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INTRODUCTION

This article studies a distinguished collection of algebraic cycles on varieties which are fibered over
modular curves. The cycles in question generalise the Heegner cycles on Kuga-Sato varieties that are
studied in [Sch], [Ne2] and [Zh], and will henceforth be referred to as generalised Heegner cycles. The
main result (Theorem 5.13 of Chapter 5.3) is a p-adic analogue of the Gross-Zagier formula which relates
the images of generalised Heegner cycles under a p-adic Abel-Jacobi map to the special values of certain
p-adic Rankin L-series at critical points that lie outside the range of p-adic interpolation. Even in the
0-dimensional limit case where generalised Heegner cycles are nothing but Heegner divisors on modular
curves, this analogue differs from the p-adic Gross-Zagier formula proved in [PR1], and provides a concrete
instance of the p-adic Beilinson conjectures of [PR2], [PR3]. It can also be viewed as the direct analogue
of Leopoldt’s evaluation at s = 1 of the classical p-adic L-function attached to an even Dirichlet character
in terms of p-adic logarithms of cyclotomic units. In this analogy, the Kubota-Leopoldt p-adic L-function
is replaced by the p-adic Rankin L-function attached to a cusp form and a theta series of an imaginary
quadratic field, and the cyclotomic units are replaced by (generalised) Heegner cycles.

Recall that the Kuga-Sato variety W, is a smooth compactification of the r-fold product of the universal
generalised elliptic curve over a modular curve C' = Cr attached to I' = I'; (V). It is naturally fibered over
C, with generic fiber isomorphic to an r-fold product of elliptic curves. The variety Wa, is equipped with
a supply of so-called Heegner cycles (in the Chow group with rational coefficients) of dimension r, which
were introduced in [GZ], §V.4. (See also [Ne2], §II1.3.6, where a more precise definition is given.) These
cycles are supported on fibers above CM points of C' and are defined over abelian extensions of imaginary
quadratic fields. The main theorem of [Zh] relates their heights to the central critical derivatives of Rankin
convolution L-series of cusp forms of weight 2r + 2 with weight one binary theta series attached to finite
order Hecke characters of an imaginary quadratic field. In the case r = 0, where the Heegner cycles are
Heegner points on the modular curve C' = Wy, this is the theorem of Gross and Zagier [GZ]. A p-adic
analogue of these formulae has also been established (in [PR1] for » = 0 and in [Ne2] for general r) in
which the Arakelov height pairing is replaced by a p-adic height pairing and the complex L-series by a
suitable two-variable p-adic L-function.

The present work replaces the Kuga-Sato variety Wa, by the (2r+1)-dimensional variety

X, =W, x A",

where A is a fixed elliptic curve with complex multiplication by the ring of integers of an imaginary
quadratic field K, defined, say, over the Hilbert class field H of K. Like Wj,., the variety X, is fibered
over the modular curve C and is also equipped with an infinite collection of special cycles defined over
abelian extensions of K. These generalised Heegner cycles are naturally indexed by isogenies ¢ : A—A’.
The cycle attached to ¢, denoted A, is supported on the fiber (A")” x A” above a point of C' attached to
A’, and is essentially equal to the r-fold self-product of the graph of (.

Section 2.3 of Chapter 2 defines the cycles A, precisely and establishes some of their basic properties.
In particular, it shows that generalised Heegner cycles are homologically trivial. One can therefore consider
their images under various (étale, p-adic, and also complex) Abel-Jacobi maps defined on homologically
trivial cycles modulo rational equivalence. Moreover, it is observed in Section 2.4 that the classical Heegner
cycles on Wy, attached to the imaginary quadratic field K can be obtained as the images of generalised
Heegner cycles on X5, under a suitable algebraic correspondence. It follows that generalised Heegner cycles
carry at least as much arithmetic information as Heegner cycles on Kuga-Sato varieties. One expects that
they carry substantially more: namely, that their heights should encode the central critical derivatives of
Rankin L-series attached to the convolution of cusp forms of weight k := r + 2 on I' with theta series of
weight < k — 1 attached to certain Hecke characters of K (and not just with those arising from finite order
characters).

Chapter 3 describes the images of generalised Heegner cycles under the p-adic Abel-Jacobi map for a
prime p not dividing N. More precisely, Section 3.1 introduces the étale Abel-Jacobi map

(0.0.1) AT CH (X, )o.q(F)— H (F, HE (X, Q) (r+1))
attached to any field F' containing H, where H'(F, M) denotes the (continuous) group cohomology of

Gr = Gal(F/F) with values in a Gp—module M. (Here and elsewhere, the subscript 0 stands for
homologically trivial and the subscript Q denotes the Chow group with rational coefficients.) As shown in
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Appendix A, the variety X, admits a proper smooth model over Spec Z[%] and hence the image of AJ$
(for F' a finite extension of Q) is contained in the Bloch-Kato subspace H} The comparison theorems
between p-adic étale cohomology and de Rham cohomology then allow us to view (0.0.1) as a map AJp
(called the p-adic Abel-Jacobi map)

(0.0.2) AJp : CH™(X,)0.q(F)— Fil't! HIF (X, /F)V.

Chapter 3 explains how this map can be computed analytically via Coleman’s theory of p-adic integration
of differential forms attached to certain classes in the de Rham cohomology H3n ' (X, /F).

We now describe briefly the anticyclotomic p-adic L-function that is constructed in Chapters 4 and
5. Let Si(I'o(IV),e) denote the space of cusp forms of weight k, level N and character . The quadratic
imaginary field K is said to satisfy the Heegner hypothesis (relative to N) if Ok possesses a cyclic ideal D
of norm N, i.e., an ideal for which

(0.0.3) Ok /M = Z/NZ.

Assume that this hypothesis is satisfied, and fix a normalised newform f € Si(I'g(N),ef). Let x be a
Hecke character of K of infinity type (ji1,j2) with j1 + jo = k and satisfying

(0.0.4) Xlay = ¢ - N*

where N is the usual norm character. This condition implies that the Rankin L-series L(f,x ™!, s) is self-
dual and its functional equation relates its values at s to those at —s, so that 0 is the point of symmetry.
Such x will be called central critical for f.

At the cost of possibly interchanging j; and jo, we will assume that j; > 0. Let X..(91) denote the
set of central critical characters of conductor dividing O and satisfying (0.0.4), as well as the following
auxiliary condition: for all finite primes ¢, the epsilon factor £,(f, x~!) = +1. Given our other hypotheses,
this auxiliary condition is automatic except at those primes ¢ ramified in K, that divide N but do not
divide the conductor of €. (In the text, we allow more generally the conductor of x to divide ¢9t where ¢
is an auxiliary odd rational integer prime to Ndg, where —d is the discriminant of K.) The set X..(91)
can be written as the disjoint union of two subsets:

See(M) = W (M) USP) (M),

where B¢ (M) consists of the characters of infinity type (k—1—j,147) with 0 < j < r, and P (M) consists
of those of infinity type (k + j, —j) with j > 0. When x € 21(3(1;) (M), the sign oo (f, x 1) equals —1, hence
the sign in the functional equation for L(f,x~!,s) is also —1, and therefore the function x — L(f,x~*,0)
vanishes identically on » (M). On the other hand, for y € 2 (M), the sign e (f, x~!) equals +1 whence
the sign in the functional equation for L(f,x~!,s) is +1 as well, and so one expects that the associated
central critical values should be non-zero most of the time.

Chapter 4 is devoted to proving an explicit version of Waldspurger’s formula relating the central L-
values L(f,x~1,0), for x € zﬁ? (M), to period integrals on tori. Such explicit formulae have been studied
by several authors recently, for example [Xue]|, [MW] and more recently [Hi3]. However our approach is
somewhat different in that we always insist that our torus embeddings come from Heegner points and that
the test vectors are of minimal level. The relevant period integrals then reduce to finite sums of values
of (certain non-holomorphic derivatives of) the form f at all conjugates of a CM point, twisted by the
character !, which is a key to providing a link to the p-adic Abel-Jacobi images of generalized Heegner
cycles supported on the same set of conjugate CM points.

Section 5.1 recalls the algebraicity properties of these special values: for all y € 2@ (M),

- L(f,x~*,0
(0.0.5) Lag(f. x71) = C(£,x) x %

is an algebraic number. Here C(f, ) is an explicit, elementary constant and Q is a CM period attached
to K whose value depends on the choice of a regular differential wy on A/H. After fixing an embedding

L Q—>Qp7
the values Laig(f,x™!) attached to y € n® (9 can be viewed as p-adic numbers. Section 5.2 takes up
the question of their p-adic interpolation. As explained in that section, the set E((f;) (M) is endowed with a
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natural p-adic topology, and can be viewed as a dense subset of its completion ECC(‘.TI). Assume that the
rational prime p is split in K/Q, so that «(K) C Q,. Under this assumption, there is a unique prime p of
K above p for which x(p) is a p-adic unit. The main result of Section 5.2 is that, after setting

Ly(f.x) = Q1= X7 (B)ay + 5 (p)x(p) 0" 1) Latg(f x )
for an appropriate p-adic period €, (which also depends on the choice of wya), the assignment x +—
Ly(f,x~") extends to a (necessarily unique) continuous function on ¥..(9), which we refer to as the
anticyclotomic p-adic L-function attached to f and K.

Now, let x be a character in iy (M), having infinity type (kK — 1 — 7,14 j) for some 0 < j <r. While
the classical L-value L(f,x~*,0) vanishes, the character x can be viewed as an element of $c.(9) (lying
outside the range of classical interpolation defining the anticyclotomic p-adic L-function L,(f, x)), and the
special value L,(f, x)—which may be thought of as a p-adic avatar of L’(f, x ™1, 0)—is not forced to vanish
a priori. Our main result relates L,(f, x) to the Abel-Jacobi images of generalised Heegner cycles. For
the sake of illustration, we state the main result under the following simplifying assumptions, postponing
the more general statement to Theorem 5.13 of Chapter 5.3:

(1) The quadratic imaginary field K has class number one and odd discriminant —dx < —3. Let
ek : (Z/dxZ)* —{£1} be the associated odd Dirichlet character, and denote by the same symbol
the quadratic character of (O /v/—dkOk)* induced from the identification of O /v/—dxOk
with Z/dkZ.

(2) The newform f belongs to Sy,(T'o(N),e%). (Note that it is necessary that dy divides N when k is
odd.)

(3) The grossencharacter x € i) (M) is of the form
X(()) = e (@) alts,
for some integer 0 < j <.

In this special setting, our main result is:

Main Theorem. Let A = A; be the generalised Heegner cycle attached to 1 : A— A, viewed as an
element of CH™™(X,)0(Q,)q via v. Then

L(faX) —1/= 92, 1\ 2 1 Do 2
i = (1 By ) (5 Ma @) A )

where Alq, is the p-adic Abel-Jacobi map of (0.0.2), wy is the class in Q"1 (W,) attached to f in Corollary
2.8 of Section 2.1, and wlyn’y 7 is the class in H"(A") defined in (1.4.6) of Section 1.4.

Note that it is a special value and not a derivative of the p-adic L-series that occurs on the analytic side of
this formula, while the algebraic side involves the Abel-Jacobi images of generalised Heegner cycles rather
than their (p-adic) heights. Note also that if w4 is replaced by a nonzero multiple Aw4, then both sides
of the equation above are multiplied by A\2(2/=7).

Those approaching this paper for the first time may find it pedagogically helpful to focus on the simplest
case 7 = j = 0, where f is a newform of weight 2 and y € E((;(l;) (7) is a grossencharacter of infinity
type (1,1). In this case, the Main Theorem above involves the formal group logarithms of points in the
Jacobians of modular curves arising from certain divisors supported on Heegner points. It relates these
p-adic logarithms to the values of the p-adic L-function L,(f,x) at characters of finite order (shifted by
the norm). One thus obtains a new p-adic variant of the Gross-Zagier formula in the “traditional” setting
of Heegner points on modular curves. As a first guide to the somewhat lengthy arguments required to
deal with forms and Hecke characters of general weights and levels, here is a brief outline of the proof of
the Main Theorem in this simplest non-trivial setting, assuming further that K has class number one and
a unit group of order 2, and that x := xq is the trivial character of weight (1,1) sending the (principal)
ideal (@) to its norm c@. This norm character is the specialisation at j = 0 of the sequence x; € @ (N
of grossencharacters of infinity type (1 + j,1 — j) defined by

vi((0)) = al*al .
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Let (5%71 denote the (j — 1)st iterate of the Shimura-Maass differential operator as defined in Sec. 1.2; this
sends weight 2 real analytic modular forms to those of weight 2j. For all j > 1, Theorem 5.5 identifies
the quantity Lai(f, Xj_l) of equation (0.0.5) with (637" f)(Pa)?, where P4 denotes the triple (A, wa,t4)
attached to the elliptic curve A with CM by the maximal order of K, the differential w4 and a suitable
'y (N)-level structure t4 on A. (Here modular forms are viewed as functions on triples as explained in
Section 1.1.) Using the well-known fact that the unit root splitting of the Hodge filtration agrees with
the Hodge decomposition for ordinary CM elliptic curves, Proposition 1.12 identifies (5%71 f)(Pa4) with
(0771 f)(P4), where 6 = qd% is the Atkin-Serre theta operator on p-adic modular forms defined in (1.3.2).

This key identification leads to the p-adic interpolation of the special values Laig(f, Xj_l) described in
Section 5.2, and hence, to the Rankin p-adic L-function L,(f,x;) which arises in the Main Theorem
above. This p-adic L-function satisfies the equality

Ly(f,x;) = (0 ) (PPY2, vj >0,

where f° is the “p-depleted” modular form associated to f defined in (3.8.4), and ij’) = (4,9 wa, ta).
Taking a p-adic limit when j — 0 shows that

Ly(f,x) = (01 f)(PP)2.

One can see (either directly, or by specializing the calculations of Section 3 to the case where r = 0)
that the function =1 f° — a p-adic, and in fact overconvergent, modular form of weight 0 — is the unique
rigid analytic primitive of the exact rigid differential wy» which vanishes at the cusp oo, and its value at

the triple ng ) is an explicit multiple of the formal group logarithm, relative to the differential wy¢, of the
degree zero divisor A; = (A,t4) — (00) on the modular curve C.

We close this introduction by listing a few of the arithmetic applications of Theorem 5.13.

Rubin’s formula. The article [BDP-cm] exploits Theorem 5.13 in the special case where [ is itself a
weight two binary theta series attached to the quadratic imaginary field K to give a new proof of the
main result of [Ru], which relates the values of the Katz p-adic L-function attached to K to the p-adic
logarithms of global points on elliptic curves with complex multiplication by K.

Chow-Heegner points. Because it involves Abel-Jacobi images rather than p-adic heights, Theorem
5.13 is used in [BDP-ch] to study the algebraicity of the certain points on CM elliptic curves arising from
higher dimensional cycles in the Chow groups of certain algebraic varieties whose cohomology realises the
{-adic repreentations attached to theta series of higher (possibly odd) weight. This construction, provides
a basic illustration of the phenomenon of “Chow-Heegner points” arising from the image of algebraic
cycles under Abel-Jacobi maps (both complex and p-adic). The relevance of Theorem 5.13 to the notion
of Chow-Heegner points was in fact the original motivation for the present article, although Theorem 5.13
is considerably more general than the special case exploited in [BDP-ch].

Coniveau and the Bloch-Beilinson conjecture. The article [BDP-co| illustrates how Theorem 5.13
may be used to prove part of the Bloch-Beilinson conjecture for the Rankin-Selberg motives that are
studied in this article. In particular, by verifying that specific values of the p-adic L-function L,(f, x) are
not zero, one can often show that generalised Heegner cycles are not just nonzero in the Chow group but
also nonzero in a certain graded piece for the coniveau filtration on the Chow group, as predicted by a
refined version ([Bl-1], [Bl-2]) of the Bloch-Beilinson conjecture.

Euler systems. Let F' be any global field over which A is defined. For each cuspidal newform f on C of
weight 7 + 2 and each character x as in the previous statement, there is a G p—equivariant projection

Tro t HE TN (X, Qp)(r41)— (VF @ X)(r+1) =1 Vi,

where V; is the Deligne representation attached to f and x is viewed as a one-dimensional p-adic represen-
tation of G in the usual way. Each generalised Heegner cycle A, defined over an appropriate extension
F, D H, gives rise to a global cohomology class:

K 1= wf’X(AJ%; (Ay)) € Hl(Fsav Vi),
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which belongs to a generalised Selmer group Hslel(Fsoa Vr.y) attached to the p-adic Galois representation
Viy. If pis a prime of F, above p and p does not divide the level of I', the discriminant of K, or the
degree of ¢, then the natural image resy (k) of £, in the local cohomology group H'(F, ,, Vy,y) belongs
to the subgroup H(Fy,p, Vy,y) corresponding to cristalline extensions of V;, by Q. The Main Theorem
above relates res, (k) to the values of the p-adic L-function L,(f,x) at points lying outside the range of
classical interpolation. This suggests that the collection {x,} of global cohomology classes, as ¢ ranges
over the isogenies A—A’, should give rise to an Euler system attached to the compatible system V
of p-adic representations of Gr. See Section 2.4 for a discussion of the relation between these cycles and
classical L-series, and [Casl], [Cas2] where the connection between the results of this paper and the theory
of Euler systems obtained by interpolating generalised Heegner cycles in p-adic families is described in
more detail.

Acknowledgements: The authors thank Fabrizio Andreatta and the four anonymous referees for con-
structive criticism which led to significant improvements in the organization and presentation of their
results. In particular, the appendix by Brian Conrad was added after a gap in the literature was brought
to their attention. The authors are also grateful to Brian Conrad for kindly agreeing to supply this
appendix and for pointing out several corrections to a previous version of this work.

1. PRELIMINARIES

1.1. Algebraic modular forms. Let N > 1 be an integer and let I' = T'; (V) be the standard congruence
subgroup of level N:

Ii(N) = {( ch 2 ) € SLo(Z) suchthata—1,d—1, ¢c=0 (mod N)}

We shall begin by recalling the geometric definition of modular forms over a field F' that is given in [Ka2]
and [Hi4].

If R is a ring in which IV is invertible and FE is an elliptic curve over R, we observe that a closed
immersion ¢t : Z/NZ — E of group schemes over Spec R gives rise to a section s : Spec(R)—F of order
N by restriction to the section 1 of Z/NZ.

Definition 1.1. An elliptic curve with I'-level structure over a ring R is a pair (F,t) consisting of

(1) an elliptic curve E over Spec(R);

(2) a closed immersion ¢ : Z/NZ — E of group schemes over Spec R.
A triple (E,t,w) where (E,t) is an elliptic curve with I'-level structure and w € Q}E/R is a global section
of Q% over Spec(R) is called a marked elliptic curve with T-level structure.

The notion of R-isomorphisms between elliptic curves or marked elliptic curves with I'-level structure is
defined in the obvious way. Denote by EI(T', R) the set of isomorphism classes of elliptic curves with

I-level structure over R, and by EI(T', R) the set of isomorphism classes of marked elliptic curves with
I'-level structure.

Definition 1.2. A weakly holomorphic algebraic modular form of weight k on I' defined over a field F
is a rule which to every isomorphism class of triples (E,t,w) € EI(I', R) defined over an F-algebra R
associates an element f(F,t,w) € R satisfying:

(1) (Compatibility with base change). For all F-algebra homomorphisms j : R— R/,
F(B t,w) ®; RY) = j(f(E,t,w)).
(2) (Weight k condition). For all A € R*,
FEt w) = A" f(E,tw).

Let (Tate(q),t, wean) p((q1/4)) be the Tate elliptic curve G,./q%, equipped with some level N structure ¢

defined over F((¢*/%)) (for some d|N) and the canonical differential wean := % over F((q)), where u is

u
the usual parameter on G,,.
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Definition 1.3. An algebraic modular form on T’ over F' is a weakly holomorphic modular form satisfying
f (Tate(q),t,wean) belongs to F[[¢*/?]],  for all t.
If these values belong to ¢'/?F[[¢*/4]], then f is called a cusp form.

We denote by
Si(T, F) C My(T, F) C M}(T,F)

the F-vector spaces of cusp forms, algebraic modular forms, and weakly holomorphic modular forms
respectively on I' over F.
Write

C% = Y1 (N), C = X1(N)=Y1(N)U Zy,
for the usual modular curves over Q associated to I". The cuspidal subscheme Zp is finite over Q. If
N > 3, the group I'; (N) is torsion-free and the curve C? is a fine moduli scheme having a canonical smooth
proper model over Spec(Z[1/N]). It represents the functor on Z[1/N]-algebras which to R associates the
set EIl(T", R) of Definition 1.1. We will not make use of the integral model for now, and will view the

curves C? and C' as defined over some base field F' (of characteristic 0) for the rest of this chapter.
Let 7 : £—C" be the universal elliptic curve with level N structure over C°, and let w := m, Q},‘/CO be

the line bundle of relative differentials on £/C°. A weakly holomorphic modular form f € M ,I(I‘, F) can
be viewed as a global section of the sheaf w* over C°, by setting
(1.1.1) f(E,t) = f(E,t,w)w",

where (E,t) is viewed as a point of CY(R) and w is an arbitrarily chosen generator (locally on Spec R) of
Q}E/R. Note that the expression on the right of (1.1.1) does not depend on the choice of w.

Consider the relative de Rham cohomology sheaf on CV:
Ly :=R'7, (0 — Of — Q};/Co —0).

It is a rank 2 algebraic vector bundle over C° whose fibre at any geometric point = : Spec L—C? is given
by
(L1)z = H&R(Sz)v
with &, := &€ x, Spec L. There is a non-degenerate (Poincaré) pairing
< s > :El X £1—>OCO,
and the Hodge filtration on the fibres corresponds to an exact sequence of coherent sheaves over C°:

0.

(1.1.2) 0—w—Li—w™
The vector bundle £; is also equipped with the canonical integrable Gauss-Manin connection
(1.1.3) V:L1—L1 @ Qo
The Kodaira-Spencer map KS is defined to be the composite

KS:w—L1 ~ L1 ® Qho—w ! @ O,

in which the first and last arrows arise from (1.1.2). This map is an isomorphism of sheaves over C°, and
therefore gives rise to an identification

(1.1.4) 0w 50k, o(wr ®ws) == (w1, Vws).

In addition to the geometric interpretation (1.1.1), it will also be convenient to view modular forms
fe M:H(l—‘, F) as global sections of the sheaf w” ® Qlco, by the rule

(1.1.5) wi(E,t) = f(E,t,w) w" @ o(w?).

Assume for simplicity that all the cusps of X;(N) are regular in the sense of [DS, §3.2]. (This condition
is satisfied as soon as N > 4.) The line bundles w and £; and their attendant structures extend naturally
to the complete curve C' as follows:
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(1.1.8)

(1.1.9)

(1.1.10)

(1.1.11)
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The line bundle w admits an extension to C (denoted again by w) which is characterised by the
property

H°(C,wF) = My(T, F).
By Definition 1.3, the local sections of w in the neighborhood Spec F(¢x)[¢"/?] of the cusp attached
to the pair (Tate(q),q'/%Cx) are expressions of the form hwe., with h € F((n)[q'/?], where we
recall that wea, is the canonical differential on the Tate curve.
The exact sequence (1.1.2), together with the given extensions of w and w™! to C, determine an
extension of £; to C, in such a way that (1.1.2) becomes an exact sequence of sheaves over this base.
The local sections of £; in a neighborhood of the cusp (Tate(q), ¢"/?(xn) are F((xn)[q"/?]-linear
combinations of w¢,y and the local section &, defined by

d
vWcan = {can ® _q
q

(The sheaf £; is described in Sec. 2.4. of [Scholl], where it is denoted &.)
The Gauss-Manin connection V of (1.1.3) extends to a connection with log poles
V:Li—L1® Qé(logZN),

where Qf (log Zy) denotes the sheaf of differentials on C' with logarithmic singularities on the
cuspidal subscheme Zp. Over Spec F(CN)[[ql/d]], it is described by the equation

d
vWcan - fcan ® ?q7 vfcan =0.

