated
central critical values should be non-zero most of the time.

Chapter 4 is devoted to proving an explicit version of Waldspurger’s formula relating the central L-

values L(f, χ−1, 0), for χ ∈ Σ
(2)
cc (N), to period integrals on tori. Such explicit formulae have been studied

by several authors recently, for example [Xue], [MW] and more recently [Hi3]. However our approach is
somewhat different in that we always insist that our torus embeddings come from Heegner points and that
the test vectors are of minimal level. The relevant period integrals then reduce to finite sums of values
of (certain non-holomorphic derivatives of) the form f at all conjugates of a CM point, twisted by the
character χ−1, which is a key to providing a link to the p-adic Abel-Jacobi images of generalized Heegner
cycles supported on the same set of conjugate CM points.

Section 5.1 recalls the algebraicity properties of these special values: for all χ ∈ Σ
(2)
cc (N),

(0.0.5) Lalg(f, χ
−1) := C̃(f, χ) × L(f, χ−1, 0)

Ω2(k+2j)

is an algebraic number. Here C̃(f, χ) is an explicit, elementary constant and Ω is a CM period attached
to K whose value depends on the choice of a regular differential ωA on A/H . After fixing an embedding

ι : Q̄−→Q̄p,

the values Lalg(f, χ
−1) attached to χ ∈ Σ

(2)
cc (N) can be viewed as p-adic numbers. Section 5.2 takes up

the question of their p-adic interpolation. As explained in that section, the set Σ
(2)
cc (N) is endowed with a
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natural p-adic topology, and can be viewed as a dense subset of its completion Σ̂cc(N). Assume that the
rational prime p is split in K/Q, so that ι(K) ⊂ Qp. Under this assumption, there is a unique prime p of
K above p for which χ(p) is a p-adic unit. The main result of Section 5.2 is that, after setting

Lp(f, χ) = Ω2(k+2j)
p (1 − χ−1(p̄)ap + εf (p)χ(p̄)−2pk−1)2Lalg(f, χ

−1)

for an appropriate p-adic period Ωp (which also depends on the choice of ωA), the assignment χ 7→
Lp(f, χ

−1) extends to a (necessarily unique) continuous function on Σ̂cc(N), which we refer to as the
anticyclotomic p-adic L-function attached to f and K.

Now, let χ be a character in Σ
(1)
cc (N), having infinity type (k − 1 − j, 1 + j) for some 0 ≤ j ≤ r. While

the classical L-value L(f, χ−1, 0) vanishes, the character χ can be viewed as an element of Σ̂cc(N) (lying
outside the range of classical interpolation defining the anticyclotomic p-adic L-function Lp(f, χ)), and the
special value Lp(f, χ)—which may be thought of as a p-adic avatar of L′(f, χ−1, 0)—is not forced to vanish
a priori. Our main result relates Lp(f, χ) to the Abel-Jacobi images of generalised Heegner cycles. For
the sake of illustration, we state the main result under the following simplifying assumptions, postponing
the more general statement to Theorem 5.13 of Chapter 5.3:

(1) The quadratic imaginary field K has class number one and odd discriminant −dK < −3. Let
εK : (Z/dKZ)×−→{±1} be the associated odd Dirichlet character, and denote by the same symbol
the quadratic character of (OK/

√
−dKOK)× induced from the identification of OK/

√
−dKOK

with Z/dKZ.
(2) The newform f belongs to Sk(Γ0(N), εkK). (Note that it is necessary that dK divides N when k is

odd.)

(3) The grossencharacter χ ∈ Σ
(1)
cc (N) is of the form

χ((α)) = εkK(α)αk−1−j ᾱ1+j ,

for some integer 0 ≤ j ≤ r.

In this special setting, our main result is:

Main Theorem. Let ∆ = ∆1 be the generalised Heegner cycle attached to 1 : A−→A, viewed as an
element of CHr+1(Xr)0(Qp)Q via ι. Then

Lp(f, χ)

Ω
2(r−2j)
p

=
(
1 − χ−1(p̄)ap + χ−2(p̄)pk−1

)2 ·
(

1

j!
AJQp(∆)(ωf ∧ ωjAηr−jA )

)2

,

where AJQp is the p-adic Abel-Jacobi map of (0.0.2), ωf is the class in Ωr+1(Wr) attached to f in Corollary

2.3 of Section 2.1, and ωjAη
r−j
A is the class in Hr(Ar) defined in (1.4.6) of Section 1.4.

Note that it is a special value and not a derivative of the p-adic L-series that occurs on the analytic side of
this formula, while the algebraic side involves the Abel-Jacobi images of generalised Heegner cycles rather
than their (p-adic) heights. Note also that if ωA is replaced by a nonzero multiple λωA, then both sides
of the equation above are multiplied by λ2(2j−r).

Those approaching this paper for the first time may find it pedagogically helpful to focus on the simplest

case r = j = 0, where f is a newform of weight 2 and χ ∈ Σ
(1)
cc (N) is a grossencharacter of infinity

type (1, 1). In this case, the Main Theorem above involves the formal group logarithms of points in the
Jacobians of modular curves arising from certain divisors supported on Heegner points. It relates these
p-adic logarithms to the values of the p-adic L-function Lp(f, χ) at characters of finite order (shifted by
the norm). One thus obtains a new p-adic variant of the Gross-Zagier formula in the “traditional” setting
of Heegner points on modular curves. As a first guide to the somewhat lengthy arguments required to
deal with forms and Hecke characters of general weights and levels, here is a brief outline of the proof of
the Main Theorem in this simplest non-trivial setting, assuming further that K has class number one and
a unit group of order 2, and that χ := χ0 is the trivial character of weight (1, 1) sending the (principal)

ideal (α) to its norm αᾱ. This norm character is the specialisation at j = 0 of the sequence χj ∈ Σ
(2)
cc (N)

of grossencharacters of infinity type (1 + j, 1 − j) defined by

χj((α)) := α1+j ᾱ1−j .
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Let δj−1
2 denote the (j− 1)st iterate of the Shimura-Maass differential operator as defined in Sec. 1.2; this

sends weight 2 real analytic modular forms to those of weight 2j. For all j ≥ 1, Theorem 5.5 identifies
the quantity Lalg(f, χ

−1
j ) of equation (0.0.5) with (δj−1

2 f)(PA)2, where PA denotes the triple (A,ωA, tA)
attached to the elliptic curve A with CM by the maximal order of K, the differential ωA and a suitable
Γ1(N)-level structure tA on A. (Here modular forms are viewed as functions on triples as explained in
Section 1.1.) Using the well-known fact that the unit root splitting of the Hodge filtration agrees with

the Hodge decomposition for ordinary CM elliptic curves, Proposition 1.12 identifies (δj−1
2 f)(PA) with

(θj−1f)(PA), where θ = q ddq is the Atkin-Serre theta operator on p-adic modular forms defined in (1.3.2).

This key identification leads to the p-adic interpolation of the special values Lalg(f, χ
−1
j ) described in

Section 5.2, and hence, to the Rankin p-adic L-function Lp(f, χj) which arises in the Main Theorem
above. This p-adic L-function satisfies the equality

Lp(f, χj) = (θj−1f [)(P
(p)
A )2, ∀j ≥ 0,

where f [ is the “p-depleted” modular form associated to f defined in (3.8.4), and P
(p)
A = (A,Ω−1

p ωA, tA).
Taking a p-adic limit when j → 0 shows that

Lp(f, χ) = (θ−1f [)(P
(p)
A )2.

One can see (either directly, or by specializing the calculations of Section 3 to the case where r = 0)
that the function θ−1f [ – a p-adic, and in fact overconvergent, modular form of weight 0 – is the unique
rigid analytic primitive of the exact rigid differential ωf[ which vanishes at the cusp ∞, and its value at

the triple P
(p)
A is an explicit multiple of the formal group logarithm, relative to the differential ωf , of the

degree zero divisor ∆1 = (A, tA) − (∞) on the modular curve C.

We close this introduction by listing a few of the arithmetic applications of Theorem 5.13.

Rubin’s formula. The article [BDP-cm] exploits Theorem 5.13 in the special case where f is itself a
weight two binary theta series attached to the quadratic imaginary field K to give a new proof of the
main result of [Ru], which relates the values of the Katz p-adic L-function attached to K to the p-adic
logarithms of global points on elliptic curves with complex multiplication by K.

Chow-Heegner points. Because it involves Abel-Jacobi images rather than p-adic heights, Theorem
5.13 is used in [BDP-ch] to study the algebraicity of the certain points on CM elliptic curves arising from
higher dimensional cycles in the Chow groups of certain algebraic varieties whose cohomology realises the
`-adic repreentations attached to theta series of higher (possibly odd) weight. This construction, provides
a basic illustration of the phenomenon of “Chow-Heegner points” arising from the image of algebraic
cycles under Abel-Jacobi maps (both complex and p-adic). The relevance of Theorem 5.13 to the notion
of Chow-Heegner points was in fact the original motivation for the present article, although Theorem 5.13
is considerably more general than the special case exploited in [BDP-ch].

Coniveau and the Bloch-Beilinson conjecture. The article [BDP-co] illustrates how Theorem 5.13
may be used to prove part of the Bloch-Beilinson conjecture for the Rankin-Selberg motives that are
studied in this article. In particular, by verifying that specific values of the p-adic L-function Lp(f, χ) are
not zero, one can often show that generalised Heegner cycles are not just nonzero in the Chow group but
also nonzero in a certain graded piece for the coniveau filtration on the Chow group, as predicted by a
refined version ([Bl-1], [Bl-2]) of the Bloch-Beilinson conjecture.

Euler systems. Let F be any global field over which A is defined. For each cuspidal newform f on C of
weight r + 2 and each character χ as in the previous statement, there is a GF –equivariant projection

πf,χ : H2r+1
et (X̄r,Qp)(r+1)−→(Vf ⊗ χ)(r+1) =: Vf,χ,

where Vf is the Deligne representation attached to f and χ is viewed as a one-dimensional p-adic represen-
tation of GF in the usual way. Each generalised Heegner cycle ∆ϕ, defined over an appropriate extension
Fϕ ⊃ H , gives rise to a global cohomology class:

κϕ := πf,χ(AJet
Fϕ

(∆ϕ)) ∈ H1(Fϕ, Vf,χ),
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which belongs to a generalised Selmer group H1
Sel(Fϕ, Vf,χ) attached to the p-adic Galois representation

Vf,χ. If p is a prime of Fϕ above p and p does not divide the level of Γ, the discriminant of K, or the
degree of ϕ, then the natural image resp(κϕ) of κϕ in the local cohomology group H1(Fϕ,p, Vf,χ) belongs
to the subgroup H1

f (Fϕ,p, Vf,χ) corresponding to cristalline extensions of Vf,χ by Qp. The Main Theorem

above relates resp(κϕ) to the values of the p-adic L-function Lp(f, χ) at points lying outside the range of
classical interpolation. This suggests that the collection {κϕ} of global cohomology classes, as ϕ ranges
over the isogenies A−→A′, should give rise to an Euler system attached to the compatible system Vf,χ
of p-adic representations of GF . See Section 2.4 for a discussion of the relation between these cycles and
classical L-series, and [Cas1], [Cas2] where the connection between the results of this paper and the theory
of Euler systems obtained by interpolating generalised Heegner cycles in p-adic families is described in
more detail.

Acknowledgements: The authors thank Fabrizio Andreatta and the four anonymous referees for con-
structive criticism which led to significant improvements in the organization and presentation of their
results. In particular, the appendix by Brian Conrad was added after a gap in the literature was brought
to their attention. The authors are also grateful to Brian Conrad for kindly agreeing to supply this
appendix and for pointing out several corrections to a previous version of this work.

1. Preliminaries

1.1. Algebraic modular forms. Let N ≥ 1 be an integer and let Γ = Γ1(N) be the standard congruence
subgroup of level N :

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) such that a− 1, d− 1, c ≡ 0 (mod N)

}
.

We shall begin by recalling the geometric definition of modular forms over a field F that is given in [Ka2]
and [Hi4].

If R is a ring in which N is invertible and E is an elliptic curve over R, we observe that a closed
immersion t : Z/NZ ↪→ E of group schemes over SpecR gives rise to a section s : Spec(R)−→E of order
N by restriction to the section 1 of Z/NZ.

Definition 1.1. An elliptic curve with Γ-level structure over a ring R is a pair (E, t) consisting of

(1) an elliptic curve E over Spec(R);
(2) a closed immersion t : Z/NZ ↪→ E of group schemes over SpecR.

A triple (E, t, ω) where (E, t) is an elliptic curve with Γ-level structure and ω ∈ Ω1
E/R is a global section

of Ω1
E over Spec(R) is called a marked elliptic curve with Γ-level structure.

The notion of R-isomorphisms between elliptic curves or marked elliptic curves with Γ-level structure is
defined in the obvious way. Denote by Ell(Γ, R) the set of isomorphism classes of elliptic curves with

Γ-level structure over R, and by Ẽll(Γ, R) the set of isomorphism classes of marked elliptic curves with
Γ-level structure.

Definition 1.2. A weakly holomorphic algebraic modular form of weight k on Γ defined over a field F

is a rule which to every isomorphism class of triples (E, t, ω) ∈ Ẽll(Γ, R) defined over an F -algebra R
associates an element f(E, t, ω) ∈ R satisfying:

(1) (Compatibility with base change). For all F -algebra homomorphisms j : R−→R′,

f((E, t, ω) ⊗j R′) = j(f(E, t, ω)).

(2) (Weight k condition). For all λ ∈ R×,

f(E, t, λω) = λ−kf(E, t, ω).

Let (Tate(q), t, ωcan)/F ((q1/d)) be the Tate elliptic curve Gm/q
Z, equipped with some level N structure t

defined over F ((q1/d)) (for some d|N) and the canonical differential ωcan := du
u over F ((q)), where u is

the usual parameter on Gm.
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Definition 1.3. An algebraic modular form on Γ over F is a weakly holomorphic modular form satisfying

f (Tate(q), t, ωcan) belongs to F [[q1/d]], for all t.

If these values belong to q1/dF [[q1/d]], then f is called a cusp form.

We denote by

Sk(Γ, F ) ⊂Mk(Γ, F ) ⊂M †
k(Γ, F )

the F -vector spaces of cusp forms, algebraic modular forms, and weakly holomorphic modular forms
respectively on Γ over F .

Write

C0 = Y1(N), C = X1(N) = Y1(N) ∪ ZN ,
for the usual modular curves over Q associated to Γ. The cuspidal subscheme ZN is finite over Q. If
N ≥ 3, the group Γ1(N) is torsion-free and the curve C0 is a fine moduli scheme having a canonical smooth
proper model over Spec(Z[1/N ]). It represents the functor on Z[1/N ]-algebras which to R associates the
set Ell(Γ, R) of Definition 1.1. We will not make use of the integral model for now, and will view the
curves C0 and C as defined over some base field F (of characteristic 0) for the rest of this chapter.

Let π : E−→C0 be the universal elliptic curve with level N structure over C0, and let ω := π∗Ω
1
E/C0 be

the line bundle of relative differentials on E/C0. A weakly holomorphic modular form f ∈ M †
k(Γ, F ) can

be viewed as a global section of the sheaf ωk over C0, by setting

(1.1.1) f(E, t) = f(E, t, ω)ωk,

where (E, t) is viewed as a point of C0(R) and ω is an arbitrarily chosen generator (locally on SpecR) of
Ω1
E/R. Note that the expression on the right of (1.1.1) does not depend on the choice of ω.

Consider the relative de Rham cohomology sheaf on C0:

L1 := R1π∗(0 → OE → Ω1
E/C0 → 0).

It is a rank 2 algebraic vector bundle over C0 whose fibre at any geometric point x : SpecL−→C0 is given
by

(L1)x := H1
dR(Ex),

with Ex := E ×x SpecL. There is a non-degenerate (Poincaré) pairing

〈 , 〉 : L1 ×L1−→OC0 ,

and the Hodge filtration on the fibres corresponds to an exact sequence of coherent sheaves over C0:

(1.1.2) 0−→ω−→L1−→ω−1−→0.

The vector bundle L1 is also equipped with the canonical integrable Gauss-Manin connection

(1.1.3) ∇ : L1−→L1 ⊗ Ω1
C0 .

The Kodaira-Spencer map KS is defined to be the composite

KS : ω−→L1
∇−→ L1 ⊗ Ω1

C0−→ω−1 ⊗ Ω1
C0 ,

in which the first and last arrows arise from (1.1.2). This map is an isomorphism of sheaves over C0, and
therefore gives rise to an identification

(1.1.4) σ : ω2 ∼−→ Ω1
C0 , σ(ω1 ⊗ ω2) := 〈ω1,∇ω2〉.

In addition to the geometric interpretation (1.1.1), it will also be convenient to view modular forms

f ∈ M †
r+2(Γ, F ) as global sections of the sheaf ωr ⊗ Ω1

C0 , by the rule

(1.1.5) ωf (E, t) := f(E, t, ω) · ωr ⊗ σ(ω2).

Assume for simplicity that all the cusps of X1(N) are regular in the sense of [DS, §3.2]. (This condition
is satisfied as soon as N > 4.) The line bundles ω and L1 and their attendant structures extend naturally
to the complete curve C as follows:
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• The line bundle ω admits an extension to C (denoted again by ω) which is characterised by the
property

H0(C, ωk) = Mk(Γ, F ).

By Definition 1.3, the local sections of ω in the neighborhood SpecF (ζN )[[q1/d]] of the cusp attached
to the pair (Tate(q), q1/dζN ) are expressions of the form hωcan with h ∈ F (ζN )[[q1/d]], where we
recall that ωcan is the canonical differential on the Tate curve.

• The exact sequence (1.1.2), together with the given extensions of ω and ω−1 to C, determine an
extension of L1 to C, in such a way that (1.1.2) becomes an exact sequence of sheaves over this base.
The local sections of L1 in a neighborhood of the cusp (Tate(q), q1/dζN ) are F (ζN )[[q1/d]]-linear
combinations of ωcan and the local section ξcan defined by

(1.1.6) ∇ωcan =: ξcan ⊗ dq

q
.

(The sheaf L1 is described in Sec. 2.4. of [Schol1], where it is denoted E .)
• The Gauss-Manin connection ∇ of (1.1.3) extends to a connection with log poles

(1.1.7) ∇ : L1−→L1 ⊗ Ω1
C(logZN ),

where Ω1
C(logZN ) denotes the sheaf of differentials on C with logarithmic singularities on the

cuspidal subscheme ZN . Over SpecF (ζN )[[q1/d]], it is described by the equation

(1.1.8) ∇ωcan = ξcan ⊗ dq

q
, ∇ξcan = 0.

• Finally, the Kodaira-Spencer isomorphism σ gives an identification

(1.1.9) σ : ω2 ∼−→ Ω1
C(logZN )

of sheaves over C. Over SpecF (ζN )[[q1/d]], it is determined by

(1.1.10) σ(ω2
can) =

dq

q
.

• With these definitions, the rules (1.1.1) and (1.1.5) give identifications

Mr+2(Γ, F ) = H0(C, ωr+2) = H0(C, ωr ⊗ Ω1
C(logZN)),(1.1.11)

Sr+2(Γ, F ) = H0(C, ωr ⊗ Ω1
C).(1.1.12)

For any r ≥ 1, let

Lr := Symr L1.

The sheaf Lr inherits from (1.1.2) a canonical Hodge filtration by sheaves of OC-modules:

Lr ⊃ Lr−1 ⊗ ω ⊃ · · · ⊃ ωr,

and the relative Poincaré duality

(1.1.13) 〈 , 〉 : Lr ×Lr−→OC

whose reduction to the geometric fibers is given by the rule

(1.1.14) 〈α1 · · ·αr, β1 · · ·βr〉 =
1

r!

∑

σ∈Sr

〈α1, βσ1〉 · · · 〈αr, βσr〉,

where Sr denotes the symmetric group on r letters. The connection ∇ on L1 gives rise to a connection
(which will also be denoted ∇)

∇ : Lr−→Lr ⊗ Ω1
C(logZN ).

Let ∇̃ denote the composite

(1.1.15) ∇̃ : Lr ∇−→ Lr ⊗ Ω1
C(logZN )

id⊗σ−1

−−−−−→ Lr ⊗ ω2−→Lr ⊗L2−→Lr+2,

where the penultimate arrow is induced from (1.1.2) and the last arises from the natural projection

Symr⊗ Sym2 −→ Symr+2 .
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The map ∇̃ (which, like ∇, is a homomorphism of abelian sheaves but not of OC-modules) gives rise to
differential operators on modular forms. More precisely, let

(1.1.16) Ψ : L1−→ω

be a splitting of the Hodge filtration (1.1.2), and let Ψ(k) denote the corresponding homomorphism
Lk−→ωk. The splitting Ψ determines a differential operator

(1.1.17) ΘΨ : Mr(Γ, F )−→Mr+2(Γ, F ), (ΘΨf)(E, t) := Ψ(r+2)(∇̃f)(E, t).

Example 1.4. We can construct a splitting Ψ as in (1.1.16) as follows. The datum of a pair (E,ω)/R
determines (locally on SpecR) canonical elements x ∈ H0(E,OE(2OE)) and y ∈ H0(E,OE(3OE)) satis-
fying

y2 = 4x3 + g2x+ g3, for some g2, g3 ∈ R, and
dx

y
= ω.

The decomposition

H1
dR(E/R) = R

[
dx

y

]
⊕R

[
xdx

y

]

determines a canonical algebraic (but not functorial) splitting Ψalg of the Hodge filtration on L1. The
resulting differential operator Θalg on Mr(Γ, F ) is given in terms of q-expansions by the formula

Θalg(f) = θf − r

12
Pf, θ = q

d

dq
,

where

P = 1 − 24
∑

n≥1

σ1(n)qn, (with σ1(n) =
∑

d|n

d)

arises from the Eisenstein series of weight 2. (Cf. §A1.4 of [Ka2].)

1.2. Modular forms over C. Assume now that F = C. The set C(C) of complex points of C is a
compact Riemann surface, and the analytic map

pr : H−→C0(C), pr(τ) :=

(
C/〈1, τ〉, 1

N

)

identifies C0(C) with the quotient Γ\H, where we recall that Γ = Γ1(N). The coherent sheaf Lr gives rise

to an analytic sheaf Lan
r on the Riemann surface C(C); let L̃an

r := pr∗ Lan
r denote its pullback to H.

Recall the elliptic fibration π : E−→C0, and let

LB1 := R1π∗Z, LBr := Symr LB1 ,

be the locally constant sheaves of Z-modules whose fibers at x ∈ C0(C) are identified with the Betti
cohomology H1

B(Ex,Z) and SymrH1
B(Ex,Z) respectively. The local system

(1.2.1) Lr := LBr ⊗ZC

is identified with the sheaf of horizontal sections of (Lan
r ,∇) over C0(C). (Cf. [De1], thm. 2.17.)

A modular form f ∈ M †
k(Γ,C) gives rise to a holomorphic section of ωk viewed as an analytic sheaf

over C0(C). It also gives rise to a holomorphic function on H by the rule

(1.2.2) f(τ) := f

(
C/〈1, τ〉, 1

N
, 2πidw

)
,

where w is the standard coordinate on C/〈1, τ〉. This function obeys the familiar transformation rule

(1.2.3) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), for all

(
a b
c d

)
∈ Γ1(N),

and the modular form f is completely determined by the associated function f(τ).
The Hodge filtration on H1

dR(C/〈1, τ〉) admits a canonical, functorial (but non holomorphic) splitting

(1.2.4) H1
dR(C/〈1, τ〉) := Cdw ⊕Cdw̄,
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called the Hodge decomposition. In terms of the local coordinates τ , τ̄ , dw, and dw̄, the Gauss-Manin
connection and Kodaira-Spencer map are described by

(1.2.5) ∇dw =

(
dw − dw̄

τ − τ̄

)
⊗ dτ, σ((2πidw)2) = 2πidτ.

The global sections of ωr+2 and ωr ⊗ Ω1
C attached to f in (1.1.1) and (1.1.5) are therefore given by the

complex formulae

(1.2.6) f

(
C/〈1, τ〉, 1

N

)
= f(τ)(2πidw)r+2 ωf

(
C/〈1, τ〉, 1

N

)
= f(τ)(2πidw)r ⊗ (2πidτ).

Let Lra
r denote the real analytic sheaf on C0 associated to Lan

r by forgetting the complex structure on
C and retaining only its associated real analytic structure, and denote by ωrra the subsheaf of Lra

r for the
real analytic topology associated to ωr. The global sections of ωrra over C0 are called real analytic modular
forms of weight r on Γ. They are identified, via (1.2.2), with real analytic functions on H satisfying the
transformation property (1.2.3).

Following [Ka4], (1.8.3), we recall the Hodge decomposition of real analytic sheaves

(1.2.7) Lra
1 = ωra ⊕ ω̄ra,

which induces (1.2.4) over the points of C0(C). It gives rise to real analytic splittings

(1.2.8) ΨHodge : Lra
1 −→ωra, Ψ

(r)
Hodge : Lra

r −→ωrra.

A section f of ωrra which is of the form Ψ
(r)
Hodge(s) for some holomorphic section s of Lr over C is called

a nearly holomorphic modular form on Γ. The holomorphic section s of Lr associated to a given nearly
holomorphic modular form f is unique (cf. equation (5a) in §10.1 of [Hi2]). Following a common abuse
of notation, a nearly holomorphic modular form is treated interchangeably as as a real analytic section
f(τ)(2πidw)r of ωrra and as a real analytic function f(τ) on H transforming under Γ like a modular form
of weight r.

Let ΘHodge be the differential operator on nearly holomorphic modular forms associated to the splitting
(1.2.8) as in (1.1.17), i.e., satisfying

ΘHodge(f) = Ψ
(r+2)
Hodge(∇̃(s)), for all f = Ψ

(r)
Hodge(s) with s ∈ H0(C,Lr).

The following lemma relates ΘHodge to the classical Shimura-Maass differential operator δr defined by

(1.2.9) δrf(τ) :=
1

2πi

(
∂

∂τ
+

r

τ − τ̄

)
f(τ),

which maps real analytic modular forms of weight r to real analytic modular forms of weight r + 2.

Lemma 1.5. Let f be any nearly holomorphic modular form of weight r on Γ. Then

(1.2.10) ΘHodgef = δrf.

Proof. Write f = Ψ
(r)
Hodge(s), where s is the holomorphic section of Lr giving rise to f , and expand s in

terms of the local coordinates τ and w as

s = s0(τ)dw̄
r + s1(τ)dw̄

r−1dw + · · · + sr−1(τ)dw̄dw
r−1 + f(τ)(2πidw)r .

Since s is a holomorphic section, its periods vary holomorphically, and therefore ∇s = ∇1,0s, where
∇1,0 is the component of the Gauss-Manin connection on Lra

r obtained by differentiating periods of real
analytic sections in the holomorphic direction. Since the periods attached to the local section dw̄ are
antiholomorphic, it follows that ∇1,0(dw̄) = 0, and therefore, by (1.2.5), which continues to hold when ∇
is replaced by ∇1,0,

∇s = ∇1,0s ≡ ∇1,0(f(τ)(2πidw)r) (mod dw̄H0(C0,Lr−1 ⊗ Ω1
C))

≡ (2πi)r ·
(
fτ (τ)dw

r + rf(τ)dwr−1

(
dw − dw̄

τ − τ̄

))
⊗ dτ,
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where fτ := ∂f
∂τ is the derivative of f with respect to the holomorphic variable τ . It follows from the last

identity in (1.2.5) and the definition of ∇̃ that

Ψ
(r+2)
Hodge(∇̃(s)) = (2πi)r+1 · Ψ(r+2)

Hodge

(
fτ (τ)dw

r+2 + rf(τ)dwr+1

(
dw − dw̄

τ − τ̄

))

= δrf(τ)(2πidw)r+2.

The lemma follows. �

More generally, letting

Θj
Hodge : f 7→ Ψ

(r+2j)
Hodge (∇̃j(s)),

one obtains Θj
Hodge(f) = δjrf , where δjr := δr+2j−2 ◦ · · · ◦ δr is the j-th iterate of the Shimura-Maass

derivative, sending nearly holomorphic modular forms of weight r to nearly holomorphic modular forms
of weight r + 2j.

1.3. p-adic modular forms. A ring is called a p-adic ring if the natural homomorphism to its pro-p
completion is an isomorphism. If R is a p-adic ring, then a triple (E, t, ω)/R as in Definition 1.2 is said
to be ordinary if the mod p reduction of E (viewed as an elliptic curve over R/pR) has invertible Hasse
invariant. We briefly recall Katz’s definition of p-adic modular forms, which is modelled on Definition 1.2.
In this definition we continue to assume that k is an integer ≥ 2.

Definition 1.6. A p-adic modular form of weight k on Γ defined over a p-adic ring Z is a rule which

to every isomorphism class of ordinary triples (E, t, ω) ∈ Ẽll(Γ, R) defined over a p-adic Z-algebra R
associates an element f(E, t, ω) ∈ R satisfying

(1) (Compatibility with base change). For all Z-algebra homomorphisms j : R−→R′,

f((E, t, ω) ⊗j R′) = j(f(E, t, ω)).

(2) (Weight k condition). For all λ ∈ R×,

f(E, t, λω) = λ−kf(E, t, ω).

(3) (Behavior at the cusps). Let (Tate(q), t, ωcan) be the Tate elliptic curve Gm/q
Z equipped with

any level N structure t defined over the p-adic completion of Z[ζN ]((q1/d)), and the canonical
differential ωcan over Z((q)). Then

f (Tate(q), t, ωcan) belongs to Z[ζN ][[q1/d]],

and f (Tate(q), tσ , ωcan) = f (Tate(q), t, ωcan)
σ for all σ ∈ Aut(Z(ζN )/Z).