Finally, the Kodaira-Spencer isomorphism o gives an identification
o:w? "5 Qf(log Zn)

of sheaves over C. Over Spec F((n)[¢'/9], it is determined by

For any r > 1, let

dq
2
0\Wean) = —-
(Wean) = =
With these definitions, the rules (1.1.1) and (1.1.5) give identifications
M, (T, F) = H°C,w™*?) = H(C,w" ® Qp(log Zn)),
S,2(T,F) = HYC,w" ® Q).
L, :=Sym" L.

The sheaf £, inherits from (1.1.2) a canonical Hodge filtration by sheaves of Oc-modules:

ETD£T71®ED'.'D£T7

and the relative Poincaré duality

(1.1.13)

<7>5£rXLr—>OC

whose reduction to the geometric fibers is given by the rule

(1.1.14)

<O[1 ---ar,ﬁl"'ﬁr> = % Z <a17ﬁ0'1>'“<aT760'7‘>7

" o€eSs,

where S, denotes the symmetric group on r letters. The connection V on £, gives rise to a connection
(which will also be denoted V)

V:L,—L,® Qé(logZN).

Let V denote the composite

(1.1.15)

VL, 5 L0 05(og Zy) TN £, @ Wil @ Lo Loy,

where the penultimate arrow is induced from (1.1.2) and the last arises from the natural projection

Sym” ® Sym? — Sym" 2.
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The map v (which, like V, is a homomorphism of abelian sheaves but not of Oc-modules) gives rise to
differential operators on modular forms. More precisely, let

(1.1.16) U:L—w

be a splitting of the Hodge filtration (1.1.2), and let U(¥) denote the corresponding homomorphism
L, —w". The splitting ¥ determines a differential operator

(1.1.17) Ou : M,(0, F)—M, o(T,F),  (Ogf)(E,t) := U2 (VI)(E,t).

Example 1.4. We can construct a splitting ¥ as in (1.1.16) as follows. The datum of a pair (E,w)/r
determines (locally on Spec R) canonical elements x € H(E,Op(20g)) and y € H°(E, Op(30g)) satis-

fying
9 3 dx
y- =4x° + gox + g3, for some g2,93 € R, and — =w.
Y

The decomposition

d d
s -a[ ][
determines a canonical algebraic (but not functorial) splitting ¥, of the Hodge filtration on £1. The

resulting differential operator ©.1; on M, (T, F) is given in terms of g-expansions by the formula

T d
a = 9 — —P s 9 =q—,
Ouig(f) = 0f — 5 Pf 95

where

P=1-24) oi(n)g",  (withoi(n) =) d)

n>1 d|n

arises from the Eisenstein series of weight 2. (Cf. §A1.4 of [Ka2].)

1.2. Modular forms over C. Assume now that F = C. The set C(C) of complex points of C' is a
compact Riemann surface, and the analytic map

pr: H—C%(C),  pr(r) = <C/<177>7 %)

identifies C%(C) with the quotient T'\'/, where we recall that T' = T'1 (V). The coherent sheaf £, gives rise
to an analytic sheaf £2" on the Riemann surface C(C); let £2" := pr* £2" denote its pullback to H.
Recall the elliptic fibration 7 : £——C?, and let

LP = R'7,Z, LPZ:=Sym"LP,
be the locally constant sheaves of Z-modules whose fibers at € C°(C) are identified with the Betti
cohomology H}(E,,Z) and Sym” HY(E,,Z) respectively. The local system
(1.2.1) L, :=L% ®,C

is identified with the sheaf of horizontal sections of (£2*,V) over C°(C). (Cf. [Del], thm. 2.17.)
A modular form f € M, ,I(I‘, C) gives rise to a holomorphic section of w* viewed as an analytic sheaf
over C°(C). It also gives rise to a holomorphic function on H by the rule

1
(1.2.2) f(r)y=7f <C/<17T>7 N,27Tidw> ,
where w is the standard coordinate on C/(1, 7). This function obeys the familiar transformation rule
ar +b & a b
(1.2.3) f <c7-+d) = (et + )" f(1), for all < e d ) eI (),

and the modular form f is completely determined by the associated function f(7).
The Hodge filtration on H}(C/(1, 7)) admits a canonical, functorial (but non holomorphic) splitting

(1.2.4) Hig(C/(1,7)) := Cdw & Cdw,
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called the Hodge decomposition. In terms of the local coordinates 7, 7, dw, and dw, the Gauss-Manin
connection and Kodaira-Spencer map are described by
dw — dw

T—T

(1.2.5) Vdw = ( ) ®dr, o((2midw)?) = 2midr.
The global sections of w2 and w” ® Qf, attached to f in (1.1.1) and (1.1.5) are therefore given by the
complex formulae

(1.2.6) f (C/(l,7’>7 %) = f(1)(2midw)" 2 wf ((3/(1,7'>7 %) = f(7)(2midw)" ® (2midT).

Let £ denote the real analytic sheaf on C° associated to £3" by forgetting the complex structure on
C' and retaining only its associated real analytic structure, and denote by wy, the subsheaf of £1* for the
real analytic topology associated to w”. The global sections of w”, over C° are called real analytic modular
forms of weight r on I'. They are identified, via (1.2.2), with real analytic functions on H satisfying the
transformation property (1.2.3).

Following [Ka4], (1.8.3), we recall the Hodge decomposition of real analytic sheaves

(1.2.7) 1= W © Wra
which induces (1.2.4) over the points of CY(C). It gives rise to real analytic splittings
(128) \IIHOdge : ‘Clia—>gra7 \Ijgc))dge : ‘Cf“a—>g:a'

A section f of wy, which is of the form \Ilgc)) dge(s) for some holomorphic section s of £, over C' is called
a nearly holomorphic modular form on T'. The holomorphic section s of L, associated to a given nearly
holomorphic modular form f is unique (cf. equation (5a) in §10.1 of [Hi2]). Following a common abuse
of notation, a nearly holomorphic modular form is treated interchangeably as as a real analytic section
F(m)(2midw)" of wl, and as a real analytic function f(7) on H transforming under I like a modular form
of weight 7.

Let Onoage be the differential operator on nearly holomorphic modular forms associated to the splitting
(1.2.8) as in (1.1.17), i.e., satisfying

Ottodge(f) = Wi (V(5)), for all f = Wiy (s) with s € HO(C, L,).
The following lemma relates Opoqge to the classical Shimura-Maass differential operator 4, defined by
1 0 r
1.2. )= — (2 ’
(129) 0u£10) 1= 5 (0 + 12 ) 50

which maps real analytic modular forms of weight r to real analytic modular forms of weight r + 2.
Lemma 1.5. Let f be any nearly holomorphic modular form of weight r on I'. Then
(1210) @Hodgef = 6rf

Proof. Write f = \I'gg dge(8), Where s is the holomorphic section of £, giving rise to f, and expand s in
terms of the local coordinates 7 and w as

s = so(T)dw"” + s1(7)dw" " tdw + - - - + 8,1 (7)dwdw" " + f(7)(2midw)".

Since s is a holomorphic section, its periods vary holomorphically, and therefore Vs = Vs, where
V10 is the component of the Gauss-Manin connection on £ obtained by differentiating periods of real
analytic sections in the holomorphic direction. Since the periods attached to the local section dw are
antiholomorphic, it follows that V1:9(dw) = 0, and therefore, by (1.2.5), which continues to hold when V
is replaced by V9,

Vs=V'"s = VO(f(r)(2midw)") (mod dwH®(C® L,._1 ® QL))
(2mi)" - (fT(T)dwT o f(r)dw ™! (M» ® dr,

T—T
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where f, := % is the derivative of f with respect to the holomorphic variable 7. It follows from the last
identity in (1.2.5) and the definition of V that

T - AT r r r dw - d'lI)
RO = eyt o (Far? e (1)
= 6,.f(7)(2midw) T2
The lemma follows. O

More generally, letting
j r+2§) &
@‘I]-Iodge : f = \Ijg-lodgje) (VJ (8))7
one obtains @%Iodge(f) = 8 f, where 6 := 8,49/ 004, is the j-th iterate of the Shimura-Maass

derivative, sending nearly holomorphic modular forms of weight r to nearly holomorphic modular forms
of weight r + 2j.

1.3. p-adic modular forms. A ring is called a p-adic ring if the natural homomorphism to its pro-p
completion is an isomorphism. If R is a p-adic ring, then a triple (E,t,w) /r as in Definition 1.2 is said
to be ordinary if the mod p reduction of E (viewed as an elliptic curve over R/pR) has invertible Hasse
invariant. We briefly recall Katz’s definition of p-adic modular forms, which is modelled on Definition 1.2.
In this definition we continue to assume that k is an integer > 2.

Definition 1.6. A p-adic modular form of weight k on I' defined over a p-adic ring Z is a rule which
to every isomorphism class of ordinary triples (F,t,w) € EI(I', R) defined over a p-adic Z-algebra R
associates an element f(F,t,w) € R satisfying

(1) (Compatibility with base change). For all Z-algebra homomorphisms j : R— R/,
f((Ea t,UJ) ®j R/) = j(f(E,t,UJ))
(2) (Weight k condition). For all A € R*,
f(E t, ) = \"FF(E, t,w).

(3) (Behavior at the cusps). Let (Tate(q),t,wcan) be the Tate elliptic curve G,,/q% equipped with
any level N structure ¢ defined over the p-adic completion of Z[¢x]((¢*/?)), and the canonical
differential weay over Z((g)). Then

f (Tate(q), t, wean) belongs to Z[Cn]([q"/*]],
and f (Tate(q), ", wean) = f (Tate(q),t,wean)” for all o € Aut(Z(Cn)/2).

We will now recall the geometric interpretation of p-adic modular forms as sections of suitable rigid
analytic line bundles. Assume that the prime p does not divide N, so that C' extends to a canonical
smooth proper model C over Spec Z,. Write Cr, := C xz, Fp, and let

red, : C(C,)—CF, (Fp)

denote the natural reduction map.

Let {Pi, ..., P;} be the finite subset of Cr, (F),) consisting of the supersingular points. The residue disc
attached to P;, denoted D(P;), is the set of points of C'(C,) which have the same image as P; under red,.
Let

C = C(C,) — D(Py) — -+ — D(P).
Since the P; are smooth points of CF, (F}), the residue discs D(P;) are conformal to the open unit disc
U C C, consisting of z € C,, with |z| < 1. The set C°™ is an example of an affinoid subset of C(C,)
with good reduction. (These concepts are discussed in somewhat more detail in Section 3.5. For general
definitions and a more systematic discussion, see also, for example, Sections II and IIT of [Col2].)

The algebraic vector bundle £, on C gives rise to a rigid analytic coherent sheaf £& on C°', equipped
with the Gauss-Manin connection

V:LHE LN @ O (log Zn),
and a subsheaf w” for the rigid analytic topology on C°'d. A p-adic modular form f of weight r for T
corresponds, via (1.1.1), to a rigid analytic section of w” over C°™.
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Following [Kad], Theorem (1.11.27), there is a unique decomposition of rigid analytic sheaves

(1.3.1) L8 = w @ LEroP

such that the Frobenius endomorphism preserves (and acts invertibly) on £I™P. In the p-adic theory,
this “unit root” decomposition plays a role analogous to that of the Hodge decomposition in the complex
setting. Most importantly, (1.3.1) gives rise to a rigid analytic splitting over C°*d

\IJFrob : Eilg—>ﬂ-

Let Opyob be the differential operator associated to this splitting as in (1.1.17). It maps p-adic modular
forms of weight r to p-adic modular forms of weight r + 2. The following lemma relates O to the
classical Atkin-Serre theta operator whose effect on g-expansions f(Tate(q), (N, Wean) = Y. anq™ is given
by

d oo oo
(1.3.2) 0 f(Tate(q), (N, Wean) = qd—q Z ang" = Z nang".
n=1 n=1

Lemma 1.7. For all p-adic modular forms f of weight r,
(133) eFrobf = 0.f

Proof. Since a p-adic modular form is determined by its g-expansion, it is enough to check the identity on
the Tate curve. By (1.1.8),

Vf (Tate(q), (n)

V(@)
(qdiqﬂq)wzan 4 rf(q)wz;ffcan) 4,

Therefore, by (1.1.10),

(13.4) ¥ f (Tate(q), ) = qd%f(q)uz;:f QWi o,

Since the Frobenius endomorphism respects the Gauss-Manin connection, it preserves the line spanned by
the unique horizontal section &..n of £1 over Z'[g], and therefore .,y is stable under Frobenius. (Cf. Sec.
A2.2 of [Ka2].) It follows that the unit root subspace of the Tate curve Tate(q) over the p-adic completion
R of Z'((¢)) is equal to

H&R (Tate(Q))FrOb = Récan .

Hence Wgyob(€can) = 0. Applying \I!(Frr;f ) to equation (1.3.4) shows that

@Frobf(Tate(q)v CN; wcan) = ef(Tate(Q)v CNa wcan)~

O
1.4. Elliptic curves with complex multiplication. Let K be an imaginary quadratic field of discrim-
inant —d, let Ok be its ring of integers, and let H denote the Hilbert class field of K. Let A be a fixed
elliptic curve defined over H satisfying

EndH (A) >~ OK.

The identification Ox = Endy(A) is normalised so that the endomorphism [o] induces multiplication by
o on QY JH-

Cohomology. The Hodge filtration on the de Rham cohomology H} (4/F) (over any field F which contains
H) admits a canonical, functorial algebraic splitting
(1.4.1) Hip(A/F) = Hg{(A/F) & Hgy (A/F),

which agrees with the Hodge decomposition of H}z(A/C) when F = C and with the unit root decompo-
sition over a p-adic ring when A is ordinary. This decomposition is characterised by the conditions

Hid(A/F) =QYp,  Nm=Xn, VAeOk, n€HJ(A/F),



GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES 13

where A — A? is the non-trivial automorphism of K. The choice of a non-zero differential w4 € 9}4 JF =
H d1£ (A/F) thus determines a generator n4 of Hgf; (A/F) satisfying
(14.2) (wa,na) =1,

where (, ) denotes the algebraic cup product pairing on de Rham cohomology.
Let S, denote the symmetric group on r letters. Multiplication by —1 on A, combined with the natural
permutation action of S,. on A", gives rise to an action of the wreath product

(1.4.3) 2= (u2)" xS,

on A". Let j : Z,—pus be the homomorphism which is the identity on po and the sign character on S,
and let

(1.4.4) €4 =

2m~' )o € Q[Aut(A")]

O'e—m

denote the associated idempotent in the rational group ring of Aut(A"). By functoriality, it induces an
idempotent on Hjy (A" /F). Recall the Kiinneth decomposition

(14.5) Hin(A7/F) = ©y....iny Hi (A/F) ® - © Hig (A/F),

where the direct sum is taken over all r-tuples (i1,...,4,) with 0 < 4; < 2. The natural action of S, on
Hjp (A/F)®" gives rise to a subspace Sym" Hj, (A/F) consisting of classes which are fixed by this action.

(7;17-“;7;7“)

Lemma 1.8. The image of the projector ea acting on Hjiy (A" /F) is equal to Sym" Hig(A/F). More
precisely,
j 0 ifj#
J T _ 9
6AHdR(A /F) - { Symr H&R(A/F) ij =
Proof. Since multiplication by (—1) acts as —1 on Higz(A/F) and as 1 on HI;(A/F) and H3;(A/F), it
follows that €4 annihilates all the terms in the Kiinneth decomposition (1.4.5) except Hip(A/F)®". The
natural action of S, on this term corresponds to the geometric permutation action of S, on A", twisted
by the sign character. It follows that the restriction of €4 to Hiz(A/F)®" induces the natural projection
onto the space Sym” H}g (A/F) of symmetric tensors. O

For any j such that 0 < j <r, we define wf;lnrj by

(1.4.6) Wi = e(piwa A ‘PjwA ADjna N Aprna)
= =0 Z piwir A ... Aprwr g,
1T

where w; 1 := w4 or 4 according asi € [ ori ¢ I.
Note that the classes w’n’y 7 form a basis of the vector space

eaHjg(A"/F) = Sym” Hig (A/F).

Isogenies. It will always be assumed that A satisfies the following “Heegner hypothesis” relative to a fixed
positive integer N that is mentioned in (0.0.3) of the Introduction.

Assumption 1.9. There is an ideal M of Ok of norm N such that O /N = Z/NZ. (Such an ideal is
called a cyclic ideal of norm N in Ok.)

Since both A and its endomorphisms are defined over the Hilbert class field H, the group scheme A[]
of M-torsion in A is a cyclic subgroup scheme of A of order N defined over this field. The absolute Galois
group Gp acts naturally on its set of geometric points. Let H be the smallest extension of H over which
this Galois representation becomes trivial. The choice of a section ¢ 4 : Spec(H)——A[N] of order N gives
rise to a I'-level structure on A defined over any field F' that contains H. Fix such a t 4 once and for all.

Consider the set of pairs (¢, A’), where A’ is an elliptic curve and ¢ : A— A’ is an isogeny (defined over
K). Two pairs (o1, A}) and (2, A%) are said to be isomorphic if there is a K-isomorphism ¢ : A} — A}
satisfying tp1 = po. Let

Isog(A) := {Isomorphism class of pairs (p, A")} .
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The absolute Galois group G = Gal(K/K) acts naturally on Isog(A) and a pair (¢, A’) admits a rep-
resentative defined over a field F C K if it is fixed by the group Gp C Gg. Fix (p, A’) € Isog(A).
Since A has complex multiplication by O, the endomorphism ring of A’ is an order in Og. Such an
order is completely determined by its conductor, and therefore there is a unique integer ¢ > 1 such that
Endp(4") = O, := Z + cOk. A pair (p, A’) is said to be of conductor ¢ if Endp(A’) = O,. Clearly this
notion is well defined on isomorphism classes, and hence we may set

Isog,.(A) := {Isomorphism classes of pairs (¢, A’) of conductor c} .

More generally, let Isog” (A) be the subset of Isog(A) consisting of pairs (¢, A’) where ¢ is an isogeny
whose kernel intersects A[M] trivially, and set Isog ' (A) := Isog.(A) N Isog™ (A).

Let Pk (O.) denote the group of projective rank one O -submodules of K and let P(O..) denote the sub-
semigroup of modules that are contained in O, and are relatively prime to 9. := 9NN O,. The semigroup
P(0O.) acts naturally on Isog,(A) and Isog>' (A) by the rule a * (¢, A') = (qp, A), where

(1.4.7) pa: A\— AL = A'JA[a]

is the natural isogeny. Note that, if a = O, - a is free, then a * (¢, A") = (ayp, A’).
Let (A1,t1,w1) and (Ag,t2,ws) be two marked elliptic curves with I'-level structure. The following
notion of an isogeny

@1 (A1, t, wi)— (A2, ta, w2)

will be convenient from the notational viewpoint.

Definition 1.10. An isogeny from (A1,t1,w1) to (Ag,t2,ws) is an isogeny ¢ : A;—> Ay on the underlying
elliptic curves satisfying

@(t1) = ta, 0" (wa) = wy.

The action of P(O,.) on Isog? (A) that was just defined gives rise to an action of P(O.) on the set of
isomorphism classes of triples (4’,t',w’) with End(A’) = O, and t' € A'[N.], by the rule

(1.4.8) ax (At W) = (AL, oa(t),w)), where ¢ (W) = W'

Remark 1.11. Let Ag s denote the ring of finite adéles of K and let O, denote (O, ® Z), viewed as a
subring of Ag r. The group Pk (O.) is naturally identified with AIX(’ 7 /OX, by associating to a a generator
(ay) € AR ; of a®o, O..

1.5. Values of modular forms at CM points. Following the notations of Section 1.4, we continue to
let (A,t4,wa) be a marked elliptic curve with I'-level structure and complex multiplication by O, defined
over a field F, and let ¢ : (A,ta,wa)—(A’,t',w’) be an isogeny of marked elliptic curves over F.

Fix complex and p-adic embeddings ¢t : F—C and ¢, : F—C,, and use these to view A and A’ as
curves over C and Oc¢, (by fixing a good integral model) respectively. If f belongs to the space M ,I (T, F)
of modular forms over F', then by definition f(A’,¢',w’) belongs to F as well. Note that f can be viewed as
a p-adic modular form, after possibly rescaling it. The following algebraicity theorem asserts that a similar
conclusion holds for Ouoqge(f) and Opwon(f), evaluated on too (A’ ¢/, w’) and ¢,(A’,t',w") respectively.

Proposition 1.12. Let (A',t',w'),p be a marked elliptic curve with complex multiplication by an order
in K. Assume that A’, viewed as an elliptic curve over Oc,, is ordinary. Then:

(1) The complex number Oueodge f (A, ', w") belongs to too(F).

(2) The p-adic number Opyon f (A, t',W') belongs to t,(F).

(3) Viewing these two quantities as elements of F', we have

@Hodgef(Ala t/a wl) = @Frobf(Alv tlv w/)'

Proof. Part (1) is due to Shimura [Shim1] and parts (2) and (3) are due to Katz [Kad]. Our proof below
follows Katz’s approach. (See also the article of Hida [Hi4].) The key point is that any endomorphism
a € O of A respects the algebraic splitting of the Hodge filtration on H}g(A’/F) defined in equation
(1.4.1) of Section 1.4, and acts on Hgi%(A’/F) via multiplication by a. It follows that Hlz(A'/F) =
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QYA JF) @ Hgi% (A’/F) agrees with the Hodge decomposition of Hiz (A’ ®,  C) and with the unit root
decomposition of Hjg (A’ ®,, Cp), which both share this property. More precisely,

HiZ(A/F)®,, C = Hy(A'®,, C),

HR(AJF)®,, C, = Hig(A @, C,)frer.
Therefore, \Ilg::ngL@f(A',t') and \Il%::f)@f(A’,t') both belong to Sym” ™2 Q' (A’/F), and are equal. The
proposition follows. O

2. GENERALISED HEEGNER CYCLES

2.1. Kuga-Sato varieties. Let m : £&——C be the universal generalised elliptic curve with 'y (V) level
structure, extending the universal elliptic curve over C° introduced in Section 1.1, which exists because
our running assumption that N > 4. The variety W7 := £ is smooth and proper, and the geometric fibers
of m above a closed point x € C are singular precisely when x is a cusp. The geometric fiber 7! (z) is then
isomorphic to a chain of projective lines intersecting at ordinary double points whose dual graph is an
m-gon for a suitable m|N, depending on z. Let W;* C W; denote the relative identity component of the
Néron model of € over X (N), whose geometric fibers above the cusps are isomorphic to the multiplicative
group G,,.
Fix an integer r > 0, and let

WS =Wy xe Wy xg--xe Wy C Wl=ExcExo---xc&,

denote the r-fold fiber products of W and & respectively over C.

Write W, for the canonical desingularisation of W#, as described in [De2], Lemmas 5.4 and 5.5, and
[Schol2] 1.0.3, for example. In these references, these constructions are performed for the universal elliptic
curve over the modular curve X (V) with full level N structure, but can be adapted to deal with the case
of X1 (INV); see the Appendix for further details on this more general construction, even over Spec Z[%]

Denote by

WO =W, xc C® =W} xc C® =W xc C°
the complement in W, of the geometric fibers above the cusps, and let W 8 € W# be the locus where the
natural projection W#——C'is smooth. As in 1.3.2. of [Schol2] there is a non-canonical isomorphism

(2.1.1) W8 X Zoo = || (Zoo(d) X (G x Z/dZ)"),
d|N

where Z,, C C denotes the cuspidal subscheme and Z..(d) C Z, is the (possibly empty) subscheme of
cusps with ramification degree d over the modular curve of level one. The varieties £, C, WF, W, W,
and WP are all defined over Q, and can therefore be viewed as defined over any field F' of characteristic
0. It will be convenient to fix such an F' at the outset.

Translation by the sections of order N gives rise to an action of (Z/NZ)" on W¥, which extends to
W, by the canonical nature of the desingularisation. The group (Z/NZ)" also acts transitively (but not
freely, in general) on the set of components of W} above any cusp of C' arising in (2.1.1). Let o, denote
the automorphism of W, associated to a € (Z/NZ)", and let

W= X

a€(Z/NZ)"
denote the corresponding idempotent in the rational group ring of (Z/NZ)". Similarly, the group Z, of
(1.4.3) can be viewed as a subgroup of Aut(W,./C) acting on the fibers of the natural projection from W,
to C. Let e%,%,) be the idempotent in the group ring Z[1/2r!][Aut(W,/C)] which is defined by the same

formula as in (1.4.4) with A" replaced by W, /C. The idempotents e%,) and 6%,) commute, and therefore
the composition

(2.1.2) ew = 6%42,)6%,)

defines a projector in the ring of rational correspondences on W.,..
Let
QL) =L, QYL =L, Q9L +V(L,).
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The complex

(2.1.3) 0—Q°(L,) L QYL,)—0
of sheaves over C' is the smallest subcomplex of

(2.1.4) 0—L, —5 L, @ QL (log Zy)—0

which contains £, and £, ® Q} in degrees 0 and 1 respectively. The de Rham cohomology of C' attached
to £, denoted Hip (C/F, L, V), is defined to be the ith hypercohomology of the complex (2.1.4):

H!x(C/F,L,,V) :=H(C/F,L, ®Q°*(log Zy)).

The parabolic de Rham cohomology of C attached to L, is defined, following Section 2.6 of [Scholl] as the
hypercohomology of the subcomplex (2.1.3):

H}..(C/F,L, V) :=H'(C/F.Q*(L,)).

In degree 0, we have
HS,.(C/F.,L,,V) = H(C/F, L, V).

As explained in the proof of Theorem 2.7 (i) of [Scholl], the parabolic cohomology H.,.(C/F, L., V) in
degree 1 is equipped with a natural filtration

(2.1.5) 0—H(C/F,w" @ QL) —H., (C/F,L,,V)—H (C/F,w™")—0.

par

The de Rham cohomology groups Hig (X/F) (attached to any variety X over F) and Hiy(C/F,L,,V)
will sometimes be abbreviated to Hiz(X) and H'y(C, L., V), and likewise for the parabolic cohomology
groups, when no confusion results from suppressing the field of definition F' in the notation.

Lemma 2.1. Ifr =0, then H}3(C,L,,V) = F, and H{3(C, L, V) = 0 otherwise.
Proof. Fix an embedding of F into C and consider HJ3(C/C, L,,V) = H3(C/F,L,,V) ®F C. By the
GAGA principle,
Hgg(C/C, L, V) = Hi(C, L2, V).
The restriction map
HgR(Cv E?nv V)—>H§R(CO, L?na V)
is injective, and
HgR(Cov ‘Cinv V) = HO(OOa LT)v
where L, is the local system introduced in (1.2.1). This local system corresponds to the r-th symmetric
power of the standard two-dimensional representation C? of I' C SLy(Z) C SLa(C), and therefore
C ifr=0
0/ 0 _ 170 TO2Y) — )
HA(CT,Ly) = HA(T, Sym’ (C7)) _{ 0  otherwise.
The lemma follows. O

We wish to describe the image of ey on the (middle) cohomology of W, and relate this image to
H}%ar(C, Ly, V).

Lemma 2.2. Assumer > 1.
(1) The image of e%,?,) (and of ew ) acting on Hiz (WP /F) is canonically isomorphic to Hig(C, L., V).

(2) The image of ew acting on Hig (W, /F) is canonically isomorphic to H},.(C, L., V).
(3) Furthermore, the Hodge filtration on ew Hip(W,/F) = ew Hi (W, /F) is given by (2.1.5), i.e.,
Fil' = HL.(C,L., V),
Fil' =Fil*> = ... =FilI'*! = H(C,u" ® Q}),
FiI'f? =...= 0,

where Fil? denotes the j-th step in the Hodge filtration on ew Hi (W),
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Proof. The arguments below are mild adaptations of those in [Schol2], [Schol3].
(1) By [Del] Cor. 3.15, the natural map
Hig(C, Ly, V) = Hig(C°, L]0, V) :=H(C® @ (L,)| o)

is an isomorphism. Consider the Leray spectral sequence for de Rham cohomology ([Kal], Remark 3.3)
applied to the map W — CY: i.e.,
E%T = HR (CO HI (WP /C%), V) = HEFI(WY).

T

By the same argument as in [De2] Lemma 5.3, this spectral sequence degenerates at Fo and identifies
the space HA, (C°, Hi, (W2 /C°), V) with the subspace of HE (W) on which [m] acts as m?. (Here [m]

denotes multiplication by m on the fibers of W,?/C?.) Applying the projector egf,), we find

ey Hin(W2/C%) = i) Hi (W2 /C°) = Lo

and
2) v 2) 1rx
Hig(C', Lrloo, V) = e Hif (WP) = € Hin (W).
A similar statement holds with e%f,) replaced by ey, since translation by W2 (C) on H}g (W?/C?) is trivial

(as WP — CY is an abelian scheme).

(2) We use the following fact due to Scholl: there is a canonical isomorphism
ew HI(Wy) = e/ H! (W),

for - = B,et or dR. This is proved in [Schol2], Thm. 3.1.0 for the case of full level structure, and the
modifications needed to extend this to X;(IN) are described in [Schol3], §2, especially §2.9-2.12. Now
consider the Gysin sequence for the inclusion W0 < W*, writing Z := W\ W:

— H'(W*) — H'(W,)) = H™H(Z)(-1) - H'T (W") —
Since (by [Schol2], Lemma 1.3.1 (i) and [Schol3] §2.9)
@ i O, i AT
Cw H (Z) - { HO(ZOO)(—’I”), if i = r,

we see from part (1) of the lemma that e%f,)Hi(W*) =0 fori # r+ 1,7+ 2. Further there is an exact
sequence (in any cohomology theory)

00— 6%}%/)HT+1(W:) - 6%}%/)HT+1(W£) _r HY(Zs)(—r — 1) —Z— e%lz,)HT+2(W:) — -

ew HT (W) ew H (W)

The map o vanishes since its source and image are pure of weight 2r 4+ 2 and r + 2 respectively, and
r # 0, hence ey H'72(W,.) = 0. In the de Rham realization, we have from part (1) that e%,)HT“(Wf) =
H}p(C, Ly, V) = HL (CO, Ly o, V) and hence e\2) HI (W) s identified naturally with the kernel of the
map

HIR(C Lo, V) 25 HOR (Zoo, —1 — 1),

which is just H,.(C, L, V).
(3) See Thm. 2.7 (i) and Remark 2.8 of [Scholl] . O

Corollary 2.3. The assignment
frwp = f(E tww @o(w?)

induces an identification
Sri2(D, F) =5 Fil" ey HEH (W, F).

Proof. This follows from Part 2 of Lemma 2.2 combined with (1.1.12) (the case r = 0 being well known). O
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2.2. The variety X, and its cohomology. Recall that A is the elliptic curve with complex multiplica-
tion by Ok that was fixed in Section 1.4, defined over the Hilbert class field H of K. Fix a field F D H,
and, for each r > 0, consider the (2r+1)-dimensional variety over F' given by

X, =W, x A".
Like the Kuga-Sato variety W,., the variety X, is equipped with a proper morphism
7 Xp—C

with 2r-dimensional fibers. The fibers above points of C° are products of elliptic curves of the form
E" x A", where E varies and A is fixed.

The projectors €4 and ey defined in (1.4.4) and (2.1.2) respectively give rise to commuting idempotents
in the ring of correspondences on X, which preserve the fibers of the projection 7, : X,,—C. We set

(2.2.1) €X 1= €WWEA.

By functoriality, the idempotent ex acts as a projector on the various cohomology groups associated to
the variety X,.
We define a coherent sheaf of O¢-modules by setting

(2.2.2) Ly =Ly ®Sym" Hig(A).
Note that L, , is equipped with the self-duality
(223) < s > : Er,r X Lr,r—>OC

arising from Poincaré duality on the fibers. It is described explicitly in terms of equation (1.1.14) and its
analogue for Sym” Hjy (A). Let

(2.2.4) Ly =L, ® Sym" Hig(4/C)

denote the corresponding locally constant sheaf (for the complex topology on C°(C)). The sheaf L,.,. is
the sheaf of horizontal sections of L77. relative to the Gauss-Manin connection

Vil —Lry® Qlc (log Zn).

This connection is induced by the Gauss-Manin connection on £, combined with the trivial connection on
Hjp(A). The de Rham cohomology attached to (L, V) is defined in the same way as for (£,, V), and
one has

H&R(Ca LT’,T? V) = H&R(Cv LT’) V) ® Symr Hle(A)7
H)\(C Lry, V) = H(C,L,,V)®Sym" Hig(A).
Proposition 2.4. Assume that r is > 1. The image of the projector ex acting on Hip(X,) is given by
GXH:{R(XT) = Hp1>ar(c7 ‘CT7T7 v) = H}%ar(cﬂ ET’ v) ® Symr Hle(A)

In particular,
j 0 if j #2r+1;
J — )
ex Hyg (Xr) = { HL(C. L., V) ifj=2r+1.

Furthermore, if FilV' denotes the j-th step in the Hodge filtration on exHiRT (X)), then
(2.2.5) Fil'™ = H(C,w" ® Q) ® Sym” Hiz (A).

Proof. This follows directly from Lemmas 1.8 and 2.2 in light of the Kiinneth decomposition for the
cohomology of X, = W, x A". (]

Proposition 2.5. The assignment f ® a — wy A o induces an identification
Syi2(I, F) ® Sym” Hip(A/F) = Fil't! ex Hat ™ (X, /F).

Proof. This follows directly from Corollary 2.3, combined with Proposition 2.4 when r > 1. ]



GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES 19

Given any integer 0 < j < r, note in particular that the class
wg A wf;m;(j ,

where wﬁnf{j is the class introduced in (1.4.6), belongs to H(C,w” ® Q}) ® Sym" Hiz(A) and can

thus be viewed, via Proposition 2.5, as an element of the middle step Fil"*! in the Hodge filtration of
2r+1

exHiL™ (X, /F).

2.3. Definition of the cycles. In this section we will assume the Heegner hypothesis 1.9 that was
discussed in Section 1.4. As in Section 1.4, fix once and for all a I-level structure t 4 on A, in such a way
that ¢4 belongs to A[N].

The datum (A, t4) determines a point P4 on C, and a canonical embedding ¢4 of A" into the fiber in
W, above P4. More generally, any pair (¢, A’) € Isog” (A) determines a point P4 on C attached to the
pair (A, p(t4)), and an embedding

tar: (A —W,
defined over F.

We associate to any (¢, A’) € Isog” (A) a codimension r+1 cycle 7, on X, by letting Graph(p) C Ax A’

denote the graph of ¢, and setting

T, := Graph(p)" C(Ax A) =5 (A)" x A" C W, x A",
where the last inclusion is induced from the pair (¢4-,1d’). We then set
A, =exT,,

where ex is the idempotent given in equation (2.2.1), viewed as an element of the ring of algebraic
correspondences from X, to itself. Note that A, is supported on the fiber 7~ L(Pa/) of m, above Pas and
gives an element in CHTH(XT)Q7 the Chow group of codimension r 4 1 cycles with rational coefficients.

Remark 2.6. The generalised Heegner cycles A, are all defined over abelian extensions of K. More
precisely, if (p, A) belongs to Isog?(A)7 then the associated cycles can be defined over the compositum of
the abelian extension H/K over which the isomorphism class of (A,t4) is defined with the ring class field
H,. of conductor c.

When r = 0, the generalised Heegner cycle A, is a CM point on the modular curve C. In this case, we
replace A, by A, — 0o, where oo is any cusp, in order to make A, homologically trivial. The same is true
when r > 1, by Proposition 2.4 which implies that ex H?"*2(X, Q) = 0. Thus we record the following:

Proposition 2.7. The cycle A, is homologically trivial on X,.

Remark 2.8. Another approach to proving the homological triviality of A, by deforming these cycles
to the fibers supported above the cusps of the modular curve, is described in [Sch]. The approach we have
given adapts more readily to the setting of Shimura curves attached to arithmetic subgroups of SLa(R)
with compact quotient.

2.4. Relation with Heegner cycles and L-series. This motivational section discusses the relation
between generalised Heegner cycles and the more classical Heegner cycles on Kuga-Sato varieties that are
studied in [Ne2|] and [Zh], as well as the expected relation with derivatives of L-series.

Keeping the same notations as in the previous section, the “traditional” Heegner cycles are codimension
r + 1 cycles on the Kuga-Sato variety Ws, which are supported on fibers for the natural projection to the
modular curve C. These cycles are indexed by elliptic curves with I'-level structure having endomorphisms
by an order in an imaginary quadratic field. More precisely, if A’ is an elliptic curve with endomorphism
by the order O. = Z[(d + v/—d) /2] of conductor ¢ of the imaginary quadratic field K, then we set

Thees .~ graph(v/—d)” C (4’ x A')",
hee hee
AE = ew (T4°%).
We will now construct an explicit correspondence from the (4r+1)-dimensional variety Xs, to the (2r+1)-

dimensional variety W5, which maps generalised Heegner cycles to Heegner cycles.
Let I = Wy, x A", viewed as a subvariety of Wa, x Xa, = Wa, x Wa, x (A?)" via the map

(idWZT ) idW27‘7 (ldA7 Vv _dK)T)'
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This subvariety induces a correspondence from Xo, to Wy, yielding a map on Chow groups:
@ : CH* Xy, )q— CH M (Wa,)q.

If p: A— A’ is an isogeny of elliptic curves with T'-level structure, a direct calculation (which will not be
used in the sequel, and is therefore left to the reader) shows that the cycles ®r(A,) and A}Xieg generate
the same Q-subspace of CH™ ™ (Wy,.)o.

This relation shows that the generalised Heegner cycles carry at least as much information as the
classical Heegner cycles on Kuga-Sato varieties studied in [Ne2] and [Zh]. One expects them to enjoy
similar relationships with central critical derivatives of Rankin L-series. More precisely, we expect that
the Arakelov heights of the generalized Heegner cycles A, should encode the derivatives L'(f,x',0)
where y are Hecke characters of infinity type (k—1— 4,1+ j) with 0 < j < r. The case r = 0 corresponds
to the classical Gross-Zagier formula, and the case where r is even and j = r/2 corresponds to the setting
that is treated in [Zh]. We expect that there should also be a generalisation of the p-adic result of [Ne2]
expressing the p-adic height of generalised Heegner cycles in terms of the derivative in the cyclotomic
direction of a two variable p-adic L-function attached to f and x, at a point which corresponds to the
special value L(f,x~!,0) and lies in the range of classical interpolation defining this p-adic L-function.

The present article avoids height calculations altogether by focusing instead on the images of generalised
Heegner cycles under Abel-Jacobi maps, both complex and p-adic. In the p-adic setting, we will relate
these images to the special values of an anticyclotomic p-adic L-function attached to f and K at a point
lying outside its range of classical interpolation.

3. p-ADIC ABEL-JACOBI MAPS

The goal of this section is to compute the images of the generalised Heegner cycles A, under the p-adic
Abel-Jacobi map. The resulting formulae of Sections 3.7 and 3.8 are a key ingredient in the proof of our
p-adic Gross-Zagier formula. Some of the techniques used in this chapter, particularly those of Sections
3.1-3.4, are drawn from [IS], which treats the case of Heegner cycles on the r-fold product of the universal
“fake” elliptic curve over a Shimura curve attached to a quaternion algebra which is ramified at p. This
Shimura curve admits an explicit description as a rigid analytic quotient of the p-adic upper half-plane,
via the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves. The present chapter treats
classical modular curves at primes p of good reduction, for which no p-adic uniformisation a la Cerednik-
Drinfeld is available. The techniques employed in Section 3.5 onwards therefore differ markedly from those

of [IS].

3.1. The étale Abel-Jacobi map. Recall the generalised Heegner cycle A, associated to the pair
(p,A’) € Isog.(A) where ¢ : (A,t) — (A’,t') is an isogeny of elliptic curves with I'-level structure.
Let P = P4/ be the point of C' associated to the pair (4’,¢') and let

Xp:=m'P, X!:=X,- Xp.

Fix any field F' over which the pair (X,,A,) is defined, and a rational prime p. Consider the following
Gysin sequence in p-adic étale cohomology (cf. Corollary 16.2 of [Mi]). After setting X = X,., Z = Xp,
U = X?and F = Q,(r + 1) in the statement of that corollary (with r replaced by 2r), we obtain the
following exact sequence in the category Rep of continuous p-adic representations of G = Gal(F/F):

(3.1.1) Hthr_l(XPa Qp)(r)_)HeQ{-i_l(er Qp)(r+l)—’HgtT+l(Xrba Qp)(r+l)_)H3tr(XPa Qp)(r)o—0,
where
HZ (Xp,Qp)(r)o = ker (HY (Xp, Qp)(r)—H P2 (X,, Qp)(r+1)) -
By applying the projector ex to (3.1.1), we obtain
(3.1.2) 0—’6XH§{+1(XN Qp)(r+l)_)6XHthT+l(X£7 Qp)(r'i_l)—’ﬁXHgtr (XPa Qy)(r)—0,
where we have used the fact that, when r > 0,
exHy H(Xp)(r) =0,  exHY(Xp)(r)o =exHY (Xp)(r).
Since A = A, is equal to exA, by definition, its image under the étale cycle class map

clp: CH"(Xp)q(F)—HZ (Xp,Q,)(r)
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belongs to ex H2' (Xp, Q,)(r). Let

cla s Qp—rex HE (Xp, Qp)(r)
be the map of p-adic representations of G defined by cla(1) = clp(A), and consider the extension Va
of Q, by exHZ ™ (X,,Q,)(r+1) arising from pullback in the following commutative diagram with exact

rows in which the right-most square is cartesian:
(3.1.3)

00— ex HZ (X, Q,)(r+1) Va Q, 0

| | -

0 —— ex HY (X, Qp) (r+1) — ex HY (X7, Qp) (r+l) — ex HE (Xp, Qp)(r) — 0.

Given two objects V| V' in the category Repy, write
Extp(V", V') := H'(F, hom(V", V"))
for the set of isomorphism classes of extensions
0—V'—E—V"—0.

(Here H'(F, —) denotes continuous Galois cohomology and hom (V" V’) is the object of Rep equipped
with the natural action of Gr.)

Definition 3.1. The étale Abel-Jacobi map
AJSE s CH'P (X, )o.q(F)—H (F,ex HZ (X, Q,(r+1))

sends the class of the null-homologous codimension-(r41) cycle A to the isomorphism class of the extension
Va of (3.1.3) in

Extr(Qp, ex Hy T (X, Qp)(r+1)) = H (Fex HY (X, Qp) (rH1)).

Remark 3.2. Definition 3.1 applies directly to cycle classes in CHTH(XT)O,Q(F ) which are represented
by a cycle supported on Xp. Usually, the map AJS is defined on a general cycle A by replacing in
the diagrams above Xp by A and X” by X — A, respectively. In this case, one obtains an analogue
of the commutative diagram (3.1.3) without the need of applying ex. It can be checked, following the
argument that is explained in [Ne2, Prop. I1.2.4] that this more general definition, once composed with
€x, is compatible with Definition 3.1, which is adapted to our subsequent calculations.

3.2. The comparison isomorphism. The p-adic Abel-Jacobi map arises from the map AJ$ by consid-
ering the case where F' is a finite extension of Q,. Let O denote the ring of integers of F' and let k be
its residue field. We will make the following assumptions on F', which are satisfied in our application:

(1) The extension F is a finite unramified extension of Q.
(2) The varieties C and X, over F' extend to smooth proper models C and X, over Op.

If ¢ belongs to IsogY' (A), and p does not divide Ne¢Disc(K), then the field F' can be taken to be the
p-adic completion of the compositum of H, the extension of the Hilbert class field of K over which AN is
defined, with H,., the Hilbert class field of conductor ¢. By abuse of notation, we will use the same letter
o to denote the p-power Frobenius automorphism of k and its canonical lift to F.

The de Rham cohomology groups H}y (X, /F), equipped with their o-semilinear Frobenius endomor-
phisms and Hodge filtrations, are examples of filtered Frobenius modules. (See [B], [Fol, [I] or [FI] for
details concerning the category of these objects.)

The fundamental comparison theorem between p-adic étale cohomology and de Rham cohomology of
varieties over p-adic fields relates the p-adic representation HZ (X,,Q,) of G to the filtered Frobenius
module H gR(XT /F). To any continuous p-adic representation V' of Grp we may associate the F-vector
space

Dcris(v) = (V ®Qp Bcris)GFa
where Bi,is is Fontaine’s ring of cristalline periods over F', which is called the cristalline Dieudonné module
attached to V. Recall that a p-adic representation V of G is said to be cristalline if

dimF Dcris(v) = diHlQp (V)
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The category of cristalline representations of Gy is an abelian tensor subcategory of Repy. Given objects
V1 and V5 of this category, denote by Extc,is(V1, V) the group of extensions of V5 by Vi which are cristalline.
The Dieudonné module attached to a cristalline representation V' inherits from B, the structure of a
filtered Frobenius module. The following deep theorem will be used to make the p-adic Abel-Jacobi map
amenable to computation.

Theorem 3.3 (Faltings). The p-adic representation HZ (X, Q,)(r+1) is cristalline, and there is a
canonical, functorial isomorphism of filtered Frobenius modules:

Dexis(Hgy 71 (Xr, Qp) (r41)) = Hig™ (X, /F)(r+1).
Proof. See [Fa|, Theorem 5.6, or [T]. O
The comparison theorem will be applied via the following corollary:
Corollary 3.4. The assignment V +— D¢.is(V) induces an isomorphism
(3.2.1) comp : Exteris(Qp, Ho T (X, Qp) (1+1)) — Extem (F, HigH (X, /F)(r+1)).

Proof. The injectivity follows from from the comparison theorem and the fact that the functor D..s is
fully faithful, while the surjectivity follows from a comparison with the Bloch-Kato exponential, as in
Prop. 1.21 and Cor. 1.22 of [Nel]. O

3.3. Extensions of filtered Frobenius modules. We will now give a general abstract description of
the group of extensions in the category of filtered Frobenius modules.
Let H be a filtered Frobenius module of strictly negative weight, and consider an extension

(3.3.1) 0—H - E -2 F—0
of filtered Frobenius modules. Let 7! and 7> be elements of Fil° E and E?"=! respectively, satisfying
(3.3.2) pinx") =1, pnp™) =1.
The element
e =g =g

is in the kernel of p and hence can be viewed as an element of H. The lifts n°! and 7P are well-defined

up to Fil® H and H?"=! respectively. By the assumption on the weight of H, we have H®"=1 = 0,
and the class of ng in H/Fil” H does not depend on the choices that were made in (3.3.2). The reader
should compare the following proposition with Lemma 2.1 of Section 2 of [IS], which treats the more
complicated situation of extensions of filtered Frobenius monodromy modules arising from semistable
(and not necessarily cristalline) p-adic representations of G p.