We will now recall the geometric interpretation of p-adic modular forms as sections of suitable rigid
analytic line bundles. Assume that the prime p does not divide N , so that C extends to a canonical
smooth proper model C over SpecZp. Write CFp := C ×Zp Fp, and let

redp : C(Cp)−→CFp(F̄p)

denote the natural reduction map.
Let {P1, . . . , Pt} be the finite subset of CFp(F̄p) consisting of the supersingular points. The residue disc

attached to Pj , denoted D(Pj), is the set of points of C(Cp) which have the same image as Pj under redp.
Let

Cord = C(Cp) −D(P1) − · · · −D(Pt).

Since the Pj are smooth points of CFp(F̄p), the residue discs D(Pj) are conformal to the open unit disc

U ⊂ Cp consisting of z ∈ Cp with |z| < 1. The set Cord is an example of an affinoid subset of C(Cp)
with good reduction. (These concepts are discussed in somewhat more detail in Section 3.5. For general
definitions and a more systematic discussion, see also, for example, Sections II and III of [Col2].)

The algebraic vector bundle Lr on C gives rise to a rigid analytic coherent sheaf Lrig
r on Cord, equipped

with the Gauss-Manin connection

∇ : Lrig
r −→Lrig

r ⊗ Ω1(logZN),

and a subsheaf ωr for the rigid analytic topology on Cord. A p-adic modular form f of weight r for Γ
corresponds, via (1.1.1), to a rigid analytic section of ωr over Cord.
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Following [Ka4], Theorem (1.11.27), there is a unique decomposition of rigid analytic sheaves

(1.3.1) Lrig
1 = ω ⊕LFrob

1

such that the Frobenius endomorphism preserves (and acts invertibly) on LFrob
1 . In the p-adic theory,

this “unit root” decomposition plays a role analogous to that of the Hodge decomposition in the complex
setting. Most importantly, (1.3.1) gives rise to a rigid analytic splitting over Cord

ΨFrob : Lrig
1 −→ω.

Let ΘFrob be the differential operator associated to this splitting as in (1.1.17). It maps p-adic modular
forms of weight r to p-adic modular forms of weight r + 2. The following lemma relates ΘFrob to the
classical Atkin-Serre theta operator whose effect on q-expansions f(Tate(q), ζN , ωcan) =

∑
anq

n is given
by

(1.3.2) θf(Tate(q), ζN , ωcan) = q
d

dq

∞∑

n=1

anq
n =

∞∑

n=1

nanq
n.

Lemma 1.7. For all p-adic modular forms f of weight r,

(1.3.3) ΘFrobf = θf.

Proof. Since a p-adic modular form is determined by its q-expansion, it is enough to check the identity on
the Tate curve. By (1.1.8),

∇f (Tate(q), ζN ) = ∇(f(q)ωrcan)

=

(
q
d

dq
f(q)ωrcan + rf(q)ωr−1

can ξcan

)
dq

q
.

Therefore, by (1.1.10),

(1.3.4) ∇̃f (Tate(q), ζN ) = q
d

dq
f(q)ωr+2

can + rf(q)ωr+1
can ξcan.

Since the Frobenius endomorphism respects the Gauss-Manin connection, it preserves the line spanned by
the unique horizontal section ξcan of L1 over Z ′[[q]], and therefore ξcan is stable under Frobenius. (Cf. Sec.
A2.2 of [Ka2].) It follows that the unit root subspace of the Tate curve Tate(q) over the p-adic completion
R of Z ′((q)) is equal to

H1
dR(Tate(q))Frob = Rξcan.

Hence ΨFrob(ξcan) = 0. Applying Ψ
(r+2)
Frob to equation (1.3.4) shows that

ΘFrobf(Tate(q), ζN , ωcan) = θf(Tate(q), ζN , ωcan).

�

1.4. Elliptic curves with complex multiplication. Let K be an imaginary quadratic field of discrim-
inant −dK , let OK be its ring of integers, and let H denote the Hilbert class field of K. Let A be a fixed
elliptic curve defined over H satisfying

EndH(A) ' OK .

The identification OK = EndH(A) is normalised so that the endomorphism [α] induces multiplication by
α on Ω1

A/H .

Cohomology. The Hodge filtration on the de Rham cohomologyH1
dR(A/F ) (over any field F which contains

H) admits a canonical, functorial algebraic splitting

(1.4.1) H1
dR(A/F ) = H1,0

dR (A/F ) ⊕H0,1
dR (A/F ),

which agrees with the Hodge decomposition of H1
dR(A/C) when F = C and with the unit root decompo-

sition over a p-adic ring when A is ordinary. This decomposition is characterised by the conditions

H1,0
dR (A/F ) = Ω1

A/F , λ∗η = λρη, ∀ λ ∈ OK , η ∈ H0,1
dR (A/F ),
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where λ 7→ λρ is the non-trivial automorphism of K. The choice of a non-zero differential ωA ∈ Ω1
A/F =

H1,0
dR (A/F ) thus determines a generator ηA of H0,1

dR (A/F ) satisfying

(1.4.2) 〈ωA, ηA〉 = 1,

where 〈 , 〉 denotes the algebraic cup product pairing on de Rham cohomology.
Let Sr denote the symmetric group on r letters. Multiplication by −1 on A, combined with the natural

permutation action of Sr on Ar, gives rise to an action of the wreath product

(1.4.3) Ξr := (µ2)
r o Sr

on Ar . Let j : Ξr−→µ2 be the homomorphism which is the identity on µ2 and the sign character on Sr,
and let

(1.4.4) εA :=
1

2rr!

∑

σ∈Ξr

j(σ)σ ∈ Q[Aut(Ar)]

denote the associated idempotent in the rational group ring of Aut(Ar). By functoriality, it induces an
idempotent on H∗

dR(Ar/F ). Recall the Künneth decomposition

(1.4.5) H∗
dR(Ar/F ) = ⊕(i1,...,ir)H

i1
dR(A/F ) ⊗ · · · ⊗H ir

dR(A/F ),

where the direct sum is taken over all r-tuples (i1, . . . , ir) with 0 ≤ ij ≤ 2. The natural action of Sr on
H1

dR(A/F )⊗r gives rise to a subspace SymrH1
dR(A/F ) consisting of classes which are fixed by this action.

Lemma 1.8. The image of the projector εA acting on H∗
dR(Ar/F ) is equal to SymrH1

dR(A/F ). More
precisely,

εAH
j
dR(Ar/F ) =

{
0 if j 6= r;
SymrH1

dR(A/F ) if j = r.

Proof. Since multiplication by (−1) acts as −1 on H1
dR(A/F ) and as 1 on H0

dR(A/F ) and H2
dR(A/F ), it

follows that εA annihilates all the terms in the Künneth decomposition (1.4.5) except H1
dR(A/F )⊗r. The

natural action of Sr on this term corresponds to the geometric permutation action of Sr on Ar, twisted
by the sign character. It follows that the restriction of εA to H1

dR(A/F )⊗r induces the natural projection
onto the space SymrH1

dR(A/F ) of symmetric tensors. �

For any j such that 0 ≤ j ≤ r, we define ωjAη
r−j
A by

ωjAη
r−j
A := ε∗A(p∗1ωA ∧ · · · p∗jωA ∧ p∗j+1ηA ∧ · · · ∧ p∗rηA)(1.4.6)

=
j!(r − j)!

r!

∑

I⊂{1,...,r}

p∗1$1,I ∧ . . . ∧ p∗r$r,I ,

where $i,I := ωA or ηA according as i ∈ I or i 6∈ I .

Note that the classes ωjAη
r−j
A form a basis of the vector space

εAH
r
dR(Ar/F ) = SymrH1

dR(A/F ).

Isogenies. It will always be assumed that A satisfies the following “Heegner hypothesis” relative to a fixed
positive integer N that is mentioned in (0.0.3) of the Introduction.

Assumption 1.9. There is an ideal N of OK of norm N such that OK/N = Z/NZ. (Such an ideal is
called a cyclic ideal of norm N in OK .)

Since both A and its endomorphisms are defined over the Hilbert class field H , the group scheme A[N]
of N-torsion in A is a cyclic subgroup scheme of A of order N defined over this field. The absolute Galois
group GH acts naturally on its set of geometric points. Let H̃ be the smallest extension of H over which
this Galois representation becomes trivial. The choice of a section tA : Spec(H̃)−→A[N] of order N gives

rise to a Γ-level structure on A defined over any field F that contains H̃. Fix such a tA once and for all.
Consider the set of pairs (ϕ,A′), where A′ is an elliptic curve and ϕ : A−→A′ is an isogeny (defined over

K̄). Two pairs (ϕ1, A
′
1) and (ϕ2, A

′
2) are said to be isomorphic if there is a K̄-isomorphism ι : A′

1−→A′
2

satisfying ιϕ1 = ϕ2. Let

Isog(A) := {Isomorphism class of pairs (ϕ,A′)} .
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The absolute Galois group GK = Gal(K̄/K) acts naturally on Isog(A) and a pair (ϕ,A′) admits a rep-
resentative defined over a field F ⊂ K̄ if it is fixed by the group GF ⊂ GK . Fix (ϕ,A′) ∈ Isog(A).
Since A has complex multiplication by OK , the endomorphism ring of A′ is an order in OK . Such an
order is completely determined by its conductor, and therefore there is a unique integer c ≥ 1 such that
EndF (A′) = Oc := Z + cOK . A pair (ϕ,A′) is said to be of conductor c if EndF (A′) = Oc. Clearly this
notion is well defined on isomorphism classes, and hence we may set

Isogc(A) := {Isomorphism classes of pairs (ϕ,A′) of conductor c} .
More generally, let IsogN(A) be the subset of Isog(A) consisting of pairs (ϕ,A′) where ϕ is an isogeny

whose kernel intersects A[N] trivially, and set IsogN
c (A) := Isogc(A) ∩ IsogN(A).

Let PK(Oc) denote the group of projective rank one Oc-submodules of K and let P (Oc) denote the sub-
semigroup of modules that are contained in Oc and are relatively prime to Nc := N ∩Oc. The semigroup
P (Oc) acts naturally on Isogc(A) and IsogN

c (A) by the rule a ∗ (ϕ,A′) = (ϕaϕ,A
′
a), where

(1.4.7) ϕa : A′−→A′
a := A′/A′[a]

is the natural isogeny. Note that, if a = Oc · a is free, then a ∗ (ϕ,A′) = (aϕ,A′).
Let (A1, t1, ω1) and (A2, t2, ω2) be two marked elliptic curves with Γ-level structure. The following

notion of an isogeny

ϕ : (A1, t1, ω1)−→(A2, t2, ω2)

will be convenient from the notational viewpoint.

Definition 1.10. An isogeny from (A1, t1, ω1) to (A2, t2, ω2) is an isogeny ϕ : A1−→A2 on the underlying
elliptic curves satisfying

ϕ(t1) = t2, ϕ∗(ω2) = ω1.

The action of P (Oc) on IsogN
c (A) that was just defined gives rise to an action of P (Oc) on the set of

isomorphism classes of triples (A′, t′, ω′) with End(A′) = Oc and t′ ∈ A′[Nc], by the rule

(1.4.8) a ∗ (A′, t′, ω′) = (A′
a, ϕa(t

′), ω′
a), where ϕ∗

a(ω
′
a) = ω′.

Remark 1.11. Let AK,f denote the ring of finite adèles of K and let Ôc denote (Oc ⊗ Ẑ), viewed as a

subring of AK,f . The group PK(Oc) is naturally identified with A×
K,f/Ô×

c , by associating to a a generator

(av) ∈ A×
K,f of a ⊗Oc Ôc.

1.5. Values of modular forms at CM points. Following the notations of Section 1.4, we continue to
let (A, tA, ωA) be a marked elliptic curve with Γ-level structure and complex multiplication by OK , defined
over a field F , and let ϕ : (A, tA, ωA)−→(A′, t′, ω′) be an isogeny of marked elliptic curves over F .

Fix complex and p-adic embeddings ι∞ : F−→C and ιp : F−→Cp, and use these to view A and A′ as

curves over C and OCp (by fixing a good integral model) respectively. If f belongs to the space M †
k(Γ, F )

of modular forms over F , then by definition f(A′, t′, ω′) belongs to F as well. Note that f can be viewed as
a p-adic modular form, after possibly rescaling it. The following algebraicity theorem asserts that a similar
conclusion holds for ΘHodge(f) and ΘFrob(f), evaluated on ι∞(A′, t′, ω′) and ιp(A

′, t′, ω′) respectively.

Proposition 1.12. Let (A′, t′, ω′)/F be a marked elliptic curve with complex multiplication by an order
in K. Assume that A′, viewed as an elliptic curve over OCp , is ordinary. Then:

(1) The complex number ΘHodgef(A′, t′, ω′) belongs to ι∞(F ).
(2) The p-adic number ΘFrobf(A′, t′, ω′) belongs to ιp(F ).
(3) Viewing these two quantities as elements of F , we have

ΘHodgef(A′, t′, ω′) = ΘFrobf(A′, t′, ω′).

Proof. Part (1) is due to Shimura [Shim1] and parts (2) and (3) are due to Katz [Ka4]. Our proof below
follows Katz’s approach. (See also the article of Hida [Hi4].) The key point is that any endomorphism
α ∈ OK of A′ respects the algebraic splitting of the Hodge filtration on H1

dR(A′/F ) defined in equation

(1.4.1) of Section 1.4, and acts on H0,1
dR (A′/F ) via multiplication by ᾱ. It follows that H1

dR(A′/F ) =
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Ω1(A′/F ) ⊕H0,1
dR (A′/F ) agrees with the Hodge decomposition of H1

dR(A′ ⊗ι∞ C) and with the unit root
decomposition of H1

dR(A′ ⊗ιp Cp), which both share this property. More precisely,

H0,1
dR (A′/F ) ⊗ι∞ C = H0,1

dR (A′ ⊗ι∞ C),

H0,1
dR (A′/F ) ⊗ιp Cp = H1

dR(A′ ⊗ιp Cp)
Frob.

Therefore, Ψ
(r+2)
Hodge∇̃f(A′, t′) and Ψ

(r+2)
Frob ∇̃f(A′, t′) both belong to Symr+2 Ω1(A′/F ), and are equal. The

proposition follows. �

2. Generalised Heegner cycles

2.1. Kuga-Sato varieties. Let π : E−→C be the universal generalised elliptic curve with Γ1(N) level
structure, extending the universal elliptic curve over C0 introduced in Section 1.1, which exists because
our running assumption that N > 4. The variety W1 := E is smooth and proper, and the geometric fibers
of π above a closed point x ∈ C are singular precisely when x is a cusp. The geometric fiber π−1(x) is then
isomorphic to a chain of projective lines intersecting at ordinary double points whose dual graph is an
m-gon for a suitable m|N , depending on x. Let W ∗

1 ⊂ W1 denote the relative identity component of the
Néron model of E over X1(N), whose geometric fibers above the cusps are isomorphic to the multiplicative
group Gm.

Fix an integer r ≥ 0, and let

W ∗
r := W ∗

1 ×C W ∗
1 ×C · · · ×C W ∗

1 ⊂ W ]
r := E ×C E ×C · · · ×C E ,

denote the r-fold fiber products of W ∗
1 and E respectively over C.

Write Wr for the canonical desingularisation of W ]
r , as described in [De2], Lemmas 5.4 and 5.5, and

[Schol2] 1.0.3, for example. In these references, these constructions are performed for the universal elliptic
curve over the modular curve X(N) with full level N structure, but can be adapted to deal with the case
of X1(N); see the Appendix for further details on this more general construction, even over SpecZ[ 1

N ].
Denote by

W 0
r := Wr ×C C0 = W ]

r ×C C0 = W ∗
r ×C C0

the complement in Wr of the geometric fibers above the cusps, and let W reg
r ∈W ]

r be the locus where the
natural projection W ]

r−→C is smooth. As in 1.3.2. of [Schol2] there is a non-canonical isomorphism

(2.1.1) W reg
r ×C Z∞ =

∐

d|N

(Z∞(d) × (Gm × Z/dZ)r) ,

where Z∞ ⊂ C denotes the cuspidal subscheme and Z∞(d) ⊂ Z∞ is the (possibly empty) subscheme of
cusps with ramification degree d over the modular curve of level one. The varieties E , C, W ]

r , W
∗
r , Wr

and W 0
r are all defined over Q, and can therefore be viewed as defined over any field F of characteristic

0. It will be convenient to fix such an F at the outset.
Translation by the sections of order N gives rise to an action of (Z/NZ)r on W ]

r , which extends to
Wr by the canonical nature of the desingularisation. The group (Z/NZ)r also acts transitively (but not
freely, in general) on the set of components of W ]

r above any cusp of C arising in (2.1.1). Let σa denote
the automorphism of Wr associated to a ∈ (Z/NZ)r, and let

ε
(1)
W =

1

Nr

∑

a∈(Z/NZ)r

σa

denote the corresponding idempotent in the rational group ring of (Z/NZ)r. Similarly, the group Ξr of
(1.4.3) can be viewed as a subgroup of Aut(Wr/C) acting on the fibers of the natural projection from Wr

to C. Let ε
(2)
W be the idempotent in the group ring Z[1/2r!][Aut(Wr/C)] which is defined by the same

formula as in (1.4.4) with Ar replaced by Wr/C. The idempotents ε
(1)
W and ε

(2)
W commute, and therefore

the composition

(2.1.2) εW = ε
(2)
W ε

(1)
W

defines a projector in the ring of rational correspondences on Wr.
Let

Ω0(Lr) := Lr, Ω1(Lr) := Lr ⊗ Ω1
C + ∇(Lr).
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The complex

(2.1.3) 0−→Ω0(Lr) ∇−→ Ω1(Lr)−→0

of sheaves over C is the smallest subcomplex of

(2.1.4) 0−→Lr ∇−→ Lr ⊗ Ω1
C(logZN )−→0

which contains Lr and Lr ⊗Ω1
C in degrees 0 and 1 respectively. The de Rham cohomology of C attached

to Lr, denoted H i
dR(C/F,Lr ,∇), is defined to be the ith hypercohomology of the complex (2.1.4):

H i
dR(C/F,Lr ,∇) := Hi(C/F,Lr ⊗ Ω•(logZN )).

The parabolic de Rham cohomology of C attached to Lr is defined, following Section 2.6 of [Schol1] as the
hypercohomology of the subcomplex (2.1.3):

H i
par(C/F,Lr,∇) := Hi(C/F,Ω•(Lr)).

In degree 0, we have

H0
par(C/F,Lr,∇) = H0

dR(C/F,Lr ,∇).

As explained in the proof of Theorem 2.7 (i) of [Schol1], the parabolic cohomology H1
par(C/F,Lr,∇) in

degree 1 is equipped with a natural filtration

(2.1.5) 0−→H0(C/F, ωr ⊗ Ω1
C)−→H1

par(C/F,Lr,∇)−→H1(C/F, ω−r)−→0.

The de Rham cohomology groups H i
dR(X/F ) (attached to any variety X over F ) and H i

dR(C/F,Lr,∇)
will sometimes be abbreviated to H i

dR(X) and H i
dR(C,Lr,∇), and likewise for the parabolic cohomology

groups, when no confusion results from suppressing the field of definition F in the notation.

Lemma 2.1. If r = 0, then H0
dR(C,Lr ,∇) = F , and H0

dR(C,Lr ,∇) = 0 otherwise.

Proof. Fix an embedding of F into C and consider H0
dR(C/C,Lr,∇) = H0

dR(C/F,Lr ,∇) ⊗F C. By the
GAGA principle,

H0
dR(C/C,Lr,∇) = H0

dR(C,Lan
r ,∇).

The restriction map

H0
dR(C,Lan

r ,∇)−→H0
dR(C0,Lan

r ,∇)

is injective, and

H0
dR(C0,Lan

r ,∇) = H0(C0,Lr),

where Lr is the local system introduced in (1.2.1). This local system corresponds to the r-th symmetric
power of the standard two-dimensional representation C2 of Γ ⊂ SL2(Z) ⊂ SL2(C), and therefore

H0(C0,Lr) = H0(Γ, Symr(C2)) =

{
C if r = 0,
0 otherwise.

The lemma follows. �

We wish to describe the image of εW on the (middle) cohomology of Wr, and relate this image to
H1

par(C,Lr ,∇).

Lemma 2.2. Assume r ≥ 1.

(1) The image of ε
(2)
W (and of εW ) acting on H∗

dR(W 0
r /F ) is canonically isomorphic to H1

dR(C,Lr ,∇).
(2) The image of εW acting on H∗

dR(Wr/F ) is canonically isomorphic to H1
par(C,Lr ,∇).

(3) Furthermore, the Hodge filtration on εWH
∗
dR(Wr/F ) = εWH

r+1
dR (Wr/F ) is given by (2.1.5), i.e.,

Fil0 = H1
par(C,Lr ,∇),

Fil1 = Fil2 = · · · = Filr+1 = H0(C, ωr ⊗ Ω1
C),

Filr+2 = · · · = 0,

where Filj denotes the j-th step in the Hodge filtration on εWH
r+1
dR (Wr).
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Proof. The arguments below are mild adaptations of those in [Schol2], [Schol3].

(1) By [De1] Cor. 3.15, the natural map

H i
dR(C,Lr ,∇) → H i

dR(C0,Lr|C0 ,∇) := Hi(C0,Ω.(Lr)|C0)

is an isomorphism. Consider the Leray spectral sequence for de Rham cohomology ([Ka1], Remark 3.3)
applied to the map W 0

r → C0: i.e.,

Epq2 = Hp
dR(C0, Hq

dR(W 0
r /C

0),∇) ⇒ Hp+q
dR (W 0

r ).

By the same argument as in [De2] Lemma 5.3, this spectral sequence degenerates at E2 and identifies

the space Hp
dR(C0, Hq

dR(W 0
r /C

0),∇) with the subspace of Hp+q
dR (W 0

r ) on which [m] acts as mq. (Here [m]

denotes multiplication by m on the fibers of W 0
r /C

0.) Applying the projector ε
(2)
W , we find

ε
(2)
W H∗

dR(W 0
r /C

0) = ε
(2)
W Hr

dR(W 0
r /C

0) = Lr|C0

and

H1
dR(C0,Lr|C0 ,∇) ' ε

(2)
W Hr+1

dR (W 0
r ) = ε

(2)
W H∗

dR(W 0
r ).

A similar statement holds with ε
(2)
W replaced by εW , since translation by W 0

r (C0) on H1
dR(W 0

r /C
0) is trivial

(as W 0
r → C0 is an abelian scheme).

(2) We use the following fact due to Scholl: there is a canonical isomorphism

εWH
i
. (Wr) ' ε

(2)
W H i

. (W
∗
r ),

for · = B, et or dR. This is proved in [Schol2], Thm. 3.1.0 for the case of full level structure, and the
modifications needed to extend this to X1(N) are described in [Schol3], §2, especially §2.9-2.12. Now
consider the Gysin sequence for the inclusion W 0

r ↪→ W ∗, writing Z := W ∗
r \W 0

r :

→ H i(W ∗) → H i(W 0
r ) → H i−1(Z)(−1) → H i+1(W ∗) →

Since (by [Schol2], Lemma 1.3.1 (i) and [Schol3] §2.9)

ε
(2)
W H i(Z) =

{
0, if i 6= r;
H0(Z∞)(−r), if i = r,

we see from part (1) of the lemma that ε
(2)
W H i(W ∗) = 0 for i 6= r + 1, r + 2. Further there is an exact

sequence (in any cohomology theory)

0 // ε
(2)
W Hr+1(W ∗

r ) // ε
(2)
W Hr+1(W 0

r )
ρ

// H0(Z∞)(−r − 1)
σ

// ε
(2)
W Hr+2(W ∗

r ) // 0

εWH
r+1(Wr) εWH

r+2(Wr)

The map σ vanishes since its source and image are pure of weight 2r + 2 and r + 2 respectively, and

r 6= 0, hence εWH
r+2(Wr) = 0. In the de Rham realization, we have from part (1) that ε

(2)
W Hr+1(W 0

r ) =

H1
dR(C,Lr,∇) = H1

dR(C0,Lr|C0 ,∇) and hence ε
(2)
W Hr+1

dR (W ∗
r ) is identified naturally with the kernel of the

map

H1
dR(C0,Lr|C0 ,∇)

ρdR−−→ H0
dR(Z∞,−r − 1),

which is just H1
par(C,Lr,∇).

(3) See Thm. 2.7 (i) and Remark 2.8 of [Schol1] . �

Corollary 2.3. The assignment

f 7→ ωf = f(E, t, ω)ωr ⊗ σ(ω2)

induces an identification

Sr+2(Γ, F )
∼−→ Filr+1 εWH

r+1
dR (Wr/F ).

Proof. This follows from Part 2 of Lemma 2.2 combined with (1.1.12) (the case r = 0 being well known). �



18 MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA

2.2. The variety Xr and its cohomology. Recall that A is the elliptic curve with complex multiplica-
tion by OK that was fixed in Section 1.4, defined over the Hilbert class field H of K. Fix a field F ⊃ H ,
and, for each r ≥ 0, consider the (2r+1)-dimensional variety over F given by

Xr := Wr ×Ar.

Like the Kuga-Sato variety W2r, the variety Xr is equipped with a proper morphism

πr : Xr−→C

with 2r-dimensional fibers. The fibers above points of C0 are products of elliptic curves of the form
Er ×Ar, where E varies and A is fixed.

The projectors εA and εW defined in (1.4.4) and (2.1.2) respectively give rise to commuting idempotents
in the ring of correspondences on Xr which preserve the fibers of the projection πr : Xr−→C. We set

(2.2.1) εX := εW εA.

By functoriality, the idempotent εX acts as a projector on the various cohomology groups associated to
the variety Xr.

We define a coherent sheaf of OC-modules by setting

(2.2.2) Lr,r = Lr ⊗ SymrH1
dR(A).

Note that Lr,r is equipped with the self-duality

(2.2.3) 〈 , 〉 : Lr,r ×Lr,r−→OC

arising from Poincaré duality on the fibers. It is described explicitly in terms of equation (1.1.14) and its
analogue for SymrH1

dR(A). Let

(2.2.4) Lr,r := Lr ⊗ SymrH1
dR(A/C)

denote the corresponding locally constant sheaf (for the complex topology on C0(C)). The sheaf Lr,r is
the sheaf of horizontal sections of Lan

r,r relative to the Gauss-Manin connection

∇ : Lr,r−→Lr,r ⊗ Ω1
C(logZN).

This connection is induced by the Gauss-Manin connection on Lr combined with the trivial connection on
H1

dR(A). The de Rham cohomology attached to (Lr,r,∇) is defined in the same way as for (Lr ,∇), and
one has

H1
dR(C,Lr,r ,∇) = H1

dR(C,Lr ,∇) ⊗ SymrH1
dR(A),

H1
par(C,Lr,r ,∇) = H1

par(C,Lr ,∇) ⊗ SymrH1
dR(A).

Proposition 2.4. Assume that r is ≥ 1. The image of the projector εX acting on H∗
dR(Xr) is given by

εXH
∗
dR(Xr) = H1

par(C,Lr,r ,∇) = H1
par(C,Lr ,∇) ⊗ SymrH1

dR(A).

In particular,

εXH
j
dR(Xr) =

{
0 if j 6= 2r + 1;
H1

par(C,Lr,r,∇) if j = 2r + 1.

Furthermore, if Filj denotes the j-th step in the Hodge filtration on εXH
2r+1
dR (Xr), then

(2.2.5) Filr+1 = H0(C, ωr ⊗ Ω1
C) ⊗ SymrH1

dR(A).

Proof. This follows directly from Lemmas 1.8 and 2.2 in light of the Künneth decomposition for the
cohomology of Xr = Wr ×Ar. �

Proposition 2.5. The assignment f ⊗ α 7→ ωf ∧ α induces an identification

Sr+2(Γ, F ) ⊗ SymrH1
dR(A/F ) = Filr+1 εXH

2r+1
dR (Xr/F ).

Proof. This follows directly from Corollary 2.3, combined with Proposition 2.4 when r ≥ 1. �
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Given any integer 0 ≤ j ≤ r, note in particular that the class

ωf ∧ ωjAηr−jA ,

where ωjAη
r−j
A is the class introduced in (1.4.6), belongs to H0(C, ωr ⊗ Ω1

C) ⊗ SymrH1
dR(A) and can

thus be viewed, via Proposition 2.5, as an element of the middle step Filr+1 in the Hodge filtration of
εXH

2r+1
dR (Xr/F ).

2.3. Definition of the cycles. In this section we will assume the Heegner hypothesis 1.9 that was
discussed in Section 1.4. As in Section 1.4, fix once and for all a Γ-level structure tA on A, in such a way
that tA belongs to A[N].

The datum (A, tA) determines a point PA on C, and a canonical embedding ιA of Ar into the fiber in

Wr above PA. More generally, any pair (ϕ,A′) ∈ IsogN(A) determines a point PA′ on C attached to the
pair (A′, ϕ(tA)), and an embedding

ιA′ : (A′)r−→Wr

defined over F .
We associate to any (ϕ,A′) ∈ IsogN(A) a codimension r+1 cycle Υϕ onXr by letting Graph(ϕ) ⊂ A×A′

denote the graph of ϕ, and setting

Υϕ := Graph(ϕ)r ⊂ (A×A′)r
'−→ (A′)r ×Ar ⊂Wr ×Ar,

where the last inclusion is induced from the pair (ιA′ , idrA). We then set

∆ϕ := εXΥϕ,

where εX is the idempotent given in equation (2.2.1), viewed as an element of the ring of algebraic
correspondences from Xr to itself. Note that ∆ϕ is supported on the fiber π−1

r (PA′) of πr above PA′ and

gives an element in CHr+1(Xr)Q, the Chow group of codimension r + 1 cycles with rational coefficients.