Proposition 3.5. The assignment E — ng yields an isomorphism
Extg (F, H) = H/ Fil’ H.

Sketch of proof. The isomorphism E¢"=!—F induced by p determines a canonical vector space splitting
of (3.3.1) which preserves the ¢-module structure of the extension, but need not respect with the filtrations.
In other words, the extension (3.3.1) is trivial when viewed as an extension of ¢-modules. Fix the resulting
identification

(3.3.3) E=H®&F,

so that nfi°P is identified with the element (0, 1) of H @ F. We are left with the problem of classifying the
filtrations which may arise on the splitting of ¢-modules (3.3.3). This splitting is compatible with filtrations
if and only if ' = (h, 1) is such that h belongs to Fil° H (since in this case Fil° E = Fil H @ F and
this equality determines the filtration on E in all degrees). In general, the datum n%"l = (h,1) completely
determines the filtration on F in terms of the filtration on H (since Fil° E = span(Fil® H, n%")), and (h, 1)

and (h',1) give rise to the same filtration if and only if A — h’ belongs to Fil® H. O
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3.4. The p-adic Abel-Jacobi map. We can now define the p-adic Abel-Jacobi map attached to the
p-adic field F' introduced in Section 3.2. By Theorem 3.1.1. of [Ne3] (see also [Ni]), the image of
CH" ™ (X,)0.q(F) by the étale Abel-Jacobi map AJS is contained in the subgroup

H}(Fv EXHthT+1(Xr7 Qp)(r+1)) 1= Exteris(Qp, GXHthT+1(Xr7 Qp)(r+1))

of HY(F,ex HZ " (X,, Q,)(r+1)) whose elements correspond to cristalline extensions. By Corollary 3.4,
this group is identified with Extm (F,ex Hip™ (X,./F)(r+1)). Applying Proposition 3.5 to the filtered
Frobenius module H = ex Hii ' (X, /F)(r+1) which is of weight —1, we find an isomorphism

ex Hig ' (X /F)(rtl)
Fil’ ex Hip (X, /F) (r+1)

(3.4.1) J : Extam(F,exHap ™ (X, /F)(r+1))— =TFil' exHin ™ (X, /F)(r),

where the last identification arises from the Poincaré duality
exHIR (X, /F)(r) x exHiET (X, /F)(r+1)—F,

in which the spaces Fil' ex H2n™ (X, /F)(r) and Fil® ex Han™ (X,./F)(r+1) are exact annihilators of each
other.
The p-adic Abel-Jacobi map, denoted AJp, is the diagonal map in the diagram

AJS

CH™™ (X, )o.q(F) H(F ex HY (X, Qp)(r+D))

EXtCriS(QP7 EXHngn-i_l(X’r‘) QP)(T+1))

lcomp
Extem (F, ex Hip (X)) (r+1))
lJ
(Fil' ex H3p (X, /F)(r))Y,

where the second vertical isomorphism is given in (3.2.1).
After invoking Proposition 2.5, we can view AJp as a map

(3.4.2) AJp : CH™M(X,)(F)o.q—(Sr42(T, F) @ Sym” Hig (A/F))Y.

Further, applying the comparison isomorphisms to the diagram (3.1.3) gives a corresponding diagram of
filtered Frobenius modules:

(34.3) 00— exHIR (X, /F)(r+1) Da F 0
| | B
0 — ex Hipg ™ (X, /F)(r+l) — ex Hig " (X} / F)(r+1) —= ex Hip (Xp /F)(r) —0.

By Proposition 2.4 (and an analogue with C replaced by C' — {P}), this diagram can be rewritten as

(34.4) 00— HL (C, Ly, V)(r+1) Da F 0

\ | [

(C, Lry, V)(r+1) —— Hp, (C = {P}, Ly, V)(r41) —— Ly, (P)(r) —0.

00— H}%ar

The image of the cycle class A under the p-adic Abel-Jacobi map is thus described by the class of the
extension Da in the category of filtered Frobenius modules.
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3.5. de Rham cohomology over p-adic fields. In this section we give an explicit description of the
action of the Frobenius operator on

ex Hapt ' (X, /F) = H} . (CL Ly, V)

in terms of L, ,-valued rigid analytic differentials on appropriate subsets of the curve C. The reader is
referred to [Coll] and [Col2] for more details on the concepts and definitions discussed below.

Viewing C' as a rigid analytic space over F, let Ogg denote the sheaf of rigid analytic functions on C
and let Eﬁf% denote the rigid analytic coherent sheaf on C' associated to L, ..

We will now define certain basic affinoid subsets of C for the rigid analytic topology. For this, recall
from Section 3.2 that C is a smooth proper model of C over Spec(Or). Write Cj, := C X, k, and let

red, : C(C,)—Cx(k)
denote the natural reduction map.
Let Py,..., P; be any collection of points on C(F') which map to distinct points of Cx (k) under red,
and contain all the cusps of C. Recall that the residue disc attached to P;, denoted D(FP;), is the set of
points of C(C,) which have the same image as P; under red,. Let

A=C(Cp) = D(P1) — - — D(P).
Because the P; reduce to smooth points of Cy(k), the residue discs D(P;) are conformal to the open unit

disc U C C,, consisting of z € C,, with |z| < 1. For each j =1,...,¢, fix an isomorphism h; : D(P;)—U
sending P; to 0. Given a rational number 7; < 1, we then let

D[P;,r;] = {z € D(P;) such that |h;(z)| <r;}

denote the “closed disc of radius r; in D(P;)”. Finally, fixing a collection of rational numbers rq,..., 7
with 0 < r; < 1, we write
W = C(Cp)—D[Pl,T]_]—"'—D[Pt,’f't]
AUV U--- UV,

where

V; = V(Pj,rj,1) := {z € D(P;) such that r; < |h;(z)| < 1}.
Define the positive orientation of the annulus V; by choosing the subset {z € D(P;) such that |h;(z)| < r;}
of its complement.

The set A is an example of an affinoid subset of C(C,) with good reduction, while the set W is an
example of a wide open neighborhood of the affinoid A. The set V; is called a wide open annulus around
the point P;. The wide open space W is thus obtained by adjoining to A a finite union of open annuli
about the boundaries of the deleted residue discs. For general definitions and a more systematic discussion
of these concepts, see for example Sections II and III of [Col2].

Because W is contained in C°(C,), the Gauss-Manin connection (1.1.3) gives rise to a rigid analytic
connection

Vi LE—LN® Q-
The de Rham cohomology Hig (W, L3, V) is defined to be the quotient
Eﬁi’%(W) ®
VLEW)
A meromorphic £, ,-valued differential on C' which is regular on C' —{ P, ..., P;} can be viewed as a rigid
section of £, ® Q& over W. In this way one obtains by restriction a natural map from the algebraic de
Rham cohomology over C,, to the rigid de Rham cohomology.

HigOWV, L%, V) =

T

Theorem 3.6. The natural restriction map

HéR(C o {Pl’ Tt Pt}a Lr,rv v)—>Hd1R(Wa Erig V)

T

is an isomorphism.

Proof. In the case r = 0, this is Theorem 4.2 of [Col2]. The proof in the general case follows from a similar
argument, as explained in the proof of Proposition 10.3 of [Col3]. (]
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A set W’ of the form
W/ZC(C;D)—D[Pl,Ti]—"'_D[Ptvrzlt]v with ’I”j<7";-<1

is called a wide open meighborhood of the affinoid A in W. The following is an immediate corollary of
Theorem 3.6.

Corollary 3.7. Let W' be any wide open neighborhood of A in W. The natural map
resywowr - H&R(Wa L;l,%v v)—>H3R(WIa L;l,%a V)
induced by restriction is an isomorphism.

We want to describe the image of Hig (C, Ly, V) in Hig (W, £118, V). For this, we recall the notion of
the p-adic annular residue

resy, (w) € (HO(V;, £3%)V=°)"
of a Eﬁf%—valued one-differential form w on W. It is defined by the formula
resy, (w)(a) = resy, (o, w), for all a € H(V;, Eﬁiﬁ)vzo,

where the residue on the right hand side is the usual p-adic annular residue of the rigid analytic one-form
(o, w) on the oriented annulus V;, as it is defined in Section II of [Col2] for example.

By Proposition 3.1.2 of [Ka3], the sheaf £, , admits a basis of horizontal sections on each non-cuspidal
residue disc D(P;), so that the target of the residue map on the corresponding annulus is identified with

(HO(V;, £25)V=0)" = (H(D(P)), Lr.r)V =) = Loy (P))" = Lrr(Fy),

where the last identification arises from the self-duality on £, .(P;). We will always view the residue map
on a non-cuspidal residue disc as taking values on £, (P;), so that for all & € £, ,(P;) one has

(a,resy, (w)) = resy, (¥, w),

where aV is the unique horizontal section on D(P;) satisfying aV(P;) = a.
On the cuspidal residue disc of the cusp P attached to the pair (Tate(q),t), the space of horizontal
sections of £, is one-dimensional and generated by the local section £,,. One therefore has

" , \ d d
I'eSVj Z aj (q)wgangga;lj ?q (bggan) = resq:() <ba’7’(q)?q> = b&r(O)
7=0

Note that if w is any global section of £, @ Qf over C — {Py, ..., P}, it can also be viewed as a rigid
section over W, and

(3.5.1) resy, w = resp; w.
If P; is not a cusp, the residue resp; w that appears on the right of this formula satisfies
(G(Pj),resp; w) = resp, (G, w).

In this formula, G can be taken to be any regular (not necessarily horizontal) section of L, , over D(FP;),
and the residue on the right is the residue at P; of the differential (G,w) on D(P;) — {F;}.

The following rigid-analytic analogue of the classical residue theorem for meromorphic differentials on
curves (cf. for example [Col2]) will play an important role in the calculations of the next section.

Theorem 3.8. If w € Q),, is a rigid analytic one-form on W, then

t
E resy, w = 0.
j=1

Proposition 3.9. A4 class k € Hiz (W, L1e \7) represented by an Lﬁ%—valued differential form w belongs

T

to the natural image of H;ar(O, Ly, V) under restriction if and only if

resy, (w) = 0, forj=1,...t.
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Proof. The Gysin exact sequence applied to the cohomology of the pair of rigid spaces W C C° shows
that

Hig(C, Ly, V) = {w s.t. resy,(w) =0 for all non-cuspidal annuli V; } .
On the other hand, the definition of H;M(O7 L, V) shows that this space is identified with the space of

classes in Hiz(C, L, ,, V) represented by L, -valued differentials w satisfying
resy, (w) =0, for all cuspidal annuli V;.

The result follows. O

Let 1, k2 be classes in H.,.(C, L, ,, V) and let wy, wy be rigid analytic sections of L} ® Q¢ over W
representing them. The fact that resy, (w1) = 0 on all the annuli V; C W allows us to find an analytic
solution F,, ; on V; to the equation
VFE,, ;= wi,

which is well-defined up to horizontal sections of £}'8 over V;. Such an F,, ; is called a local primitive of
wi on V;. Note that the expression resy, (F., j,w2) does not depend on the choice of the local primitive
F,, ;, since wa is of the second kind.

The following proposition expresses the Poincaré duality on H,, (C, L., V) in terms of the residues of
rigid L, ,-valued forms on W.

Proposition 3.10. For all k1,ky € H}

par

(07 ‘C’r‘,f’v v))

t
(k1,R2) = > resy, (Fl, j,wa),

j=1
where wy,ws € H&R(W, Lrie V) are representatives for k1 and k2 and F,, ; is any local primitive for w;

T
onVj.

Proof. This follows from Lemma 7.1 of [Col3] combined with equation (3.5.1) comparing the rigid analytic
and algebraic residue maps. |

Theorem 3.6 will now be used to give an explicit description of the action of the Frobenius operator on the
algebraic de Rham cohomology. Since the points P, ..., P; are defined over F', the points Pj = red, (F;)
are defined over k and the curve Uy := Cy — {]31, ceey Pt} is a smooth affine open subset of Cj. As before,
let o denote the Frobenius automorphism of k£ which sends x to 2P, and let U] = Uy X, k. There is a
canonical morphism ¢ : Uy—U] characterised by

@ f7 = fP, forall feOc, (Ug).
Definition 3.11. A morphism
dq: A—A°
which lifts the canonical Frobenius morphism Up—Uf to characteristic 0 is called a lifting of Frobenius

for the affinoid A.

A Frobenius lif:cing always exists under our hypotheses (cf. Corollary 1.1a of [Coll]). Assume from now
on that the set {Py,..., P;} is stable under ¢, so that A7 = A.

Definition 3.12. A Frobenius neighbourhood of A in W is a pair (W', ¢), where A C W C W is a
wide open neighborhood of A in W and ¢ : W/—)W is a morphism whose restriction to A is a lifting of
Frobenius in the sense of Definition 3.11.

Definition 3.13. An overconvergent Frobenius isocrystal on W is a triple (L, ¢, Fr), where

(1) L is a rigid analytic coherent sheaf on W equipped with a rigid analytic integrable connection
Vi L—L @My

(2) W', ) is a Frobenius neighborhood of A in W;
(3) Fr is a horizontal morphism
Fr:¢*"L—L|wr.
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The condition that Fr be horizontal amounts to requiring that the diagram

¢*£_V>¢*£®Ql ,
Frl lFr@id
L—>Lo0,

be commutative.

Given a Frobenius neighborhood (W', ¢) of A in W, the canonical functorial action of a lifting of Frobe-
nius on the relative de Rham cohomology H3% (X, /C) is compatible with the Gauss-Manin connection
and gives rise to a horizontal morphism Fr : ¢*£18— L8],y In this way, the triple (£%)yy, ¢, Fr) is
equipped with the structure of an overconvergent Frobenius isocrystal.

The action of the p-power Frobenius operator (denoted by the letter ®q, to distinguish it from the
lifting ¢ of Frobenius on the curve C) on Hiz (W, L58, V) is then given by the sequence of maps:

Hip (W, £33, V) = Hig (W, 6" L3, V) 25 Hig W', L35, V) < Hig W, L15,V),
where the last map is the inverse of the restriction resyy )y which is an isomorphism by Corollary 3.7.
(Cf. the discussion preceding Th. 10.1 of [Col3], or the more detailed discussion in [CI].)
Notice that the operator ®, acting on the group Hjz (W, LN8, V) preserves the natural images of

Hix(C, Ly, V) and of H)  (C,L; ., V). (This follows from Prop7osition 3.9 for example.) The map @g
on H}. (C,L,,,V) agrees with the Frobenius endomorphism on ex H, IRFY(X,./F) via the identification
H}..(C,Ly,, V)= ex HiR (X, /F). Tt is o-semilinear. In order to work with an F-linear endomorphism,
we set

=07, wheren=I[F:Q,

By abuse of notation, we will also denote by ® the Frobenius endomorphism acting on the space H (C, L)Y
of locally analytic horizontal sections of £, over C, as it is described in the paragraph preceding Thm. 10.1
of [Col3].

A similar discussion applies of course when L, . is replaced by £,, and the symbol ® will also be used

to denote the F-linear Frobenius endomorphism acting on H},.(C, £, V) and H{(C, L, )".
3.6. The Coleman primitive.

Lemma 3.14. Let w be a global (rigid) section of the sheaf w™ ® Q¢ over C, and let [w] € H}, (C, L., V)
be its associated cohomology class. There exists a polynomial P € F[x| satisfying

(1) P(®)([w]) = 0.

(2) The map P(®) is an isomorphism on HY(C, L)V, and P(1) # 0.

Proof. This follows from the ideas explained in Section 11 of [Col3]. (Cf. in particular the argument
following Lemma 11.1 of loc.cit.) One can use the fact that the eigenvalues of ® acting on H iz (C, L, V)
and on any (finite-dimensional) ®-stable subspace of HL (C, £,)V differ, since they have complex absolute

values p% and p2 respectively. O

Theorem 3.15 (Coleman). Let w be a global section of the sheaf w™ @ Q% over C. Choose a polynomial
P satisfying the properties of Lemma 3.14, and let d be its degree. There exists a locally analytic section
F,, of L, over C satisfying the following conditions:
(1) VF, = w;
(2) P(®)(F,) is a rigid analytic section of L, on some wide open neighborhood W' of A in W satisfying
d"W') CW, for all n < d.

The locally analytic section F,, is called the Coleman primitive of w on C.

Proof. See Theorem 10.1 of [Col3]. Note that our setting, where p is assumed to not divide the level of
the modular curve C, differs from the semistable reduction case considered in [Col3]. In fact it is simpler,
and the assumptions that are required for Theorem 10.1 of loc.cit., such as the “regular singular annuli”
assumption on the cuspidal annuli, are satisfied a fortiori in the setting of Theorem 3.15. Note also that
Theorem 10.1 as stated produces a locally analytic primitive on each wide open W, but expressing C' as
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a finite union of wide opens and gluing the different primitives (which, by their uniqueness, agree on the
overlaps) leads to a locally analytic primitive on all of C. The uniqueness clause in the definition of the
Coleman primitive also implies that F,, is defined over the field F' over which w is defined. U

Remark 3.16. The definition of F,, depends a priori on several choices: the choice of an affinoid A in
C, a lifting of Frobenius to A, a Frobenius neighborhood W’ of A in W and the polynomial P. It can be
shown that the Coleman primitive does not depend on these choices, and therefore the Coleman primitives
on a covering of C' by affinoid regions can be pieced together to give a locally analytic section of L, over
C which is well-defined up to global rigid analytic horizontal sections of L, over C'. This latter space is
trivial when r > 0 and is the space of constant functions on C' when r = 0. (Cf. Proposition 5.1 of [Col3].)

Remark 3.17. It can be shown that the Coleman primitive F, is in fact analytic on each residue disc
D(P) associated to any point P of C(Q,""™).

3.7. p-adic integration and the p-adic Abel-Jacobi map. The following is one of the main results
of this chapter.

Proposition 3.18. Let A, be a generalised Heegner cycle attached to an isogeny of ordinary pairs ¢ :
(A, t)— (A" t'), and let Pas be the point of C attached to (A’,t"). Then

AJp(Bp)(ws A a) = (Fy(Par) Aa,clp,, (Ay)),

where the pairing on the right is the natural one on L, .(Pa), and Fy is the Coleman primitive of wy €
HO(C,w™ ® Q).

Proof. In order to ease notations, we drop the index ¢ in this proof, by setting A = A, and write P = P/,
and U = C — {P}. By definition of the p-adic Abel-Jacobi map, we have

AJp(A)(wf Aa) = {(wf Aa,na),

where the class na represents the extension Da of (3.4.4) following the recipe given in Section 3.3. We
may write

_ _hol frob
na=7a —7a >

where

(1) The cohomology class n%°! is represented by a section of £, ® QL (log Zy) over U having residue

0 at the cusps and a simple pole at P with residue equal to clp(A). By abuse of notation, we will
use the same symbol 77201 to denote the associated L, ,-valued differential on C. If Pi,..., P; were
chosen in such a way that P, = P, and G is any rigid analytic section of L)% over D(P;), then
by (3.5.1), for all non-cuspidal annuli V;,

(3.7.1) resy, (G, 72" = (G1(P),clp(A)), resy, (Gj,ma) =0 for j > 2.

If V; is a cuspidal annulus, then we at least have

(3.7.2) resy, (Frj A a,na) =0,
where Fy ; is a local primitive of ws on V;. To see this, use the fact that 73°! has residue 0 along

V; to write ni°! = VHa for some section of Eﬁf% over V;, and observe that

0 = resy, d(Fy; A a, HA) = resy, ((wg, HA) + (Fr; A a,nh)) = resy, (Fyj A a, na™).
(2) The differential 5> is a section of L1 © Qf over W, chosen so that it satisfies
(3.7.3) IR = nr°® + VG,
for some rigid section G of L})% over W', and of course

(3.7.4) resy, (G1,10°P) = (G1(P),clp(A)).
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By Proposition 3.10, the Poincaré pairing between Hlg(C, L, (r),V) and Hig(C, L, (r+1),V) is given
by the formula
¢

(3.7.5) (wr Aa,ma) = Zrebv (Frj Na,ma)
j=1

t
l"esVJ (Fpj Aa,ni) | — Zresvj (Fpj Aa,nxey |,

(3.7.6)

where the sum is taken over the t annuli V; in W — A, and Fy; is an analytic primitive of wy on the
residue disc D(P;). Note that if wV is any horizontal section of £,.,. on D(P;), the residue of the differential
(wV,na) on the annulus V; is zero, and therefore the expression on the right of (3.7.5) is independent of
the choice of local primitives on each residue disc. The same is not true for either of the sums that appear
on the right of (3.7.6), since the differentials nh°' and k" each have non-zero residue along the annulus
V1.

In order to compute each of the terms appearing in (3.7.6) individually, we need to make a “coherent”
choice of local primitives. This is done by fixing a Coleman primitive F'y of wy. Once this choice is made,
the two terms appearing in (3.7.6) are controlled in the following two lemmas.

Lemma 3.19. If Fy ; is any choice of local primitives of wy on each residue disc D(P;), then

Zresvj (Fpj Aa,nh)y = (Fp1(Par) Aa, clp,, (A)).
j=1

Proof. Since the local primitive Fy ; A « is analytic on the residue disc D(P;), and since 75°! has 0 residue
on V; when j > 2, it follows from (3.7.1) and (3.7.2) that

Zresvj (Frj Ao, ni®) =resy, (Fy1 Aa,ni) = (Fr(Par) A a,clp,, (A)).

The lemma follows. O

Lemma 3.20. Let Fy be the Coleman primitive of wy on C. Then

(3.7.7) Zresv (Ff A a,nx°P) = 0.
Jj=1

Proof. We begin by noting that for each j =1,...,t,
resy; (Fr Ao T]Fmb> = resy;, (PFf A v, (I)nFmb>
(3.7.8) = tesy, (PFf A a,na°) +resy, (PF; A o, VG),

where G is the rigid analytic section of £, , over W’ given by (3.7.3). The fact that ® is horizontal for
the Gauss-Manin connection (combined with the Leibniz rule) shows that

d(®Ff Ao, G) = (PFf AN, VG) + (dwy A, G).

In particular, the expression appearing on the right is exact on each annulus V;, and therefore

¢ ¢
Zresvj (PFy N, VG) = —Zresvj (Pws A, G)
j=1 j=1
= O7
where the last vanishing follows from the rigid analytic residue theorem (Theorem 3.8), in light of the fact
that (®ws A «, G) belongs to },,. Hence by summing equation (3.7.8) over j = 1,...,t, we get

t

Z resy, (Fy A a,ni°") = Z resy, (DFy A a, N o).
7j=1 j=1
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More generally, if L is any polynomial in Flz], we get

t
Zrest Fy A a,nieP) Zresvj (L(®)Fy A o, niroby.
Jj=1 '
Now, choosing the polynomial L(z) = P(z) as in Lemma 3.14 preceding the definition of the Coleman
primitive, we get
t t

Z resy, (Fy A a, nk°") Z resy, (L(®)Fy A a, na°?) = 0,
j=1 Jj=1

where the vanishing follows by noting that L(®)F; A « is a rigid analytic section of £, , over W’ and
applying Theorem 3.8 once again. Lemma 3.20 now follows from the fact that L(1) # 0. O

The proof of Proposition 3.18 now follows from (3.7.6) combined with Lemmas 3.19 and 3.20, which
show that
AJp(Ag)(ws Aa) = (wp Aa,na) = (Fr(Par) Aa,clp,, (A))
when Fy is a Coleman primitive for wy. O
Proposition 3.21. With the same notations as in Proposition 3.18,
AJp(Ag)(ws Aa) = (" Fy(Par), @) a,
where the pairing (, Ya on the right is the natural one on Sym” H}g (A/F).

Proof. Let
=(¢",id") : AT—T, C (A)" x A".
Note that
o (Ff(Par) Na) = ¢*(Ff(Pa)) A e, o([A7])) = clp,, (Tp),
where [A"] € HIz (A" /F) is the fundamental class associated to the variety A”. Let
(s )ay: Hig /(A7/F) x Hig(A"/F)—H* (A" /F) =
denote the Poincaré pairing, so that the restriction of (, )4, to Sym" Hlz(A/F) C Hiz(A/F) agrees
with (, ). Observe that
(3.7.9) (Ff(Par) Nayclp,, (Ap)) = (Ff(Par) Nayclp,, (Xy)) = (Fr(Par) Ao, o([AT])).
The functoriality properties of the Poincaré pairing imply that
(Fr(Par) N, o([AT])) (0" (Fy(Par) Aa), [A]) a0
(3.7.10) (0" (Fy(Par)) Ao, [A]) a0 = (" (Ff (Par)), @) a-
Proposition 3.21 follows by combining Proposition 3.18 with (3.7.9) and (3.7.10). O

Let {Pi,..., P} be the set of supersingular points of C, and let P; € C(F) be an arbitrary lift of
Pj under the reduction map. The residue discs D(P;) are called the supersingular discs of C' and the
complement A := C°' is called the ordinary locus of C. A locally analytic p-adic modular form of weight
k is a locally analytic section of w* over C°*%. Following equation (1.1.1), a modular form G of this type
can also be viewed as a function on ordinary triples of generalised elliptic curves (E,t,w) g, where R is a
p-adic ring of finite type over Z,, satisfying

G(E,t, \w) = \"*G(E,t,w), for all A € R*.

Following Chapter VII of [DR], in particular Corollaire 2.2, the formal completion along a cusp of
a suitable cuspidal p-adic neighborhood D =~ Spec(R) in C°'¢ can be identified with Spf(Z[q'/9]),
for Z finite unramified over Z, and d | N, in such a way that the universal object over D pulls
back to Tate(q), equipped with a suitable level structure. By an abuse of notation, we will denote by
G(Tate(q),t,wean) the g-expansion obtained by evaluating G at a generalised marked elliptic curve corre-
sponding to (Tate(q),t,wean) via the above identifications.

For 0 < j <, let G; denote the “j-th component” of the Coleman primitive F, defined (as a function
on ordinary triples) by the rule

G, (E,t,w) = (F(E,t),win"7),
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where 7 is the generator of the unit root subspace of H}g (E/R), normalised so that (w,n) = 1. The rule
G thus defined satisfies

Gj(E,t, \w) = \¥7"G;(E, t,w), for all A € R*,
and therefore defines a locally analytic p-adic modular form of weight r — 2j.
The next lemma expresses the Abel-Jacobi images of the cycles A, in terms of the modular forms G.
Lemma 3.22. Let
2 (Aa t7 UJ)—>(A/, tlv w/)
be an isogeny of ordinary marked elliptic curves of degree d, = deg(yp), and let A, be the associated
generalised Heegner cycle on X,.. Then

AJp(Ap)(wr Awn™™) = dLG(A 1, o).
Proof. By Proposition 3.21,

(3.7.11) AJp(Ap)(wy A7) = (" Fp (A ), w7 a.
Since (¢p*w’, ¢*n') = d,, we have

(3.7.12) o () = dyn.

Hence

<90*Ff(A/7 tl)v wjnrij>A

AT Fr (A1), 07 (W) ()" )) a
A (Fp (A1), (W)Y () ) ar
dzan (A/, t/, u/).

O

3.8. Calculation of the Coleman primitive. We now turn to the explicit calculation of the Coleman
primitive Fy of the regular L8 valued differential w ¢, or rather, of its components G;. In order to do this,
we begin by introducing an operator VU — UV on locally analytic p-adic modular forms which plays the
role of the operator P(®) in Theorem 3.15 defining the Coleman primitive, in the sense that it maps the
locally analytic forms G to genuine p-adic modular forms in the sense of Section 1.3. As a consequence
of the use of this operator, it will be possible to resort to g-expansions in our calculation of Coleman
primitive (cf. the proof of Proposition 3.24).

We recall the definition of the operators U and V (as they are described in [Se] for example). Given an
ordinary triple (E,t,w), let

<p§p) (B, tw)—(Ej, tj,w;), j=0,1,...,p

denote the distinct p-isogenies on F, ordered in such a way that <p((Jp ) is the distinguished p-isogeny whose
kernel is the canonical subgroup of E. For instance, when (E,t,w) = (Tate(q),{N,Wecan), the canonical
subgroup is 1, and we can take

(3.8.1) (Eo, to,wo) = <Tate(qp),g§, %wm> , (Bj,tj,w;) = (Tate(¢"/P¢}), (v, wean)-
The Hecke operators U and V' are defined by setting
(GIU)(E,t,w) = GU(E,t,w)), (GIV)(E, t,w) := G(V(E,t,w)),
where ,
U(E,t,w) = %Zl(Ej,tj,wj), V(E,t,w) = (Ej, %to,pwo).
These operators are related to the usjual Hecke operator T}, by the rule

1
I,=U+ E[p]va
where [p] denotes the isogeny given by multiplication by p. In particular,

1
(3.8.2) VU-UV =1-T,V + E[p]v?
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The diamond operator (a) attached to a € (Z/NZ)* is defined on locally analytic p-adic modular forms
by the rule

Gl{a)(E,t,w) = G(E,a 't,w).
Given a locally analytic p-adic modular form G, we set
=G|(VU -UV).

In terms of the g-expansion
G (Tate( CNa wcan Z bnq

of G, the operators U and V satisfy
(3.8.3) (G|U) (Tate(q), Cn, wean) = Z bpq",  (G|V) (Tate(q), (N, Wean) = Z bng"™®

so that the g-expansion of G” is given by
(3.8.4) G (Tate(q), (N Wean) = > bng™.
(p,n)=1

Lemma 3.23. Let K be a quadratic imaginary field in which the prime (p) = pp splits, and let (A’,t") be
a point in C°' corresponding to an elliptic curve A" with complex multiplication by (an order in) K. Let
G be a locally analytic p-adic modular form of weight k satisfying

T,G = b,G, P)G = eq(p)G.
Then

b ea(p)b ea(p)
G (Alatlaw/) = G(Alatlawl) - TPG(p * (Alatlawl)) + pk+1 G(p N (A/ t' W ))

where the action of ideals on CM triples is the one given in (1.4.8).

Proof. Because A’ has complex multiplication, its canonical subgroup is identified with the kernel A’[p] of
multiplication by p, and therefore,

V(A W) =px (A, p 1t pu'), [p]VZ(A V') = p? (A, p~ ' pu).

Therefore,
G = GA=TV +pIVAA )
= G = bGlo o (A7) + G s (At )
= QAW - %G(p w (AL W) + ;i(fl)e(pﬂ £ (AL, W),
The result follows. O

Proposition (3.24) below gives an explicit formula for Gg» in terms of the Atkin-Serre operator 6 defined
in equation (1.3.2) acting on the modular form f. Note that, for any j > 0, the expression

Hflfjfb — h_IIll } otfb
is a p-adic modular form of weight r — 2j. (Cf. Théoréeme 5 (b) of [Se].)
Proposition 3.24. For all (E,t) € C°9,
(3.8.5) GY(E,t,w) = j10 1 (B, t,w).

n particuiar ine Goieman primaitive Oof Wep 1S G T1Gla analytic sectton o, i over .
In particular the Col imitive F} of w, is a rigid analytic section of L1 cord
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Proof. For 0 <j <r,set F’ := F} = Ff|(VU — UV). Then

G(E,t,w) = (F(E,t),w/n" ).
Equation (3.8.5) amounts to the statement that
(3.8.6) 0Gy = f°,  0G,=jG_,, forl1<j<r.

We verify that this holds on g-expansions, working with the basis (Wcan, £can) for the de Rham cohomology
of the Tate curve which is described in equation (1.1.6) of Section 1.1. To check (3.8.6), note that

VGh(Tate(q),Cv) =V (Gh(Tate(q), (s wean)an )
=V (<Fb(Tate( ) CN) can> gan)

= <(")fb (Tate( ) CN) gcan> Wean + T<Fb (Tate( )’ CN)v ggan> Wean fcan q

d
= fb<Tate<q>,<N,wcan>w§an;q+r<Fb(Tate<q)7<N>,5§an> scan :

where the last equality follows from (1.1.10).
After applying the inverse of the Kodaira-Spencer isomorphism and using (1.1.10) again, we find

VG (Tate(q),Cv) = f*(Tate(q), (v, wean)winh? + 7{F” (Tate(q), (v ), Elan )it Ecan-
Applying the unit root splitting Wgyop, to this identity then gives

OrrobG(Tate(q), () = f°(Tate(q), ().
This proves (386) for j = 0, in light of Lemma 1.7. For the case j > 1, we note that, because

<"‘jfb wgan can > = 0

VG (Tate(q), ()

\Y (Gg (Tate(q), ¢, wcan)wg;]zj)

—  V((F(Tate(q), (n), wanbimd )l

= (P (Tate(q), Cn ), wihermd )2 2

+(r — 2))(F* (Tate(q), (), &l Yol %m—"
. o, d

= -]G?—l (Tate(Q)a CNv wCan)wcanQJ ?q

+(T - QJ)GE (Tate(Q)7 CN; uJcan) Zaan 1gcan

Applying 0! followed by the unit root splitting to this identity gives
Upon VG (Tate(q), (v) = §G_ 1 (Tate(q), (N wean)wimn -
Therefore,
9FrobG? (Tate(q), (v, Wean) = ng'—l (Tate(q), (n s Wean),

and (3.8.6) follows from Lemma 1.7 for all 1 < j <. This completes the proof of Proposition 3.24. (See
also Lemma 9.2 of [Col3], where a similar result is proved.) O

4. PERIOD INTEGRALS AND CENTRAL VALUES OF RANKIN-SELBERG L-FUNCTIONS
4.1. Rankin L-series and their special values. Let f = " a,e*™"* € S (I'o(N),e¢) be a normalised
newform. Write
s) = Z ann” " = H(l - O‘qqis)il(l - ﬁqqis)il
n>1 q
for its Hecke L-series, where the product on the right, taken over all the rational primes, should be taken

as the definition of the parameters {ag, ,}. In particular, oS3, = qk’laf(q) if ¢ does not divide N, and
aqBq = 0 otherwise. Let N., denote the conductor of ;.
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In this section, it will also be convenient to view f as a function on pairs (L, t), where L is a lattice in
C and ¢ is an element of exact order N in C/L. The lattice function f is determined by the rules

(4.1.1) fW1,my,1/N) = f(1), for all 7 € H,
(4.1.2) FONL M) = X7FF(L, 1), for all A € C*,
(4.1.3) f(L,at) =€ef(a)f(L,1), for all a € (Z/NZ)*.

Let wy € C* be the scalar of norm one defined by the rule

(4.1.4) wn (f) = wy fp,

where f, € S (I'0(IN), &) is the modular form obtained by applying complex conjugation to the coefficients
of f and wy is the Atkin-Lehner involution (which is described precisely in Lemma 5.2 and the discussion
preceding it). We note that the Hecke L-series L(f, s) satisfies the functional equation

A(fa S) = wa(fpa k - S)u
where A(f,s) = (21) *T(s)N*/2L(f, 5).

Let K be an imaginary quadratic field with discriminant —d, equipped with a fixed complex embed-
ding. Recall that for any pair of integers (¢1,¢2), a Hecke character of K of infinity type (¢1,42) is a
continuous homomorphism

X :Ajp—C*
satisfying
x(a-z-200) = x(2) - 220022, forallae KX, 2z, € KX.
For each prime q of K, let x4 : K—C* denote the local character associated to x. The conductor of x

is the largest integral ideal f, of K such that x4(u) =1 for all u € (1 + §,Ok,¢)* — K. In the usual
way, we can identify x with a character on Og-ideals prime to f, by defining

(4.1.5) x(a) = HXq (q)"e(®,

qla

where 7y is any uniformizer at q, this assignment being independent of the choice of 4. As a function on
ideals, x satisfies x((«)) = a‘*@* for all principal ideals (o) with a =1 mod fy.

The focus of this section is on the special values of the Rankin-Selberg L-function L(f x 6,,s) where
0, denotes the theta function associated to x. For simplicity we will denote this L-function by L(f, x, s).
If we set a; = o and Bpi = ﬂg, then it can be defined as an Euler product of terms Ly (f, x, s) where

P
for good p, i.e. for ptf, N,

Ly(f.x:8) = (1= x(p)any (Np) =) 71 (1 = x(p) Bxp (Np)~*) 7.

The local factors at ramified places are described in [Jac] §15. Indeed, up to a shift L(f, x, s) is identified
with the Rankin-Selberg L-function L(m¢ X 7y, s), where m¢ and 7, are the automorphic representations of
GL>(Aq) associated to f and 6, respectively. More precisely, after normalizing 7 and 7, to be unitary,
we have

L(f,x,s) =L <7Tf X Ty, 8 — %) )
Set £ := |¢; — {5] and £y := min(¢1, ¢3). Define
Loo(f, X S) = Fc(s — Eo)Fc(S — mln(k — 1, é) — éo),
where T'c(s) = 2 - (2m)7°T'(s), and set
A(faXvs) = Loo(f1X7S) . L(vavs)‘

The function A(f, x,s) (defined a priori in some right half plane) extends to a meromorphic function
on C and satisfies a functional equation of the form

A(f7Xﬂ 8) = €(f7Xvs)A(fpa>27k +€1 + 62 - 8)7

where f, is as in (4.1.4) and €(f, x,s) is an epsilon factor again described in [Jac] §15. In the case of
interest to us below, ¢ x m, will be self-dual and the value of €(f, x, s) at the center of the critical strip,
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denoted €(f, x), is equal to £1. If ex is the quadratic character associated to K and ¢, is the Dirichlet
character attached to x by

ex = Xlay N,
then the function A(f,x,s) is known to be holomorphic when € e, e is non-trivial. (For more details on
the above, see [Jac], § 19.)

An integer n is said to be critical (in the sense of Deligne) for L(f, x, s) if none of the Gamma factors
that occur on either side of the functional equation for L(f, Y, s) have a pole at s = n. The corresponding
values of L(f,x,s) will be called critical values. Deligne has made precise conjectures (proved by Shimura
[Shim2]) that predict the rationality of these critical L-values over specific number fields, after dividing
them by appropriate (ostensibly transcendental) periods. It turns out that the nature of the period depends
qualitatively on the infinity type of x. Indeed, assuming for the moment that x is of type (0, ¢) with £ > 0,
the form of the gamma factor Lo (f, X, s) shows that the following two cases arise naturally:

Case 1: ¢ < k — 2. In this case the critical integers j for L(f,x,s) are those in the closed segment
[¢ 4+ 1,k — 1]. The transcendental part of L(f, x,j) depends only on f and not on yx, and is expressible in
terms of the Petersson inner product (f, f).

Case 2: £ > k. In this case the critical integers j for L(f,x,s) are those in the closed segment [k, ¢]. The
transcendental part of L(f, x,j) depends only on K and not on f, and is expressible as a power of a CM
period attached to K. (This period will be defined precisely in Section 5.1.)

We now return to considering characters x of more general infinity type (¢1,¢2). It will be convenient
in what follows to work with the L-function L(f,x~!,s). Note that the critical values of L(f,x~!,s) (as
x and s both vary) are completely captured by the critical values of L(f,x~%,0) (as only x is made to
vary). This motivates the following definition.

Definition 4.1. A Hecke character x of infinity type (¢1,¢2) is said to be critical if s = 0 is a critical
point for L(f,x71,s).

Let us define yo by xo := x~* - N so that the infinity type of x is (0,¢1 — £2). Then
L(f7 X717 8) = L(fv XONiél ) 5) = L(f7 X0,8 + 61)

By the previous discussion applied to xo (and to xf: see remark below), the character x of weight (¢4, (2)
is then critical if one of the following hypotheses is satisfied:

Case 1: 1 < /{1,f5 < k — 1. This implies that £ < k — 2.
Case 2: £1 > k and /5 <0, and Case 2': /1 <0 and £ > k. In both these cases, £ > k.

Let ¥, @ and 2" denote the set of Hecke characters satisfying the conditions in Case 1, Case 2
and Case 2’ respectively, so that the set ¥ of all critical characters is the disjoint union

y=x®Ox®xn),

Remark 4.2. The weights of characters in ©(!) are the integer lattice points in the lightly shaded square in
Figure 1, and those attached to characters in ©() are the lattice points in the darker lower right quadrant
of this figure. The region 32 is the reflection of £(?) around the principal diagonal, and the map x — x”
(where x* is the composition of x with complex conjugation on A% ) interchanges these two regions.

A character x € X is said to be central critical if

Uy + 0y =k, Ex =Ef.

The terminology is justified by the fact that in this case 7y x 7, -1 is self-dual and 0 is the central (critical)
point for L(f,x1,s). Let X.. denote the set of central critical characters, and write (for i = 1,2,2’)

HONED N aPHON

The weights of central critical characters are the lattice points on the central critical line which is depicted
in Figure 1.
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k—1¢

Central
critical line

FIGURE 1. Critical and central critical weights for y +— L(f, x!,0)

Remark 4.3. This article is concerned with the p-adic L-function obtained by interpolating the L-values
L(f,x~1,0) for x in £® or (2. Since this L-value is unchanged if y is replaced by x”, we may assume

that £, > 0 and work simply with the region £(?). The main result of this paper (Theorem 5.13) relates the

special values of this p-adic L-function at characters x in i (which is outside the range of interpolation)

to the p-adic Abel-Jacobi images of generalised Heegner cycles. It would also be very interesting to study
the values of this p-adic L-function at x in Eg). We do not address this issue here. However, one could
speculate that a study of the triple product L-function analogous to the one for the Rankin-Selberg L-
function in this article may shed light on this issue. This intuition is suggested by the way in which the
results of the present article are used in [BDP-ch] to yield information about the Katz p-adic L-function
at critical characters that are outside the range of p-adic interpolation.

We assume henceforth that K satisfies the Heegner hypothesis for f i.e., that all the primes ¢ | N are
either split or ramified in K, and further that if ¢ | NV, then q is split in K. This implies that there exists a
cyclic Og-ideal 9t of norm N. We fix once and for all such a choice of 9. We also fix an integer ¢ prime to
Ndg, and set (as in Sec. 1.4) N, := NN O.. Thus N, is a proper O -ideal and O,/N. ~ O /N ~Z/NZ.
Let U, = @CX denote the corresponding compact open subgroup of AIX(V 5 SO that U. = [] ¢ Uc.q with
Ueqy = (0. ®Zy)*. For ¢ any character of conductor N¢|N, we define M. to be the unique ideal in Ok
that divides 91 and has norm equal to N.. Let . be the composite homomorphism

(416) Ue = 0F = O = [ (Onca/MeOrc)* = [] 2/ N2 175 ©*
q|9. q|Ne
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Equivalently, if we set M. := M. N O, then 1, is the composite

A A ~ —1
Ue=0F = (0c/M.0:)* ~ (Og /N.Ok)* ~ (Z/N.Z)* — C*.
The following definition will be key in what follows.
Definition 4.4. A Hecke character x of K is said to be of finite type (¢, 9, ¢) if ¢ divides f, and
Xlu. = te.

Note that a character x of finite type (¢, M, ¢) is necessarily unramified outside ¢M.. Further, we may
think of x as a character on proper O.-ideals prime to ... Indeed, any such ideal a is locally principal,
ie. a =10, for some x = (z4) € Ag 5, and we set

(4.1.7) x(@) == [T xa(za)-
ate
This is independent of the choice of z since X|chq = @[JE|OCXQ = 1for ¢ t N, and x is unramified at the
primes of K dividing N but not dividing .. Viewed in this manner, y satisfies
(4.1.8) x((@)) = o a’2e(a mod N.)

for any a € K* that is a unit at all the primes dividing ..

Let ¥..(91) denote the set of those characters in Z((;(l;) U E((f;) that are of finite type (c,91,¢¢) and that
satisfy the following auxiliary condition: the local sign e,(f, x~!) = +1 for all finite primes ¢. In view of
our other hypotheses, this condition is automatic except possibly at those primes ¢ lying in the set

S(f)=={a: ql(N,dk), ¢f Ne,}.
For i = 1,2, we define N (M) by
SO = 2 N0 Bee (M),
so that X..(91) is the disjoint union:
See(M) = Z{ (M) U (M.

For x € ¥c.(M), writing (k + j, —j) for the weight of x, we see that x € E((f;) () or E((;(lj) (9) according
asj>0orje[—(k—1),—-1]. Let x € zﬁf)(m) be a Hecke character of infinity type (k + j, —j). Recall
the Shimura-Maass operator J; of equation (1.2.9) and let

0], = Opy2j—2 -+ - Opt20%
be the differential operator sending holomorphic modular forms of weight k to nearly holomorphic modular
forms of weight & + 2j. The modular form &7 f can also be viewed as a function on pairs (L, t) consisting
of a lattice L in C and an element ¢ of order N in C/L, satisfying the homogeneity properties of (4.1.3)
with k replaced by k + 2j.

In what follows, we will also fix a generator t of M;1/O. ~ Z/NZ. Let a be a proper O.-ideal prime
to M. and choose @ € K* such that b := aa € O, and a = 1 mod M. Then the image of ¢ under the
composite map

N 1/0. -t et Lot ot
is independent of the choice of «, and will be denoted ¢,. Thus the choice of ¢ gives rise to a generator ¢,
of M-ta=1/a~? for every proper O.-ideal a prime to N..

Lemma 4.5. Let a be any proper O.-ideal prime to N, and suppose x is a Hecke character in EE? (M) of
infinity type (k + j,—j). With t fized, the expression

(4.1.9) X H(@)Na™7 -6 fla™t t,)

depends only on the class of a in Pic(O.).

Proof. Note that since a is prime to M., it is certainly prime to M. . as well and so the expression x ! (a)

is well defined. The lemma then follows immediately from the equations (4.1.2) (with f replaced by 67.(f)
and k by k + 27), (4.1.3) and (4.1.8). O
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Theorem 4.6. Let f be a normalised eigenform in Si(To(N),e¢) and let x € n@ (M) be a Hecke character
of K of infinity type (k+ 7, —j). Suppose also that ¢ and di are odd, and let wi denote the number of
roots of unity in K. Then

2

Clf,0) - L H0 =] > x 'aNa™7 - (61" ta)| ,
[a]€Pic(O.)
where the representatives a of the ideal classes in Pic(O.) are chosen to be prime to M. and the constant
C(f,x,c) is given by
(¢ —ex(q))

1 4
C(fx,c) = Zﬁkwklr(j + DT(k + jwrcldic |2 - evol(O,) 7 - 2% . T —1

qale

Remark 4.7. The restriction that ¢ and dx are odd is made for convenience to simplify the local calcu-
lations in Section 4.6 at primes dividing cd.