Remark 2.6. The generalised Heegner cycles ∆ϕ are all defined over abelian extensions of K. More

precisely, if (ϕ,A′) belongs to IsogN
c (A), then the associated cycles can be defined over the compositum of

the abelian extension H̃/K over which the isomorphism class of (A, tA) is defined with the ring class field
Hc of conductor c.

When r = 0, the generalised Heegner cycle ∆ϕ is a CM point on the modular curve C. In this case, we
replace ∆ϕ by ∆ϕ−∞, where ∞ is any cusp, in order to make ∆ϕ homologically trivial. The same is true
when r ≥ 1, by Proposition 2.4 which implies that εXH

2r+2(X,Q) = 0. Thus we record the following:

Proposition 2.7. The cycle ∆ϕ is homologically trivial on Xr.

Remark 2.8. Another approach to proving the homological triviality of ∆ϕ, by deforming these cycles
to the fibers supported above the cusps of the modular curve, is described in [Sch]. The approach we have
given adapts more readily to the setting of Shimura curves attached to arithmetic subgroups of SL2(R)
with compact quotient.

2.4. Relation with Heegner cycles and L-series. This motivational section discusses the relation
between generalised Heegner cycles and the more classical Heegner cycles on Kuga-Sato varieties that are
studied in [Ne2] and [Zh], as well as the expected relation with derivatives of L-series.

Keeping the same notations as in the previous section, the “traditional” Heegner cycles are codimension
r+ 1 cycles on the Kuga-Sato variety W2r which are supported on fibers for the natural projection to the
modular curve C. These cycles are indexed by elliptic curves with Γ-level structure having endomorphisms
by an order in an imaginary quadratic field. More precisely, if A′ is an elliptic curve with endomorphism
by the order Oc = Z[(d+

√
−d)/2] of conductor c of the imaginary quadratic field K, then we set

Υ heeg
A′ := graph(

√
−d)r ⊂ (A′ ×A′)r,

∆heeg
A′ := εW (Υ heeg

A′ ).

We will now construct an explicit correspondence from the (4r+1)-dimensional variety X2r to the (2r+1)-
dimensional variety W2r which maps generalised Heegner cycles to Heegner cycles.

Let Π = W2r ×Ar, viewed as a subvariety of W2r ×X2r = W2r ×W2r × (A2)r via the map

(idW2r , idW2r , (idA,
√
−dK)r).
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This subvariety induces a correspondence from X2r to W2r, yielding a map on Chow groups:

ΦΠ : CH2r+1(X2r)Q−→CHr+1(W2r)Q.

If ϕ : A−→A′ is an isogeny of elliptic curves with Γ-level structure, a direct calculation (which will not be

used in the sequel, and is therefore left to the reader) shows that the cycles ΦΠ(∆ϕ) and ∆heeg
A′ generate

the same Q-subspace of CHr+1(W2r)Q.
This relation shows that the generalised Heegner cycles carry at least as much information as the

classical Heegner cycles on Kuga-Sato varieties studied in [Ne2] and [Zh]. One expects them to enjoy
similar relationships with central critical derivatives of Rankin L-series. More precisely, we expect that
the Arakelov heights of the generalized Heegner cycles ∆ϕ should encode the derivatives L′(f, χ−1, 0)
where χ are Hecke characters of infinity type (k− 1− j, 1 + j) with 0 ≤ j ≤ r. The case r = 0 corresponds
to the classical Gross-Zagier formula, and the case where r is even and j = r/2 corresponds to the setting
that is treated in [Zh]. We expect that there should also be a generalisation of the p-adic result of [Ne2]
expressing the p-adic height of generalised Heegner cycles in terms of the derivative in the cyclotomic
direction of a two variable p-adic L-function attached to f and χ, at a point which corresponds to the
special value L(f, χ−1, 0) and lies in the range of classical interpolation defining this p-adic L-function.

The present article avoids height calculations altogether by focusing instead on the images of generalised
Heegner cycles under Abel-Jacobi maps, both complex and p-adic. In the p-adic setting, we will relate
these images to the special values of an anticyclotomic p-adic L-function attached to f and K at a point
lying outside its range of classical interpolation.

3. p-adic Abel-Jacobi maps

The goal of this section is to compute the images of the generalised Heegner cycles ∆ϕ under the p-adic
Abel-Jacobi map. The resulting formulae of Sections 3.7 and 3.8 are a key ingredient in the proof of our
p-adic Gross-Zagier formula. Some of the techniques used in this chapter, particularly those of Sections
3.1–3.4, are drawn from [IS], which treats the case of Heegner cycles on the r-fold product of the universal
“fake” elliptic curve over a Shimura curve attached to a quaternion algebra which is ramified at p. This
Shimura curve admits an explicit description as a rigid analytic quotient of the p-adic upper half-plane,
via the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves. The present chapter treats
classical modular curves at primes p of good reduction, for which no p-adic uniformisation à la Cerednik-
Drinfeld is available. The techniques employed in Section 3.5 onwards therefore differ markedly from those
of [IS].

3.1. The étale Abel-Jacobi map. Recall the generalised Heegner cycle ∆ϕ associated to the pair
(ϕ,A′) ∈ Isogc(A) where ϕ : (A, t) → (A′, t′) is an isogeny of elliptic curves with Γ-level structure.
Let P = PA′ be the point of C associated to the pair (A′, t′) and let

XP := π−1
r P, X[

r := Xr −XP .

Fix any field F over which the pair (Xr,∆ϕ) is defined, and a rational prime p. Consider the following
Gysin sequence in p-adic étale cohomology (cf. Corollary 16.2 of [Mi]). After setting X = X̄r, Z = X̄P ,
U = X̄[

r and F = Qp(r + 1) in the statement of that corollary (with r replaced by 2r), we obtain the
following exact sequence in the category RepF of continuous p-adic representations of GF = Gal(F̄ /F ):

(3.1.1) H2r−1
et (X̄P ,Qp)(r)−→H2r+1

et (X̄r,Qp)(r+1)−→H2r+1
et (X̄[

r ,Qp)(r+1)−→H2r
et (X̄P ,Qp)(r)0−→0,

where

H2r
et (X̄P ,Qp)(r)0 := ker

(
H2r

et (X̄P ,Qp)(r)−→H2r+2
et (X̄r,Qp)(r+1)

)
.

By applying the projector εX to (3.1.1), we obtain

(3.1.2) 0−→εXH
2r+1
et (X̄r,Qp)(r+1)−→εXH

2r+1
et (X̄[

r ,Qp)(r+1)−→εXH
2r
et (X̄P ,Qp)(r)−→0,

where we have used the fact that, when r > 0,

εXH
2r−1
et (XP )(r) = 0, εXH

2r
et (XP )(r)0 = εXH

2r
et (XP )(r).

Since ∆ = ∆ϕ is equal to εX∆ϕ by definition, its image under the étale cycle class map

clP : CHr(XP )Q(F )−→H2r
et (X̄P ,Qp)(r)
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belongs to εXH
2r
et (X̄P ,Qp)(r). Let

cl∆ : Qp−→εXH
2r
et (X̄P ,Qp)(r)

be the map of p-adic representations of GF defined by cl∆(1) = clP (∆), and consider the extension V∆

of Qp by εXH
2r+1
et (X̄r,Qp)(r+1) arising from pullback in the following commutative diagram with exact

rows in which the right-most square is cartesian:
(3.1.3)

0 // εXH
2r+1
et (X̄r,Qp)(r+1) // V∆

//

��

Qp

cl∆

��

// 0

0 // εXH
2r+1
et (X̄r,Qp)(r+1) // εXH

2r+1
et (X̄[

r ,Qp)(r+1) // εXH
2r
et (X̄P ,Qp)(r) // 0.

Given two objects V ′′, V ′ in the category RepF , write

ExtF (V ′′, V ′) := H1(F, hom(V ′′, V ′))

for the set of isomorphism classes of extensions

0−→V ′−→E−→V ′′−→0.

(Here H1(F, −) denotes continuous Galois cohomology and hom(V ′′, V ′) is the object of RepF equipped
with the natural action of GF .)

Definition 3.1. The étale Abel-Jacobi map

AJet
F : CHr+1(Xr)0,Q(F )−→H1(F, εXH

2r+1
et (X̄r,Qp(r+1)))

sends the class of the null-homologous codimension-(r+1) cycle ∆ to the isomorphism class of the extension
V∆ of (3.1.3) in

ExtF (Qp, εXH
2r+1
et (X̄r,Qp)(r+1)) = H1(F, εXH

2r+1
et (X̄r,Qp)(r+1)).

Remark 3.2. Definition 3.1 applies directly to cycle classes in CHr+1(Xr)0,Q(F ) which are represented

by a cycle supported on XP . Usually, the map AJet
F is defined on a general cycle ∆ by replacing in

the diagrams above XP by ∆ and X[ by X − ∆, respectively. In this case, one obtains an analogue
of the commutative diagram (3.1.3) without the need of applying εX . It can be checked, following the
argument that is explained in [Ne2, Prop. II.2.4] that this more general definition, once composed with
εX , is compatible with Definition 3.1, which is adapted to our subsequent calculations.

3.2. The comparison isomorphism. The p-adic Abel-Jacobi map arises from the map AJet
F by consid-

ering the case where F is a finite extension of Qp. Let OF denote the ring of integers of F and let k be
its residue field. We will make the following assumptions on F , which are satisfied in our application:

(1) The extension F is a finite unramified extension of Qp.
(2) The varieties C and Xr over F extend to smooth proper models C and Xr over OF .

If ϕ belongs to IsogN
c (A), and p does not divide NcDisc(K), then the field F can be taken to be the

p-adic completion of the compositum of H̃ , the extension of the Hilbert class field of K over which A[N] is
defined, with Hc, the Hilbert class field of conductor c. By abuse of notation, we will use the same letter
σ to denote the p-power Frobenius automorphism of k and its canonical lift to F .

The de Rham cohomology groups H j
dR(Xr/F ), equipped with their σ-semilinear Frobenius endomor-

phisms and Hodge filtrations, are examples of filtered Frobenius modules. (See [B], [Fo], [I] or [FI] for
details concerning the category of these objects.)

The fundamental comparison theorem between p-adic étale cohomology and de Rham cohomology of
varieties over p-adic fields relates the p-adic representation H j

et(X̄r,Qp) of GF to the filtered Frobenius

module Hj
dR(Xr/F ). To any continuous p-adic representation V of GF we may associate the F -vector

space
Dcris(V ) := (V ⊗Qp Bcris)

GF ,

where Bcris is Fontaine’s ring of cristalline periods over F , which is called the cristalline Dieudonné module
attached to V . Recall that a p-adic representation V of GF is said to be cristalline if

dimF Dcris(V ) = dimQp(V ).
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The category of cristalline representations of GF is an abelian tensor subcategory of RepF . Given objects
V1 and V2 of this category, denote by Extcris(V1, V2) the group of extensions of V2 by V1 which are cristalline.
The Dieudonné module attached to a cristalline representation V inherits from Bcris the structure of a
filtered Frobenius module. The following deep theorem will be used to make the p-adic Abel-Jacobi map
amenable to computation.

Theorem 3.3 (Faltings). The p-adic representation H2r+1
et (X̄r,Qp)(r+1) is cristalline, and there is a

canonical, functorial isomorphism of filtered Frobenius modules:

Dcris(H
2r+1
et (X̄r,Qp)(r+1)) = H2r+1

dR (Xr/F )(r+1).

Proof. See [Fa], Theorem 5.6, or [T]. �

The comparison theorem will be applied via the following corollary:

Corollary 3.4. The assignment V 7→ Dcris(V ) induces an isomorphism

(3.2.1) comp : Extcris(Qp, H
2r+1
et (X̄r,Qp)(r+1))

∼−→ Extffm(F,H2r+1
dR (Xr/F )(r+1)).

Proof. The injectivity follows from from the comparison theorem and the fact that the functor Dcris is
fully faithful, while the surjectivity follows from a comparison with the Bloch-Kato exponential, as in
Prop. 1.21 and Cor. 1.22 of [Ne1]. �

3.3. Extensions of filtered Frobenius modules. We will now give a general abstract description of
the group of extensions in the category of filtered Frobenius modules.

Let H be a filtered Frobenius module of strictly negative weight, and consider an extension

(3.3.1) 0−→H
i−→ E

ρ−→ F−→0

of filtered Frobenius modules. Let ηhol
E and ηfrob

E be elements of Fil0E and Eφ
n=1 respectively, satisfying

(3.3.2) ρ(ηhol
E ) = 1, ρ(ηfrob

E ) = 1.

The element

ηE := ηhol
E − ηfrob

E

is in the kernel of ρ and hence can be viewed as an element of H . The lifts ηhol
E and ηfrob

E are well-defined

up to Fil0H and Hφn=1 respectively. By the assumption on the weight of H , we have Hφn=1 = 0,
and the class of ηE in H/Fil0H does not depend on the choices that were made in (3.3.2). The reader
should compare the following proposition with Lemma 2.1 of Section 2 of [IS], which treats the more
complicated situation of extensions of filtered Frobenius monodromy modules arising from semistable
(and not necessarily cristalline) p-adic representations of GF .

Proposition 3.5. The assignment E 7→ ηE yields an isomorphism

Extffm(F,H) = H/Fil0H.

Sketch of proof. The isomorphism Eφ
n=1−→F induced by ρ determines a canonical vector space splitting

of (3.3.1) which preserves the φ-module structure of the extension, but need not respect with the filtrations.
In other words, the extension (3.3.1) is trivial when viewed as an extension of φ-modules. Fix the resulting
identification

(3.3.3) E = H ⊕ F,

so that ηfrob
E is identified with the element (0, 1) of H ⊕F . We are left with the problem of classifying the

filtrations which may arise on the splitting of φ-modules (3.3.3). This splitting is compatible with filtrations

if and only if ηhol
E = (h, 1) is such that h belongs to Fil0H (since in this case Fil0E = Fil0H ⊕ F and

this equality determines the filtration on E in all degrees). In general, the datum ηhol
E = (h, 1) completely

determines the filtration on E in terms of the filtration on H (since Fil0E = span(Fil0H, ηhol
E )), and (h, 1)

and (h′, 1) give rise to the same filtration if and only if h− h′ belongs to Fil0H . �
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3.4. The p-adic Abel-Jacobi map. We can now define the p-adic Abel-Jacobi map attached to the
p-adic field F introduced in Section 3.2. By Theorem 3.1.1. of [Ne3] (see also [Ni]), the image of
CHr+1(Xr)0,Q(F ) by the étale Abel-Jacobi map AJet

F is contained in the subgroup

H1
f (F, εXH

2r+1
et (X̄r,Qp)(r+1)) := Extcris(Qp, εXH

2r+1
et (X̄r,Qp)(r+1))

of H1(F, εXH
2r+1
et (X̄r,Qp)(r+1)) whose elements correspond to cristalline extensions. By Corollary 3.4,

this group is identified with Extffm(F, εXH
2r+1
dR (Xr/F )(r+1)). Applying Proposition 3.5 to the filtered

Frobenius module H = εXH
2r+1
dR (Xr/F )(r+1) which is of weight −1, we find an isomorphism

(3.4.1) J : Extffm(F, εXH
2r+1
dR (Xr/F )(r+1))−→ εXH

2r+1
dR (Xr/F )(r+1)

Fil0 εXH
2r+1
dR (Xr/F )(r+1)

= Fil1 εXH
2r+1
dR (Xr/F )(r)∨,

where the last identification arises from the Poincaré duality

εXH
2r+1
dR (Xr/F )(r) × εXH

2r+1
dR (Xr/F )(r+1)−→F,

in which the spaces Fil1 εXH
2r+1
dR (Xr/F )(r) and Fil0 εXH

2r+1
dR (Xr/F )(r+1) are exact annihilators of each

other.
The p-adic Abel-Jacobi map, denoted AJF , is the diagonal map in the diagram

CHr+1(Xr)0,Q(F )
AJet

F
//

AJF

**

H1
f (F, εXH

2r+1
et (X̄r,Qp)(r+1))

Extcris(Qp, εXH
2r+1
et (X̄r,Qp)(r+1))

comp

��

Extffm(F, εXH
2r+1
dR (Xr)(r+1))

J

��

(Fil1 εXH
2r+1
dR (Xr/F )(r))∨,

where the second vertical isomorphism is given in (3.2.1).
After invoking Proposition 2.5, we can view AJF as a map

(3.4.2) AJF : CHr+1(Xr)(F )0,Q−→(Sr+2(Γ, F ) ⊗ SymrH1
dR(A/F ))∨.

Further, applying the comparison isomorphisms to the diagram (3.1.3) gives a corresponding diagram of
filtered Frobenius modules:

(3.4.3) 0 // εXH
2r+1
dR (Xr/F )(r+1) // D∆

//

��

F

cl∆

��

// 0

0 // εXH
2r+1
dR (Xr/F )(r+1) // εXH

2r+1
dR (X[

r/F )(r+1) // εXH
2r
dR(XP /F )(r) // 0.

By Proposition 2.4 (and an analogue with C replaced by C − {P}), this diagram can be rewritten as

(3.4.4) 0 // H1
par(C,Lr,r,∇)(r+1) // D∆

//

��

F

cl∆

��

// 0

0 // H1
par(C,Lr,r,∇)(r+1) // H1

par(C − {P},Lr,r,∇)(r+1) // Lr,r(P )(r) // 0.

The image of the cycle class ∆ under the p-adic Abel-Jacobi map is thus described by the class of the
extension D∆ in the category of filtered Frobenius modules.
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3.5. de Rham cohomology over p-adic fields. In this section we give an explicit description of the
action of the Frobenius operator on

εXH
2r+1
dR (Xr/F ) = H1

par(C,Lr,r,∇)

in terms of Lr,r-valued rigid analytic differentials on appropriate subsets of the curve C. The reader is
referred to [Col1] and [Col2] for more details on the concepts and definitions discussed below.

Viewing C as a rigid analytic space over F , let Orig
C denote the sheaf of rigid analytic functions on C

and let Lrig
r,r denote the rigid analytic coherent sheaf on C associated to Lr,r.

We will now define certain basic affinoid subsets of C for the rigid analytic topology. For this, recall
from Section 3.2 that C is a smooth proper model of C over Spec(OF ). Write Ck := C ×OF k, and let

redp : C(Cp)−→Ck(k̄)

denote the natural reduction map.
Let P1, . . . , Pt be any collection of points on C(F ) which map to distinct points of Ck(k) under redp

and contain all the cusps of C. Recall that the residue disc attached to Pj , denoted D(Pj), is the set of
points of C(Cp) which have the same image as Pj under redp. Let

A = C(Cp) −D(P1) − · · · −D(Pt).

Because the Pj reduce to smooth points of Ck(k), the residue discs D(Pj) are conformal to the open unit
disc U ⊂ Cp consisting of z ∈ Cp with |z| < 1. For each j = 1, . . . , t, fix an isomorphism hj : D(Pj)−→U
sending Pj to 0. Given a rational number rj < 1, we then let

D[Pj , rj ] = {z ∈ D(Pj) such that |hj(z)| ≤ rj}
denote the “closed disc of radius rj in D(Pj)”. Finally, fixing a collection of rational numbers r1, . . . , rt
with 0 < rj < 1, we write

W = C(Cp) −D[P1, r1] − · · · −D[Pt, rt]

= A ∪ V1 ∪ · · · ∪ Vt,
where

Vj := V(Pj , rj , 1) := {z ∈ D(Pj) such that rj < |hj(z)| < 1}.
Define the positive orientation of the annulus Vj by choosing the subset {z ∈ D(Pj) such that |hj(z)| ≤ rj}
of its complement.

The set A is an example of an affinoid subset of C(Cp) with good reduction, while the set W is an
example of a wide open neighborhood of the affinoid A. The set Vj is called a wide open annulus around
the point Pj . The wide open space W is thus obtained by adjoining to A a finite union of open annuli
about the boundaries of the deleted residue discs. For general definitions and a more systematic discussion
of these concepts, see for example Sections II and III of [Col2].

Because W is contained in C0(Cp), the Gauss-Manin connection (1.1.3) gives rise to a rigid analytic
connection

∇ : Lrig
r,r−→Lrig

r,r ⊗ Ω1
W .

The de Rham cohomology H1
dR(W ,Lrig

r,r,∇) is defined to be the quotient

H1
dR(W ,Lrig

r,r,∇) :=
Lrig
r,r(W) ⊗ Ω1

W

∇Lrig
r,r(W)

.

A meromorphic Lr,r-valued differential on C which is regular on C−{P1, . . . , Pt} can be viewed as a rigid
section of Lr,r ⊗ Ω1

C over W . In this way one obtains by restriction a natural map from the algebraic de
Rham cohomology over Cp to the rigid de Rham cohomology.

Theorem 3.6. The natural restriction map

H1
dR(C − {P1, . . . , Pt},Lr,r,∇)−→H1

dR(W ,Lrig
r,r,∇)

is an isomorphism.

Proof. In the case r = 0, this is Theorem 4.2 of [Col2]. The proof in the general case follows from a similar
argument, as explained in the proof of Proposition 10.3 of [Col3]. �
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A set W ′ of the form

W ′ = C(Cp) −D[P1, r
′
1] − · · · −D[Pt, r

′
t], with rj < r′j < 1

is called a wide open neighborhood of the affinoid A in W . The following is an immediate corollary of
Theorem 3.6.

Corollary 3.7. Let W ′ be any wide open neighborhood of A in W. The natural map

resW,W′ : H1
dR(W ,Lrig

r,r,∇)−→H1
dR(W ′,Lrig

r,r,∇)

induced by restriction is an isomorphism.

We want to describe the image of H1
dR(C,Lr,r ,∇) in H1

dR(W ,Lrig
r,r,∇). For this, we recall the notion of

the p-adic annular residue

resVj (ω) ∈ (H0(Vj ,Lrig
r,r)

∇=0)∨

of a Lrig
r,r-valued one-differential form ω on W . It is defined by the formula

resVj (ω)(α) = resVj 〈α, ω〉, for all α ∈ H0(Vj ,Lrig
r,r)

∇=0,

where the residue on the right hand side is the usual p-adic annular residue of the rigid analytic one-form
〈α, ω〉 on the oriented annulus Vj , as it is defined in Section II of [Col2] for example.

By Proposition 3.1.2 of [Ka3], the sheaf Lr,r admits a basis of horizontal sections on each non-cuspidal
residue disc D(Pj), so that the target of the residue map on the corresponding annulus is identified with

(H0(Vj ,Lrig
r,r)

∇=0)∨ = (H0(D(Pj),Lr,r)∇=0)∨ = Lr,r(Pj)∨ = Lr,r(Pj),
where the last identification arises from the self-duality on Lr,r(Pj). We will always view the residue map
on a non-cuspidal residue disc as taking values on Lr,r(Pj), so that for all α ∈ Lr,r(Pj) one has

〈α, resVj (ω)〉 = resVj 〈α∇, ω〉,
where α∇ is the unique horizontal section on D(Pj) satisfying α∇(Pj) = α.

On the cuspidal residue disc of the cusp P attached to the pair (Tate(q), t), the space of horizontal
sections of Lr is one-dimensional and generated by the local section ξrcan. One therefore has

resVj






r∑

j=0

aj(q)ω
j
canξ

r−j
can


 dq

q


 (bξrcan) = resq=0

(
bar(q)

dq

q

)
= bar(0).

Note that if ω is any global section of Lr,r ⊗Ω1
C over C −{P1, . . . , Pt}, it can also be viewed as a rigid

section over W , and

(3.5.1) resVj ω = resPj ω.

If Pj is not a cusp, the residue resPj ω that appears on the right of this formula satisfies

〈G(Pj), resPj ω〉 = resPj 〈G,ω〉.
In this formula, G can be taken to be any regular (not necessarily horizontal) section of Lr,r over D(Pj),
and the residue on the right is the residue at Pj of the differential 〈G,ω〉 on D(Pj) − {Pj}.

The following rigid-analytic analogue of the classical residue theorem for meromorphic differentials on
curves (cf. for example [Col2]) will play an important role in the calculations of the next section.

Theorem 3.8. If ω ∈ Ω1
W is a rigid analytic one-form on W, then

t∑

j=1

resVj ω = 0.

Proposition 3.9. A class κ ∈ H1
dR(W ,Lrig

r,r,∇) represented by an Lrig
r,r-valued differential form ω belongs

to the natural image of H1
par(C,Lr,r,∇) under restriction if and only if

resVj (ω) = 0, for j = 1, . . . , t.
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Proof. The Gysin exact sequence applied to the cohomology of the pair of rigid spaces W ⊂ C0 shows
that

H1
dR(C,Lr,r ,∇) =

{
ω s.t. resVj (ω) = 0 for all non-cuspidal annuli Vj

}
.

On the other hand, the definition of H1
par(C,Lr,r ,∇) shows that this space is identified with the space of

classes in H1
dR(C,Lr,r,∇) represented by Lr,r-valued differentials ω satisfying

resVj (ω) = 0, for all cuspidal annuli Vj .
The result follows. �

Let κ1, κ2 be classes in H1
par(C,Lr,r ,∇) and let ω1, ω2 be rigid analytic sections of Lrig

r,r ⊗ Ω1
C over W

representing them. The fact that resVj (ω1) = 0 on all the annuli Vj ⊂ W allows us to find an analytic
solution Fω1,j on Vj to the equation

∇Fω1,j = ω1,

which is well-defined up to horizontal sections of Lrig
r,r over Vj . Such an Fω1,j is called a local primitive of

ω1 on Vj . Note that the expression resVj 〈Fω1,j , ω2〉 does not depend on the choice of the local primitive
Fω1,j , since ω2 is of the second kind.

The following proposition expresses the Poincaré duality on H1
par(C,Lr,r ,∇) in terms of the residues of

rigid Lr,r-valued forms on W .

Proposition 3.10. For all κ1, κ2 ∈ H1
par(C,Lr,r,∇),

〈κ1, κ2〉 =

t∑

j=1

resVj 〈Fω1,j , ω2〉,

where ω1, ω2 ∈ H1
dR(W ,Lrig

r,r,∇) are representatives for κ1 and κ2 and Fω1,j is any local primitive for ω1

on Vj .
Proof. This follows from Lemma 7.1 of [Col3] combined with equation (3.5.1) comparing the rigid analytic
and algebraic residue maps. �

Theorem 3.6 will now be used to give an explicit description of the action of the Frobenius operator on the
algebraic de Rham cohomology. Since the points P1, . . . , Pt are defined over F , the points P̃j := redp(Pj)

are defined over k and the curve Uk := Ck −{P̃1, . . . , P̃t} is a smooth affine open subset of Ck. As before,
let σ denote the Frobenius automorphism of k which sends x to xp, and let Uσk = Uk ×σ k. There is a
canonical morphism φ : Uk−→Uσk characterised by

φ∗fσ = fp, for all f ∈ OCk
(Uk).

Definition 3.11. A morphism

φA : A−→Aσ

which lifts the canonical Frobenius morphism Uk−→Uσk to characteristic 0 is called a lifting of Frobenius
for the affinoid A.

A Frobenius lifting always exists under our hypotheses (cf. Corollary 1.1a of [Col1]). Assume from now

on that the set {P̃1, . . . , P̃t} is stable under φ, so that Aσ = A.

Definition 3.12. A Frobenius neighbourhood of A in W is a pair (W ′, φ), where A ⊂ W ′ ⊂ W is a
wide open neighborhood of A in W and φ : W ′−→W is a morphism whose restriction to A is a lifting of
Frobenius in the sense of Definition 3.11.

Definition 3.13. An overconvergent Frobenius isocrystal on W is a triple (L, φ,Fr), where

(1) L is a rigid analytic coherent sheaf on W equipped with a rigid analytic integrable connection

∇ : L−→L⊗ Ω1
W ;

(2) (W ′, φ) is a Frobenius neighborhood of A in W ;
(3) Fr is a horizontal morphism

Fr : φ∗L−→L|W′ .
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The condition that Fr be horizontal amounts to requiring that the diagram

φ∗L ∇
//

Fr

��

φ∗L ⊗ Ω1
W′

Fr⊗id

��

L ∇
// L ⊗ Ω1

W′

be commutative.
Given a Frobenius neighborhood (W ′, φ) of A in W , the canonical functorial action of a lifting of Frobe-

nius on the relative de Rham cohomology H2r
dR(Xr/C) is compatible with the Gauss-Manin connection

and gives rise to a horizontal morphism Fr : φ∗Lrig
r,r−→Lrig

r,r|W′ . In this way, the triple (Lrig
r,r |W , φ,Fr) is

equipped with the structure of an overconvergent Frobenius isocrystal.
The action of the p-power Frobenius operator (denoted by the letter Φ0, to distinguish it from the

lifting φ of Frobenius on the curve C) on H1
dR(W ,Lrig

r,r,∇) is then given by the sequence of maps:

H1
dR(W ,Lrig

r,r,∇)
φ∗

−→ H1
dR(W ′, φ∗Lrig

r,r,∇)
Fr−→ H1

dR(W ′,Lrig
r,r,∇)

∼−→ H1
dR(W ,Lrig

r,r,∇),

where the last map is the inverse of the restriction resW,W′ which is an isomorphism by Corollary 3.7.
(Cf. the discussion preceding Th. 10.1 of [Col3], or the more detailed discussion in [CI].)