The rest of this chapter will be devoted to proving Theorem 4.6 using Waldspurger’s results relating
period integrals to L-values. The reader whose main interest is in p-adic methods can take this result on
faith and continue reading from Sec. 5.1 onwards.

4.2. Differential operators. We recall some general facts about the Shimura-Maass operators that were
introduced in Sec. 1.2 and appear in the statement of the theorem above. Let I' be a congruence subgroup
of SLy(Z) and denote by Cp°(T") the space of C*°-modular forms of weight k¥ on I'. We also denote by
C2°(I) the space of C*®-functions on H such that

flyz) = (dz+d)F|dz+d| 7 f(2)

!/
for all v = ( Ccl, Z, ) € I'. (For the moment we will use the symbol f for an arbitrary modular form in

C(T) or C°(T").) Recall that the weight k Shimura-Maass raising operator 8 : C2°(I') — Cpeo(I) is
defined by

(4.2.1) 5u(f) = — (8 L )f.

T2 \0z | z-2

Via the isomorphism
(4.2.2) CrM) =CFEM),  f(z) = f(2):= f(2)y"?,

we see that 0y, is identified with — & Ry, where

. N 0 kK
(4:23) R OF0) = Ca0). Rl = (-2 +5) 5
Let us define (following the discussion in [Bump] §2.1)
~ ~ 0 k
(12.4) Lo CGE) = Ca), L) = (=25 45 )7
and
(4.2.5) Ap : C2(D) — CP(T) Ai(f) = =2 8—2+‘9—2 +iky 2
L. k- k k 5 k = Yy 8x2 ay2 7 yax
These operators satisfy
k k k k
(426) A = —Lg4o Ry — 5 (1 + 5) = —Rp_oLp + 5 (1 — 5) .

Note that via the isomorphism (4.2.2), the lowering operator Lj corresponds to f — Qi%f on Co(I).

Thus if f is holomorphic, then Li(f) = 0.
Definition 4.8. Let j be a nonnegative integer and f € C',;’O(I‘) Then R f is defined by
RIf = (Rypt2j—2 0 Rq2j-40- -0 Riya 0 Ri)f.
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Lemma 4.9. Suppose that f € Cp°(T') is holomorphic. Then for j > 0, the form RIf is an eigenfunction
of Agyo; with eigenvalue p; + A; where pj == j(k+j —1) and A\ := @ (1 — @)

Proof. Since f is holomorphic, we have Lk(f) = 0. Hence Ay f = % (1 — %) by (4.2.6) and the result holds
for j = 0. We now work inductively, assuming the result holds for j — 1. By (4.2.6) again,

Ao R7f = (—Rigoj—2Ligo; + )R f
= —Risoj oLii2jRevoj o R/ f+ A\ R f

k+2j—2 k+25—2 L .
= Rpigj2 (Ak+2j2 + + <1 + %)) R+ R f

k425 — 2 k+2j—2
= Riyojo(pj1+k+2j—2)Rf 4+ RIS
= (o1 +k+2j—2+N)Rf=(u; +\)R'f. O
Definition 4.10. Let f,g € Cp°(T') and suppose at least one of f or g is a cusp form. Then set

= Riyoj2 (Mjl + A1+ )) RIVf L \NRIf

1 —— dxdy
9= 7/ f(z)g(z yk .
V9= B 1 Jrg Y
Likewise, for f, g € Ci°(T') with at least one being cuspidal, we set

(fq) = f<z>@dj§y.

1
[SL2(Z) : '] Jr\x
Clearly, for f,g € C3°(T), we have (f,g) = (f, ).

Lemma 4.11. Suppose that f,g € C°(T") are holomorphic. Then
GG+ Ik +5)

(4.2.7) (RIf,Rig) = NG (f.9),
and
(4.2.8) (51 f,5lg) = A G ACRF) (f,9)

(4m)% (k)

Proof. Clearly (4.2.7) and (4.2.8) are equivalent. We will prove (4.2.7) inductively. Invoking [Bump] Prop.
2.1.3, equation (4.2.6) and Lemma 4.9 in turn, we find

(RIf,RIg) = (R"'f,—LiyojRiyoj—2R17'G)
o k+2j—2 k+2—2\\ i
e T TRSETEEN P
e k+25—2 k+27—2 L s s
= (gt a2 (1 B g — e o),

Hence
PG+ 1Nk +5
L'(k)

(RE,Rg) =(f9)- [] m= L. O

1<t<j
4.3. Period integrals and values at CM points. Let Ag := C/O,. and tg be the DM-torsion point on
Ayp corresponding to our choice of t € M 1/O,.. The pair (Ag,to) determines a point P4, on the modular
curve X1(N). Let 7 € H be any any point lying over Pa,. Thus there is a unique isomorphism

A, =CJZr + 7. % c/o,

sending [1/N] to tp, which on tangent spaces is given by multiplication by a scalar A, € K*. Hence
O.=A.(Zr+Z) and

A,
~ =¢ mod O,.
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Thus
(4.3.1) A €N, and (A, 0,.) =1

Let £ : K — M(Q) be the embedding that describes the action of K on H;(A,(C), Q) with respect to
the basis (7,1) i.e. given by

Explicitly, for a,b € Q,

(4.3.2) £(a+br) = ( a—i—bl;l“r(r) —baNT > .

Let Mo (V) be the order defined by

i /
Mo(N) := {( ‘cL, Z, ) € My(Z): ¢ =0 mod N}.
Then, via the embedding &,
K NMy(N)=End(A4,,([1/N])) = End(C/O,, (t)) = O,
so that & is a Heegner embedding of conductor ¢. A different choice of 7 will give an embedding &’ that is
conjugate to € by an element of T'o(IV). Note that £ gives rise to a map of algebraic groups
£ ResK/QGm — GL q

and hence a map on adelic points €, : Aj; — GL2(Aq). We consider A as a subgroup of GL3(Aq) via
this embedding. .

As in the previous section, let 7 f denote the nearly holomorphic modular form of weight ¢ := k + 2j

obtained by applying the Shimura-Maass differential operator j times to f. We use the embedding & to
associate to the classical modular form & f an automorphic form F7 on GL3(Aq) as follows. First, let

— X
Uy = (Mo(N)®Zy)*, U':=Mo(N) =]]U;C GLy(Ay)
q
and define a character wy = [[, wy 4 of U’ by setting

a v
ora () =erald)

! /
for < Ccl’ Z’ ) € U;. Now, for g € GL2(Aq), write

g="" (Uyso), with 7€ GL2(Q), ueU’, 7. € GLy(R)™.

Then set . 4
FI(g) = 65.(/) (10 (1))5 (Yoo, )~ “wy (w),
where we define
J(,2):=cz+d and  j(v,z):=det(y)" V(2 + d),

li /
for any v/ = < CCL, Z, ) € GL2(R). One checks easily that this definition is independent of the choice of

decomposition of ¢g. Further, for any v € KX,
FI(ga) = F/(g)j(a,7)~" = a "N (a)/*F(g).
Here Nx = N o N/, q is the usual norm character on K, N being the norm character on Q.

Lemma 4.12. The restriction of the character wy of U’ to U, (via the embedding §,) is 1., .

Proof. For q{ N, the restrictions of wy to U; and of ¢, to U, are both trivial. Suppose therefore that
g divides N. Let a + b1 € O, NU, 4. By (4.3.2), we have a € Z and b € NZ. Since N/A; lies in N, Q@ Z,,
and A;7 € O, the element N7 = (N/A;) - A.7 also lies in M. ® Z,, so that

Yepqla+b7) =5 4(a) = wyq(§,(a+b7)).
Since O. N U,,q is dense in U, 4, it follows that ¢, (u) = wy (€, (u)) for all uw € U, 4 C U.. 0
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Proposition 4.13. Suppose x € » (M) is of infinity type (k+j,—j). Let n and ' be Grossencharacters

defined by
g /2
ni=xTING, =N
so that 1 is unitary. Then

1 . . _
> X M@Na T (§)( ) = (2m) AL FI(€4 (@) - ()d"a,
¢ a]ePic(O.) KXKE\AY

where he := #Pic(O,) and the measure d*x on K*KX \ A) is chosen to have total volume 1.

X

Proof. Let us pick elements y; € @C such that Ag = L2 K* - U.- KX -y;. We may assume that we have
picked y; to satisfy

(4.3.3) Yig =1 mod NOk 4 for q | N.
Let a; := y;O. be the associated proper O.-ideal, so that
(4.3.4) n(ys) = n(a;) = x " (a;)Na; 7.

Let U” := [], Uy be the subgroup of U’ defined by Uy’ := U, if ¢ N and

" a v / ’
U, = J €U,:d =1 mod N ;.

By strong approximation for GL3, we may write

Enyi) = 9i(gu,i - i) with ¢; € GLa,q, gui€U”, 7 € GLy(R) .
Since givi = 1, we have 7; ' = g; € GLo(Q)*. Further, since ¢ is a Heegner embedding, we have
9igu,i € m) and consequently ;' € m) NGLy(Q)T. ie.

(4.3.5) Nl = < ‘Cl Z% ) € My(Z) N GLy(Q)*, ¢ € NZ.

In fact, on account of (4.3.3) and the fact that N7 € M, ® Z, for g | N (see the proof of Lemma 4.12
above), we also have d; =1 mod N. Now, for u € U,,

FI(&(vu)) = F7 (€ (2))wy (€4 (u)) = FI (€ (2))es (u).

Hence
he )
/ e PO @ = 5SS sl )
KXKX\AL ¢ i=1
1 ea
= S )T (i ) (s,

Il
-

since wy(gy,;) = 1. Taking into account (4.3.4), it will suffice to show that
(2m0) AZ L (F) ()T (i 7) ™0 = (5.) (a7 ta,)-
From the choice of ;, we see that the class of ;7 in X;(N) corresponds to the pair (C/a; *,t,4,), and
there is a unique isomorphism
C/(Zyir +Z) ¥ Cla;t,
sending [1/N] to tq,, with a scalar \; € K*. Note that
J(yi,m) ™ = J Oy i) = (i) + .

The scalar A; may then be identified from the fact that there is a commutative diagram:

T -1
C/(zr +2)" 2L C/(Zyir + 7)

lAT B

C/O. ——— = C/a; "
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Thus A; = A, - J(v4,7), and
R te) = S/ (Zoir +2), 7 d, [1/N])
A4 @) SN (i) (7). O

In the next few sections we will study the period integral

(4.3.6) Leeiy= [ PG @) @

using the method of Waldspurger.

4.4. Explicit theta lifts. Let ¢ denote the additive character of A/Q given by ((xy)v) =[], Yu(@v),
where

Voo () = ¥ Yy(w) = e 2™ for z€Z [ﬂ C Qq.

Let (V,(,)) be an even dimensional orthogonal space over Q, and denote by O(V) (resp. GO(V)) its
isometry group (resp. orthogonal similitude group). Recall the Weil representation ry = [, 7y, of the
group SLa(A) x O(V)(A) on the Schwartz space S(V(A)). On the orthogonal group, 7y, is given by

roo(@)e(r) = plg™ -x)  for g € O(V)(Qu),» € S(V(Qu))-

On SL2(Q,), the representation ry, , is described by its action on the matrices

vom (3 1), o= (3 ) we( 5 1),

by the equations

ronUla)e(e) = ol oz, 2))p(a),
P (Da)pl@) = xva@)al ™ p(az),
ra(W)e(e) = wud(),

where xv, is a quadratic character and -y, is an eighth root of unity, that can be read off from [JL] §1.
In the cases of interest to us, they can also be found listed in the table in [P], §3.4. The Fourier transform
¢ is defined by

P(z) = /V(Q,,) (y)u ((y, 2))dy,

the measure dy on V(Q,) being chosen such that ¢(z) = ¢(—z).
We will need to extend the Weil representation to similitude groups, following Harris-Kudla [HK1]. Let
R be the group defined by:

R :={(g,h) € GL2 x GO(V) : det(g) = v(h)}
where v denotes the similitude character of GO(V'). Then ry can be extended to R(A) by

oo =ro (5 (5 gens )) B

L(h)p(x) = [v(h)|” ™V A p(h ).
Let GO(V)? denote the algebraic connected component of GO(V). If F is an automorphic form on
GL2(A) and ¢ € S(V(A)), we define for h € GO(V)(A),

0,(F)(h) == / S rulgg he(@)Flgg)dVg,
SL2(Q)\SL2(A) €V (Q)

where

where ¢’ is chosen such that det(g’) = v(h). Likewise, in the opposite direction, if F’ is an automorphic
form on GO(V)?(A), and g € GL2(A) is such that det(g) € v(GO(V)(A)), we set

6L(F")(g) = / S rulg, b () F (hh')dh,
OVIQ\OW)(4) , T q)
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where b’ € GO(V)°(A) is chosen such that det(g) = v(h'). (We refer the reader to [P], §1, for the choices
of measures in the above and in what follows. ) If 7 (resp. II) is an automorphic representation of GLy(A)
(resp. of GO(V)°(A)), we define

O(m) :=={0,(F): FemepeSV(A))};
6 (11) := {GZ(F') cF ell,pe S(V(A))}.

Now set V' := M5(Q) and counsider V as an orthogonal space over Q with bilinear form

=g (0 0)=(4 )
’ 2 ’ c d —c a

The associated quadratic form is just z — zz* = det(x). The group GO(V)? is identified with the
quotient Q* \ GLy x GLy via the map (o, 8) — &(a, 3) where 6(c, 8)(x) = axB~t. Thus an automorphic
representation of GO(V)%(A) is identified with a pair (71, m2) of representations of GL2(A), such that the
product of the central characters of m; and 7o is trivial. To ease notation, we will often just write («, 3)
to denote the element §(«, ).

Let 7 denote the (unitary) automorphic representation of GL2(A) associated to f. The following
theorem is the classical Jacquet-Langlands correspondence realized using theta functions, and is essentially
due to Shimizu [SH]. (See also [Wa] §3.2.)

Theorem 4.14. (1) (7)) =7 x 7, where T =" =7® 6171.
(2) O(m x 7) = .

We will need a statement involving specific forms in 7 and 7 and explicit theta functions i.e. explicit
choices of Schwartz functions. For any finite prime ¢, let ¢™¢ be the exact power of ¢ dividing N and for
any set A, let I4 denote the characteristic function of A. For ¢ a prime dividing N, we will set

v a b _ [ Iz,(a)lz, (0)Igaz, (c)z,(d), if ¢f Ne,,
(4.4.1) Y ( c d ) B { 6?‘1(d)lzzq(a)IZq(Zb)Iq"qZZq(C)Iz; (d), if ¢ | Ns,«}

(44 2) 2 < a b ) — lIZq(a)Izq (b)Iq"—lzq(C)IZq (d)7 iqu(NEJM
- Pale d )T Lepa(dz, (@)lz, 0 1g, ()l (d), if ¢| Ne,.

Let ¥ denote the set of primes dividing N. For now we will fix a subset = of ¥ and consider the
following Schwartz function: = := ®q<pq5 where

(i) ForgtN, 90; =Imynez, = Iny(z,)s
(ii) Forq|N, g7 = <pé or @2 according as ¢ € Z or g € Z; B
(iii) For ¢ = oo, we identify M3(R) = (K @ R) + (K ® R)t = C + C* and set p% = ¢, with

(443) SOOO (u —|— V) = ﬁepj (47‘(‘<v7 v>)672ﬂ—(|<u)u>|+|<vxv>|)7
for u € C,v € C*, where p; denotes the jth Laguerre polynomial

mmzi@Yjﬁ

s=0

cosf) —sind

Lemma 4.15. Suppose kg := < Gnf  cosf

) € SO, (R) and k1, k2 € (K@ R)M) € GLy(R). Then
ry (K, (K1, K2))poe = € KT - k5 0.
Proof. This is [Xue], Prop. 2.2.5. O
For g | N, let us set U} := U}, (recall that U} was defined to be (Mo(N) ® Zq)*) and
a b _—
Uq2 :z{( e d > € GLz(Z,): a,de€Z;, beqZ, ceq"™ 1Zq}.

We also set UqE equal to Uy if ¢f N and equal to Uq1 or U; according as g€ Zor g€ =, if g | N.
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Lemma 4.16. Let g be a finite prime and suppose o, 3 € Ué, v E UqE are such that
det(a) = det(3) - det(y)™!,
so that (o, (8,7)) may be viewed as an element of R(Qq).
(1) Suppose q{ N.,. Then
ry (0, (8,7))7 = 5.
(2) Suppose q | N,. Then

ro(e, (B,7))e5 = er.q(ala))erq(d(8) 71 d())¢7,

where for any matriz a in GLa, we define a(a) and d(«) to be the upper left and lower right
entries of a respectively.

Proof. Let us write ¢, instead of <pq5 for simplicity. Clearly we may assume that
det(a) = det(B) det(y) ! = 1.
Then
ro(e, (8,7)¢q (@) = ry (@) L(B,7)pq(x) = ry(a)p (57 27).

In case (1), we have ¢ (87 '27) = @q(z), while in case (2), (87 zy) = €5,4(d(B)71d(7))pq(z). So it
suffices to consider the action of ry () on ¢,. Let us first check case (1). If further ¢ 1 NV, then « is in the
subgroup generated by matrices of the form D(a), U(y) and W with a € Z* and y € Z,. Thus we may
assume that « is in fact one of these three possibilities. Since ¢, = Iy, (z,) in this case, one checks easily
that

(4.4.4) ry(D(a))pg(x) = pqlax) = ¢q(z);
(4.4.5) rp(U(y))pq(x) = tq(ydet(z )) q(%) = @q();
(4.4.6) re(W)eg(x) = &q() = pq().

Next let us suppose that we are still in case (1) but

q
a b\ _ z,(0)1z, (0)Ignz, (0)z, (d), if q & =
%”"(c d)‘{ 1Iz (a)Iz, ()X mz()lz (d), if g € E.

~ a
Pq c

| N and ¢™ || N, so that

Note that
b\ 1z, (a)lynz, (0)z,(c)lg, (d), if ¢ £ =
d 1z, () -z, (0)Iz,(0)]z, (d), if g € E.

V(z)::(i (1))

Then a is in the subgroup generated by matrices of the form D(a), U(y) and V(z) with a € Z, y € Z,
and z € ¢"Z,. Now one checks immediately that the relations (4.4.4) and (4.4.5) continue to hold for such
g. As for V(z), note that V(z) = D(—1)WU(z)W. Further, for z € ¢"Z,,

Set

ry(U(2))@q = ¢q-
Hence for such z,
rp(V(2)pq = r (D(=L)WU ()W )pq = 1y (D(=1)WU (2))3g = r4(D(=1)W)@q = r4(D(=1))$q = ¢4
Thus case (1) is entirely verified. We now deal with case (2). In this case,
- ( a b ) _J eradlz, (0)lz, ()2, ()l (d), if g & =5
T\ c d %Ef)q(d) @)z, (0)Ln-1z (c)] Zx(d), ifge=.
Thus

ry(D(a))pq(x) = pqaz) = ej.4(a)pq(z)
for a € Zg and 1y (U(y))pq () = 1e(y det(z))pq(z) = ¢q(2) for y € Z,.
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It remains to consider the action of r(V(2)) on ¢4 for z € ¢"Z,. For this we need as before to compute
the Fourier transform of ¢,. Suppose that cond(efq) = ¢"™Zg, so that m < n. Then

B ( a b ) _ qm%f?],é(qma)lq—mz; (@)L, g (b)Iz, (c)z,(d), if ¢ £ E;
“\e d e 1. (") ()]t 72 D)1z, (0)Iz, (d), if g € E.

Thus ry(V(2))@q = @4 in this case as well, and we see as above that ry(V(2))p, = ¢q. O

We need the following lemma in order to study explicit theta lifts in both directions. For any ¢ € X,
and for 8 € GL3(A), we define

B, (p) = / i, FE O GV

Lemma 4.17. Let ¥/ denote the subset of ¥ consisting of those primes q such that wf 4 ~ m(p1, u2) is a
ramified principal series representation with py unramified and po ramified of conductor exactly q™e, where
q"||N. Then for q € X, the function ®4(8) is identically zero unless ¢ € ¥'. If ¢ € ¥/, then

D, (8) = ¢ 2u1(q) " FI (),

where 74 is the element of GLa(A) that is ( g (1) ) at ¢ and 1 at all other places.

Proof. Let us write n instead of n, for ease of notation. We suppose first that ¢ € £\ ¥’. In this case,
Tf.q 1s either supercuspidal or a ramified special representation or a ramified principal series ~ 7(p1, ft2)
where z11 and g2 both have conductor dividing ¢"~!. In any case, the central character €, has conductor
dividing ¢"~'. (See [Tul] Prop. 3.4.) We claim then that

(4.4.7) Dy (Bu) = e7.4(d)Pq(8),

for u = < Ccl Z ) € I'y(n — 1), where for any integer m > 1, we define

L'y(m) ::{( Ccl Z ) € GLy(Zg) : ¢c=0 mod qm}.
It suffices to verify (4.4.7) for v a matrix in one of the three forms:
a 0 ne
D(a,b) := ( 0 b ), a,b,€ Zy; Uly), y€Zy and V(z), z€gq 1Zq.

This follows from the following set of computations. First, let a,b € Z;. Then

Pq(8- D(a,b)) = /SL Q )soﬁ(agl)Fj(ﬂ-D(aab) ~aq - D(a,b)™" - D(a,b))dWay

£7.4(b) / ¢2(D(a,b) - ay" - D(a,b) )/ (B ag)dVay
SL2(Q<1)

= 5f,q(b)/ Sog(agl)Fj(ﬂ : O‘q)d(l)aq = e1,4(0)P4(3).
SL2(Q<1)
Next, let y € Z4. Then

8,5 Uy) = / o, OB U el Ve

- / G207 Uy)F (Bag)dVay,
SL2(Q<1)

Suppose a; ! = ( Ccl Z ) Then
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If goz(aq*l) # 0, then a,b,d € Z, and ¢ € ¢"'Z,. Hence cy+d =d mod ¢"~'. Since the conductor of €,
divides ¢"~!, it follows that 2(c; 'U(y)) = pi(a, ') for all oy, and consequently ®q(5- U(y)) = ®4(0).
Finally, let z € ¢"'Z,. Then

By(8- V() = /S L, PO BV ) )iV
- / Part V() Y (Bag)dVay,
SL2(Q<1)

But
-1 . a+bz b
g Viz) = < c+dz d >
Since z € ¢"'Zg, one finds that 2(o; 'V (2)) = @2(a,") for all a,. This proves (4.4.7). But now by
Casselman’s theorem, we see that ®,(3) must be identically zero for such g.
We now turn to ¢ € ¥’. In this case, one cannot argue as above since ¢y, has conductor ¢". However

the argument above shows that ®, is right invariant by V(z) for z € ¢"~'Z,, and by U(y) for y € ¢Z,,
and transforms by e¢4(b) under the right action of D(a,b). We conclude that if u lies in the subgroup

{( CC‘ Z ) €GLy(Zy): a,d€Zf, beqZy, ce q"—lzq},
then ®,(0 - u) = £5,4(d(u))P4(5). By Casselman’s theorem, we see that
Oq(Brg ") =¢- F(B)

for some scalar é. We now compute the value of é. Letting I‘((Il)(m) :=T'y(m) N SL2(Qy), note that

1 .
Dq(8) = E/I‘fll)(n—l) era(d(ag))F7 (Bag)dVay.