Notice that the operator Φ0 acting on the group H1
dR(W ,Lrig

r,r,∇) preserves the natural images of

H1
dR(C,Lr,r,∇) and of H1

par(C,Lr,r ,∇). (This follows from Proposition 3.9 for example.) The map Φ0

on H1
par(C,Lr,r ,∇) agrees with the Frobenius endomorphism on εXH

2r+1
dR (Xr/F ) via the identification

H1
par(C,Lr,r ,∇) = εXH

2r+1
dR (Xr/F ). It is σ-semilinear. In order to work with an F -linear endomorphism,

we set

Φ = Φn0 , where n = [F : Qp].

By abuse of notation, we will also denote by Φ the Frobenius endomorphism acting on the spaceH0
la(C,Lr)∇

of locally analytic horizontal sections of Lr over C, as it is described in the paragraph preceding Thm. 10.1
of [Col3].

A similar discussion applies of course when Lr,r is replaced by Lr, and the symbol Φ will also be used
to denote the F -linear Frobenius endomorphism acting on H1

par(C,Lr ,∇) and H0
la(C,Lr)∇.

3.6. The Coleman primitive.

Lemma 3.14. Let ω be a global (rigid) section of the sheaf ωr ⊗Ω1
C over C, and let [ω] ∈ H1

par(C,Lr ,∇)
be its associated cohomology class. There exists a polynomial P ∈ F [x] satisfying

(1) P (Φ)([ω]) = 0.
(2) The map P (Φ) is an isomorphism on H0

la(C,Lr)∇, and P (1) 6= 0.

Proof. This follows from the ideas explained in Section 11 of [Col3]. (Cf. in particular the argument
following Lemma 11.1 of loc.cit.) One can use the fact that the eigenvalues of Φ acting on H 1

dR(C,Lr ,∇)
and on any (finite-dimensional) Φ-stable subspace of H0

la(C,Lr)∇ differ, since they have complex absolute

values p
r+1
2 and p

r
2 respectively. �

Theorem 3.15 (Coleman). Let ω be a global section of the sheaf ωr ⊗ Ω1
C over C. Choose a polynomial

P satisfying the properties of Lemma 3.14, and let d be its degree. There exists a locally analytic section
Fω of Lr over C satisfying the following conditions:

(1) ∇Fω = ω;
(2) P (Φ)(Fω) is a rigid analytic section of Lr on some wide open neighborhood W ′ of A in W satisfying

φn(W ′) ⊂ W, for all n ≤ d.

The locally analytic section Fω is called the Coleman primitive of ω on C.

Proof. See Theorem 10.1 of [Col3]. Note that our setting, where p is assumed to not divide the level of
the modular curve C, differs from the semistable reduction case considered in [Col3]. In fact it is simpler,
and the assumptions that are required for Theorem 10.1 of loc.cit., such as the “regular singular annuli”
assumption on the cuspidal annuli, are satisfied a fortiori in the setting of Theorem 3.15. Note also that
Theorem 10.1 as stated produces a locally analytic primitive on each wide open W , but expressing C as



28 MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA

a finite union of wide opens and gluing the different primitives (which, by their uniqueness, agree on the
overlaps) leads to a locally analytic primitive on all of C. The uniqueness clause in the definition of the
Coleman primitive also implies that Fω is defined over the field F over which ω is defined. �

Remark 3.16. The definition of Fω depends a priori on several choices: the choice of an affinoid A in
C, a lifting of Frobenius to A, a Frobenius neighborhood W ′ of A in W and the polynomial P . It can be
shown that the Coleman primitive does not depend on these choices, and therefore the Coleman primitives
on a covering of C by affinoid regions can be pieced together to give a locally analytic section of Lr over
C which is well-defined up to global rigid analytic horizontal sections of Lr over C. This latter space is
trivial when r > 0 and is the space of constant functions on C when r = 0. (Cf. Proposition 5.1 of [Col3].)

Remark 3.17. It can be shown that the Coleman primitive Fω is in fact analytic on each residue disc
D(P ) associated to any point P of C(Qunram

p ).

3.7. p-adic integration and the p-adic Abel-Jacobi map. The following is one of the main results
of this chapter.

Proposition 3.18. Let ∆ϕ be a generalised Heegner cycle attached to an isogeny of ordinary pairs ϕ :
(A, t)−→(A′, t′), and let PA′ be the point of C attached to (A′, t′). Then

AJF (∆ϕ)(ωf ∧ α) = 〈Ff (PA′) ∧ α, clPA′ (∆ϕ)〉,

where the pairing on the right is the natural one on Lr,r(PA′), and Ff is the Coleman primitive of ωf ∈
H0(C, ωr ⊗ Ω1

C).

Proof. In order to ease notations, we drop the index ϕ in this proof, by setting ∆ = ∆ϕ, and write P = P ′
A

and U = C − {P}. By definition of the p-adic Abel-Jacobi map, we have

AJF (∆)(ωf ∧ α) = 〈ωf ∧ α, η∆〉,

where the class η∆ represents the extension D∆ of (3.4.4) following the recipe given in Section 3.3. We
may write

η∆ = ηhol
∆ − ηfrob

∆ ,

where

(1) The cohomology class ηhol
∆ is represented by a section of Lr,r ⊗Ω1

C(logZN ) over U having residue
0 at the cusps and a simple pole at P with residue equal to clP (∆). By abuse of notation, we will
use the same symbol ηhol

∆ to denote the associated Lr,r-valued differential on C. If P1, . . . , Pt were
chosen in such a way that P1 = P , and Gj is any rigid analytic section of Lrig

r,r over D(Pj), then
by (3.5.1), for all non-cuspidal annuli Vj ,

(3.7.1) resV1〈G1, η
hol
∆ 〉 = 〈G1(P ), clP (∆)〉, resVj 〈Gj , ηhol

∆ 〉 = 0 for j ≥ 2.

If Vj is a cuspidal annulus, then we at least have

(3.7.2) resVj 〈Ff,j ∧ α, ηhol
∆ 〉 = 0,

where Ff,j is a local primitive of ωf on Vj . To see this, use the fact that ηhol
∆ has residue 0 along

Vj to write ηhol
∆ = ∇H∆ for some section of Lrig

r,r over Vj , and observe that

0 = resVj d〈Ff,j ∧ α,H∆〉 = resVj (〈ωf , H∆〉 + 〈Ff,j ∧ α, ηhol
∆ 〉) = resVj 〈Ff,j ∧ α, ηhol

∆ 〉.

(2) The differential ηfrob
∆ is a section of Lrig

r,r ⊗ Ω1
C over W , chosen so that it satisfies

(3.7.3) Φηfrob
∆ = ηfrob

∆ + ∇G,

for some rigid section G of Lrig
r,r over W ′, and of course

(3.7.4) resV1〈G1, η
Frob
∆ 〉 = 〈G1(P ), clP (∆)〉.
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By Proposition 3.10, the Poincaré pairing between H1
dR(C,Lr,r(r),∇) and H1

dR(C,Lr,r(r+1),∇) is given
by the formula

〈ωf ∧ α, η∆〉 =

t∑

j=1

resVj 〈Ff,j ∧ α, η∆〉(3.7.5)

=




t∑

j=1

resVj 〈Ff,j ∧ α, ηhol
∆ 〉


−




t∑

j=1

resVj 〈Ff,j ∧ α, ηfrob
∆ 〉


 ,(3.7.6)

where the sum is taken over the t annuli Vj in W − A, and Ff,j is an analytic primitive of ωf on the
residue discD(Pj). Note that if ω∇ is any horizontal section of Lr,r on D(Pj), the residue of the differential
〈ω∇, η∆〉 on the annulus Vj is zero, and therefore the expression on the right of (3.7.5) is independent of
the choice of local primitives on each residue disc. The same is not true for either of the sums that appear
on the right of (3.7.6), since the differentials ηhol

∆ and ηFrob
∆ each have non-zero residue along the annulus

V1.
In order to compute each of the terms appearing in (3.7.6) individually, we need to make a “coherent”

choice of local primitives. This is done by fixing a Coleman primitive Ff of ωf . Once this choice is made,
the two terms appearing in (3.7.6) are controlled in the following two lemmas.

Lemma 3.19. If Ff,j is any choice of local primitives of ωf on each residue disc D(Pj), then

t∑

j=1

resVj 〈Ff,j ∧ α, ηhol
∆ 〉 = 〈Ff,1(PA′ ) ∧ α, clPA′ (∆)〉.

Proof. Since the local primitive Ff,j ∧α is analytic on the residue disc D(Pj), and since η̃hol
∆ has 0 residue

on Vj when j ≥ 2, it follows from (3.7.1) and (3.7.2) that

t∑

j=1

resVj 〈Ff,j ∧ α, ηhol
∆ 〉 = resV1〈Ff,1 ∧ α, ηhol

∆ 〉 = 〈Ff (PA′) ∧ α, clPA′ (∆)〉.

The lemma follows. �

Lemma 3.20. Let Ff be the Coleman primitive of ωf on C. Then

(3.7.7)

t∑

j=1

resVj 〈Ff ∧ α, ηfrob
∆ 〉 = 0.

Proof. We begin by noting that for each j = 1, . . . , t,

resVj 〈Ff ∧ α, ηFrob
∆ 〉 = resVj 〈ΦFf ∧ α,ΦηFrob

∆ 〉
= resVj 〈ΦFf ∧ α, ηFrob

∆ 〉 + resVj 〈ΦFf ∧ α,∇G〉,(3.7.8)

where G is the rigid analytic section of Lr,r over W ′ given by (3.7.3). The fact that Φ is horizontal for
the Gauss-Manin connection (combined with the Leibniz rule) shows that

d〈ΦFf ∧ α,G〉 = 〈ΦFf ∧ α,∇G〉 + 〈Φωf ∧ α,G〉.
In particular, the expression appearing on the right is exact on each annulus Vj , and therefore

t∑

j=1

resVj 〈ΦFf ∧ α,∇G〉 = −
t∑

j=1

resVj 〈Φωf ∧ α,G〉

= 0,

where the last vanishing follows from the rigid analytic residue theorem (Theorem 3.8), in light of the fact
that 〈Φωf ∧ α,G〉 belongs to Ω1

W′ . Hence by summing equation (3.7.8) over j = 1, . . . , t, we get

t∑

j=1

resVj 〈Ff ∧ α, ηFrob
∆ 〉 =

t∑

j=1

resVj 〈ΦFf ∧ α, ηFrob
∆ 〉.
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More generally, if L is any polynomial in F [x], we get

L(1)
t∑

j=1

resVj 〈Ff ∧ α, ηFrob
∆ 〉 =

t∑

j=1

resVj 〈L(Φ)Ff ∧ α, ηFrob
∆ 〉.

Now, choosing the polynomial L(x) = P (x) as in Lemma 3.14 preceding the definition of the Coleman
primitive, we get

L(1)

t∑

j=1

resVj 〈Ff ∧ α, ηFrob
∆ 〉 =

t∑

j=1

resVj 〈L(Φ)Ff ∧ α, ηFrob
∆ 〉 = 0,

where the vanishing follows by noting that L(Φ)Ff ∧ α is a rigid analytic section of Lr,r over W ′ and
applying Theorem 3.8 once again. Lemma 3.20 now follows from the fact that L(1) 6= 0. �

The proof of Proposition 3.18 now follows from (3.7.6) combined with Lemmas 3.19 and 3.20, which
show that

AJF (∆ϕ)(ωf ∧ α) = 〈ωf ∧ α, η∆〉 = 〈Ff (PA′) ∧ α, clPA′ (∆)〉
when Ff is a Coleman primitive for ωf . �

Proposition 3.21. With the same notations as in Proposition 3.18,

AJF (∆ϕ)(ωf ∧ α) = 〈ϕ∗Ff (PA′), α〉A,
where the pairing 〈 , 〉A on the right is the natural one on SymrH1

dR(A/F ).

Proof. Let
% := (ϕr , idr) : Ar−→Υϕ ⊂ (A′)r ×Ar.

Note that
%∗(Ff (PA′ ) ∧ α) = ϕ∗(Ff (PA′)) ∧ α, %([Ar]) = clPA′ (Υϕ),

where [Ar] ∈ H0
dR(Ar/F ) is the fundamental class associated to the variety Ar. Let

〈 , 〉A,j : H2r−j
dR (Ar/F ) ×Hj

dR(Ar/F )−→H2r(Ar/F ) = F

denote the Poincaré pairing, so that the restriction of 〈 , 〉A,r to SymrH1
dR(A/F ) ⊂ Hr

dR(A/F ) agrees
with 〈 , 〉A. Observe that

(3.7.9) 〈Ff (PA′) ∧ α, clPA′ (∆ϕ)〉 = 〈Ff (PA′) ∧ α, clPA′ (Υϕ)〉 = 〈Ff (PA′) ∧ α, %([Ar ])〉.
The functoriality properties of the Poincaré pairing imply that

〈Ff (PA′) ∧ α, %([Ar ])〉 = 〈%∗(Ff (PA′) ∧ α), [Ar]〉A,0
= 〈ϕ∗(Ff (PA′)) ∧ α, [Ar ]〉A,0 = 〈ϕ∗(Ff (PA′)), α〉A.(3.7.10)

Proposition 3.21 follows by combining Proposition 3.18 with (3.7.9) and (3.7.10). �

Let {P̄1, . . . , P̄t} be the set of supersingular points of Ck, and let Pj ∈ C(F ) be an arbitrary lift of
P̄j under the reduction map. The residue discs D(Pj) are called the supersingular discs of C and the
complement A := Cord is called the ordinary locus of C. A locally analytic p-adic modular form of weight
k is a locally analytic section of ωk over Cord. Following equation (1.1.1), a modular form G of this type
can also be viewed as a function on ordinary triples of generalised elliptic curves (E, t, ω)/R, where R is a
p-adic ring of finite type over Zp, satisfying

G(E, t, λω) = λ−kG(E, t, ω), for all λ ∈ R×.

Following Chapter VII of [DR], in particular Corollaire 2.2, the formal completion along a cusp of
a suitable cuspidal p-adic neighborhood D ' Spec(R) in Cord can be identified with Spf(Z[[q1/d]]),
for Z finite unramified over Zp and d | N , in such a way that the universal object over D pulls
back to Tate(q), equipped with a suitable level structure. By an abuse of notation, we will denote by
G(Tate(q), t, ωcan) the q-expansion obtained by evaluating G at a generalised marked elliptic curve corre-
sponding to (Tate(q), t, ωcan) via the above identifications.

For 0 ≤ j ≤ r, let Gj denote the “j-th component” of the Coleman primitive Ff , defined (as a function
on ordinary triples) by the rule

Gj(E, t, ω) := 〈F (E, t), ωjηr−j〉,
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where η is the generator of the unit root subspace of H1
dR(E/R), normalised so that 〈ω, η〉 = 1. The rule

Gj thus defined satisfies

Gj(E, t, λω) = λ2j−rGj(E, t, ω), for all λ ∈ R×,

and therefore defines a locally analytic p-adic modular form of weight r − 2j.
The next lemma expresses the Abel-Jacobi images of the cycles ∆ϕ in terms of the modular forms Gj .

Lemma 3.22. Let
ϕ : (A, t, ω)−→(A′, t′, ω′)

be an isogeny of ordinary marked elliptic curves of degree dϕ = deg(ϕ), and let ∆ϕ be the associated
generalised Heegner cycle on Xr. Then

AJF (∆ϕ)(ωf ∧ ωjηr−j) = djϕGj(A
′, t′, ω′).

Proof. By Proposition 3.21,

(3.7.11) AJF (∆ϕ)(ωf ∧ ωjηr−j) = 〈ϕ∗Ff (A
′, t′), ωjηr−j〉A.

Since 〈ϕ∗ω′, ϕ∗η′〉 = dϕ, we have

(3.7.12) ϕ∗(η′) = dϕη.

Hence

〈ϕ∗Ff (A
′, t′), ωjηr−j〉A = dj−rϕ 〈ϕ∗Ff (A

′, t′), ϕ∗((ω′)j(η′)r−j)〉A
= djϕ〈Ff (A′, t′), (ω′)j(η′)r−j〉A′

= djϕGj(A
′, t′, ω′).

�

3.8. Calculation of the Coleman primitive. We now turn to the explicit calculation of the Coleman
primitive Ff of the regular Lrig

r -valued differential ωf , or rather, of its components Gj . In order to do this,
we begin by introducing an operator V U − UV on locally analytic p-adic modular forms which plays the
role of the operator P (Φ) in Theorem 3.15 defining the Coleman primitive, in the sense that it maps the
locally analytic forms Gj to genuine p-adic modular forms in the sense of Section 1.3. As a consequence
of the use of this operator, it will be possible to resort to q-expansions in our calculation of Coleman
primitive (cf. the proof of Proposition 3.24).

We recall the definition of the operators U and V (as they are described in [Se] for example). Given an
ordinary triple (E, t, ω), let

ϕ
(p)
j : (E, t, ω)−→(Ej , tj , ωj), j = 0, 1, . . . , p

denote the distinct p-isogenies on E, ordered in such a way that ϕ
(p)
0 is the distinguished p-isogeny whose

kernel is the canonical subgroup of E. For instance, when (E, t, ω) = (Tate(q), ζN , ωcan), the canonical
subgroup is µp and we can take

(3.8.1) (E0, t0, ω0) =

(
Tate(qp), ζpN ,

1

p
ωcan

)
, (Ej , tj , ωj) = (Tate(q1/pζjp), ζN , ωcan).

The Hecke operators U and V are defined by setting

(G|U)(E, t, ω) := G(U(E, t, ω)), (G|V )(E, t, ω) := G(V (E, t, ω)),

where

U(E, t, ω) :=
1

p

p∑

j=1

(Ej , tj , ωj), V (E, t, ω) := (E0,
1

p
t0, pω0).

These operators are related to the usual Hecke operator Tp by the rule

Tp = U +
1

p
[p]V,

where [p] denotes the isogeny given by multiplication by p. In particular,

(3.8.2) V U − UV = 1 − TpV +
1

p
[p]V 2.
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The diamond operator 〈a〉 attached to a ∈ (Z/NZ)× is defined on locally analytic p-adic modular forms
by the rule

G|〈a〉(E, t, ω) = G(E, a−1t, ω).

Given a locally analytic p-adic modular form G, we set

G[ := G|(V U − UV ).

In terms of the q-expansion

G (Tate(q), ζN , ωcan) =
∞∑

n=1

bnq
n

of G, the operators U and V satisfy

(3.8.3) (G|U) (Tate(q), ζN , ωcan) =

∞∑

n=1

bnpq
n, (G|V ) (Tate(q), ζN , ωcan) =

∞∑

n=1

bnq
np,

so that the q-expansion of G[ is given by

(3.8.4) G[(Tate(q), ζN , ωcan) =
∑

(p,n)=1

bnq
n.

Lemma 3.23. Let K be a quadratic imaginary field in which the prime (p) = pp̄ splits, and let (A′, t′) be
a point in Cord corresponding to an elliptic curve A′ with complex multiplication by (an order in) K. Let
G be a locally analytic p-adic modular form of weight k satisfying

TpG = bpG, 〈p〉G = εG(p)G.

Then

G[(A′, t′, ω′) = G(A′, t′, ω′) − εG(p)bp
pk

G(p ∗ (A′, t′, ω′)) +
εG(p)

pk+1
G(p2 ∗ (A′, t′, ω′)),

where the action of ideals on CM triples is the one given in (1.4.8).

Proof. Because A′ has complex multiplication, its canonical subgroup is identified with the kernel A′[p] of
multiplication by p, and therefore,

V (A′, t′, ω′) = p ∗ (A′, p−1t′, pω′), [p]V 2(A′, t′, ω′) = p2 ∗ (A′, p−1t′, pω′).

Therefore,

G[(A′, t′, ω′) = G((1 − TpV +
1

p
[p]V 2)(A′, t′, ω′))

= G(A′, t′, ω′) − bpG(p ∗ (A′, p−1t′, pω′)) +
1

p
G(p2 ∗ (A′, p−1t′, pω′))

= G(A′, t′, ω′) − εG(p)bp
pk

G(p ∗ (A′, t′, ω′)) +
εG(p)

pk+1
G(p2 ∗ (A′, t′, ω′)).

The result follows. �

Proposition (3.24) below gives an explicit formula for G[j in terms of the Atkin-Serre operator θ defined
in equation (1.3.2) acting on the modular form f . Note that, for any j ≥ 0, the expression

θ−1−jf [ := lim
t→−1−j

θtf [

is a p-adic modular form of weight r − 2j. (Cf. Théorème 5 (b) of [Se].)

Proposition 3.24. For all (E, t) ∈ Cord,

(3.8.5) G[j(E, t, ω) = j!θ−1−jf [(E, t, ω).

(In particular the Coleman primitive F [f of ωf[ is a rigid analytic section of Lrig
r over Cord.)
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Proof. For 0 ≤ j ≤ r, set F [ := F [f = Ff |(V U − UV ). Then

G[j(E, t, ω) = 〈F [(E, t), ωjηr−j〉.
Equation (3.8.5) amounts to the statement that

(3.8.6) θG[0 = f [, θG[j = jG[j−1, for 1 ≤ j ≤ r.

We verify that this holds on q-expansions, working with the basis (ωcan, ξcan) for the de Rham cohomology
of the Tate curve which is described in equation (1.1.6) of Section 1.1. To check (3.8.6), note that

∇G[0(Tate(q), ζN ) = ∇
(
G[0(Tate(q), ζN , ωcan)ω

r
can

)

= ∇
(
〈F [(Tate(q), ζN ), ξrcan〉ωrcan

)

= 〈ωf[(Tate(q), ζN ), ξrcan〉ωrcan + r〈F [(Tate(q), ζN ), ξrcan〉ωr−1
can ξcan

dq

q

= f [(Tate(q), ζN , ωcan)ω
r
can

dq

q
+ r〈F [(Tate(q), ζN ), ξrcan〉ωr−1

can ξcan
dq

q
,

where the last equality follows from (1.1.10).
After applying the inverse of the Kodaira-Spencer isomorphism and using (1.1.10) again, we find

∇̃G[0(Tate(q), ζN ) = f [(Tate(q), ζN , ωcan)ω
r+2
can + r〈F [(Tate(q), ζN ), ξrcan〉ωr+1

can ξcan.

Applying the unit root splitting ΨFrob to this identity then gives

ΘFrobG
[
0(Tate(q), ζN ) = f [(Tate(q), ζN ).

This proves (3.8.6) for j = 0, in light of Lemma 1.7. For the case j ≥ 1, we note that, because
〈ωf[ , ωjcanξ

r−j
can 〉 = 0,

∇G[j(Tate(q), ζN ) = ∇
(
G[j(Tate(q), ζN , ωcan)ωr−2j

can

)

= ∇(〈F [(Tate(q), ζN ), ωjcanξ
r−j
can 〉ωr−2j

can )

= j〈F [(Tate(q), ζN )), ωj−1
can ξ

r−j+1
can 〉ωr−2j

can

dq

q

+(r − 2j)〈F [(Tate(q), ζN )), ωjcanξ
r−j
can 〉ωr−2j−1

can ξcan
dq

q

= jG[j−1(Tate(q), ζN , ωcan)ω
r−2j
can

dq

q

+(r − 2j)G[j(Tate(q), ζN , ωcan)ω
r−2j−1
can ξcan

dq

q
.

Applying σ−1 followed by the unit root splitting to this identity gives

ΨFrob∇̃G[j(Tate(q), ζN ) = jG[j−1(Tate(q), ζN , ωcan)ω
r+2−2j
can .

Therefore,

ΘFrobG
[
j(Tate(q), ζN , ωcan) = jG[j−1(Tate(q), ζN , ωcan),

and (3.8.6) follows from Lemma 1.7 for all 1 ≤ j ≤ r. This completes the proof of Proposition 3.24. (See
also Lemma 9.2 of [Col3], where a similar result is proved.) �

4. Period integrals and central values of Rankin-Selberg L-functions

4.1. Rankin L-series and their special values. Let f =
∑
ane

2πinz ∈ Sk(Γ0(N), εf ) be a normalised
newform. Write

L(f, s) =
∑

n≥1

ann
−s =

∏

q

(1 − αqq
−s)−1(1 − βqq

−s)−1

for its Hecke L-series, where the product on the right, taken over all the rational primes, should be taken
as the definition of the parameters {αq, βq}. In particular, αqβq = qk−1εf (q) if q does not divide N , and
αqβq = 0 otherwise. Let Nεf

denote the conductor of εf .
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In this section, it will also be convenient to view f as a function on pairs (L, t), where L is a lattice in
C and t is an element of exact order N in C/L. The lattice function f is determined by the rules

f(〈1, τ〉, 1/N) = f(τ), for all τ ∈ H,(4.1.1)

f(λL, λt) = λ−kf(L, t), for all λ ∈ C×,(4.1.2)

f(L, at) = εf (a)f(L, t), for all a ∈ (Z/NZ)×.(4.1.3)

Let wf ∈ C× be the scalar of norm one defined by the rule

(4.1.4) wN (f) = wffρ,

where fρ ∈ Sk(Γ0(N), ε̄f ) is the modular form obtained by applying complex conjugation to the coefficients
of f and wN is the Atkin-Lehner involution (which is described precisely in Lemma 5.2 and the discussion
preceding it). We note that the Hecke L-series L(f, s) satisfies the functional equation

Λ(f, s) = wfΛ(fρ, k − s),

where Λ(f, s) = (2π)−sΓ(s)Ns/2L(f, s).
Let K be an imaginary quadratic field with discriminant −dK , equipped with a fixed complex embed-

ding. Recall that for any pair of integers (`1, `2), a Hecke character of K of infinity type (`1, `2) is a
continuous homomorphism

χ : A×
K−→C×

satisfying

χ(α · x · z∞) = χ(x) · z−`1∞ z̄−`2∞ , for all α ∈ K×, z∞ ∈ K×
∞.

For each prime q of K, let χq : K×
q −→C× denote the local character associated to χ. The conductor of χ

is the largest integral ideal fχ of K such that χq(u) = 1 for all u ∈ (1 + fχOK,q)
× ↪→ K×

q . In the usual
way, we can identify χ with a character on OK-ideals prime to fχ by defining

(4.1.5) χ(a) =
∏

q|a

χq(πq)
vq(a),

where πq is any uniformizer at q, this assignment being independent of the choice of πq. As a function on
ideals, χ satisfies χ((α)) = α`1 ᾱ`2 for all principal ideals (α) with α ≡ 1 mod fχ.

The focus of this section is on the special values of the Rankin-Selberg L-function L(f × θχ, s) where
θχ denotes the theta function associated to χ. For simplicity we will denote this L-function by L(f, χ, s).
If we set αpj := αjp and βpj := βjp, then it can be defined as an Euler product of terms Lp(f, χ, s) where
for good p, i.e. for p - fχN ,

Lp(f, χ, s) = (1 − χ(p)αNp(Np)−s)−1(1 − χ(p)βNp(Np)−s)−1.

The local factors at ramified places are described in [Jac] §15. Indeed, up to a shift L(f, χ, s) is identified
with the Rankin-Selberg L-function L(πf×πχ, s), where πf and πχ are the automorphic representations of
GL2(AQ) associated to f and θχ respectively. More precisely, after normalizing πf and πχ to be unitary,
we have

L(f, χ, s) = L

(
πf × πχ, s−

k − 1 + `1 + `2
2

)
.

Set ` := |`1 − `2| and `0 := min(`1, `2). Define

L∞(f, χ, s) = ΓC(s− `0)ΓC(s− min(k − 1, `)− `0),

where ΓC(s) = 2 · (2π)−sΓ(s), and set

Λ(f, χ, s) := L∞(f, χ, s) · L(f, χ, s).

The function Λ(f, χ, s) (defined a priori in some right half plane) extends to a meromorphic function
on C and satisfies a functional equation of the form

Λ(f, χ, s) = ε(f, χ, s)Λ(fρ, χ̄, k + `1 + `2 − s),

where fρ is as in (4.1.4) and ε(f, χ, s) is an epsilon factor again described in [Jac] §15. In the case of
interest to us below, πf × πχ will be self-dual and the value of ε(f, χ, s) at the center of the critical strip,
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denoted ε(f, χ), is equal to ±1. If εK is the quadratic character associated to K and εχ is the Dirichlet
character attached to χ by

εχ := χ|A×
Q
·N−(`1+`2),

then the function Λ(f, χ, s) is known to be holomorphic when εfεχεK is non-trivial. (For more details on
the above, see [Jac], § 19.)

An integer n is said to be critical (in the sense of Deligne) for L(f, χ, s) if none of the Gamma factors
that occur on either side of the functional equation for L(f, χ, s) have a pole at s = n. The corresponding
values of L(f, χ, s) will be called critical values. Deligne has made precise conjectures (proved by Shimura
[Shim2]) that predict the rationality of these critical L-values over specific number fields, after dividing
them by appropriate (ostensibly transcendental) periods. It turns out that the nature of the period depends
qualitatively on the infinity type of χ. Indeed, assuming for the moment that χ is of type (0, `) with ` ≥ 0,
the form of the gamma factor L∞(f, χ, s) shows that the following two cases arise naturally:

Case 1: ` ≤ k − 2. In this case the critical integers j for L(f, χ, s) are those in the closed segment
[`+ 1, k − 1]. The transcendental part of L(f, χ, j) depends only on f and not on χ, and is expressible in
terms of the Petersson inner product 〈f, f〉.
Case 2: ` ≥ k. In this case the critical integers j for L(f, χ, s) are those in the closed segment [k, `]. The
transcendental part of L(f, χ, j) depends only on K and not on f , and is expressible as a power of a CM
period attached to K. (This period will be defined precisely in Section 5.1.)