Let us first suppose that n > 2. Then the collection

1 O n— n
V(@:(w 1), v €q" " Ze/q" Ly

is a set of coset representatives for Fgl)(n - 1)/Fgl)(n). Hence

£ FI () = By(0) = Lo raldlag V)P (3V(@a,)ia,
2€q" T Zq/q" Zyq Fa” ()

L. 2ra(@la D (0 (@)erdag)d Ve,

zeqn—1Z,/q"Z, q (n)

vl M)y ST FIBV(a),

z€q"T1Zq/q" 2y

(4.4.8) =

RLRI= QR Q=

To find the value of ¢ we may substitute 3 = 1 and compute in a convenient model for the local represen-
tation 7y 4 =~ w(p1, p2). We use the standard model of the induced representation V (1, p2), and denote
by f, a new vector in this representation, normalized so that f,(1) = 1. Then (see [SR], Prop. 2.1.2)

Fa(vq) = m1(g)' ~"al}/?

fq( 10 ) :{ ()", if vg(w) > n;

x 1 0, if vy(x) < n.

while

It follows that )
= au1<q>—1|q|;1/’2 vol(UM) = =2y (g)~F vol(U ™),

If on the other hand n = 1, then the matrices V(z) with = € Z,/qZ, along with W form a set of coset
representatives for I‘gl)/ I‘gl)(l). Again we can use the standard model of the induced representation to
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compute the value of ¢. However, since fq(W) = 0 (see [SR], Prop. 2.1.2), the expression for ¢ remains
the same in this case too.

t
Definition 4.18. For = C X, we set Fé(g) =Fi(g- [1,e= 7a), where 74 is as in Lemma 4.17 above.
Proposition 4.19.
0L=(F7 x F1) = C} - FF,

where

(4.4.9) o yEZ
- FT (am) D R vl (U D) (P9, F9) - T ea(q Y () 2 C Y,
and FO! is the unique form in m characterized by
(i) If gt N, then F%%(gu) = F%¥(g) for u € GL2(Z,).
. a b
(i) If q | N, then F%#(gu) = g4 4(a)F**(g) for u= ( ¢ d > € I'y(ng).

cosf) —sinf
sinf  cosf ) € SO2(R). Let (1,acx0kg) denote

the element of GLo(A) which is 1 at all finite places and akg at the infinite place. Then

Wiro.t (1, ascke) = a*/ 2RO L L (a).

(ili) Let a € R*, ac = d(a) € GLa(R), kg =

Here W. ., denotes as usual the 1- Whittaker coefficient and (F7, F7) denotes the Petersson inner
product:

S
Py =3 [
2 JPGL:(Q)\PGLy(4)

FI(B)F1(B)d* .

Proof. Let F' := 923 (FI x F_é) We first show that F’ = CF - F*# for some constant CF. Note that for
u € U’ and kg € SO2(R), by Lemmas 4.15 and 4.16,

(4.4.10) F'(gukg) = / ry (gukg, b - (u, 1))p=(z)(F7 x F_é)(h (u, 1))dh
OV)@\OW)(A) , )
e 1T eralaue)esa(dug) ™) - ep.q(d(uq)) F'(g)
q|Ne;
= ¢ ] eralalug)F'(9)-
q|Ne;

Since 0l (7 @ &) = m, it follows by Casselman’s theorem that F’ = CF - F®* for some scalar CT. Clearly,

CE is just the first Fourier coefficient of F’. To evaluate CZ, we compute the Whittaker coefficients of F.
As in [Wa] Sec. 3.2.1,

1 —
Weso) =3 [ (g, B FL(B)d* B,
PGL»(Q)\PGLs(A)
where
(g, B) = / ro(g. (0, 1))g= (1) F¥ (Ba)dVa,
GL,(A)det(o)
Note that

¥(1,5) = / ro(1, (0, 1))p% (1) F (Ba)dMa
SL2(A)

_ / o= () (Ba)dVa.
SL2(A)

This integral can be computed one place at a time since both F7 and ¢= are pure tensors. We first
consider finite primes ¢ such that ¢ € =. In this case, if wq(agl) # 0, then a;l € U;. Hence o, € U,



48 MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA

as well. If further ¢ { N.,, then pq(ay
pqlagh) = ey q(d(ag) ") and F7(Bay)

/ o= (g )FI (Bag)dDay = vol(U,V) - FI ().
L2(Qq)

) 1 and FJ(Bag) = F7(3). On the other hand, if ¢ | N,, then
=¢es4(d(aq))F?(B), so that in any case, for ¢ € =, we have

For ¢ € =, it follows from Lemma 4.17 that

E(aYFI(Ba,)dVa, = { ’ ’ _ . .
/sm(Qq) Paloq ) (Boa)d e vol(U, ™M) - g2 () F7 (B7y), if g € &

Finally, the computation of the local integral at the infinite place can be found in [Xue], Prop. 4.3.4.
Accounting for our different choice of measures, this contribution equals e =27 (47)~U~UT(k + 5)/T'(k).
Puting together the local computations, we find

v, =] =Y
T e (a0 B vol(UrY) T ea (a7 V200 Ha) - FA(B), 2 C Y
Thus 015 =0 unless Z C ¥’ and in that case,

CZ = W (1) = (4m) 0~V vol(U’ ”)F(ﬁ(z)j) @2 @) (B, L)

=m0 ol Oy, P T 2 @) O

Proposition 4.20.
6,(F7%) — C5 - (F7 x FY),
where
- , if 2 Y
4.4.11 cs- U3 o o
e : { U213 vl (U O) T la~ 2 (0) #EC S
(Recall that ' was defined in Lemma 4.17.)

Proof. By a calculation as in (4.4.10) above and another application of Casselman’s theorem, we have
0, (FO-%) = C5 - (F7 x FZ) for some constant C5. To compute CF, one studies the theta lift in the opposite
direction and uses the seesaw principle. Indeed, the seesaw principle and Proposition 4.19 imply that

CF{F7, FI)? = (0,(FO%), F7 x FZ) = (FO%,0,(Fi x F1)) = CF{F*%, F*F).
ie., C5 = CF(F%% FO) /(F7 F7)2. But (see Lemma 4.11),
(FI,F7)[(FO% F%%) = 3(r) = (4m) "I (j + DT (k + j)/T (k).

(The term (7)~* appears since F° and F%* are normalized differently: the former is the adelic form
associated to f and the base point 7, while the latter uses the base point ¢. To translate from one to other
involves picking an element v € SLa(R) such that vi = 7 and one checks that (FO, F0)/(F%# FOF) =
§(7,4)%¢ = 3(7)~*.) The proposition now follows by using the value of CZ from Prop. 4.19.

U

We now make the following key definition, namely that of the Schwartz function in the explicit theta
correspondence.

Definition 4.21. The explicit Schwartz function ¢ is defined by ¢ := ®qp,, where ¢ is as in (4.4.3)
and for finite primes ¢, the ¢, are as below:

(i) If ¢t NV, then v = Ivy ez, = Ivs(z,)-

(ii) If ¢ | N, then @, = ¢ for ¢ € X/ and ¢, := @; — @2 for ¢ € X'. Recall that ¢, and o2 were defined
previously in (4.4.1) and (4.4.2) respectively and ¥’ was defined in Lemma 4.17.

The following lemma which will be used in the next section is an easy consequence of the fact that n is
of type (¢, M, 6;1).
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Lemma 4.22. For q € ¥/, fix an isomorphism K, ~ Q4 X Qg such that via this identification the

embedding &, : Ky — M2(Qq) is conjugate by an element of U, to the embedding (a,b) — < E)L 2 > Let

r]_g = (n1,m2) via this identification. Then
(1) m is unramified and ne is ramified.
(ii) mops * is unramified.

4.5. Seesaw duality and the Siegel-Weil formula. Let V; = K (viewed as a subspace of V via &)
and let Vo = Vi+. Then

GO()? ~GO(Wp)" ~ K*,

H:= GO() x 0(15))? = G(K* x K*),

and via this identification the map ¢ : K* x K* — H is

8(a, B) = (@B~ a(B7) 7).
Since 1/(a)n(B) = n/'(a™"), the character (1//,7') of K* x K* is the pullback via § of the character
1 := (1’,1) on H. Suppose that

oy = @' ©ey €S(V18 Q) ®S(V2® Q).
iq€l,

Then by an application of seesaw duality for the seesaw pair

GLQ X GLQ GO (V)

GL, G(O(V1) x O(V2))
we have (as in [HK2] (14.5)),

Lo oDl (nan
H(Q)\H(A)

_ / FO4(g) - 0% (m) | aLage) (9)dg
GL2(Q)AX\GL2(A)
(45.1) - / FOi(g) - 6 ()8 . (1)(g)dg.
GL3(Q)AX\GL3(A) i—(iq)ezl—l‘[q 1, ®qp,? ®qpy”

Here 6%(n/) and 6%(1) are defined as follows. Set
GLy(A)X := {g € GLa(A) : det(g) € Ng(AR)}.
For g € GL2(A)X, ¢ € S(V1(A)) and h € A% such that det(g) = Ng(h),

@)= [ Sl hh)s(e) (hh)a o
KO\KY S5
One then extends the definition to the index 2 subgroup GL2(Q)- GLy(A)X of GLy(A) by requiring it to
be left invariant by GL2(Q). Finally, one extends it by zero outside this index two subgroup. The theta
lift 0%(1) is defined similarly with 7’ replaced by the trivial character and V; replaced by V,. Here the
measure dMh; is chosen such that it lifts to a Haar measure on Kg) and vol(K ™M)\ Kg)) =1.

Now, by the Siegel-Weil formula, the theta lift ?(1) is an Eisenstein series. Unfolding this Eisenstein
series by the standard Rankin-Selberg method, one finds that the integral in (4.5.1) above is equal to the
expression I(p, £), where (defining ®° as in [P] Prop. 3.1.),

I(¢,€) t=<(2)_1/ W (FOR)(d(@)k) Y Wy(6 ., (7))(da)k)®? ., (d(a)k)(1)la| " d* adk,

X ®qPy ®qP
Aq Mo i=(iq)el=]1, Iy
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Here Ko = [[, GL2(Z,) x SO2(R)), the measure dk is a product of local Haar measures such that
vol(GL2(Z,)) = 1 and vol(SO2(R)) = 2, and the factor ((2)~! accounts for the change in measure
normalization. We now state two propositions that will be useful in computing the integral above.

We note first that Wy (FOF) = Wy, (FO) and Wy (F%*) = [T, Wy, o(F®*) where Wy, ,(F%#) is normal-
ized to take value 1 on the identity matrix in GLo(Z,) for finite ¢ and W, o (F%#)(d(a)) = e 25 Iy (a).
The proposition below (which is simply copied from [SR] Sec. 2.4 taking into account that F%# transforms
by the central character of the upper left entry at ramified places as opposed to the lower right entry as

in loc. cit.) lists the values of Wy, ,(F%%) on matrices of the form d(a) := ( g (1) )

Proposition 4.23. Let a € Q. Then W (FO¥)(d(a)) is equal to

i) |a*/? (ZH_S:%(@ ,ul(q)r,uz(q)s) Iz, (a) if mpq >~ 7(p, p2) is an unramified principal series rep-
resentation.
(ii) |a|p(a)lz,(a), if mfq >~ St(p) is a special representation with p unramified.
(iii) L (@), if g q = St(p) is a special representation with p ramified.

(iv) |al*?ps(a)lz, (a), if mpq = w(p1, p2) is a ramified principal series representation with puy unrami-
fied and po ramified.

(v) sf,q(a)Iqu (@), if mfq = w(p1, po) is a ramified principal series representation with both p1 and po
ramified, or if wr 4 s supercuspidal.

For simplicity, in our local calculations below, we will simply write Wr for W ,(F%¥). The following
proposition follows from the discussion in [P] §3.3.

Proposition 4.24. The Whittaker function Wy (H‘f@qﬂq (') factors as

where for any prime q, either finite or infinite,

We s, (d(a)) = K(l)ﬁq(a(hh')’l)n_{z(hh’)dh

(152 = laly® [ 9,k gt

for any h' such that N(h') = a. (Here the Haar measure dh on KV is chosen such that vol(Kg))) =1
and for finite primes q, vol(Ox @ Zy)M) = 1,) Also,

®§q = |al® ng

More generally, suppose j, : K, — V; is an embedding of quadratic spaces, where K; = K ® Q4 and
Vo =V(Qq). For ¢ € 8(V,) = S(K,)) ® S(KZ-), write ¢ = Y, <1, ® <,; and define

(4.5.3) I =3 / W@ Wo ., (@)L, (ol adk

Since We ¢, , - 5 ;(-) is bilinear in (c1,i,<2,i), the expression on the right in (4.5.3) is independent of the
decomposition ¢ = Zi 61,i ® S2,4. In this notation, we have

(4.5.4) I(p,€) =

(o0 &)

q<oo

Thus to compute I(p,§) it suffices to compute I(¢,,§,) for all g. However, for finite primes ¢, it is
easier to compute (g, ;) for a modified embedding & which is defined by

€o(@) = ug & (2)ug
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for some suitable choice of u, € U;. If ¢ is the Schwartz function defined by

Py () = pq(ug tzuy),
then it is immediate that
I(pq: &) = 1(9q,&)-
Define ¢’ by ¢’ = (®q¥}) ® Poo-
Proposition 4.25. Suppose that the u, € U, have been chosen such that for all ¢ € X/, & is given on

Kq=Qq¢ xQq by
, 0
fqm,b):(g b).

/ O (FO) a2y () () = Uy S(r) vol Y- TT (1 — i H(@)m (@)a %) | Ly e (F9)?.
H(Q\H(A) *) TG +1) 1 ",

qex’

Then

e the element whose coordinate at ¢ is uq. Observe that ¢ = ry (1, (u, u))e.

Proof. Let u € GL2(A )b_
0o (FO#)(h - (u,u)), and

Hence 0, (FOf)(h) =
/ 60 (FO) g1 (W) ()
H(Q)\H(4)

= O (FOF)|may(h - (u,w)n(h)d"h
= 3 (1), (FOF)fexay (- (u,))m(R)d* R

=CY

= Y UEICE [ (@ x Faupu) - (7 <o) (a, ) ad 5

=Cy KXXKX\A;{XA;{

= Y (DEICT Ly e(Fi(w) - Ly e(FL(u)).

=CY

But setting oy := (¢7',1) € KX, a= := [I ez g and vz =[] = g, we have €, (az) - uy=u~! =1 and

Lyelfilw) = [ Ple@uan@da= [ Pl ouzy@az)is
KX\AX KX\AX
= 7(02)Lye(F(w) = | [[m@ | - Ly e(F(w).
qeEE
Since F7(-u) = FI(-)wy(u), the proposition follows by using the value of C5 from (4.4.11). O

We record the following corollary, which follows from the above proposition and the preceding discussion.

Corollary 4.26.

I(¢', &) =

(4my ()

) vol(U"™) - TT (= i (@) (@)g™2) « [ Ly ¢ (F7)?].

qe’
Applying (4.5.4) (with ¢ replaced by ¢’), we see that to compute |L,/ ¢(F7)[?, it suffices to compute
(¢}, &,) = 1(pg,§,) for convenient choices of &, satisfying the hypotheses of the lemma above. This is

the content of the next section.

4.6. Local zeta integrals. To handle the local computations, it will be useful to set up the following
notation. Define
J(,0) = [  Wp(d(a)We,(d(a))®}(d(a))lal " d*a,
Q;
and for a € GL2(Qyq),

J6.0) = [ Weldaa) W o (d@)®)(d(e)la " da
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We first dispose the simple case ¢ = co.
Proposition 4.27. For q = oo, we have
(oo, éo0) = (2m) - (4m) " T (k + j).
Proof. One sees easily that (¢, joo) = J (s, V), where
¢(u) = Te2m(uw

and
I(v) = p;j(4n(v, V>)e*2”<""’> )

Thus @2 (d(a)) = |a|*9(0). Taking b’ = a*/? in (4.5.2), we find
Wo(da) = Ine@lal* [ | ctanh~"dn
K&

_ ah;e_%mIR* (a) = a%_le—Qﬂ'aIRJr (Cl)

Thus (oo, éoc) = 27 [ aZe 27 a5 e 2™ . |a|" g+ (a)d*a and
(oo, €o0)ls=1/2 = 27 / a't eV g = (27 - (4m) " FHIT(k + j).
0

O

Next let ¢ be a finite prime, and denote by o, and t, the maximal orders in K, and Q, respectively.
We split the calculations into several cases:
I:qtcNdk.
IT:q]ec.
III : ¢™a||N, with ng > 2.
IV : q||N, gt dk.
VI:q|dk,qtN.

For the rest of this section, we simply write I for I(¢',€,) = I(¢, &)
4.6.1. Case I: ¢1cNdg. In this case all the data is unramified and we have by a standard computation:
I =Ly(7y,mi,8)Lq(25,er) "
4.6.2. Case II: q | c. Write 0, = Zq + Z,w, where tr(w) = 0. Let @? = u. We may assume that

§o(m) = < ugr 1/0q >, where ¢"||c. Set j, := ( (1) _01 > For 0 <i,57 <q" —1, set

9

Sii =z zeriv drw Vi = Lz ez, it i

Then
Pq =Y i ®Vi;.
X

Since Wr and ¢, are invariant under GL2(Z,), it follows that

I= ZJ(CW‘J%J) = J (50,0, %0,0)-
6,J

Now,
Wor (@) = [
QJ
Suppose v,(a) > 2r — 1. Then either v,(t) > 7 or vy(at=1) > r. In this case, v,(t —at™!) > r —
both v,(t) > r and vy(at™1') > r. For such a then, the region of integration in the last integral above
is unchanged if a is replaced by ua for any u € Z;. Thus We  ,(d(au)) = m(u)We ,,(a). Since
Wg(d(au)) = Wg(d(a)), by picking u such that n;(u) # 1, we see that

/ W (d(a))Wo o o (d(a))af* " d%a = 0.
vg(a)>2r—1

s0,0(t, at™ " )m1(at™ma(t)d™t = /agwm,,m ni(at™ )na(t)d*t.

vg(t—at=1)>r
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So we may restrict attention to a such that 0 < v,(a) < 2r — 2, and let ¢ be in the region of integration
above. Since either v,(t) < r —1 or vy(at™1) < r — 1, we see that v,(t — at™!) > r is only possible if
vg(t) = vg(at™!). This implies that v,(a) must be even. Suppose that vys(a) = 2m < 2r — 2 so that
m < r—1, and vy(t) = m. Write a = ¢*™u, t = ¢"v with u,v € Z). The condition vy (t — at™h) >r
then translates to vy(v? —u) > r —m, and 01 (at = )n2(t) = M (g™ uv™ )2 (¢™v) = £4,4(q)™m (uvv?2) since
M1 = €1,q is unramified. Then for m fixed,

/ Wr(d(a))Weq , (d(a)la]* 'd*a = constant - // ez m (uv™?)d*vd* u.
vq(a)=m u=v? i

mod ¢"—™

Suppose m > 0. Since the conductor of 7; is ¢", there exists a € Z;, a« =1 mod ¢"~™ such that
71 (a) # 1. Then for v fixed the integral over u is seen to be zero by making a change of variables u — au.

Thus we are reduced to considering only the case m = 0, and

1 1
2 r — 1
d - =, - = — 1 'L wi L 2 — .
mod ¢") (g —1) quK,q( ) q(ﬂ'faﬂn ) q( 5,€K) |871/2

Here (g q(1) = (1 — %)’2 if ¢ is split in K and equal to (1 — q%) if ¢ is inert in K.

I =vol((u,v) € Z; X Z; ,u=v

4.6.3. Case III: ¢"||N with n > 2. In this case, ¢ is split in K ie. ¢ = qf and K ® Q; ~ Q4 x Q,
corresponding to the completions at ¢ and g respectively. We suppose that q and g are chosen such that

N®Z; =q". We may assume
, (a0
§q(a,b)—(0 b)'

Then 77_{1 = (n1,m2) where 77 and nga;é are both unramified. Set j, := ( (1) (1) ) . Then
. 1
V((a,b)iq) =1z,(a)Ignz, — alqnflzq)(b),
e (@)lz, 0). if 1
IZ a IZ I 1 q NE 7
b) = q q cf
o(a.) { Iz,(a)Iyx (b)epq(b), if q | Ne,.
Now
q—1
GLy(Z,) = To(1) | | || U()uTy(1),
z=0
and
Iy(1) = |_| V(y)Lq(n).
Y€qZq/q"Zq
so that
GLy(Zo)= || Vram|] || UEwV @ mn).
YE€GZq/q" 2y, YEGZq/q"™Zq
2€Zq/qZq
Now V(y) = —wU(—y)w and wV (y) = U(—y)w. Thus
. - . 1
ry(w, D)d((a,b)iq) = 9((a,b)iq) = q_an—nqu (a)Iz, (D),
. ‘ 1
ry(U(=y), 1)9((a,b)ig) = q—n%(yab)lq—nz; (a)Iz, (),

rp(wV (y), NI0) = rp(U(=y)w, 1)9(0) = ry(U(=y), 1)H(0) = 9(0) = 0,

and

ry(V(y), )9(0) = ry(-wlU(=y)w,1)0(0) = %wq(yab)lq—nz;(a)Izq(b)dadb

1
o / Iz, (ya)Iq,anx (a)da

_ 0, if y & q"Zy;
- 1—5, if y € ¢"Zy,.
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Thus
I = (1_ Ly vol(r /WF NWo.. (d(a))]al*'d*a.
Now suppose first that ¢ { N, . Then 1 and 79 are both unramified and

a 1/2771(6”1) n2(aq) a
We (d(a)) = |al @) =@ Iz, (a).

In this case 7y 4 is either supercuspidal or ramified principal series ~ m(u1,p2) with both g1 and po
ramified. In any case, Wg(d(a)) = I (a) and

1 1

I=(1--)vol(I'y(n)) = —————

(1= ) vlTy(m) =~

: Lq(ﬁf, Tt S)Lq(28, €K)71|s:1/2~
Next suppose that ¢ | N,. Then

Weo (d(a)) = [a]'/*n2(a)Iz, (a).
As for Wg, we have

> ()., x s if E/,

Weld(a) = | Srq@lz (o) Hag s | |
1y (a)|a|t/?1z, (a), if ¢ € ¥’ and 74 =~ 7(p1, p2) With po ramified.

From this we find
(1= ) vol(Ty(n)) = Go=rigrry - La(Tps s ) La(s,6k) ™ smy2s i g 612 \ X

1 1 —sy 1 Ly(7g,m5,8)Lq(s,ex)”
(1- E)VOI(Fq(n))(l —pg m2(q)q%) = (g1 1_:1—1,]1@”75
4.6.4. Case IV: q||N, ¢t dk. In this case, ¢ is split in K i.e. ¢ = qq and K ® Qg ~ Q4 X Q4 corresponding
to the completions at q and g respectively. We suppose that q and g are chosen such that M1®Z, = q. We

may assume
/ (a0
§q(a,b)—(0 b)'

0
1

I =

|s:1/27 1f q S ZI.

O =

The character 7/, is identified with (n1,72). Set jq := ( > . Then

((a,b)jy) = Tz, (a) (Tyz, — glqubx

and (a)Iz, (b), if g1
IZq a IZq b s i q Ngf;
s(a,b) = { Iz, (a)Izx (D)esq(b), if ¢ | Ne,.