We now return to considering characters χ of more general infinity type (`1, `2). It will be convenient
in what follows to work with the L-function L(f, χ−1, s). Note that the critical values of L(f, χ−1, s) (as
χ and s both vary) are completely captured by the critical values of L(f, χ−1, 0) (as only χ is made to
vary). This motivates the following definition.

Definition 4.1. A Hecke character χ of infinity type (`1, `2) is said to be critical if s = 0 is a critical
point for L(f, χ−1, s).

Let us define χ0 by χ0 := χ−1 · N`1 so that the infinity type of χ0 is (0, `1 − `2). Then

L(f, χ−1, s) = L(f, χ0N
−`1 , s) = L(f, χ0, s+ `1).

By the previous discussion applied to χ0 (and to χρ0: see remark below), the character χ of weight (`1, `2)
is then critical if one of the following hypotheses is satisfied:

Case 1: 1 ≤ `1, `2 ≤ k − 1. This implies that ` ≤ k − 2.

Case 2: `1 ≥ k and `2 ≤ 0, and Case 2′: `1 ≤ 0 and `2 ≥ k. In both these cases, ` ≥ k.

Let Σ(1), Σ(2) and Σ(2′) denote the set of Hecke characters satisfying the conditions in Case 1, Case 2
and Case 2′ respectively, so that the set Σ of all critical characters is the disjoint union

Σ = Σ(1) t Σ(2) t Σ(2′).

Remark 4.2. The weights of characters in Σ(1) are the integer lattice points in the lightly shaded square in
Figure 1, and those attached to characters in Σ(2) are the lattice points in the darker lower right quadrant
of this figure. The region Σ(2′) is the reflection of Σ(2) around the principal diagonal, and the map χ 7→ χρ

(where χρ is the composition of χ with complex conjugation on A×
K) interchanges these two regions.

A character χ ∈ Σ is said to be central critical if

`1 + `2 = k, εχ = εf .

The terminology is justified by the fact that in this case πf ×πχ−1 is self-dual and 0 is the central (critical)
point for L(f, χ−1, s). Let Σcc denote the set of central critical characters, and write (for i = 1, 2, 2′)

Σ(i)
cc := Σcc ∩ Σ(i).

The weights of central critical characters are the lattice points on the central critical line which is depicted
in Figure 1.
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1

1

k−1

k−1

   
Central
critical line

k
l1

l2

Figure 1. Critical and central critical weights for χ 7→ L(f, χ−1, 0)

Remark 4.3. This article is concerned with the p-adic L-function obtained by interpolating the L-values
L(f, χ−1, 0) for χ in Σ(2) or Σ(2′). Since this L-value is unchanged if χ is replaced by χρ, we may assume
that `1 ≥ 0 and work simply with the region Σ(2). The main result of this paper (Theorem 5.13) relates the

special values of this p-adic L-function at characters χ in Σ
(1)
cc (which is outside the range of interpolation)

to the p-adic Abel-Jacobi images of generalised Heegner cycles. It would also be very interesting to study

the values of this p-adic L-function at χ in Σ
(2′)
cc . We do not address this issue here. However, one could

speculate that a study of the triple product L-function analogous to the one for the Rankin-Selberg L-
function in this article may shed light on this issue. This intuition is suggested by the way in which the
results of the present article are used in [BDP-ch] to yield information about the Katz p-adic L-function
at critical characters that are outside the range of p-adic interpolation.

We assume henceforth that K satisfies the Heegner hypothesis for f i.e., that all the primes q | N are
either split or ramified in K, and further that if q2 | N , then q is split in K. This implies that there exists a
cyclic OK-ideal N of norm N . We fix once and for all such a choice of N. We also fix an integer c prime to
NdK , and set (as in Sec. 1.4) Nc := N∩Oc. Thus Nc is a proper Oc-ideal and Oc/Nc ' OK/N ' Z/NZ.

Let Uc = Ô×
c denote the corresponding compact open subgroup of A×

K,f , so that Uc =
∏
q Uc,q with

Uc,q := (Oc ⊗ Zq)
×. For ε any character of conductor Nε|N , we define Nε to be the unique ideal in OK

that divides N and has norm equal to Nε. Let ψε be the composite homomorphism

(4.1.6) Uc = Ô×
c ↪→ Ô×

K →
∏

q|Nε

(OK,q/NεOK,q)
× '

∏

q|Nε

(Zq/NεZq)
×

Q

εq−−−→ C×.
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Equivalently, if we set Nc,ε := Nε ∩ Oc, then ψε is the composite

Uc = Ô×
c → (Ôc/Nc,εÔc)

× ' (OK/NεOK)× ' (Z/NεZ)×
ε−1

−−→ C×.

The following definition will be key in what follows.

Definition 4.4. A Hecke character χ of K is said to be of finite type (c,N, ε) if c divides fχ and

χ|Uc = ψε.

Note that a character χ of finite type (c,N, ε) is necessarily unramified outside cNε. Further, we may
think of χ as a character on proper Oc-ideals prime to Nc,ε. Indeed, any such ideal a is locally principal,

i.e. a = xOc for some x = (xq) ∈ A×
K,fin, and we set

(4.1.7) χ(a) :=
∏

q-Nε

χq(xq).

This is independent of the choice of x since χ|O×
c,q

= ψε|O×
c,q

= 1 for q - N , and χ is unramified at the

primes of K dividing N but not dividing Nε. Viewed in this manner, χ satisfies

(4.1.8) χ((α)) = α`1 ᾱ`2ε(α mod Nε)

for any α ∈ K× that is a unit at all the primes dividing Nε.

Let Σcc(N) denote the set of those characters in Σ
(1)
cc t Σ

(2)
cc that are of finite type (c,N, εf ) and that

satisfy the following auxiliary condition: the local sign εq(f, χ
−1) = +1 for all finite primes q. In view of

our other hypotheses, this condition is automatic except possibly at those primes q lying in the set

S(f) := {q : q | (N, dK), q - Nεf
}.

For i = 1, 2, we define Σ
(i)
cc (N) by

Σ(i)
cc (N) := Σ(i)

cc ∩ Σcc(N),

so that Σcc(N) is the disjoint union:

Σcc(N) = Σ(1)
cc (N) t Σ(2)

cc (N).

For χ ∈ Σcc(N), writing (k + j,−j) for the weight of χ, we see that χ ∈ Σ
(2)
cc (N) or Σ

(1)
cc (N) according

as j ≥ 0 or j ∈ [−(k − 1),−1]. Let χ ∈ Σ
(2)
cc (N) be a Hecke character of infinity type (k + j,−j). Recall

the Shimura-Maass operator δk of equation (1.2.9) and let

δjk = δk+2j−2 · · · δk+2δk

be the differential operator sending holomorphic modular forms of weight k to nearly holomorphic modular
forms of weight k + 2j. The modular form δjkf can also be viewed as a function on pairs (L, t) consisting
of a lattice L in C and an element t of order N in C/L, satisfying the homogeneity properties of (4.1.3)
with k replaced by k + 2j.

In what follows, we will also fix a generator t of N−1
c /Oc ' Z/NZ. Let a be a proper Oc-ideal prime

to Nc and choose α ∈ K× such that b := αa ⊂ Oc and α ≡ 1 mod N. Then the image of t under the
composite map

N−1
c /Oc → N−1

c b−1/b−1 ·α−→ N−1
c a−1/a−1

is independent of the choice of α, and will be denoted ta. Thus the choice of t gives rise to a generator ta
of N−1

c a−1/a−1 for every proper Oc-ideal a prime to Nc.

Lemma 4.5. Let a be any proper Oc-ideal prime to Nc and suppose χ is a Hecke character in Σ
(2)
cc (N) of

infinity type (k + j,−j). With t fixed, the expression

(4.1.9) χ−1(a)Na−j · δjkf(a−1, ta)

depends only on the class of a in Pic(Oc).

Proof. Note that since a is prime to Nc, it is certainly prime to Nc,ε as well and so the expression χ−1(a)

is well defined. The lemma then follows immediately from the equations (4.1.2) (with f replaced by δjk(f)
and k by k + 2j), (4.1.3) and (4.1.8). �



38 MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA

Theorem 4.6. Let f be a normalised eigenform in Sk(Γ0(N), εf ) and let χ ∈ Σ
(2)
cc (N) be a Hecke character

of K of infinity type (k + j,−j). Suppose also that c and dK are odd, and let wK denote the number of
roots of unity in K. Then

C(f, χ, c) · L(f, χ−1, 0) =

∣∣∣∣∣∣

∑

[a]∈Pic(Oc)

χ−1(a)Na−j · (δjkf)(a−1, ta)

∣∣∣∣∣∣

2

,

where the representatives a of the ideal classes in Pic(Oc) are chosen to be prime to Nc and the constant
C(f, χ, c) is given by

C(f, χ, c) =
1

4
πk+2j−1Γ(j + 1)Γ(k + j)wK |dK |1/2 · c vol(Oc)

−` · 2#Sf ·
∏

q|c

(q − εK(q))

q − 1
.

Remark 4.7. The restriction that c and dK are odd is made for convenience to simplify the local calcu-
lations in Section 4.6 at primes dividing cdK .

The rest of this chapter will be devoted to proving Theorem 4.6 using Waldspurger’s results relating
period integrals to L-values. The reader whose main interest is in p-adic methods can take this result on
faith and continue reading from Sec. 5.1 onwards.

4.2. Differential operators. We recall some general facts about the Shimura-Maass operators that were
introduced in Sec. 1.2 and appear in the statement of the theorem above. Let Γ be a congruence subgroup
of SL2(Z) and denote by C∞

k (Γ) the space of C∞-modular forms of weight k on Γ. We also denote by

C̃∞
k (Γ) the space of C∞-functions on H such that

f(γz) = (c′z + d′)k|c′z + d′|−kf(z)

for all γ =

(
a′ b′

c′ d′

)
∈ Γ. (For the moment we will use the symbol f for an arbitrary modular form in

C∞
k (Γ) or C̃∞

k (Γ).) Recall that the weight k Shimura-Maass raising operator δk : C∞
k (Γ) → C∞

k+2(Γ) is
defined by

(4.2.1) δk(f) =
1

2πi

(
∂

∂z
+

k

z − z̄

)
f.

Via the isomorphism

(4.2.2) C∞
k (Γ) ' C̃∞

k (Γ), f(z) 7→ f̃(z) := f(z)yk/2,

we see that δk is identified with − 1
4πRk where

(4.2.3) Rk : C̃∞
k (Γ) → C̃∞

k+2(Γ), Rk(f) =

(
(z − z̄)

∂

∂z
+
k

2

)
f.

Let us define (following the discussion in [Bump] §2.1)

(4.2.4) Lk : C̃∞
k (Γ) → C̃∞

k−2(Γ), Lk(f) = −
(

(z − z̄)
∂

∂z̄
+
k

2

)
f,

and

(4.2.5) ∆k : C̃∞
k (Γ) → C̃∞

k (Γ), ∆k(f) = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
.

These operators satisfy

(4.2.6) ∆k = −Lk+2Rk −
k

2

(
1 +

k

2

)
= −Rk−2Lk +

k

2

(
1 − k

2

)
.

Note that via the isomorphism (4.2.2), the lowering operator Lk corresponds to f 7→ 2i ∂∂z̄f on C∞
k (Γ).

Thus if f is holomorphic, then Lk(f̃) = 0.

Definition 4.8. Let j be a nonnegative integer and f ∈ C̃∞
k (Γ). Then Rjf is defined by

Rjf = (Rk+2j−2 ◦Rk+2j−4 ◦ · · · ◦Rk+2 ◦Rk)f.
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Lemma 4.9. Suppose that f ∈ C∞
k (Γ) is holomorphic. Then for j ≥ 0, the form Rj f̃ is an eigenfunction

of ∆k+2j with eigenvalue µj + λj where µj := j(k + j − 1) and λj := k+2j
2

(
1 − k+2j

2

)
.

Proof. Since f is holomorphic, we have Lk(f̃) = 0. Hence ∆kf̃ = k
2

(
1 − k

2

)
by (4.2.6) and the result holds

for j = 0. We now work inductively, assuming the result holds for j − 1. By (4.2.6) again,

∆k+2jR
j f̃ = (−Rk+2j−2Lk+2j + λj)R

j f̃

= −Rk+2j−2Lk+2jRk+2j−2R
j−1f̃ + λjR

j f̃

= Rk+2j−2

(
∆k+2j−2 +

k + 2j − 2

2

(
1 +

k + 2j − 2

2

))
Rj−1f̃ + λjR

j f̃

= Rk+2j−2

(
µj−1 + λj−1 +

k + 2j − 2

2

(
1 +

k + 2j − 2

2

))
Rj−1f̃ + λjR

j f̃

= Rk+2j−2 (µj−1 + k + 2j − 2)Rj−1f̃ + λjR
j f̃

= (µj−1 + k + 2j − 2 + λj)R
j f̃ = (µj + λj)R

j f̃ . �

Definition 4.10. Let f, g ∈ C∞
k (Γ) and suppose at least one of f or g is a cusp form. Then set

〈f, g〉 =
1

[SL2(Z) : Γ]

∫

Γ\H

f(z)g(z)yk
dxdy

y2
.

Likewise, for f, g ∈ C̃∞
k (Γ) with at least one being cuspidal, we set

〈f, g〉 =
1

[SL2(Z) : Γ]

∫

Γ\H

f(z)g(z)
dxdy

y2
.

Clearly, for f, g ∈ C∞
k (Γ), we have 〈f, g〉 = 〈f̃ , g̃〉.

Lemma 4.11. Suppose that f, g ∈ C∞
k (Γ) are holomorphic. Then

(4.2.7) 〈Rj f̃ , Rj g̃〉 =
Γ(j + 1)Γ(k + j)

Γ(k)
〈f̃ , g̃〉,

and

(4.2.8) 〈δjkf, δ
j
kg〉 =

1

(4π)2j
Γ(j + 1)Γ(k + j)

Γ(k)
〈f, g〉.

Proof. Clearly (4.2.7) and (4.2.8) are equivalent. We will prove (4.2.7) inductively. Invoking [Bump] Prop.
2.1.3, equation (4.2.6) and Lemma 4.9 in turn, we find

〈Rj f̃ , Rj g̃〉 = 〈Rj−1f̃ ,−Lk+2jRk+2j−2R
j−1g̃〉

= 〈Rj−1f̃ ,

(
∆k+2j−2 +

k + 2j − 2

2

(
1 +

k + 2j − 2

2

))
Rj−1g̃〉

= 〈Rj−1f̃ ,

(
µj−1 + λj−1 +

k + 2j − 2

2

(
1 +

k + 2j − 2

2

))
Rj−1g̃〉 = µj〈Rj−1f̃ , Rj−1g̃〉.

Hence

〈Rj f̃ , Rj g̃〉 = 〈f̃ , g̃〉 ·
∏

1≤t≤j

µt =
Γ(j + 1)Γ(k + j)

Γ(k)
〈f̃ , g̃〉. �

4.3. Period integrals and values at CM points. Let A0 := C/Oc and t0 be the N-torsion point on
A0 corresponding to our choice of t ∈ N−1

c /Oc. The pair (A0, t0) determines a point PA0 on the modular
curve X1(N). Let τ ∈ H be any any point lying over PA0 . Thus there is a unique isomorphism

Aτ := C/Zτ + Z
·Λτ' C/Oc

sending [1/N ] to t0, which on tangent spaces is given by multiplication by a scalar Λτ ∈ K×. Hence
Oc = Λτ (Zτ + Z) and

Λτ
N

≡ t mod Oc.
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Thus

(4.3.1) Λτ ∈ Nc, and (Λτ ,Nc) = 1.

Let ξ : K ↪→ M2(Q) be the embedding that describes the action of K on H1(Aτ (C),Q) with respect to
the basis (τ, 1) i.e. given by

α ·
[
τ
1

]
= ξ(α)

[
τ
1

]
.

Explicitly, for a, b ∈ Q,

(4.3.2) ξ(a+ bτ) =

(
a+ bTr(τ) −bNτ

b a

)
.

Let M0(N) be the order defined by

M0(N) :=

{(
a′ b′

c′ d′

)
∈ M2(Z) : c′ ≡ 0 mod N

}
.

Then, via the embedding ξ,

K ∩ M0(N) = End(Aτ , 〈[1/N ]〉) = End(C/Oc, 〈t〉) = Oc,

so that ξ is a Heegner embedding of conductor c. A different choice of τ will give an embedding ξ ′ that is
conjugate to ξ by an element of Γ0(N). Note that ξ gives rise to a map of algebraic groups

ξ : ResK/QGm ↪→ GL2,Q

and hence a map on adelic points ξA : A×
K ↪→ GL2(AQ). We consider A×

K as a subgroup of GL2(AQ) via
this embedding.

As in the previous section, let δjkf denote the nearly holomorphic modular form of weight ` := k + 2j
obtained by applying the Shimura-Maass differential operator j times to f . We use the embedding ξ to
associate to the classical modular form δjkf an automorphic form F j on GL2(AQ) as follows. First, let

U ′
q := (M0(N) ⊗ Zq)

×, U ′ := M̂0(N)
×

=
∏

q

U ′
q ⊂ GL2(Af )

and define a character ωf =
∏
q ωf,q of U ′ by setting

ωf,q

(
a′ b′

c′ d′

)
= εf,q(d

′)

for

(
a′ b′

c′ d′

)
∈ U ′

q. Now, for g ∈ GL2(AQ), write

g = γ · (uγ∞), with γ ∈ GL2(Q), u ∈ U ′, γ∞ ∈ GL2(R)+.

Then set
F j(g) = δjk(f)(γ∞(τ))j(γ∞, τ)

−`ωf (u),

where we define
J(γ′, z) := c′z + d′ and j(γ′, z) := det(γ′)−1/2(c′z + d′),

for any γ′ =

(
a′ b′

c′ d′

)
∈ GL2(R). One checks easily that this definition is independent of the choice of

decomposition of g. Further, for any α ∈ K×
∞,

F j(gα) = F j(g)j(α, τ)−` = α−`NK(α)`/2F j(g).

Here NK = N ◦NK/Q is the usual norm character on K, N being the norm character on Q.

Lemma 4.12. The restriction of the character ωf of U ′ to Uc (via the embedding ξA) is ψεf
.

Proof. For q - N , the restrictions of ωf to U ′
q and of ψεf

to Uc,q are both trivial. Suppose therefore that
q divides N . Let a+ bτ ∈ Oc ∩ Uc,q. By (4.3.2), we have a ∈ Z and b ∈ NZ. Since N/Λτ lies in Nc ⊗ Zq
and Λττ ∈ Oc, the element Nτ = (N/Λτ) · Λττ also lies in Nc ⊗ Zq , so that

ψεf ,q(a+ bτ) = εf,q(a) = ωf,q(ξq(a+ bτ)).

Since Oc ∩ Uc,q is dense in Uc,q, it follows that ψεf
(u) = ωf (ξA(u)) for all u ∈ Uc,q ⊆ Uc. �
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Proposition 4.13. Suppose χ ∈ Σ
(2)
cc (N) is of infinity type (k+ j,−j). Let η and η′ be Grossencharacters

defined by

η := χ−1N
−j
K , η′ := ηN

`/2
K ,

so that η′ is unitary. Then

1

hc

∑

[a]∈Pic(Oc)

χ−1(a)Na−j · (δjkf)(a−1, ta) = (2πi)`Λ−`
τ

∫

K×K×
∞\A×

K

F j(ξA(x)) · η′(x)d×x,

where hc := # Pic(Oc) and the measure d×x on K×K×
∞ \ A×

K is chosen to have total volume 1.

Proof. Let us pick elements yi ∈ Ôc such that A×
K = thi=1K

× ·Uc ·K×
∞ · yi. We may assume that we have

picked yi to satisfy

(4.3.3) yi,q ≡ 1 mod NOK,q for q | N.

Let ai := yiOc be the associated proper Oc-ideal, so that

(4.3.4) η(yi) = η(ai) = χ−1(ai)Na
−j
i .

Let U ′′ :=
∏
q U

′′
q be the subgroup of U ′ defined by U ′′

q := U ′
q if q - N and

U ′′
q :=

{(
a′ b′

c′ d′

)
∈ U ′

q : d′ ≡ 1 mod N

}
.

By strong approximation for GL2, we may write

ξA(yi) = gi(gU,i · γi) with gi ∈ GL2,Q, gU,i ∈ U ′′, γi ∈ GL2(R)+.

Since giγi = 1, we have γ−1
i = gi ∈ GL2(Q)+. Further, since ξ is a Heegner embedding, we have

gigU,i ∈ M̂0(N) and consequently γ−1
i ∈ M̂0(N) ∩ GL2(Q)+. i.e.

(4.3.5) γ−1
i =

(
ai bi
ci di

)
∈ M2(Z) ∩ GL2(Q)+, ci ∈ NZ.

In fact, on account of (4.3.3) and the fact that Nτ ∈ Nc ⊗ Zq for q | N (see the proof of Lemma 4.12
above), we also have di ≡ 1 mod N . Now, for u ∈ Uc,

F j(ξA(xu)) = F j(ξA(x))ωf (ξA(u)) = F j(ξA(x))εf (u).

Hence
∫

K×K×
∞\A×

K

F j(ξA(x)) · η′(x)d×x =
1

hc

hc∑

i=1

δjk(f)(γiτ)j(γi, τ)
−`ωf (gU,i)η

′(yi)

=
1

hc

hc∑

i=1

δjk(f)(γiτ)J(γi, τ)
−`η(yi),

since ωf (gU,i) = 1. Taking into account (4.3.4), it will suffice to show that

(2πi)`Λ−`
τ δjk(f)(γiτ)J(γi, τ)

−` = (δjkf)(a−1
i , tai).

From the choice of γi, we see that the class of γiτ in X1(N) corresponds to the pair (C/a−1
i , tai), and

there is a unique isomorphism

C/(Zγiτ + Z)
·λi' C/a−1

i ,

sending [1/N ] to tai , with a scalar λi ∈ K×. Note that

J(γi, τ)
−1 = J(γ−1

i , γiτ) = c′(γiτ) + d′.

The scalar λi may then be identified from the fact that there is a commutative diagram:

C/(Zτ + Z)
J(γi,τ)

−1

//

Λτ

��

C/(Zγiτ + Z)

λi

��

C/Oc
// C/a−1

i .
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Thus λi = Λτ · J(γi, τ), and

δjk(f)(a−1
i , tai) = δjk(f)(C/(Zγiτ + Z), λ−1

i dz, [1/N ])

= Λ−`
τ (2πi)`δjk(f)(γiτ)J(γi, τ)

−`. �

In the next few sections we will study the period integral

(4.3.6) Lη′,ξ(F
j) :=

∫

K×K×
∞\A×

K

F j(ξA(x)) · η′(x)d×x

using the method of Waldspurger.

4.4. Explicit theta lifts. Let ψ denote the additive character of A/Q given by ψ((xv)v) =
∏
v ψv(xv),

where

ψ∞(x) = e2πix, ψq(x) = e−2πix for x ∈ Z

[
1

q

]
⊂ Qq.

Let (V, 〈, 〉) be an even dimensional orthogonal space over Q, and denote by O(V ) (resp. GO(V )) its
isometry group (resp. orthogonal similitude group). Recall the Weil representation rψ =

∏
v rψ,v of the

group SL2(A) ×O(V )(A) on the Schwartz space S(V (A)). On the orthogonal group, rψ,v is given by

rψ,v(g)ϕ(x) = ϕ(g−1 · x) for g ∈ O(V )(Qv), ϕ ∈ S(V (Qv)).

On SL2(Qv), the representation rψ,v is described by its action on the matrices

U(a) :=

(
1 a
0 1

)
, D(a) :=

(
a 0
0 a−1

)
, W :=

(
0 1
−1 0

)
,

by the equations

rψ,v(U(a))ϕ(x) = ψv(
1

2
〈ax, x〉)ϕ(x),

rψ,v(D(a))ϕ(x) = χV,v(a)|a|dim(V )/2
v ϕ(ax),

rψ,v(W )ϕ(x) = γV,vϕ̂(x),

where χV,v is a quadratic character and γV,v is an eighth root of unity, that can be read off from [JL] §1.
In the cases of interest to us, they can also be found listed in the table in [P], §3.4. The Fourier transform
ϕ̂ is defined by

ϕ̂(x) =

∫

V (Qv)

ϕ(y)ψv(〈y, x〉)dy,

the measure dy on V (Qv) being chosen such that ˆ̂ϕ(x) = ϕ(−x).
We will need to extend the Weil representation to similitude groups, following Harris-Kudla [HK1]. Let

R be the group defined by:

R := {(g, h) ∈ GL2 ×GO(V ) : det(g) = ν(h)}
where ν denotes the similitude character of GO(V ). Then rψ can be extended to R(A) by

rψ(g, h)ϕ = rψ

(
g ·
(

1 0
0 det g−1

))
L(h)ϕ,

where

L(h)ϕ(x) = |ν(h)|− dim(V )/4ϕ(h−1x).

Let GO(V )0 denote the algebraic connected component of GO(V ). If F is an automorphic form on
GL2(A) and ϕ ∈ S(V (A)), we define for h ∈ GO(V )(A),

θϕ(F )(h) :=

∫

SL2(Q)\SL2(A)

∑

x∈V (Q)

rψ(gg′, h)ϕ(x)F (gg′)d(1)g,

where g′ is chosen such that det(g′) = ν(h). Likewise, in the opposite direction, if F ′ is an automorphic
form on GO(V )0(A), and g ∈ GL2(A) is such that det(g) ∈ ν(GO(V )(A)), we set

θtϕ(F ′)(g) :=

∫

O(V )(Q)\O(V )(A)

∑

x∈V (Q)

rψ(g, hh′)ϕ(x)F ′(hh′)dh,
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where h′ ∈ GO(V )0(A) is chosen such that det(g) = ν(h′). (We refer the reader to [P], §1, for the choices
of measures in the above and in what follows. ) If π (resp. Π) is an automorphic representation of GL2(A)
(resp. of GO(V )0(A)), we define

θ(π) := {θϕ(F ) : F ∈ π, ϕ ∈ S(V (A))};
θt(Π) := {θtϕ(F ′) : F ′ ∈ Π, ϕ ∈ S(V (A))}.

Now set V := M2(Q) and consider V as an orthogonal space over Q with bilinear form

〈x, y〉 =
1

2
(xyι + yxι),

(
a b
c d

)ι
=

(
d −b
−c a

)
.

The associated quadratic form is just x 7→ xxι = det(x). The group GO(V )0 is identified with the
quotient Q× \GL2 ×GL2 via the map (α, β) 7→ δ(α, β) where δ(α, β)(x) = αxβ−1. Thus an automorphic
representation of GO(V )0(A) is identified with a pair (π1, π2) of representations of GL2(A), such that the
product of the central characters of π1 and π2 is trivial. To ease notation, we will often just write (α, β)
to denote the element δ(α, β).

Let π denote the (unitary) automorphic representation of GL2(A) associated to f . The following
theorem is the classical Jacquet-Langlands correspondence realized using theta functions, and is essentially
due to Shimizu [SH]. (See also [Wa] §3.2.)

Theorem 4.14. (1) θ(π̄) = π̄ × π, where π̄ = π∨ = π ⊗ ε−1
f .

(2) θt(π × π̄) = π.

We will need a statement involving specific forms in π and π̄ and explicit theta functions i.e. explicit
choices of Schwartz functions. For any finite prime q, let qnq be the exact power of q dividing N and for
any set A, let IA denote the characteristic function of A. For q a prime dividing N , we will set

(4.4.1) ϕ1
q

(
a b
c d

)
:=

{
IZq (a)IZq (b)Iqnq Zq (c)IZq (d), if q - Nεf

,
εf,q(d)IZq (a)IZq (b)Iqnq Zq (c)IZ×

q
(d), if q | Nεf

;

(4.4.2) ϕ2
q

(
a b
c d

)
:=

{
1
q IZq (a)IZq (b)Iqn−1Zq

(c)IZq (d), if q - Nεf
,

1
q εf,q(d)IZq (a)IZq (b)Iqnq−1Zq

(c)I
Z

×
q
(d), if q | Nεf

.

Let Σ denote the set of primes dividing N . For now we will fix a subset Ξ of Σ and consider the
following Schwartz function: ϕΞ := ⊗qϕΞ

q where

(i) For q - N , ϕΞ
q = IM0(N)⊗Zq

= IM2(Zq);

(ii) For q | N , ϕΞ
q = ϕ1

q or ϕ2
q according as q 6∈ Ξ or q ∈ Ξ;

(iii) For q = ∞, we identify M2(R) = (K ⊗R) + (K ⊗R)⊥ = C + C⊥ and set ϕΞ
∞ = ϕ∞, with

(4.4.3) ϕ∞(u + v) = ū`pj(4π〈v,v〉)e−2π(|〈u,u〉|+|〈v,v〉|),

for u ∈ C,v ∈ C⊥, where pj denotes the jth Laguerre polynomial

pj(X) =

j∑

s=0

(
j

s

)
(−X)s

s!
.

Lemma 4.15. Suppose κθ :=

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R) and κ1, κ2 ∈ (K ⊗R)(1) ⊂ GL2(R). Then

rψ(κθ, (κ1, κ2))ϕ∞ = eikθ · κ`1 · κ−`2 ϕ∞.

Proof. This is [Xue], Prop. 2.2.5. �

For q | N , let us set U1
q := U ′

q (recall that U ′
q was defined to be (M0(N) ⊗ Zq)

×) and

U2
q :=

{(
a b
c d

)
∈ GL2(Zq) : a, d ∈ Z×

q , b ∈ qZq , c ∈ qnq−1Zq

}
.

We also set UΞ
q equal to U ′

q if q - N and equal to U1
q or U2

q according as q 6∈ Ξ or q ∈ Ξ, if q | N .
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Lemma 4.16. Let q be a finite prime and suppose α, β ∈ U ′
q, γ ∈ UΞ

q are such that

det(α) = det(β) · det(γ)−1,

so that (α, (β, γ)) may be viewed as an element of R(Qq).

(1) Suppose q - Nεf
. Then

rψ(α, (β, γ))ϕΞ
q = ϕΞ

q .

(2) Suppose q | Nεf
. Then

rψ(α, (β, γ))ϕΞ
q = εf,q(a(α))εf,q(d(β)−1d(γ))ϕΞ

q ,

where for any matrix α in GL2, we define a(α) and d(α) to be the upper left and lower right
entries of α respectively.

Proof. Let us write ϕq instead of ϕΞ
q for simplicity. Clearly we may assume that

det(α) = det(β) det(γ)−1 = 1.

Then

rψ(α, (β, γ))ϕq(x) = rψ(α)L(β, γ)ϕq(x) = rψ(α)ϕq(β
−1xγ).

In case (1), we have ϕq(β
−1xγ) = ϕq(x), while in case (2), ϕq(β

−1xγ) = εf,q(d(β)−1d(γ))ϕq(x). So it
suffices to consider the action of rψ(α) on ϕq . Let us first check case (1). If further q - N , then α is in the
subgroup generated by matrices of the form D(a), U(y) and W with a ∈ Z×

q and y ∈ Zq . Thus we may
assume that α is in fact one of these three possibilities. Since ϕq = IM2(Zq) in this case, one checks easily
that

rψ(D(a))ϕq(x) = ϕq(ax) = ϕq(x);(4.4.4)

rψ(U(y))ϕq(x) = ψq(y det(x))ϕq(x) = ϕq(x);(4.4.5)

rψ(W )ϕq(x) = ϕ̂q(x) = ϕq(x).(4.4.6)

Next let us suppose that we are still in case (1) but q | N and qn || N , so that

ϕq

(
a b
c d

)
=

{
IZq (a)IZq (b)IqnZq (c)IZq (d), if q 6∈ Ξ;

1
q IZq (a)IZq (b)Iqn−1Zq

(c)IZq (d), if q ∈ Ξ.

Note that

ϕ̂q

(
a b
c d

)
=

{ 1
qn IZq (a)Iq−nZq

(b)IZq (c)IZq (d), if q 6∈ Ξ;
1
qn IZq (a)Iq−(n−1)Zq

(b)IZq (c)IZq (d), if q ∈ Ξ.

Set

V (z) :=

(
1 0
z 1

)
.

Then α is in the subgroup generated by matrices of the form D(a), U(y) and V (z) with a ∈ Z×
q , y ∈ Zq

and z ∈ qnZq . Now one checks immediately that the relations (4.4.4) and (4.4.5) continue to hold for such
q. As for V (z), note that V (z) = D(−1)WU(z)W . Further, for z ∈ qnZq ,

rψ(U(z))ϕ̂q = ϕq .

Hence for such z,

rψ(V (z))ϕq = rψ(D(−1)WU(z)W )ϕq = rψ(D(−1)WU(z))ϕ̂q = rψ(D(−1)W )ϕ̂q = rψ(D(−1)) ˆ̂ϕq = ϕq .

Thus case (1) is entirely verified. We now deal with case (2). In this case,

ϕq

(
a b
c d

)
=

{
εf,q(d)IZq (a)IZq (b)IqnZq (c)IZ×

q
(d), if q 6∈ Ξ;

1
q εf,q(d)IZq (a)IZq (b)Iqn−1Zq

(c)I
Z

×
q
(d), if q ∈ Ξ.

Thus

rψ(D(a))ϕq(x) = ϕq(ax) = εf,q(a)ϕq(x)

for a ∈ Z×
q and rψ(U(y))ϕq(x) = ψq(y det(x))ϕq(x) = ϕq(x) for y ∈ Zq .
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It remains to consider the action of rψ(V (z)) on ϕq for z ∈ qnZq . For this we need as before to compute
the Fourier transform of ϕq . Suppose that cond(εf,q) = qmZq , so that m ≤ n. Then

ϕ̂q

(
a b
c d

)
=

{
1

qm+n ε
−1
f,q(q

ma)Iq−mZ
×
q
(a)Iq−nZ

×
q
(b)IZq (c)IZq (d), if q 6∈ Ξ;

1
qm+n ε

−1
f,q(q

ma)Iq−mZ
×
q
(a)Iq−(n−1)Z

×
q
(b)IZq (c)IZq (d), if q ∈ Ξ.

Thus rψ(V (z))ϕ̂q = ϕ̂q in this case as well, and we see as above that rψ(V (z))ϕq = ϕq . �

We need the following lemma in order to study explicit theta lifts in both directions. For any q ∈ Σ,
and for β ∈ GL2(A), we define

Φq(β) :=

∫

SL2(Qq)

ϕ2
q(α

−1
q )F j(βαq)d

(1)αq .

Lemma 4.17. Let Σ′ denote the subset of Σ consisting of those primes q such that πf,q ' π(µ1, µ2) is a
ramified principal series representation with µ1 unramified and µ2 ramified of conductor exactly qnq , where
qnq ||N . Then for q ∈ Σ, the function Φq(β) is identically zero unless q ∈ Σ′. If q ∈ Σ′, then

Φq(β) = q−1/2µ1(q)
−1F j(βγq),

where γq is the element of GL2(A) that is

(
q 0
0 1

)
at q and 1 at all other places.

Proof. Let us write n instead of nq for ease of notation. We suppose first that q ∈ Σ \ Σ′. In this case,
πf,q is either supercuspidal or a ramified special representation or a ramified principal series ' π(µ1, µ2)
where µ1 and µ2 both have conductor dividing qn−1. In any case, the central character εf,q has conductor
dividing qn−1. (See [Tu1] Prop. 3.4.) We claim then that

(4.4.7) Φq(βu) = εf,q(d)Φq(β),

for u =

(
a b
c d

)
∈ Γq(n− 1), where for any integer m ≥ 1, we define

Γq(m) :=

{(
a b
c d

)
∈ GL2(Zq) : c ≡ 0 mod qm

}
.

It suffices to verify (4.4.7) for γ a matrix in one of the three forms:

D(a, b) :=

(
a 0
0 b

)
, a, b,∈ Z×

q ; U(y), y ∈ Zq ; and V (z), z ∈ qn−1Zq .

This follows from the following set of computations. First, let a, b ∈ Z×
q . Then

Φq(β ·D(a, b)) =

∫

SL2(Qq)

ϕ2
q(α

−1
q )F j(β ·D(a, b) · αq ·D(a, b)−1 ·D(a, b))d(1)αq

= εf,q(b)

∫

SL2(Qq)

ϕ2
q(D(a, b) · α−1

q ·D(a, b)−1)F j(β · αq)d(1)αq

= εf,q(b)

∫

SL2(Qq)

ϕ2
q(α

−1
q )F j(β · αq)d(1)αq = εf,q(b)Φq(β).

Next, let y ∈ Zq . Then

Φq(β · U(y)) =

∫

SL2(Qq)

ϕ2
q(α

−1
q )F j(β · U(y) · αq)d(1)αq

=

∫

SL2(Qq)

ϕ2
q(α

−1
q · U(y))F j(βαq)d

(1)αq .

Suppose α−1
q =

(
a b
c d

)
. Then

α−1
q · U(y) =

(
a ay + b
c cy + d

)
.
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If ϕ2
q(α

−1
q ) 6= 0, then a, b, d ∈ Zq and c ∈ qn−1Zq . Hence cy+d ≡ d mod qn−1. Since the conductor of εf,q

divides qn−1, it follows that ϕ2
q(α

−1
q U(y)) = ϕ2

q(α
−1
q ) for all αq , and consequently Φq(β · U(y)) = Φq(β).

Finally, let z ∈ qn−1Zq . Then

Φq(β · V (z)) =

∫

SL2(Qq)

ϕ2
q(α

−1
q )F j(β · V (z) · αq)d(1)αq

=

∫

SL2(Qq)

ϕ2
q(α

−1
q · V (z))F j(βαq)d

(1)αq .

But

α−1
q V (z) =

(
a+ bz b
c+ dz d

)
.

Since z ∈ qn−1Zq , one finds that ϕ2
q(α

−1
q V (z)) = ϕ2

q(α
−1
q ) for all αq . This proves (4.4.7). But now by

Casselman’s theorem, we see that Φq(β) must be identically zero for such q.
We now turn to q ∈ Σ′. In this case, one cannot argue as above since εf,q has conductor qn. However

the argument above shows that Φq is right invariant by V (z) for z ∈ qn−1Zq , and by U(y) for y ∈ qZq ,
and transforms by εf,q(b) under the right action of D(a, b). We conclude that if u lies in the subgroup

{(
a b
c d

)
∈ GL2(Zq) : a, d ∈ Z×

q , b ∈ qZq , c ∈ qn−1Zq

}
,

then Φq(β · u) = εf,q(d(u))Φq(β). By Casselman’s theorem, we see that

Φq(βγ
−1
q ) = c̃ · F j(β)

for some scalar c̃. We now compute the value of c̃. Letting Γ
(1)
q (m) := Γq(m) ∩ SL2(Qq), note that

Φq(β) =
1

q

∫

Γ
(1)
q (n−1)

εf,q(d(α−1
q ))F j(βαq)d

(1)αq.

Let us first suppose that n ≥ 2. Then the collection

V (x) =

(
1 0
x 1

)
, x ∈ qn−1Zq/q

nZq .

is a set of coset representatives for Γ
(1)
q (n− 1)/Γ

(1)
q (n). Hence

c̃ · F j(βγq) = Φq(β) =
1

q

∑

x∈qn−1Zq/qnZq

∫

Γ
(1)
q (n)

εf,q(d(α−1
q V (x)))F j (βV (x)αq)d

(1)αq

=
1

q

∑

x∈qn−1Zq/qnZq

∫

Γ
(1)
q (n)

εf,q(d(α−1
q ))F j(βV (x))εf,q(d(αq))d

(1)αq

=
1

q
vol(U ′

q
(1)

)
∑

x∈qn−1Zq/qnZq

F j(βV (x)).(4.4.8)

To find the value of c̃ we may substitute β = 1 and compute in a convenient model for the local represen-
tation πf,q ' π(µ1, µ2). We use the standard model of the induced representation V (µ1, µ2), and denote
by fq a new vector in this representation, normalized so that fq(1) = 1. Then (see [SR], Prop. 2.1.2)

fq(γq) = µ1(q)
1−n|q|1/2q

while

fq

(
1 0
x 1

)
=

{
µ1(q)

−n, if vq(x) ≥ n;
0, if vq(x) < n.

It follows that

c̃ =
1

q
µ1(q)

−1|q|−1/2
q vol(U ′

q
(1)

) = q−1/2µ1(q)
−1 vol(U ′

q
(1)

).

If on the other hand n = 1, then the matrices V (x) with x ∈ Zq/qZq along with W form a set of coset

representatives for Γ
(1)
q /Γ

(1)
q (1). Again we can use the standard model of the induced representation to
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compute the value of c̃. However, since fq(W ) = 0 (see [SR], Prop. 2.1.2), the expression for c̃ remains
the same in this case too.

�

Definition 4.18. For Ξ ⊂ Σ, we set F jΞ(g) = F j(g ·∏q∈Ξ γq), where γq is as in Lemma 4.17 above.

Proposition 4.19.

θtϕΞ(F j × F jΞ) = CΞ
1 · F 0,],

where

(4.4.9) CΞ
1 :=

{
0, if Ξ 6⊂ Σ′;

(4π)−(j−1) Γ(k+j)
Γ(k) vol(U ′(1)) · 〈F j , F j〉 ·∏q∈Ξ(q−1/2µ1(q)) if Ξ ⊆ Σ′,

and F 0,] is the unique form in π characterized by

(i) If q - N , then F 0,](gu) = F 0,](g) for u ∈ GL2(Zq).

(ii) If q | N , then F 0,](gu) = εf,q(a)F
0,](g) for u =

(
a b
c d

)
∈ Γq(nq).

(iii) Let a ∈ R×, a∞ := d(a) ∈ GL2(R), κθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R). Let (1, a∞κθ) denote

the element of GL2(A) which is 1 at all finite places and a∞κθ at the infinite place. Then

WF 0,],ψ(1, a∞κθ) = ak/2e−2πaeikθIR+(a).

Here W·,ψ denotes as usual the ψ-Whittaker coefficient and 〈F j , F j〉 denotes the Petersson inner
product:

〈F j , F j〉 =
1

2

∫

PGL2(Q)\PGL2(A)

F j(β)F j(β)d×β.

Proof. Let F ′ := θtϕΞ(F j × F jΞ). We first show that F ′ = CΞ
1 · F 0,] for some constant CΞ

1 . Note that for

u ∈ U ′ and κθ ∈ SO2(R), by Lemmas 4.15 and 4.16,

F ′(guκθ) =

∫

O(V )(Q)\O(V )(A)

∑

x∈V (Q)

rψ(guκθ, h · (u, 1))ϕΞ(x)(F j × F jΞ)(h · (u, 1))dh(4.4.10)

= eikθ
∏

q|Nεf

εf,q(a(uq))εf,q(d(uq)
−1) · εf,q(d(uq))F

′(g)

= eikθ
∏

q|Nεf

εf,q(a(uq))F
′(g).

Since θtψ(π ⊗ π̄) = π, it follows by Casselman’s theorem that F ′ = CΞ
1 · F 0,] for some scalar CΞ

1 . Clearly,

CΞ
1 is just the first Fourier coefficient of F ′. To evaluate CΞ

1 , we compute the Whittaker coefficients of F ′.
As in [Wa] Sec. 3.2.1,

WF ′,ψ(g) =
1

2

∫

PGL2(Q)\PGL2(A)

Ψ(g, β)F jΞ(β)d×β,

where

Ψ(g, β) =

∫

GL2(A)det(g)

rψ(g, (α, 1))ϕΞ(1)F j(βα)d(1)α.

Note that

Ψ(1, β) =

∫

SL2(A)

rψ(1, (α, 1))ϕΞ(1)F j(βα)d(1)α

=

∫

SL2(A)

ϕΞ(α−1)F j(βα)d(1)α.

This integral can be computed one place at a time since both F j and ϕΞ are pure tensors. We first
consider finite primes q such that q 6∈ Ξ. In this case, if ϕq(α

−1
q ) 6= 0, then α−1

q ∈ U ′
q . Hence αq ∈ U ′

q
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as well. If further q - Nεf
, then ϕq(α

−1
q ) = 1 and F j(βαq) = F j(β). On the other hand, if q | Nεf

, then

ϕq(α
−1
q ) = εf,q(d(αq)

−1) and F j(βαq) = εf,q(d(αq))F
j(β), so that in any case, for q 6∈ Ξ, we have

∫

SL2(Qq)

ϕΞ
q (α−1

q )F j(βαq)d
(1)αq = vol(U ′

q
(1)

) · F j(β).

For q ∈ Ξ, it follows from Lemma 4.17 that
∫

SL2(Qq)

ϕΞ
q (α−1

q )F j(βαq)d
(1)αq =

{
0, if q 6∈ Σ′;

vol(U ′
q
(1)

) · q−1/2µ−1
1 (q)F j(βγq), if q ∈ Σ′.

Finally, the computation of the local integral at the infinite place can be found in [Xue], Prop. 4.3.4.
Accounting for our different choice of measures, this contribution equals e−2π(4π)−(j−1)Γ(k + j)/Γ(k).
Puting together the local computations, we find

Ψ(1, β) =

{
0, if Ξ 6⊂ Σ′;

e−2π · (4π)−(j−1) Γ(k+j)
Γ(k) · vol(U ′(1)) ·∏q∈Ξ(q−1/2µ−1

1 (q)) · F jΞ(β), if Ξ ⊂ Σ′.
.

Thus CΞ
1 = 0 unless Ξ ⊆ Σ′ and in that case,

CΞ
1 = e2πWF ′,ψ(1) = (4π)−(j−1) vol(U ′(1))

Γ(k + j)

Γ(k)
·
∏

q∈Ξ

(q−1/2µ−1
1 (q))〈F jΞ, F jΞ〉

= (4π)−(j−1) Γ(k + j)

Γ(k)
· vol(U ′(1))〈F j , F j〉 ·

∏

q∈Ξ

(q−1/2µ−1
1 (q)). �

Proposition 4.20.

θϕ(F 0,]) = CΞ
2 · (F j × F jΞ),

where

(4.4.11) CΞ
2 =

{
0, if Ξ 6⊂ Σ′;
(4π)j+1

Γ(j+1) =(τ)` vol(U ′(1))
∏
q∈Σ′(q−1/2µ−1

1 (q)) if Ξ ⊆ Σ′.

(Recall that Σ′ was defined in Lemma 4.17.)

Proof. By a calculation as in (4.4.10) above and another application of Casselman’s theorem, we have

θϕ(F 0,]) = CΞ
2 · (F j×F jΞ) for some constant CΞ

2 . To compute CΞ
2 , one studies the theta lift in the opposite

direction and uses the seesaw principle. Indeed, the seesaw principle and Proposition 4.19 imply that

CΞ
2 〈F j , F j〉2 = 〈θϕ(F 0,]), F j × F jΞ〉 = 〈F 0,], θtϕ(F j × F jΞ)〉 = CΞ

1 〈F 0,], F 0,]〉.
i.e., CΞ

2 = CΞ
1 〈F 0,], F 0,]〉/〈F j , F j〉2. But (see Lemma 4.11),

〈F j , F j〉/〈F 0,], F 0,]〉 = =(τ)−`(4π)−2jΓ(j + 1)Γ(k + j)/Γ(k).

(The term =(τ)−` appears since F 0 and F 0,] are normalized differently: the former is the adelic form
associated to f and the base point τ , while the latter uses the base point i. To translate from one to other
involves picking an element γ ∈ SL2(R) such that γi = τ and one checks that 〈F 0, F 0〉/〈F 0,], F 0,]〉 =
j(γ, i)2` = =(τ)−`.) The proposition now follows by using the value of CΞ

1 from Prop. 4.19.
�

We now make the following key definition, namely that of the Schwartz function in the explicit theta
correspondence.

Definition 4.21. The explicit Schwartz function ϕ is defined by ϕ := ⊗qϕq , where ϕ∞ is as in (4.4.3)
and for finite primes q, the ϕq are as below:

(i) If q - N , then ϕq = IM0(N)⊗Zq
= IM2(Zq).

(ii) If q | N , then ϕq = ϕ1
q for q 6∈ Σ′ and ϕq := ϕ1

q − ϕ2
q for q ∈ Σ′. Recall that ϕ1

q and ϕ2
q were defined

previously in (4.4.1) and (4.4.2) respectively and Σ′ was defined in Lemma 4.17.

The following lemma which will be used in the next section is an easy consequence of the fact that η is
of type (c,N, ε−1

f ).
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Lemma 4.22. For q ∈ Σ′, fix an isomorphism Kq ' Qq × Qq such that via this identification the

embedding ξq : Kq ↪→M2(Qq) is conjugate by an element of U ′
q to the embedding (a, b) 7→

(
a 0
0 b

)
. Let

η′q = (η1, η2) via this identification. Then

(1) η1 is unramified and η2 is ramified.
(ii) η2µ

−1
2 is unramified.

4.5. Seesaw duality and the Siegel-Weil formula. Let V1 = K (viewed as a subspace of V via ξ)
and let V2 = V ⊥

1 . Then

GO(V1)
0 ' GO(V2)

0 ' K×,

H := G(O(V1) ×O(V2))
0 = G(K× ×K×),

and via this identification the map δ : K× ×K× → H is

δ(α, β) = (αβ−1, α(βρ)−1).

Since η′(α)η′(β) = η′(αβ−1), the character (η′, η′) of K× × K× is the pullback via δ of the character
η := (η′, 1) on H. Suppose that

ϕq =
∑

iq∈Iq

ϕ
iq
1 ⊗ ϕ

iq
2 ∈ S(V1 ⊗Qq) ⊗ S(V2 ⊗Qq).

Then by an application of seesaw duality for the seesaw pair

GL2 ×GL2

MMMMMMMMMMMMMMMMMMMMMMM
GO(V )

qqqqqqqqqqqqqqqqqqqqqqq

GL2 G(O(V1) ×O(V2))

we have (as in [HK2] (14.5)),
∫

H(Q)\H(A)

θψ,ϕ(F 0,])|H(A)(h)η(h)d×h

=

∫

GL2(Q)A×\GL2(A)

F 0,](g) · θtϕ(η)|GL2(A)(g)dg

=

∫

GL2(Q)A×\GL2(A)

F 0,](g) ·
∑

i=(iq )∈I=
Q

q Iq

θt
⊗qϕ

iq
1

(η′)(g)θt
⊗qϕ

iq
2

(1)(g)dg.(4.5.1)

Here θt(η′) and θt(1) are defined as follows. Set

GL2(A)K :=
{
g ∈ GL2(A) : det(g) ∈ NK(A×

K)
}
.

For g ∈ GL2(A)K , ς ∈ S(V1(A)) and h ∈ A×
K such that det(g) = NK(h),

θtς(η
′)(g) :=

∫

K(1)\K
(1)
A

∑

x∈V1

rψ(g, hh1)ς(x)η′(hh1)d
(1)h1.

One then extends the definition to the index 2 subgroup GL2(Q) ·GL2(A)K of GL2(A) by requiring it to
be left invariant by GL2(Q). Finally, one extends it by zero outside this index two subgroup. The theta
lift θt(1) is defined similarly with η′ replaced by the trivial character and V1 replaced by V2. Here the

measure d(1)h1 is chosen such that it lifts to a Haar measure on K
(1)
A and vol(K(1) \K(1)

A ) = 1.
Now, by the Siegel-Weil formula, the theta lift θt(1) is an Eisenstein series. Unfolding this Eisenstein

series by the standard Rankin-Selberg method, one finds that the integral in (4.5.1) above is equal to the
expression I(ϕ, ξ), where (defining Φs as in [P] Prop. 3.1.),

I(ϕ, ξ) := ζ(2)−1

∫

A×
Q

∫

K0

Wψ̄(F 0,])(d(a)k)
∑

i=(iq)∈I=
Q

q Iq

Wψ(θt
⊗qϕ

iq
1

(η′))(d(a)k)Φs
⊗qϕ

iq
2

(d(a)k)(1)|a|−1d×adk,
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Here K0 =
∏
q GL2(Zq) × SO2(R)), the measure dk is a product of local Haar measures such that

vol(GL2(Zq)) = 1 and vol(SO2(R)) = 2π, and the factor ζ(2)−1 accounts for the change in measure
normalization. We now state two propositions that will be useful in computing the integral above.

We note first that Wψ̄(F 0,]) = Wψ(F 0,]) and Wψ(F 0,]) =
∏
vWψ,v(F

0,]) where Wψ,v(F
0,]) is normal-

ized to take value 1 on the identity matrix in GL2(Zq) for finite q andWψ,∞(F 0,])(d(a)) = e−2πaa
k
2 IR+(a).

The proposition below (which is simply copied from [SR] Sec. 2.4 taking into account that F 0,] transforms
by the central character of the upper left entry at ramified places as opposed to the lower right entry as

in loc. cit.) lists the values of Wψ,q(F
0,]) on matrices of the form d(a) :=

(
a 0
0 1

)
.

Proposition 4.23. Let a ∈ Q×
q . Then Wψ,q(F

0,])(d(a)) is equal to

(i) |a|1/2
(∑

r+s=vq(a) µ1(q)
rµ2(q)

s
)
IZq (a) if πf,q ' π(µ1, µ2) is an unramified principal series rep-

resentation.
(ii) |a|µ(a)IZq (a), if πf,q ' St(µ) is a special representation with µ unramified.
(iii) I

Z
×
q
(a), if πf,q ' St(µ) is a special representation with µ ramified.

(iv) |a|1/2µ2(a)IZq (a), if πf,q ' π(µ1, µ2) is a ramified principal series representation with µ1 unrami-
fied and µ2 ramified.

(v) εf,q(a)IZ×
q
(a), if πf,q ' π(µ1, µ2) is a ramified principal series representation with both µ1 and µ2

ramified, or if πf,q is supercuspidal.

For simplicity, in our local calculations below, we will simply write WF for Wψ̄,q(F
0,]). The following

proposition follows from the discussion in [P] §3.3.

Proposition 4.24. The Whittaker function Wψ(θt⊗qϑq
(η′)) factors as

Wψ(θt⊗qϑq
(η′)) =

1

hK

∏

q

WΘ,ϑq ,

where for any prime q, either finite or infinite,

WΘ,ϑq (d(a)) =

∫

K
(1)
q

ϑq(a(hh
′)−1)η′q(hh

′)dh

= |a|1/2q

∫

K1
q

ϑq((hh
′)ρ)η′q(hh

′)dh,(4.5.2)

for any h′ such that N(h′) = a. (Here the Haar measure dh on K
(1)
v is chosen such that vol(K

(1)
∞ ) = 1

and for finite primes q, vol(OK ⊗ Zq)
(1) = 1.) Also,

Φs⊗ςq
(d(a)) = |a|s

∏

q

ςq(0).

More generally, suppose jq : Kq → Vq is an embedding of quadratic spaces, where Kq = K ⊗ Qq and
Vq = V (Qq). For ς ∈ S(Vq) = S(Kq)) ⊗ S(K⊥

q ), write ς =
∑

i ς1,i ⊗ ς2,i and define

(4.5.3) I(ς, jq) =
∑

i

∫

Q
×
q

∫

K0,q

WF (d(a)k)WΘ,ς1,i (d(a)k)Φ
s
ς2,i

(d(a)k)|a|−1d×adk

Since WΘ,ς1,i · Φs2,i(·) is bilinear in (ς1,i, ς2,i), the expression on the right in (4.5.3) is independent of the
decomposition ς =

∑
i ς1,i ⊗ ς2,i. In this notation, we have

(4.5.4) I(ϕ, ξ) =
ζ(2)−1

hK

∏

q<∞

I(ϕq , ξq) · I(ϕ∞, ξ∞).

Thus to compute I(ϕ, ξ) it suffices to compute I(ϕq , ξq) for all q. However, for finite primes q, it is
easier to compute I(ϕq , ξ

′
q) for a modified embedding ξ′q which is defined by

ξ′q(x) = u−1
q ξq(x)uq
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for some suitable choice of uq ∈ U ′
q. If ϕ′

q is the Schwartz function defined by

ϕ′
q(x) = ϕq(u

−1
q xuq),

then it is immediate that
I(ϕ′

q , ξq) = I(ϕq , ξ
′
q).

Define ϕ′ by ϕ′ = (⊗qϕ′
q) ⊗ ϕ∞.

Proposition 4.25. Suppose that the uq ∈ U ′
q have been chosen such that for all q ∈ Σ′, ξ′q is given on

Kq = Qq ×Qq by

ξ′q(a, b) =

(
a 0
0 b

)
.

Then∫

H(Q)\H(A)

θϕ′(F 0,])|H(A)(h)η(h)d×h =
(4π)j+1=(τ)`

Γ(j + 1)
vol(U ′(1)) ·

∏

q∈Σ′

(1−µ−1
1 (q)η1(q)q

−1/2) · |Lη′,ξ(F j)2|.

Proof. Let u ∈ GL2(Af ) be the element whose coordinate at q is uq . Observe that ϕ′ = rψ(1, (u, u))ϕ.

Hence θϕ′(F 0,])(h) = θϕ(F 0,])(h · (u, u)), and
∫

H(Q)\H(A)

θϕ′(F 0,])|H(A)(h)η(h)d×h

= θϕ(F 0,])|H(A)(h · (u, u))η(h)d×h

=
∑

Ξ⊂Σ′

(−1)|Ξ|θϕΞ(F 0,])|H(A)(h · (u, u))η(h)d×h

=
∑

Ξ⊂Σ′

(−1)|Ξ|CΞ
2

∫

K××K×\A×
K×A×

K

((F j × F jΞ)(αu, βu) · (η′ × η′)(α, β)d×αd×β

=
∑

Ξ⊂Σ′

(−1)|Ξ|CΞ
2 · Lη′,ξ(F j(·u)) · Lη′,ξ(F jΞ(·u)).

But setting αq := (q−1, 1) ∈ K×
q , αΞ :=

∏
q∈Ξ αq and γΞ :=

∏
q∈Ξ γq, we have ξA(αΞ) · uγΞu

−1 = 1 and

Lη′,ξ(F
j
Ξ(·u)) =

∫

K×\A×
K

F j(ξA(x)uγΞ)η′(x)d×x =

∫

K×\A×
K

F j(ξA(xαΞ)uγΞ)η′(xαΞ)d×x

= η′(αΞ)Lη′,ξ(F
j(·u)) =


∏

q∈Ξ

η1(q)


 · Lη′,ξ(F j(·u)).

Since F j(·u) = F j(·)ωf (u), the proposition follows by using the value of CΞ
2 from (4.4.11). �

We record the following corollary, which follows from the above proposition and the preceding discussion.

Corollary 4.26.

I(ϕ′, ξ) =
(4π)j+1=(τ)`

Γ(j + 1)
vol(U ′(1)) ·

∏

q∈Σ′

(1 − µ−1
1 (q)η1(q)q

−1/2) · |Lη′,ξ(F j)2|.

Applying (4.5.4) (with ϕ replaced by ϕ′), we see that to compute |Lη′,ξ(F j)|2, it suffices to compute
I(ϕ′

q , ξq) = I(ϕq , ξ
′
q) for convenient choices of ξ′q satisfying the hypotheses of the lemma above. This is

the content of the next section.

4.6. Local zeta integrals. To handle the local computations, it will be useful to set up the following
notation. Define

J(ς, ϑ) :=

∫

Q
×
q

WF (d(a))WΘ,ς (d(a))Φ
s
ϑ(d(a))|a|−1d×a,

and for α ∈ GL2(Qq),

J(ς, ϑ, α) :=

∫

Q
×
q

WF (d(a)α)WΘ,ς (d(a))Φ
s
ϑ(d(a))|a|−1d×a.
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We first dispose the simple case q = ∞.

Proposition 4.27. For q = ∞, we have

I(ϕ∞, ξ∞) = (2π) · (4π)−(k+j)Γ(k + j).

Proof. One sees easily that I(ϕ∞, j∞) = J(ς, ϑ), where

ς(u) = ule−2π〈u,u〉

and
ϑ(v) = pj(4π〈v,v〉)e−2π〈v,v〉.

Thus Φsς1(d(a)) = |a|sϑ(0). Taking h′ = a1/2 in (4.5.2), we find

WΘ,ς(d(a)) = IR+(a)|a|1/2
∫

K
(1)
∞

ς(a1/2h−1)h−`dh

= a
`+1
2 e−2πaIR+(a) = a

`+1
2 e−2πaIR+(a).

Thus I(ϕ∞, ξ∞) = 2π ·
∫
R× a

k
2 e−2πa · a `+1

2 e−2πa · |a|s−1IR+(a)d×a and

I(ϕ∞, ξ∞)|s=1/2 = 2π ·
∫ ∞

0

a
k+`
2 e−4πad×a = (2π) · (4π)−(k+j)Γ(k + j).

�

Next let q be a finite prime, and denote by oq and rq the maximal orders in Kq and Qq respectively.
We split the calculations into several cases:

I : q - cNdK .
II : q | c.

III : qnq ||N , with nq ≥ 2.
IV : q||N , q - dK .
V : q||N , q | dK .

VI : q | dK , q - N .

For the rest of this section, we simply write I for I(ϕ′, ξq) = I(ϕ, ξ′q).

4.6.1. Case I: q - cNdK . In this case all the data is unramified and we have by a standard computation:

I = Lq(π̄f , πη̄ , s)Lq(2s, εK)−1.

4.6.2. Case II: q | c. Write oq = Zq + Zq$, where tr($) = 0. Let $2 = u. We may assume that

ξ′q($) =

(
0 1/qr

uqr 0

)
, where qr||c. Set jq :=

(
1 0
0 −1

)
. For 0 ≤ i, j ≤ qr − 1, set

ςi,j = I
Zq+(qrZq+i+ j

qr )$ ϑi,j = I(Zq+(qrZq+i+ j
qr )$)jq

.

Then
ϕq =

∑

i,j

ςi,j ⊗ ϑi,j .

Since WF and ϕq are invariant under GL2(Zq), it follows that

I =
∑

i,j

J(ςi,j , ϑi,j) = J(ς0,0, ϑ0,0).

Now,

WΘ,ς0,0(d(a)) =

∫

Q
×
q

ς0,0(t, at
−1)η1(at

−1)η2(t)d
×t =

∫
0≤vq(t)≤vq (a)

vq(t−at−1)≥r

η1(at
−1)η2(t)d

×t.

Suppose vq(a) ≥ 2r − 1. Then either vq(t) ≥ r or vq(at
−1) ≥ r. In this case, vq(t − at−1) ≥ r ⇐⇒

both vq(t) ≥ r and vq(at
−1) ≥ r. For such a then, the region of integration in the last integral above

is unchanged if a is replaced by ua for any u ∈ Z×
q . Thus WΘ,ς0,0(d(au)) = η1(u)WΘ,ς0,0(a). Since

WF (d(au)) = WF (d(a)), by picking u such that η1(u) 6= 1, we see that
∫

vq(a)≥2r−1

WF (d(a))WΘ,ς0,0 (d(a))|a|s−1d×a = 0.
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So we may restrict attention to a such that 0 ≤ vq(a) ≤ 2r − 2, and let t be in the region of integration
above. Since either vq(t) ≤ r − 1 or vq(at

−1) ≤ r − 1, we see that vq(t − at−1) ≥ r is only possible if
vq(t) = vq(at

−1). This implies that vq(a) must be even. Suppose that vq(a) = 2m ≤ 2r − 2 so that
m ≤ r − 1, and vq(t) = m. Write a = q2mu, t = qmv with u, v ∈ Z×

q . The condition vq(t − at−1) ≥ r

then translates to vq(v
2 − u) ≥ r −m, and η1(at

−1)η2(t) = η1(q
muv−1)η2(q

mv) = εf,q(q)
mη1(uv

−2) since
η1η2 = εf,q is unramified. Then for m fixed,

∫

vq(a)=m

WF (d(a))WΘ,ς0,0 (d(a)|a|s−1d×a = constant ·
∫ ∫

u,v∈Z
×
q

u≡v2 mod qr−m

η1(uv
−2)d×vd×u.

Suppose m > 0. Since the conductor of η1 is qr, there exists α ∈ Z×
q , α ≡ 1 mod qr−m such that

η1(α) 6= 1. Then for v fixed the integral over u is seen to be zero by making a change of variables u 7→ αu.
Thus we are reduced to considering only the case m = 0, and

I = vol((u, v) ∈ Z×
q × Z×

q , u ≡ v2 mod qr) =
1

qr−1(q − 1)
=

1

qr
ζK,q(1) · Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1|s=1/2.

Here ζK,q(1) = (1 − 1
q )

−2 if q is split in K and equal to (1 − 1
q2 ) if q is inert in K.

4.6.3. Case III: qn||N with n ≥ 2. In this case, q is split in K i.e. q = qq̄ and K ⊗ Qq ' Qq × Qq

corresponding to the completions at q and q̄ respectively. We suppose that q and q̄ are chosen such that
N ⊗ Zq = q̄n. We may assume

ξ′q(a, b) =

(
a 0
0 b

)
.

Then η′q = (η1, η2) where η1 and η2ε
−1
f,q are both unramified. Set jq :=

(
0 1
1 0

)
. Then

ϑ((a, b)jq) = IZq (a)(IqnZq −
1

q
Iqn−1Zq

)(b),

and

ς(a, b) =

{
IZq (a)IZq (b), if q - Nεf

;
IZq (a)IZ×

q
(b)εf,q(b), if q | Nεf

.

Now

GL2(Zq) = Γq(1)
⊔ q−1⊔

z=0

U(z)wΓq(1),

and
Γq(1) =

⊔

y∈qZq/qnZq

V (y)Γq(n).

so that
GL2(Zq) =

⊔

y∈qZq/qnZq

V (y)Γq(n)
⊔ ⊔

y∈qZq /qnZq

z∈Zq/qZq

U(z)wV (y)Γq(n).

Now V (y) = −wU(−y)w and wV (y) = U(−y)w. Thus

rψ(w, 1)ϑ((a, b)jq) = ϑ̂((a, b)jq) =
1

qn
Iq−nZ

×
q
(a)IZq (b),

rψ(U(−y), 1)ϑ̂((a, b)jq) =
1

qn
ψq(yab)Iq−nZ

×
q
(a)IZq (b),

rψ(wV (y), 1)ϑ(0) = rψ(U(−y)w, 1)ϑ(0) = rψ(U(−y), 1)ϑ̂(0) = ϑ̂(0) = 0,

and

rψ(V (y), 1)ϑ(0) = rψ(−wU(−y)w, 1)ϑ(0) =

∫
1

qn
ψq(yab)Iq−nZ

×
q
(a)IZq (b)dadb

=
1

qn

∫
IZq (ya)Iq−nZ

×
q
(a)da

=

{
0, if y 6∈ qnZq ;

1 − 1
q , if y ∈ qnZq .
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Thus

I = (1 − 1

q
) vol(Γq(n))

∫
WF (d(a))WΘ,ς(d(a))|a|s−1d×a.

Now suppose first that q - Nεf
. Then η1 and η2 are both unramified and

WΘ,ς(d(a)) = |a|1/2 η1(aq) − η2(aq)

η1(q) − η2(q)
IZq (a).

In this case πf,q is either supercuspidal or ramified principal series ' π(µ1, µ2) with both µ1 and µ2

ramified. In any case, WF (d(a)) = I
Z

×
q
(a) and

I = (1 − 1

q
) vol(Γq(n)) =

1

qn−1(q + 1)
· Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1|s=1/2.

Next suppose that q | Nεf
. Then

WΘ,ς(d(a)) = |a|1/2η2(a)IZq (a).

As for WF , we have

WF (d(a)) =

{
ε−1
f,q(a)IZ×

q
(a), if q 6∈ Σ′;

µ−1
2 (a)|a|1/2IZq (a), if q ∈ Σ′ and πf,q ' π(µ1, µ2) with µ2 ramified.

From this we find

I =





(1 − 1
q ) vol(Γq(n)) = 1

qn−1(q+1) · Lq(π̄f , πη̄′ , s)Lq(s, εK)−1|s=1/2, if q ∈ Σ \ Σ′

(1 − 1
q ) vol(Γq(n))(1 − µ−1

2 η2(q)q
−s) = 1

qn−1(q+1) ·
Lq(π̄f ,πη̄′ ,s)Lq(s,εK )−1

1−µ−1
1 η1(q)q−s

|s=1/2, if q ∈ Σ′.

4.6.4. Case IV: q||N , q - dK . In this case, q is split in K i.e. q = qq̄ and K⊗Qq ' Qq×Qq corresponding
to the completions at q and q̄ respectively. We suppose that q and q̄ are chosen such that N⊗Zq = q̄. We
may assume

ξ′q(a, b) =

(
a 0
0 b

)
.

The character η̄′q is identified with (η1, η2). Set jq :=

(
0 1
1 0

)
. Then

ϑ((a, b)jq) = IZq (a)(IqZq − 1

q
IZq )(b),

and

ς(a, b) =

{
IZq (a)IZq (b), if q - Nεf

;
IZq (a)IZ×

q
(b)εf,q(b), if q | Nεf

.
.

I =
1

q + 1

(
J(ς, ϑ) + qJ(w, ς̂ , ϑ̂)

)
.

But ϑ(0) = 1 − 1
q and ϑ̂(0) = 0. Hence

I =
1

q + 1
J(ς, ϑ) =

1

q + 1
· (1 − 1

q
) ·
∫
WF (d(a))WΘ,ς (d(a))|a|s−1d×a,

where

WΘ,ς(d(a)) = |a|1/2
∫

Q
×
q

ς(t, at−1)η1(at
−1)η2(t)d

×t.

Suppose q - Nεf
. Then η1 and η2 are unramified and

WΘ,ς(d(a)) = |a|1/2

 ∑

r+s=vq(a)

η1(q)
rη2(q)

s


 IZq (a).

In this case, πf,q is a special representation St(µ) with µ unramified and WF (d(a)) = |a|µ−1(a)IZq (a).
Hence

I =
1

(q + 1)

1 − 1/q

(1 − q−1/2µ−1(q)η1(q)q−s)(1 − q−1/2µ−1(q)η2(q)q−s)
=

1

q + 1
Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1|s=1/2.
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Next suppose q | Nεf
, so that η1 is unramified and η2 is ramified but η2ε

−1
f,q is unramified. Then

WΘ,ς(d(a)) = |a|1/2η2(a).
In this case, πf,q is a ramified principal series representation π(µ1, µ2) with say µ1 unramified and µ2

ramified. Since WF (d(a)) = |a|1/2µ−1
2 (a)IZq (a), we get

I =
1

(q + 1)

1 − 1/q

1 − µ−1
2 (q)η2(q)q−s

=
1

q + 1
Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1|s=1/2.

4.6.5. Case V: q||N , and q | dK . Then n = 1. Recall that we have assumed q odd in this case. Let
$q ∈ Kq := K ⊗Qq be such that Πq := $2

q is a uniformizer in Zq . We may assume

ξ′q($q) =

(
0 1

Πq 0

)
.

Set jq :=

(
1 0
0 −1

)
. First we suppose we are in

Subcase Va: q - Nεf
, i.e., q ∈ S(f). Then ϕq = ς ⊗ ϑ where

ς(a+ b$q) = IZq (a)IZq (b), ϑ((c+ d$q)jq) = IZq (c)IZq (d),

so that
ς̂(a+ b$q) = q−1/2IZq (a)I 1

q Zq
(b), ϑ̂((c+ d$q)jq) = q−1/2IZq (c)I 1

q Zq
(d),

I =
1

q + 1

(
J(ς, ϑ) + qJ(w, ς̂ , ϑ̂)

)
.

Let βq denote the matrix

(
1 0
0 Π−1

q

)
. Then

rψ
(
βq , $

−1
q

)
ς(a+ b$q) = IZq (a)I 1

q Zq
(b) = q1/2 ς̂(a+ b$q)

and likewise rψ
(
βq , $

−1
q

)
ϑ = q1/2ϑ̂. Thus

I =
1

q + 1

(
J(ς, ϑ) + η′q($q)J(β−1

q w, ς, ϑ)
)
.

But πf,q is special, say ' St(µ), hence WF (gβ−1
q w) = µ(Πq)WF (g). Hence

I =
(1 − µ(Πq)η′q($q))

q + 1
J(ς, ϑ) =

2

q + 1
J(ς, ϑ),

on account of our assumption that εq(f, χ
−1) = +1 and [Tu2], Prop. 1.7. Since η′q is unramified in this

case, we can write η′q = η1 ◦ NKq/Qq
= η2 ◦ NKq/Qq

where η1 is an unramified character of Q×
q and

η2 = η1 · εK,q. Then WΘ,ς(d(a)) = |a|1/2(η1(a) + η2(a))IZq (a). Since WF (d(a)) = |a|µ−1(a)IZq (a), we find

I =
2

q + 1
· 1

(1 − q−1/2µ−1(q)η1(q)q−s)
=

2

q + 1
· Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1|s=1/2.

Subcase Vb: q | Nεf
. Then

ϕq =
∑

i,j∈Zq /qZq

i6=j

εf,q(i− j) · ςi ⊗ ϑj

where
ςi(a+ b$q) = IqZq+i(a)IZq (b), ϑj((c+ d$q)jq) = IqZq+j(c)IZq (d),

I(ϕq) =
1

q + 1
·

∑

i,j∈Zq /qZq

i6=j

εf,q(i− j)
(
J(ςi, ϑj) + qJ(ς̂i, ϑ̂j)

)
.

Note that ϑ̂j is independent of j. Thus, for any fixed i, the sum
∑

j 6=i εf,q(i − j)J(ς̂i, ϑ̂j) = 0. Also

ϑj(0) = δj0. Consequently,

I(ϕq) =
1

q + 1

∑

i6=0

εf,q(i)J(ςi, ϑ0) =
1

q + 1
J(ς, ϑ0),
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where ς :=
∑

i6=0 εf,q(i)ςi. Now WΘ,ς(d(a)) = εf,q(a)(1 + εK,q(a))IZ×
q
(a). Since πf,q is ramified principal

series of the form π(µ1, µ2) with µ1 unramified and µ2 ramified, we have WF (d(a)) = |a|1/2µ−1
2 (a)IZq (a)

and

I =
1

q + 1
=

1

q + 1
· Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1|s=1/2.

4.6.6. Case VI: q | dK , q - N . Again we may assume

ξ′q($q) =

(
0 1
πq 0

)
.

Set jq :=

(
1 0
0 −1

)
. Then

ϕq =

q−1∑

i=0

ςi ⊗ ϑi,

where

ςi(a+ b$q) = IZq (a)I i
q +Zq

(b), ϑi((a+ b$q)jq) = IZq (a)I i
q +Zq

(b).

Since q - N , we have I =
∑

i J(ςi, ϑi) = J(ς0, ϑ0). Since η′q is unramified in this case, we can write η′q =

η1◦NKq/Qq
= η2◦NKq/Qq

where η1 is an unramified character of Q×
q and η2 = η1 ·εK,q. ThenWΘ,ς0(d(a)) =

|a|1/2(η1(a) + η2(a))IZq (a). If πf,q ' π(µ1, µ2), then WF (d(a)) = |a|1/2 µ
−1(aq)−µ−1

2 (aq)

µ−1
1 (q)−µ−1

2 (q)
IZq (a) and

I =
1

(1 − µ−1
1 (q)η1(q)q−s)(1 − µ−1

2 (q)η1(q)q−s)
= Lq(π̄f , πη̄′ , s)Lq(2s, εK)−1.

4.7. The explicit form of Waldspurger’s formula. We can now state the main result on the absolute
value squared of the period integral Lη,ξ(F

j) defined in equation (4.3.6). We will need the class number

formula L(1, εK) = 2πhK/wK
√
|dK | and the volume of U ′(1):

vol(U ′(1)) = ζ(2)−1 ·
∏

qnq ||N

1

qnq−1(q + 1)
.

Combining these with Cor. 4.26, equation (4.5.4) (with ϕ replaced by ϕ′) and the computations of the
previous section, we obtain:

Theorem 4.28. Suppose cdK is odd and η is a character of K of infinity type (−`, 0) (` = k + 2j) and
finite type (c,N, ε−1

f ). Then

|Lη′,ξ(F j)|2 = C · L(
1

2
, πf × πη̄′ ) = C · L(

1

2
, πf × πη′),

with

(4.7.1) C =
Γ(j + 1)Γ(k + j)wK

√
|dK |=(τ)−`

(4π)k+2j+1 · h2
K · c · 2#S(f) ·

∏

q|c

ζK,q(1).

Since L( 1
2 , πf × πη′) = L(f, χ−1, 0), |Λτ |2=(τ) = vol(Oc) and hc/hK = c

∏
q|c(1 − εK(q)/q), we obtain

Theorem 4.6 by combining Theorem 4.28 and Proposition 4.13.

5. Anticyclotomic p-adic L-functions

5.1. Periods and algebraicity. We will now use Theorem 4.6 of Section 4.1 to deduce algebraicity

properties of the central critical values L(f, χ−1, 0) attached to characters χ ∈ Σ
(2)
cc (N). In order to do

this, recall the dictionary between pairs (L, t) as in Section 4.1 and triples (E, t, ω) consisting of an elliptic
curve over C, a point t on E of order N , and a differential ω ∈ Ω1

E/C. Under this correspondence, the

pair (L, t) corresponds to the triple (C/L, t, 2πidw), where the differential 2πidw arises from the standard
coordinate w on C; in the other direction, the triple (E, t, ω) corresponds to the pair (Λω, t) where 2πiΛω
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is the period lattice attached to the differential ω. Viewing a nearly holomorphic modular form of weight
k + 2j as a function on triples, we can rewrite the expression δjkf(a−1, t) that appears in Theorem 4.6 as

δjkf(a−1, t) = δjkf(C/a−1, t, 2πidw) = δjkf(a ∗ (A0, t, 2πidw)),

where A0 := C/Oc, and we recall that the action of Oc-ideals of norm prime to N on marked elliptic
curves with Γ-level structure of the form (A0, t0, ω0) is the one described in equation (1.4.8) of Section 1.4.

Recall the triple (A, tA, ωA) with EndF (A) = OK that was fixed until now. The curve A0 is the image
of A by an isogeny ϕ0 : A−→A0 of degree c. Let (A0, t0, ω0) be the marked elliptic curve induced from
(A, tA, ωA) via ϕ0, i.e., the unique triple for which

(5.1.1) ϕ0 : (A, tA, ωA)−→(A0, t0, ω0)

is an isogeny of marked elliptic curves with Γ-level structure in the sense of Definition 1.10.

Given a Hecke character χ ∈ Σ
(2)
cc (N) of infinity type (k + j,−j), it will be convenient to set

χj := χNj

for the associated Hecke character of infinity type (k+2j, 0). Following the usual conventions, we will view
χj as a multiplicative function on the fractional Oc-ideals that are prime to Nc. This character satisfies

(5.1.2) χj(xa) = xk+2jεf (x mod N)χj(a),

for all x ∈ K× that are prime to Nc. After fixing the triple (A0, t, 2πidw), with t an (arbitrarily chosen,
but fixed from now on) generator of A0[N], the expression

χ−1
j (a)δjkf(a ∗ (A0, t, 2πidw))

depends only on the class of a in Pic(Oc). (Cf. Lemma 4.5.) We can now restate Theorem 4.6 of Section
4.1 as follows:

Theorem 5.1. Let f be a normalised eigenform in Sk(Γ0(N), εf ) and let χ ∈ Σ
(2)
cc (N) be a Hecke character

of K of infinity type (k + j,−j). Then

(5.1.3) C(f, χ, c)L(f, χ−1, 0) =

∣∣∣∣∣∣

∑

[a]∈Pic(Oc)

χ−1
j (a) · δjkf(a ∗ (A0, t, 2πidw))

∣∣∣∣∣∣

2

,

where the sum is taken over a system of representatives of the elements of Pic(Oc) that are prime to Nc,
and the constant C(f, χ, c) is given in Theorem 4.6.

Note that the sum appearing in the right-hand side of (5.1.3) does depend on the choice of generator
t of A0[N], but only up to multiplication by an N -th root of unity; in particular, its absolute value is
independent of the choice of t that was made.

For the purposes of algebraicity statements, p-adic interpolation, and the applications that are given in
[BDP-cm] and [BDP-ch], it will be useful to have a formula in which the absolute value signs that occur
in Theorem 5.1 are replaced by squares. In order to do this, we will need to examine the behavior of

(5.1.4) J(f, χ) :=
∑

[a]∈Pic(Oc)

χ−1
j (a) · δjkf(a ∗ (A0, t, 2πidw))

under complex conjugation.
The choice of a primitive N -th root of unity ζ and of a square root of −N determines an Atkin-Lehner

involution wN acting on triples (E, t, ω) by the rule

wN (E, t, ω) = (E/〈t〉, t′,
√
−Nω′),

where t′ is the image in E/〈t〉 of any element t′′ ∈ E[N ] satisfying

〈t, t′′〉 = ζ

for the Weil pairing 〈 , 〉, and ω′ is the differential on E′ = E/〈t〉 which pulls back to ω under the natural
projection. It is straightforward to verify that the function wN is an involution on triples, and that it
satisfies the commutation relation

(5.1.5) a ∗ wN (A0, t, 2πidw) = wNa ∗ (A0, Na−1t, 2πidw).
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Recall the decomposition N = NN̄ of N as a product of two cyclic ideals of Oc of norm N . Choose an
integral Oc-ideal b and a nonzero element bN ∈ Oc satisfying

(5.1.6) (b, Nc) = 1, bN = (bN).

The multiplication by bN map identifies the quotient A0[N ]/A0[N] with the submodule A0[N̄] of A0[N ].
Furthermore, the elliptic curve A0 and its differential dw are defined over R. Hence complex conjugation
preserves them, but interchanges A0[N] and A0[N̄]. The pair (b, bN) therefore determines an element t′′

of A0[N ] satisfying

(5.1.7) A0[N ] = (Z/NZ)t + (Z/NZ)t′′, bN t
′′ = t̄.

This element is uniquely determined by bN up to addition of a multiple of t. Therefore the primitive Nth
root of unity

(5.1.8) ζ := 〈t, t′′〉
depends only on bN and not on the choice of t′′ satisfying (5.1.7). Let wN denote the Atkin-Lehner
involution associated to the root of unity ζ. If f is a modular form in Sk(Γ0(N), εf ), recall that fρ is
the form in Sk(Γ0(N), ε̄f ) whose fourier coefficients are the complex conjugates of those of f . If f is a
normalised eigenform and an denotes the eigenvalue of the Hecke operator Tn acting on f , then we have
the relation

(5.1.9) ān = ε−1
f (n)an,

for all n which are relatively prime to N . In particular, the form fρ is also a normalised eigenform and

corresponds to the twist of f by the character ε−1
f . The following lemma is well-known.

Lemma 5.2. Suppose that f ∈ Sk(Γ0(N), εf ) is a newform. Then there exists a complex scalar wf of
norm one satisfying (for all triples (E, t, ω))

fρ(wN (E, t, ω)) = wff(E, t, ω).

Proof. The operator wN satisfies the following commutation relation relative to the Hecke operators:

(5.1.10) TnwN = 〈n〉wNTn, 〈n〉wN = wN 〈n−1〉.
Equations (5.1.9) and (5.1.10) imply that the eigenvalue of Tn acting on wNfρ is equal to an. By multi-
plicity one, it follows that wNfρ is a non-zero scalar multiple of f , i.e., wNfρ = wff , for some wf ∈ C×.
The fact that wN is defined over R, and hence commutes with the action of complex conjugation, implies
also that wNf = w̄ffρ, and therefore |wf |2 = 1 since w2

N = 1. �

It should be noted that the scalar wf is not entirely intrinsic to f , but depends on the choice of N -th
root of unity ζ that was made in (5.1.8) prior to defining the Atkin-Lehner involution wN . Over C, it is

customary to take ζ = e
2πi
N but our choice of ζ may differ.

After these preliminaries, we define a complex scalar of norm one by the rule:

(5.1.11) w(f, χ) := wf · εf (Nb)−1χj(b)(−N)k/2+jb−k−2j
N .

Ostensibly, this scalar depends on the choice of (b, bN ) satisfying (5.1.6), but in fact we have:

Lemma 5.3. The scalar w(f, χ) satisfies the following properties:

(1) It depends only on f and χ and not on the choice of pair (b, bN) satisfying (5.1.6);
(2) It belongs to the finite extension L of K generated by Kf , Kχ, and

√
−N ;

(3) For all σ ∈ Gal(L/K),

w(fσ , χσ) = w(f, χ)σ .

Proof. Properties (2) and (3) follow directly from the definition of w(f, χ). The truth of (1) follows from
Theorem 5.4 below (since none of the terms other than w(f, χ) that appear in (5.1.12) depend on (b, bN))
but it may be helpful to supply an independent, self-contained argument. If the pair (b, bN) is replaced
by the pair (b′, b′N), then

b′ = b(a), b′N = bNa,
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where a is an element of K× which is prime to Nc. The conditions (5.1.7) and (5.1.8) that are required
to be satisfied by bN and b′N imply that a ≡ 1 (mod N̄). The constants w(f, χ) attached to the choices
(b, bN ) and (b′, b′N ) therefore differ by a factor of

εf (aā)
−1χj(a)a

−k−2j = εf (a mod N)−1χj(a)a
−k−2j .

But this factor is equal to 1, by (5.1.2). �

Theorem 5.4. Let f be a normalised eigenform in Sk(Γ0(N), εf ) and let χ ∈ Σ
(2)
cc (N) be a Hecke character

of K of infinity type (k + j,−j). Then

(5.1.12) C(f, χ, c)L(f, χ−1, 0) = w(f, χ)


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · δjkf(a ∗ (A0, t, 2πidw))




2

,

where the constants C(f, χ, c) and w(f, χ) are described in Theorem 4.6 and in equation (5.1.11) respec-
tively.

Proof. Theorem 5.4 is proved by computing the effect of complex conjugation on the quantity J(f, χ) of
equation (5.1.4). Observe that

(1) Since (A0, 2πidw) = (A0, 2πidw) and bN satisfies (5.1.7) and (5.1.8), the action of complex conju-
gation on (A0, t, 2πidw) is given by

(A0, t, 2πidw) = (A0, t̄, 2πidw) = b ∗ wN (A0, t, bN
√
−N−1

2πidw).

(2) The action of complex conjugation on χ−1
j (a) is given by

χ−1
j (a) = εf (Na)χ−1

j (ā).

Hence we have

χ−1
j (a)δjkf(a ∗ (A0, t, 2πidw)) = εf (Na)χ−1

j (ā)δjkfρ(ā ∗ (A0, t̄, 2πidw))

= εf (Na)χ−1
j (ā)δjkfρ(āb ∗ wN (A0, t, bN

√
−N−1

2πidw))(5.1.13)

= (−N)k/2+jb−k−2j
N εf (Na)χ−1

j (ā) · δjkfρ(āb ∗ wN (A0, t, 2πidw)).

But now, by (5.1.5), we have:

δjkfρ(āb ∗ wN (A0, t, 2πidw)) = δjkfρ(wN āb ∗ (A0, (N āb)−1t, 2πidw))

= wfεf (N āb)−1 · δjkf(āb ∗ (A0, t, 2πidw)).(5.1.14)

Combining equations (5.1.13) and (5.1.14), we obtain

χ−1
j (a)δjkf(a ∗ (A0, t, 2πidw))

= wf · (−N)k/2+jb−k−2j
N χj(b)εf (Nb)−1χj(āb)−1δjkf(āb ∗ (A0, t, 2πidw)).

Summing this relation over all classes a ∈ PicOc, we obtain

J(f, χ) = w(f, χ)J(f, χ),

and Theorem 5.4 follows. �

We now turn to the algebraicity properties of L(f, χ−1, 0). We begin by defining a complex period
attached to K. For this, we observe that the complex elliptic curve A0 has endomorphism ring equal to
the order Oc of conductor c, and therefore is defined over a subfield Hc of C which is isomorphic to the
ring class field of K of conductor c. The choice of the differential ω0 ∈ Ω1(A0/Hc) determined by (5.1.1)
determines a complex period Ω, defined as the non-zero complex scalar satisfying

(5.1.15) ω0 = Ω · 2πidw,
where w is the standard complex coordinate on A0(C) = C/Oc.

Theorem 5.5 below asserts that the ratios w−1(f, χ)C(f, χ, c)L(f, χ−1, 0)/Ω2(k+2j) are algebraic num-
bers. In order to make a more precise claim about the fields of definition, we remark that the point t0
belongs (by assumption) to the N-torsion subgroup of A0, which is defined over Hc. Let H ′

c be the abelian
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extension of Hc over which the individual N-torsion points of A0 are defined, so that in particular the pair
(A0, t0) is defined over H ′

c. The Galois group of Gal(H ′
c/Hc) is canonically identified with a subgroup of

(Z/NZ)× via its faithful action on A0[N]. Let H̃c ⊂ H ′
c be the subfield which is fixed by ker(εf ). Let

F ⊂ C be the finite extension of K generated by H̃c, by the values of the Hecke character χ on A×
K,f , and

by the Fourier coefficients of f . We can now state Shimura’s algebraicity theorem on the special values
L(f, χ−1, 0) in a precise form.

Theorem 5.5. For all χ ∈ Σ
(2)
cc (N) of infinity type (k + j,−j), the quantity

Lalg(f, χ
−1, 0) := w(f, χ)−1C(f, χ, c) · L(f, χ−1, 0)/Ω2(k+2j)

belongs to F .

Proof. By Theorem 5.4,

w(f, χ)−1C(f, χ, c)L(f, χ−1, 0) =


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · δjkf(a ∗ (A0, t0, 2πidw))




2

=


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · δjkf(a ∗ (A0, t0,Ω

−1ω0))




2

= Ω2(k+2j)


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · δjkf(a ∗ (A0, t0, ω0))




2

.

It follows from Lemma 1.5 that

(5.1.16) Lalg(f, χ
−1, 0) =


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · Θj

Hodgef(a ∗ (A0, t0, ω0))




2

.

Part 1 of Proposition 1.12 implies that the terms Θj
Hodgef(a ∗ (A0, t0, ω0)) belong to F . Theorem 5.5

follows. �

Remark 5.6. The datum of Oc determines the elliptic curve A0/Hc together with the embedding of Hc

into C. Both sides of (5.1.16) depend on the further choice of a regular differential ω0 on A0/Hc which
was determined by our choice of ωA. Note that a change in ωA (or ω0) affects both sides of (5.1.16) in the
same way.

5.2. p-adic interpolation. Let p be a rational prime which splits in K/Q, and fix a prime p of K above
p. Extending the associated embedding of K into Qp to an embedding ιp : F−→Cp. The special values
Lalg(f, χ

−1, 0) can be viewed, through the embedding ιp, as p-adic numbers. The following theorem gives
a p-adic formula for these special values, in terms of the Atkin-Serre operator θ on p-adic modular forms.

Theorem 5.7. For all χ ∈ Σ
(2)
cc (N) of infinity type (k + j,−j),

Lalg(f, χ
−1, 0) =


 ∑

a∈Pic(Oc)

χ−1
j (a)(θjf)(a ∗ (A0, t0, ω0))




2

.

Proof. The fact that p is split in K implies that the elliptic curve ιp(A0) has good ordinary reduction. By
part 3 of Proposition 1.12, combined with (5.1.16), we have:

(5.2.1) Lalg(f, χ
−1, 0) =


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · Θj

Frobf(a ∗ (A0, t0, ω0))




2

.

Theorem 5.7 now follows from Lemma 1.7. �
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Although the set Σ
(2)
cc (N) is infinite, its elements take values in a finite extension of K. By possibly

enlarging the finite extension F of K that appears in the statement of Theorem 5.5, we will assume that

it contains the values χ(a) as χ ranges over all characters in Σ
(2)
cc (N) and a ranges over A×

K,f .

Let A′
K,f denote the subgroup of A×

K,f of idèles which are prime to p, and choose any prime pF of F

above p. We observe that the values χ(a) as a ranges over A′
K,f are integral at pF , i.e., they belong to the

ring of integers OF,pF of the completion FpF . It follows that Σ
(2)
cc (N) is naturally embedded in the space

F(A′
K,f ,OF,pF ) of OF,pF -valued functions on A′

K,f . We equip Σ
(2)
cc (N) with the topology induced by the

compact open topology on this function space, i.e., the topology of uniform convergence on A′
K,f relative

to the p-adic topology on OF,p. Let Σ̂cc(N) be the completion of Σ
(2)
cc (N) relative to this topology.

To p-adically interpolate the values Lalg(f, χ
−1, 0) we need to modify them by dropping a suitable

Euler factor at p, and multiplying by a suitable p-adic period. We begin by attaching to A0 a p-adic
period Ωp as follows. Let A0 be a good integral model of A0 over OCp . The formal completion Â0 of

A0 along its identity section is (non-canonically) isomorphic to Ĝm over OCp ; fix such an isomorphism

ι : Â0−→Ĝm. (This amounts to fixing an isomorphism between the p-divisible groups µp∞ and A0[p
∞],

which is determined up to a scalar in Z×
p .) Fixing the isomorphism ι once and for all, we define Ωp ∈ C×

p

by the rule, analogous to (5.1.15)

(5.2.2) ω0 = Ωp · ωcan, where ωcan := ι∗
du

u
,

and u denotes the standard coordinate on Ĝm.

For all χ ∈ Σ
(2)
cc (N) of infinity type (k + j,−j), we set

Lp(f, χ) : = Ω2(k+2j)
p (1 − χ−1(p̄)ap + χ−2(p̄)εf (p)p

k−1)2Lalg(f, χ
−1, 0)(5.2.3)

= Ω2(k+2j)
p (1 − αpχ

−1(p̄))2(1 − βpχ
−1(p̄))2Lalg(f, χ

−1, 0),(5.2.4)

where αp, βp denote the parameters of f at p described at the beginning of Section 4.1.

Remark 5.8. Note that both Lalg(f, χ) and Ωp depend on the choice of the differential ωA on A, but

that the ratio Lalg(f, χ)/Ω
2(k+2j)
p does not depend on this choice, once an isomorphism ι between Â0 and

Ĝm has been chosen. Replacing ι by a Z×
p –multiple aι has the effect of multiplying Lp(f, χ) by a2(k+2j).

Recall the form f [ = f |(V U−UV ) that was introduced in equation (3.8.4).

Theorem 5.9. Assume that p is split in K/Q. For all χ ∈ Σ
(2)
cc (N) of infinity type (k + j,−j) (with

j ≥ 0), we have

Lp(f, χ) =


 ∑

[a]∈Pic(Oc)

χ−1
j (a) · θjf [(a ∗ (A0, t, ωcan))




2

.

Proof. Set

Sχ :=
∑

[a]

χ−1
j (a) · θjf(a ∗ (A0, t0, ω0)),

and

S[χ :=
∑

[a]

χ−1
j (a) · θjf [(a ∗ (A0, t0, ω0)).

Now pjap · θjf = θjf |Tp = θjf |(U + εf (p)p
k+2j−1V ) and

(θjf |V )(a ∗ (A0, t0, ω0)) = (θjf)(p̄−1a ∗ (A0, t0, ω0)).

Thus

θjf [(a ∗ (A0, t0, ω0)) = {θjf |(V U − UV )}(a ∗ (A0, t0, ω0))

= {θjf |(1 − TpV + εf (p)p
k+2j−1V 2)}(a ∗ (A0, t0, ω0))

= θjf(a ∗ (A0, t0, ω0)) − pjap · θjf(p̄−1a ∗ (A0, t0, ω0)) +

εf (p)p
k+2j−1θjf(p̄−2a ∗ (A0, t0, ω0)).
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Multiplying this equation by χ−1
j (a) and summing over all the classes [a] ∈ Pic(Oc) gives the identity

S[χ =
{
1 − apχ

−1(p̄) + εf (p)p
k−1χ−1(p̄2)

}
Sχ.

The result now follows from Theorem 5.7 combined with the homogeneity properties of the p-adic modular
form θjf [ of weight k + 2j. �

Proposition 5.10. The function χ 7→ Lp(f, χ) extends to a continuous function on Σ̂cc(N).

Proof. Let χ1, χ2 ∈ Σ
(2)
cc (N) be two elements (of infinity type (k + j1,−j1) and (k + j2,−j2) respectively)

satisfying

χ1(a) ≡ χ2(a) (mod pM ), for all a ∈ A′
K,f .

By evaluating at idèles in A′
K,f that are congruent to 1 modulo N, we see that necessarily

j1 ≡ j2 (mod (p− 1)pM−1).

Now we observe that, since

θjf [(Tate(q), t, ωcan) =
∑

(p,n)=1

njanq
n,

the q-expansions of θj1f and θj2f are congruent modulo pM , and therefore agree modulo pM . If E is any
ordinary elliptic curve over OFp, and ωcan is any canonical differential on it as in (5.2.2), it follows that

θj1f [(E, t, ωcan) ≡ θj2f [(E, t, ωcan) (mod pM ).

(Cf. for example Sec.I.3.5 of [Gou].) It follows from the formula for Lp(f, χ) given in Theorem 5.9 that

Lp(f, χ1) ≡ Lp(f, χ2) (mod pM ).

The proposition follows. �

The function Lp(f, ·) on Σ̂cc(N) is a type of anticyclotomic p-adic L-function attached to f and K (and
the triple (c,N, εf )).

Remark 5.11. The p-adic L-functions attached to Rankin convolutions of p-adic families of modular
forms have been constructed in great generality by Hida [Hi1]. In fact, our p-adic L-function Lp(f, ·) is the

restriction of a more general “two-variable p-adic L-function” defined over Σ̂(N), the existence of which
can be deduced from the main result of [Hi1].

Note that one obtains from Hida’s work two different p-adic L-functions by interpolating the L-values
corresponding to critical characters in Σ(1)(N) and Σ(2)(N) respectively. The p-adic L-function obtained
by interpolating L(f, χ−1, 0) with χ ∈ Σ(1)(N) has received much attention in the literature; for instance,
it is studied in the article [PR1] of Perrin-Riou (for k = 2) and in [Ne2] (for k even and ≥ 2.) Our focus
in this article has been instead on the p-adic L-function obtained by p-adic interpolation of the special
values corresponding to (central critical characters) χ ∈ Σ(2)(N).

5.3. The main theorem. For the convenience of the reader, we collect the notations and the running
assumptions that were made in the previous sections and are in force in the statement of Theorem 5.13
below.

Assumption 5.12. (1) The form f is a normalised cuspidal eigenform in Sk(Γ0(N), εf ).
(2) c is an odd rational integer prime to NdK .
(3) The quadratic imaginary field K has odd discriminant and satisfies the Heegner hypothesis stated

in Assumption 1.9, so that the order Oc of K of conductor c admits a cyclic ideal N of norm N .

(4) The sets Σ
(1)
cc (N) and Σ

(2)
cc (N) consist of characters χ of finite type (c,N, εf ) and satisfying

εq(f, χ
−1) = +1 for all finite primes q, as described in Defn. 4.4 and the subsequent paragraph.

(5) The rational prime (p) = pp̄ is split in K/Q and prime to Nc.

A character χ ∈ Σ
(1)
cc (N) can be approximated by elements of Σ

(2)
cc (N) (relative to the topology on

Σcc(N) discussed in the previous section) as follows. Let h denote the class number of K, and let ψt be
the Hecke character of K of infinity type (th,−th) and trivial central character defined by

ψt(a) = at/āt, where (a) = ah.
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If t is a sufficiently large positive integer, then the Hecke character χψt belongs to Σ
(2)
cc (N), and it converges

to χ as t converges to 0 in Z/(p− 1)Z × Zp. This fact allows us to view Σ
(1)
cc (N) as a subset of Σ̂cc(N).

The following Theorem, which relates the value of Lp(f, χ) at χ ∈ Σ
(1)
cc (N) (which lies outside the range

of interpolation for the p-adic L-function) to Abel-Jacobi images of generalized Heegner cycles, is the main
result of this paper.

Theorem 5.13. Suppose that χ ∈ Σ
(1)
cc (N) is a character of infinity type (k−1− j, 1+ j), with 0 ≤ j ≤ r.

Then

Lp(f, χ)

Ω
2(r−2j)
p

=
(
1 − χ−1(p̄)ap + χ−2(p̄)εf (p)p

k−1
)2 ×


c

−j

j!

∑

[a]∈Pic(Oc)

χ−1(a)N(a) · AJF (∆ϕaϕ0)(ωf ∧ ωjAη
r−j
A )




2

.

Proof. The proof of Proposition 5.10 shows that the formula in Theorem 5.9 for Lp(f, χ) at χ ∈ Σ
(2)
cc (N)

extends to χ ∈ Σ
(1)
cc (N) in the obvious way, and gives

Lp(f, χ) =


 ∑

[a]∈Pic(Oc)

χ−1
−1−j(a) · θ−1−jf [(a ∗ (A0, t0, ωcan))




2

.

Therefore, by (5.2.2) and the fact that θ−1−jf [ is a p-adic modular form of weight r − 2j, we have

Lp(f, χ)

Ω
2(r−2j)
p

=


 ∑

[a]∈Pic(Oc)

χ−1
−1−j(a) · θ−1−jf [(a ∗ (A0, t0, ω0))




2

.

By Proposition 3.24,

(5.3.1)
Lp(f, χ)

Ω
2(r−2j)
p

=


 1

j!

∑

[a]∈Pic(Oc)

χ−1
−1−j(a) ·G[j(a ∗ (A0, t0, ω0))




2

.

In view of Proposition 3.24 and of the relation θjf |Tp = pjap · θjf , for j ≥ 0, one sees by p-adic approxi-
mation that

TpGj = p−1−japGj .

Then, by Lemma 3.23,

G[j(a ∗ (A0, t0, ω0)) = Gj(a ∗ (A0, t0, ω0)) −
εf (p)ap
pr−j+1

Gj(pa ∗ (A0, t0, ω0)) +
εf (p)

pr−2j+1
G(p2a ∗ (A0, t0, ω0)).

Substituting this expression for G[j(a ∗ (A0, t0, ω0) into (5.3.1) and rewriting the second and the third

summands by substituting a for ap and ap2 respectively, we obtain

Lp(f, χ)

Ω
2(r−2j)
p

=

(
1 − χ−1−j(p)apεf (p)

pr−j+1
+
χ2
−1−j(p)εf (p)

pr−2j+1

)2

×(5.3.2)


 1

j!

∑

[a]∈Pic(Oc)

χ−1
−1−j(a) ·Gj(a ∗ (A0, t0, ω0))




2

.

Using the fact that

χ−1−j(p) = χ(p)p−1−j = εf (p)
−1pr+1−jχ(p̄)−1,

the Euler factor that appears in (5.3.2) can be rewritten as

Ep(f, χ) :=
(
1 − χ−1(p̄)ap + χ−2(p̄)εf (p)p

k−1
)2
.

Now, applying Lemma 3.22 to the isogeny

ϕaϕ0 : (A, tA, ωA)−→a ∗ (A0, t0, ω0)
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of degree cN(a), and using the fact that χ−1
−1−j(a) = χ−1(a)N(a)1+j , we find

Lp(f, χ)

Ω
2(r−2j)
p

= Ep(f, χ)


c

−j

j!

∑

[a]∈Pic(Oc)

χ−1(a)N(a) · AJF (∆ϕaϕ0)(ωf ∧ ωjAη
r−j
A )




2

,

as was to be shown. �

Appendix A. Kuga-Sato schemes

by Brian Conrad

The aim of this appendix is to explain the relative version of Deligne’s method for constructing a smooth
projective compactification of the fiber powers Ek of the universal elliptic curve E with “enough level-N
structure” over an open modular curve Y over Z[1/N ] (for applications in this paper with Y = Y1(N)).
This was originally developed in 1968 for applications over finite fields F of characteristic not dividing N
(see [De2, Lemma 5.5]), and later found uses for X(N) over Z[1/N ] (see [Schol2, 4.2.1]). For applications
over such fields F (e.g., Q or finite fields) one can compactify EF → YF over the associated smooth
complete modular curve XF by using the technique of minimal regular proper models of relative smooth
proper curves over a Dedekind base (such as EF → YF relative to the Dedekind base XF ), together with
their relation to Néron models of elliptic curves, and then try to explicitly resolve singularities of fiber
powers over XF of that minimal regular proper model. Thus, when working over such a field F there is
no need for the concept of a generalized elliptic curve (which was introduced only in 1972 in the work of
Deligne and Rapoport [DR], building on Artin’s theory of algebraic spaces).

The viewpoint of minimal regular proper models is insufficient in the relative situation over Z[1/N ]
since now X is 2-dimensional rather than Dedekind. In such settings we use the proper flat universal
generalized elliptic curve E → X over Z[1/N ] (for a modular curve X classifying rigid fiberwise ample
level-N structures on generalized elliptic curves over Z[1/N ]-schemes) as a compactification of E over
Z[1/N ]. Such E are smooth over Z[1/N ] (see Lemma A.2) but not smooth over X , so for k ≥ 2 the

compactification E
k

of Ek is not smooth over Z[1/N ] (as we will see explicitly below). In Scholl’s work
with X(N) over Z[1/N ] in [Schol2, 4.2.1], for each k ≥ 2 he used Deligne’s method to construct a smooth

projective Z[1/N ]-scheme equipped with a proper birational map onto the fiber power E
k

overX such that
the map is an isomorphism over Ek and can be described étale-locally near the fibers over the cuspidal
locus on X . The method is a series of successive blow-ups, organized in terms of the number of coordinates

of a geometric point ξ = (ξ1, . . . , ξk) ∈ E
k

for which ξi is singular in its geometric fiber for E → X .
The hard part is to give an intrinsic description of what to blow-up at each step; once we have defined

an intrinsic algorithm, we can carry out computations étale-locally to see that we reach a smooth Z[1/N ]-
scheme. These étale-local computations are sketched over Q in Scholl’s work (see [Schol2, 2.0.1–2.1.1])
but the details on how to carry it out over Z[1/N ] are omitted there (and the intrinsic definitions of what

the pieces correspond to in terms of E
k

is not given). Thus, at the request of the referee, in this appendix
we explain the procedure in more detail over Z[1/N ].

We shall axiomatize the calculation so that it applies to “all” modular curves (with enough étale level
structure). The intrinsic nature of the method also makes it applicable to cases in which the modular
curve only exists as a Deligne–Mumford stack (such as X0(N) over Z[1/N ] for any N ≥ 1), but we leave
that generalization to the interested reader. The “étale” nature of the level structure (i.e., using N -torsion
level structures over Z[1/N ]-schemes) is essential to the method because only in such cases can certain
deformation-theoretic problems with generalized elliptic curves be reduced to the case of a Tate curve with
geometrically irreducible fibers; see [DR, III, 1.4.2; VII, 2.1].

Fix an integerN ≥ 1, and let X be a modular curve over Z[1/N ] classifying a rigid fiberwise ample level-
N structure on generalized elliptic curves over Z[1/N ]-schemes (e.g., Γ1(N)-structures with N ≥ 5, or full
level-N structures with N ≥ 3). Here, by “rigid” we mean that generalized elliptic curves equipped with
such a level structure admit no nontrivial automorphisms. The work of Deligne and Rapoport provides
such modular curvesX as smooth proper Z[1/N ]-schemes with fibers of pure dimension 1, equipped with a
universal generalized elliptic curve E → X . (Even though such an X is initially built only as an algebraic
space, it is a scheme. This can be seen in a couple of ways, perhaps the most concrete being that the
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j-map from X to P1
Z[1/N ] is quasi-finite, and any algebraic space that is separated and quasi-finite over a

noetherian scheme is a scheme [K, II, 6.16].)

Remark A.1. For the reader who is interested in schemes being projective rather than just proper, we
make some side remarks now (not to be used in what follows). The fiberwise ample level structure on E

over X defines a closed subgroup scheme of the open X-smooth locus E
sm

that is finite étale over X and
so is closed in E with ideal sheaf in OE that is a line bundle on E whose inverse is fiberwise ample over X .
But a fiberwise ample line bundle on a proper finitely presented scheme over a base S is relatively ample
over S [EGA, IV3, 9.6.4], so the projectivity and flatness of X over Z[1/N ] implies that E is projective

and flat over Z[1/N ]. Likewise, the fiber powers E
k

over X are projective and flat over Z[1/N ] for all

k ≥ 1. In particular, any scheme obtained from E
k

by a composition of successive blow-ups is projective

over Z[1/N ]. This ensures that the Z[1/N ]-smooth compactification of E
k

built below is projective over
Z[1/N ].

We now recall that for any generalized elliptic curve f : E → S over a scheme, Deligne and Rapoport
introduced canonical closed subscheme structures S∞ ⊂ S and Esing ⊂ E respectively supported at the set
of s ∈ S such that Es is not k(s)-smooth and at the set of ξ ∈ E at which the proper fppf map E → S is not
smooth. Explicitly, Esing is defined by the annihilator ideal of Ω2

E/S (the first Fitting ideal of Ω1
E/S), and

S∞ is defined to be the scheme-theoretic image of E sing in S. The formation of both of these commutes
with any base change on S (though this has some hidden subtleties for S∞; see [Con, 2.1.11, 2.1.12]). We
call these closed subschemes the “loci of non-smoothness” in S and E for f . Their compatibility with base
change on S enables us to compute completions along these loci via deformation theory.

Let X∞ ⊂ X be the locus of non-smoothness for the universal generalized elliptic curve E → X .
Computations with the deformation theory of generalized elliptic curves equipped with ample level-N
structure over Z[1/N ] show that X∞ is (finite) étale over Z[1/N ] (see [DR, III, 1.2(iv); IV, 3.4(ii)]). The

structure of E around E
sing

can also be understood via deformation theory, leading to:

Lemma A.2. The scheme E is smooth over Z[1/N ].

Proof. The problem is to prove smoothness at non-smooth points ξ in fibers over points x ∈ X∞, and
since E is fppf over Z[1/N ] it suffices to work on geometric fibers over Spec(Z[1/N ]). In other words, for
an algebraically closed field F of characteristic not dividing N and the universal generalized elliptic curve
EF → XF , we want to prove that the surface EF is smooth at points ξ ∈ E(F ) that are non-smooth
in the fiber over x ∈ X∞(F ). It is equivalent to prove the formal smoothness of O∧

EF ,ξ
over F . But

O∧
EF ,ξ

coincides with the completed local ring at ξ on the formal completion of EF → XF along x. This

latter formal completion is the universal deformation of (EF )x equipped with its ample level-N structure,
and O∧

XF ,x
is its universal deformation ring. Since char(F ) - N , by [DR, III, 1.2(iv); VII, (1.1.1), 1.11,

2.1] there is an F -isomorphism between the universal deformation ring O∧
XF ,x

and F [[q]] such that the

completed local ring at ξ is F [[q]]-isomorphic to F [[q, u, v]]/(uv − q) = F [[u, v]]. �

Now we shall prove a general resolution result for generalized elliptic curves over a family of smooth
curves:

Theorem A.3. Let S be a scheme, X → S a smooth map with all fibers of pure dimension 1, and
f : E → X a generalized elliptic curve such that:

(1) the locus of non-smoothness X∞ ⊂ X for f is étale over S,
(2) the scheme E is S-smooth.

For each k ≥ 1, let E
k

denote the kth fiber power over X.

There exists a smooth S-scheme Zk and a proper birational map Zk → E
k

that is an isomorphism over

Ek. The map Zk → E
k

is a composition of finitely many blow-ups.

We emphasize that although E is assumed to be S-smooth, in practice it is not X-smooth, so the closed

subscheme E
sing

(which encodes non-smoothness overX) is generally not empty. The proof of the theorem
consists of giving an explicit definition of the blow-up process. If k = 1 then we may take Z1 = E by
hypothesis (2), so we now assume k ≥ 2.
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By hypothesis (1), the pair (X,X∞) looks étale-locally like (A1
R, 0). Thus, the étale-local structure of

relative semi-stable curves [FK, III, 2.7] and the “homogeneity” of E around E
sing

(via translation by

E
sm

) implies that Zariski-locally over an affine open SpecR in S the pair (E,E
sing

) has a common étale
neighborhood with

(Spec(R[q, u, v]/(uv − q)), {q = u = v = 0})
(see the proof of [DR, II, 1.16]). Up to permutation of coordinates, a geometric point ξ = (ξ1, . . . , ξk) ∈ E

k

that is non-smooth over S has ξ1, . . . , ξr non-smooth in E over X and ξr+1, . . . , ξk smooth in E over X

for some r ≥ 2 (the case r = 1 being ruled out by the hypothesis that E is S-smooth). Thus, (E
k
, ξ) has

a common étale neighborhood with the spectrum of

(A.0.3) R[q,X1, Y1, . . . , Xr, Yr, Tr+1, . . . , Tk]/
(
X1Y1 = · · · = XrYr = q

)
'

R[X1, Y1, . . . , Xr, Yr, Tr+1, . . . , Tk]/
(
X1Y1 = · · · = XrYr

)
.

Of course, we have an analogous ring for any permutation of the ξi’s.

Let F
k

denote the k-fold fiber product of E over X∞. We define a stratification of F
k
↪→ E

k
by closed

subschemes
F
k

= F kk ) F kk−1 ) · · · ) F k0 ⊇ F k−1 = ∅
where, for 0 ≤ r ≤ k, F kr ⊆ F

k
is the scheme-theoretic union of the closed subschemes defined by requiring

at least k − r factors to lie in E
sing

. For example, working étale locally over E, we see that F kk−2 is

supported at precisely the closed non-smooth locus for the fppf map E
k → S.

Define Ek〈0〉 = E
k

and F ki 〈0〉 = F ki for 0 ≤ i ≤ k. For 1 ≤ r ≤ k − 1, we recursively define
Ek〈r〉 = BlFk

r−1〈r−1〉

(
Ek〈r − 1〉

)
, and we let F ki 〈r〉 be the proper transform in Ek〈r〉 of F ki 〈r − 1〉 for

r ≤ i ≤ k − 1. (Equivalently, F ki 〈r〉 is the blow-up of F ki 〈r − 1〉 along F kr−1〈r − 1〉.)
We claim several properties:

(i) Ek〈r〉 and all F ki 〈r〉 are S-flat,
(ii) F kr 〈r〉 is contained in the closed locus where the S-flat Ek〈r〉 is non-smooth over S for all 0 ≤ r ≤

k − 2 (so the map Ek〈k − 1〉 → Ek〈0〉 = E
k

is an isomorphism over the S-smooth locus of E
k
,

which contains E
k
),

(iii) Ek〈k − 1〉 is S-smooth,
(iv) the formation of these blow-ups and strict transforms commutes with any base change on S (via

the evident base change morphisms).

To verify these claims we may work étale-locally over a non-smooth point of E
k

over affine open SpecR ⊂ S,

which amounts to replacing E
k

with

Ẽm〈0〉 = R[X1, Y1, . . . , Xm, Ym, Tm+1, . . . , Tk]/
(
X1Y1 = · · · = XmYm

)
,

where 2 ≤ m ≤ k.
We define F̃mi 〈0〉 to be the R-flat locus in Ẽm〈0〉 where m − i pairs (Xj , Yj) vanish. Using inductive

definitions analogous to those above, we define Ẽm〈r〉 and F̃mi 〈r〉 (with r ≤ i ≤ m− 1) for 0 ≤ r ≤ m− 1.
We can replace the above claims with analogues in this new setting, so we aim to prove:

• F̃mi 〈r〉 and Ẽm〈r〉 are R-flat and their formation commutes with base change on R;

• F̃mr 〈r〉 is contained in the closed non-smooth locus for Ẽm〈r〉 over R for all 0 ≤ r ≤ m− 2 (so the
blow-up steps are always isomorphisms over the smooth locus of the previous stage);

• Ẽm〈m− 1〉 is R-smooth.

This will clearly finish the proof. The Tm+1, . . . , Tk just get “carried along”, so they can (and will) now
be dropped.

It is easy to see that Ẽm〈1〉 has an open cover by 2m-copies Uj of A1×Ẽm−1〈0〉 such that Uj∩ F̃mi 〈1〉 =

A1 × F̃m−1
i−1 〈0〉 for 1 ≤ i ≤ m− 1. Here, we define Ẽ1〈0〉 = SpecR[X1, Y1]/(X1Y1) and F̃ 1

0 = (0, 0).
By induction on r for each m (with the case r = 0 always trivial and the case r = 1 just settled for all

m) we see that for 0 ≤ r ≤ m− 2 there exists an open cover of Ẽm〈r〉 by copies Vj of Ar × Ẽm−r〈0〉 with

Vj ∩ F̃mi 〈r〉 = Ar × F̃m−r
i−r 〈0〉 for all r ≤ i ≤ m − 1. Thus, F̃mr 〈r〉 is contained in F̃m−r

0 , which in turn is
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contained in the closed locus of non-smooth points in Ẽm−r〈0〉 over R since m−r ≥ 2. These Zariski-local
descriptions yield the desired R-flatness and compatibility with base change on R.

Taking r = m− 2 at the end of the induction, Ẽm〈m− 2〉 is covered by open subschemes R-isomorphic

to Am−2 × Ẽ2〈0〉. Since

Ẽ2〈0〉 = SpecR[X1, Y1, X2, Y2]/(X1Y1 −X2Y2)

with F̃ 2
0 〈0〉 equal to the origin over R, so it remains to note that the R-scheme Bl(0)(Ẽ

2〈0〉) is covered by

copies of A3.
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