1 oA
I= q_|_—1 (J({,ﬁ) + qJ(wagvﬁ)) :
But 9(0) = 1 — 1 and 9(0) = 0. Hence
1
I= o 1J(§ 9) = (1— - /WF NWe.c(d(a))|al**d*a,

where

W, (d(@) = |a] > /Q sl at s (at yma(t)d*

q

Suppose ¢ { Nc,. Then 1, and 7, are unramified and

Weoi(d@) =lal"* [ > m(@) n(e)* | Iz,(a).

r+s=vq(a)

In this case, 7f 4 is a special representation St(y) with g unramified and Wg(d(a)) = |a|p~"(a)lz, (a).
Hence
_ 1 1-1/q 1
(@+1) Q=g 2uHam(@)g )1 — ¢ ?u~Hn2(g)g™®)  g+1

Ll](ﬁfﬂ Tyt S)Lq(28a5K)7l|s:1/2'
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Next suppose ¢q | N; 4+, 50 that 7y is unramified and 7y is ramified but 7725;2 is unramified. Then

We i(d(a)) = la|'*12(a).
In this case, 7y 4 is a ramified principal series representation m(u1, p2) with say p; unramified and po
ramified. Since Wr(d(a)) = \a|1/2u51(a)lzq (a), we get

1 1-1/q 1
(@+1)1—py (me()a  g+1

4.6.5. Case V: ¢||N, and q | dx. Then n = 1. Recall that we have assumed ¢ odd in this case. Let
wy € Ky := K ® Qq be such that I, := @ is a uniformizer in Z,. We may assume

&@=( 1 o)

Set jq == ( (1) _01 ) First we suppose we are in

Subcase Va: gt N.,, i.e., ¢ € S(f). Then ¢, = ¢ ® ¥ where
sla+bwg) =1z,(a)lz,(b),  H(c+dwg)ig) = 1z,(c)z,(d),

LfI(ﬁfvﬂﬁ’vS)Lq(2575K)_1|s:1/2-

so that A
<(a+bwg) = qil/QIZq (a)I%Zq (0), V((c+ dwg)iq) = qil/QIZq (C)I%Zq (d),

I= (J(g, 9) + qJ(w, <, 19)) .

Let 3, denote the matrix ( L0 > Then

0 1!
T4 (ﬁq, wq_l) s(a+bwy) =1z, (a)I%Zq (b) = ql/zﬁ(a + bwy)

and likewise ry (8, @, 1) ¥ = ¢'/29. Thus

I = m (J(g,ﬁ) —|—77_(’1(wq)J(5q_1w,§,19)) .
But 7y, is special, say ~ St(u), hence Wr (g8, 'w) = u(Ily)Wr(g). Hence
(1 — u(ITy)nf (=) 2
I= a J(c,¥) = —— J(c,9),
i1 (€9) = 77769

on account of our assumption that e,(f, x~!) = +1 and [Tu2], Prop. 1.7. Since % is unramified in this
case, we can write 7}, = m o Nk, /q, = 72 © Ng,/q, where n; is an unramified character of Q and

N2 =M1 -€K,q- Then We ((d(a)) = \a|1/2(771 (a) +n2(a))Iz,(a). Since Wr(d(a)) = |a\,u’1(a)Izq (a), we find
2 1 2
g+l (=g V2u Y gmlg)a)  g+1
Subcase Vb: ¢ | N,. Then

Lq(7y, T/ S)Lq(2S7EK)71|S:1/2,

b= Y, epgli—3) s
i.j€Zq/aZq
i#£j
where

Gi(a+bw,) = Iqu+i(a)IZq (b), V;((c+ dwg)iq) = L4z, +; (C)IZq (d),

1 .
I = —- erg(t— ) J(si,¥5) +qJ (S, 05) ) -
(¢0) = 5 Z/ rali =) (J(6is05) + 07 (6. 9,))
i#j

Note that 9, is independent of j. Thus, for any fixed i, the sum > jziEfall — 7)J (&, 9;) = 0. Also
¥;(0) = 6j0. Consequently,

1 . 1
I(pq) = 7+ 1 > ep.q(i)(si,00) = mJ(%ﬁo),
i#0



56 MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA

where ¢ 1= 37, 5 €5,4(i)si. Now We ((d(a)) = ef4(a)(1 + €K7q(a))Iqu (a). Since 7y, q is ramified principal

series of the form 7(ji1, po) with g1 unramified and i ramified, we have Wp(d(a)) = |a|'/2pu; " (a)Iz, (a)

and
1 1 _ .
I:H—IZH—I'Lq(ﬂf,ﬂ'n’/,s)l/q(28,€[{) |s:1/2'

4.6.6. Case VI: q | dk, g1 N. Again we may assume

0 1
gzl;(wq) = ( mq 0 ) .
Set jq 1= ( (1) _01 ) Then

q—1
Qoq = Z Si & 7-9i7
i=0
where
Gla+bwy) = Tz, (@)L g, (0).  Dil(a+bwy)ig) = Iz, (a)L: 7, (D).

Since g { N, we have I = 3. J(s;,7;) = J(s0,70). Since 77_[1 is unramified in this case, we can write 7, =
moNgk,/q, = 120Nk, /q, Wwhere n; is an unramified character of Q; and 72 = 71 -€x 4. Then We (,(d(a)) =
— —1
[af*/2(1n1(a) + 12(a))z, (@). 1€ 77 = m(jur, 12), then Wi(d(a)) = o] /2L {2022 (20, (q) and
1 2

= : =Ly(7f, 75,58 5 -1
i @m0 = g ) T el en)

4.7. The explicit form of Waldspurger’s formula. We can now state the main result on the absolute
value squared of the period integral L, ¢(F7) defined in equation (4.3.6). We will need the class number

formula L(1,ex) = 2rhi /wi +/|dx] and the volume of U'™):

w0’y =¢@2)"- S —
VO ( ) C( ) qnl(JIIN qnq_l(q + 1)

Combining these with Cor. 4.26, equation (4.5.4) (with ¢ replaced by ¢’) and the computations of the
previous section, we obtain:

Theorem 4.28. Suppose cdk is odd and n is a character of K of infinity type (—¢,0) (¢ =k +2j) and
finite type (¢, N, 5;1), Then

| Lo g (FO)[? = C - L5, 7y x myp) = € L(z, mp X ),
with

(4.7.1) C =

L+ DOk + Hwi VIde[S(T) " sy
(4m)k+2i+1 . p2 . ¢ 2 : HCK,q(l)-
qlc
Since L(%, 7 x my) = L(f,x ™1, 0), |A;]*S(7) = vol(O.) and he/hx = c[1,.(1 —ek(q)/q), we obtain
Theorem 4.6 by combining Theorem 4.28 and Proposition 4.13.

5. ANTICYCLOTOMIC Pp-ADIC L-FUNCTIONS

5.1. Periods and algebraicity. We will now use Theorem 4.6 of Section 4.1 to deduce algebraicity
properties of the central critical values L(f, x !, 0) attached to characters y € 2 (91). In order to do
this, recall the dictionary between pairs (L, t) as in Section 4.1 and triples (F,t,w) consisting of an elliptic
curve over C, a point ¢t on F of order N, and a differential w € Q}E /C Under this correspondence, the
pair (L, t) corresponds to the triple (C/L, t, 2midw), where the differential 2midw arises from the standard
coordinate w on C; in the other direction, the triple (E,t,w) corresponds to the pair (A, t) where 2miA,,
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is the period lattice attached to the differential w. Viewing a nearly holomorphic modular form of weight
k +2j as a function on triples, we can rewrite the expression 47, f (a~!,t) that appears in Theorem 4.6 as
8 f(a=t) = 61 f(C/a™t b, 2midw) = &) f(a * (Ao, t, 2midw)),

where Ay := C/O,., and we recall that the action of O.-ideals of norm prime to N on marked elliptic

curves with T-level structure of the form (Ao, to,wp) is the one described in equation (1.4.8) of Section 1.4.
Recall the triple (A,ta,wa) with Endg(A) = Ok that was fixed until now. The curve Ag is the image

of A by an isogeny ¢o : A—Aq of degree ¢. Let (Ag,to,wp) be the marked elliptic curve induced from

(A,ta,wa) via g, i.e., the unique triple for which

(5].].) @Yo (A,tA,wA)—>(A0,tQ,WQ)

is an isogeny of marked elliptic curves with I'-level structure in the sense of Definition 1.10.

Given a Hecke character y € Eg) (M) of infinity type (k + j, —7), it will be convenient to set

Xj = xN’
for the associated Hecke character of infinity type (k4 24,0). Following the usual conventions, we will view
X; as a multiplicative function on the fractional O.-ideals that are prime to 91c. This character satisfies
(5.1.2) xj(za) = 2" et (x mod M)x;(a),
for all x € K* that are prime to DMc. After fixing the triple (Ao, t, 2midw), with ¢ an (arbitrarily chosen,
but fixed from now on) generator of Ay[N], the expression

Xjfl(a)éif(a * (Ao, t, 2midw))

depends only on the class of a in Pic(O,). (Cf. Lemma 4.5.) We can now restate Theorem 4.6 of Section

4.1 as follows:

Theorem 5.1. Let f be a normalised eigenform in Si(To(N),e¢) and let x € n® (M) be a Hecke character
of K of infinity type (k + j,—j). Then
2
(5.1.3) CUEXOLEXH0 =] D x5 (@) 61 f(ax (Aot 2midw))|
[a]€Pic(O.)
where the sum is taken over a system of representatives of the elements of Pic(O.) that are prime to Nc,
and the constant C(f,x,c) is given in Theorem 4.6.

Note that the sum appearing in the right-hand side of (5.1.3) does depend on the choice of generator
t of Ag[91], but only up to multiplication by an N-th root of unity; in particular, its absolute value is
independent of the choice of ¢ that was made.

For the purposes of algebraicity statements, p-adic interpolation, and the applications that are given in
[BDP-cm] and [BDP-ch], it will be useful to have a formula in which the absolute value signs that occur
in Theorem 5.1 are replaced by squares. In order to do this, we will need to examine the behavior of

(5.1.4) J(Ex) = D x5 '(a)- 6L f(ax (Ao, t, 2midw))
[a]€Pic(O.)
under complex conjugation.
The choice of a primitive N-th root of unity ¢ and of a square root of —N determines an Atkin-Lehner
involution wy acting on triples (E,t,w) by the rule
UJN(E, t,UJ) = (E/<t>’ tlv \ —NOJ/),

where t is the image in E/(t) of any element ¢’ € E[N] satisfying

(t, t”> =(
for the Weil pairing ( , ), and w’ is the differential on E' = E/(t) which pulls back to w under the natural

projection. It is straightforward to verify that the function wy is an involution on triples, and that it
satisfies the commutation relation

(5.1.5) ax wy (Ao, t, 2midw) = wya * (Ag, Na™'t, 2midw).
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Recall the decomposition N = MM of N as a product of two cyclic ideals of O, of norm N. Choose an
integral O.-ideal b and a nonzero element by € O, satisfying

(5.1.6) (b,Ne)=1, b0 = (by).

The multiplication by by map identifies the quotient Ag[N]/Ao[M] with the submodule A¢[MN] of Ag[N].
Furthermore, the elliptic curve Ay and its differential dw are defined over R. Hence complex conjugation

preserves them, but interchanges Ag[MN] and Ag[MN]. The pair (b,by) therefore determines an element ¢”
of Ag[N] satisfying

(5.1.7) Ao[N] = (Z/NZ)t + (Z/NZ)t", byt =t.

This element is uniquely determined by by up to addition of a multiple of t. Therefore the primitive Nth
root of unity

(518) ¢:= <t7t”>

depends only on by and not on the choice of ¢ satisfying (5.1.7). Let wy denote the Atkin-Lehner
involution associated to the root of unity ¢. If f is a modular form in Si(I'g(V),e¢), recall that f, is
the form in S(To(IV),ér) whose fourier coefficients are the complex conjugates of those of f. If f is a
normalised eigenform and a,, denotes the eigenvalue of the Hecke operator T, acting on f, then we have
the relation

(5.1.9) Gy, = sgl(n)an,

for all » which are relatively prime to N. In particular, the form f, is also a normalised eigenform and
corresponds to the twist of f by the character 6]71. The following lemma is well-known.

Lemma 5.2. Suppose that f € Sp(T'o(N),ef) is a newform. Then there exists a complex scalar wy of
norm one satisfying (for all triples (E,t,w))

fo(wn (B, t,w)) = wi f(E,t,w).
Proof. The operator wy satisfies the following commutation relation relative to the Hecke operators:
(5.1.10) Town = (n)wnT,, (nywy = wn(n~1).

Equations (5.1.9) and (5.1.10) imply that the eigenvalue of T, acting on wy f, is equal to a,,. By multi-
plicity one, it follows that wy f, is a non-zero scalar multiple of f, i.e., wn f, = wy f, for some wy € C*.
The fact that wy is defined over R, and hence commutes with the action of complex conjugation, implies
also that wy f = wy f,, and therefore |ws|* = 1 since w3 = 1. a

It should be noted that the scalar w; is not entirely intrinsic to f, but depends on the choice of N-th
root of unity ¢ that was made in (5.1.8) prior to defining the Atkin-Lehner involution wy. Over C, it is
customary to take ( = e’ but our choice of ¢ may differ.

After these preliminaries, we define a complex scalar of norm one by the rule:

(5.1.11) w(f,x) == wy - Ef(Nb)flxj(b)(—N)k/2+jbEk*2j,
Ostensibly, this scalar depends on the choice of (b, by) satisfying (5.1.6), but in fact we have:

Lemma 5.3. The scalar w(f,x) satisfies the following properties:

(1) It depends only on f and x and not on the choice of pair (b,by) satisfying (5.1.6);
(2) It belongs to the finite extension L of K generated by K¢, K, and /—N;
(3) For all o € Gal(L/K),

w(f7,x7) = w(f,x)’-

Proof. Properties (2) and (3) follow directly from the definition of w(f, x). The truth of (1) follows from
Theorem 5.4 below (since none of the terms other than w(f, x) that appear in (5.1.12) depend on (b, by))
but it may be helpful to supply an independent, self-contained argument. If the pair (b,by) is replaced
by the pair (b’, V), then

b/ = b(a), b/N = bNa,
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where a is an element of K which is prime to 9. The conditions (5.1.7) and (5.1.8) that are required
to be satisfied by by and by imply that ¢ = 1 (mod 91). The constants w(f, x) attached to the choices
(b,bn) and (b',by) therefore differ by a factor of

ep(aa)~"yj(a)a™"¥ = c4(a mod M)~y (a)aH .

But this factor is equal to 1, by (5.1.2). O

Theorem 5.4. Let f be a normalised eigenform in Si(To(N),e¢) and let x € n® (M) be a Hecke character
of K of infinity type (k + j,—j). Then
2
(5.1.12) CUrxOLfx 0 =w(f) | D x5 '(0) 6 f(ax(do,t,2midw)) |
[a]€Pic(O.)

where the constants C(f,x,c) and w(f,x) are described in Theorem 4.6 and in equation (5.1.11) respec-
tively.
Proof. Theorem 5.4 is proved by computing the effect of complex conjugation on the quantity J(f,x) of
equation (5.1.4). Observe that

(1) Since (Ao, 2midw) = (Ao, 2midw) and by satisfies (5.1.7) and (5.1.8), the action of complex conju-

gation on (Ag,t, 2midw) is given by
(Ao, £, 2midw) = (Ao, £, 2midw) = b+ wy (Ao, t,byvV—N  2midw).

(2) The action of complex conjugation on Xjfl(a) is given by

X; (@) = ey (Na)x; ™ (a).
Hence we have

X; ()3 f(a* (Ao, t, 2midw)) = e;(Na)x; ' (@)d7 f,(a * (Ao, £, 2midw))
(5.1.13) — e(Na)y;  (@)5f,(@b = wy (Ao, t, by V=N 2miduw))
= (= N2 e (Na)x; (@) - 0], f, (@b * wiy (Ao, t, 2midw)).
But now, by (5.1.5), we have:
5ifp(ﬁb xwy (Ao, t, 2midw)) = 6ifp(wNﬁb % (Ao, (Nab)~'t, 2midw))
(5.1.14) = wyer(Nab)~L- 51 f(ab * (Ao, t, 2midw)).
Combining equations (5.1.13) and (5.1.14), we obtain
Xjfl(a)éif(a * (Ao, t, 2midw))
= wp - (N2 ()e p (NB) Ly, (ab) 1o f£(ab * (Ao, t, 2midw)).

Summing this relation over all classes a € Pic O., we obtain

J(f,x) = w(f, x)I(f, %),
and Theorem 5.4 follows. O

We now turn to the algebraicity properties of L(f,x~!,0). We begin by defining a complex period
attached to K. For this, we observe that the complex elliptic curve Ay has endomorphism ring equal to
the order O, of conductor ¢, and therefore is defined over a subfield H, of C which is isomorphic to the
ring class field of K of conductor c. The choice of the differential wy € Q*(Ag/H,) determined by (5.1.1)
determines a complex period 2, defined as the non-zero complex scalar satisfying

(5.1.15) wo = Q- 2midw,

where w is the standard complex coordinate on A¢(C) = C/O..

Theorem 5.5 below asserts that the ratios w=(f, x)C(f, x, ¢)L(f,x~',0)/Q**+2) are algebraic num-
bers. In order to make a more precise claim about the fields of definition, we remark that the point tg
belongs (by assumption) to the Di-torsion subgroup of Ag, which is defined over H.. Let H. be the abelian
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extension of H. over which the individual 91-torsion points of Ay are defined, so that in particular the pair
(Ao, to) is defined over H.. The Galois group of Gal(H./H.) is canonically identified with a subgroup of
(Z/NZ)* via its faithful action on Ag[M]. Let H. C H’ be the subfield which is fixed by ker(ey). Let
F C C be the finite extension of K generated by H., by the values of the Hecke character x on Aﬁ, £ and
by the Fourier coefficients of f. We can now state Shimura’s algebraicity theorem on the special values
L(f,x1,0) in a precise form.

Theorem 5.5. For all x € »? (N) of infinity type (k + j,—j), the quantity

Lalg(fa X_1, 0) = ’I,U(f7 X)_lc(f’ X C) . [/(f7 X_la 0)/92(k+23)
belongs to F.
Proof. By Theorem 5.4,

2
w(f,x)PC(f X, o) L(fix 71 0) = > x;H(a) - 8 f(ax (Ao, to, 2midw))
[a]€Pic(O.)
2
= > X @) - L fax (Ao, to, 2 wo))
[a]EPic(O,)
2
Q22 [N XM (a) - 61 f (a* (Ao, Lo, wo))
[a]€Pic(O.)
It follows from Lemma 1.5 that
2
(5116) Lalg(fa X_la 0) = Z X;l(a) ’ (—){Iodgef(a * (AO’ to, UJO))
[a]€Pic(O.)

Part 1 of Proposition 1.12 implies that the terms @{{Odgef(a * (Ao, to,wo)) belong to F. Theorem 5.5
follows. O

Remark 5.6. The datum of O. determines the elliptic curve Ag/H,. together with the embedding of H,
into C. Both sides of (5.1.16) depend on the further choice of a regular differential wg on Ag/H. which
was determined by our choice of w4. Note that a change in wa (or wp) affects both sides of (5.1.16) in the
same way.

5.2. p-adic interpolation. Let p be a rational prime which splits in K/Q, and fix a prime p of K above
p. Extending the associated embedding of K into Q, to an embedding ¢, : F’—C,. The special values
Lag(f,x~1,0) can be viewed, through the embedding ¢,, as p-adic numbers. The following theorem gives
a p-adic formula for these special values, in terms of the Atkin-Serre operator # on p-adic modular forms.

Theorem 5.7. For all x € »? (M) of infinity type (k + j,—7),

Lag(f,ix 100 = | > x; ' (a)(¢7 f)(a* (Ao, to, wo))

aePic(O.)

Proof. The fact that p is split in K implies that the elliptic curve ¢,(Ay) has good ordinary reduction. By
part 3 of Proposition 1.12, combined with (5.1.16), we have:

(5.2.1) Lag(f,x71,0) = > XN @) - Oy f(ax (Ao, to,wo))
[a]€Pic(O.)

Theorem 5.7 now follows from Lemma 1.7. O



GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES 61

Although the set EE? (M) is infinite, its elements take values in a finite extension of K. By possibly
enlarging the finite extension F' of K that appears in the statement of Theorem 5.5, we will assume that
it contains the values x(a) as x ranges over all characters in n )(‘ﬁ) and a ranges over Ay 5

Let Al ; denote the subgroup of AIX() ¢ of ideles which are prime to p, and choose any prime pp of F
above p. We observe that the values x(a) as a ranges over A’K’f are integral at pp, i.e., they belong to the
ring of integers Opp, of the completion Fy,. It follows that Egi) (M) is naturally embedded in the space
F(A% 1, OFpy) of Opp.-valued functions on Al ;. We equip n@ (M) with the topology induced by the
compact open topology on this function space, i.e., the topology of uniform convergence on A'K) ¢ relative

to the p-adic topology on OF,,. Let icc(m) be the completion of 2 (M) relative to this topology.

To p-adically interpolate the values Lag(f,x!,0) we need to modify them by dropping a suitable
Euler factor at p, and multiplying by a suitable p-adic period. We begin by attaching to Ag a p-adic
period €, as follows. Let Ag be a good integral model of Ag over Oc,. The formal completion Ay of
Ap along its identity section is (non-canonically) isomorphic to G over Oc,; fix such an isomorphism
v : Ag—G,y,. (This amounts to fixing an isomorphism between the p-divisible groups ppe and Ag[p™],
which is determined up to a scalar in Z,;.) Fixing the isomorphism ¢ once and for all, we define 2, € C
by the rule, analogous to (5.1.15)

(5.2.2) wo = - Wean, Where wean 1= L*d—J,
and u denotes the standard coordinate on Gm.
For all x € 2(2)(‘31) of infinity type (k + j, —7), we set
(5.2.3) Ly(f.x): = QWL =X B)ap +x20)es ()" 1) Laig (£,x 7, 0)
(5:2.4) = QI = apx T (0)* (1= Box T (p))* Lang (£, X7, 0),

where ay, 3, denote the parameters of f at p described at the beginning of Section 4.1.

Remark 5.8. Note that both L. (f,x) and Q, depend on the choice of the differential w4 on A, but
that the ratio Laig(f, x)/Qg(kH]) does not depend on this choice, once an isomorphism ¢ between Ay and
G, has been chosen. Replacing ¢ by a Z)-multiple a has the effect of multiplying L,(f, x) by a?(k+27)

Recall the form f* = f |(vu—uv) that was introduced in equation (3.8.4).

Theorem 5.9. Assume that p is split in K/Q. For all x € 2(2)( N) of infinity type (k + j,—j) (with

j >0), we have
2

L(fx)={ D, x;'(a)-67f (ax(Ao,t,wean))
[a]EPic(O,)
Proof. Set
X —ZX Cl*(Ao,tQ,UJQ))
and

ZX ) - 07 £ (a % (Ao, to,wo)).

Now pay, - 07 f = 07 f|T}, = 9jf|(U+5f( )p’““ﬂ 'V) and
(67 F[V)(ax (Ao, to,wo)) = (67 )(F~"a* (Ao, to,wp)).
Thus
07 f* (a * (Ao, to,wo)) {67 (VU —UV)}a * (Ao, to,wo))
{67 F1(1 =T,V + e (p)p"* ™' V) }a * (Ao, to, wo))
07 f(a* (Ao, to,wo)) —plap - 07 f(p ax (Ao, to,wn)) +
er(p)p" 7107 f(p2a x (Ao, to, wo))-
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Multiplying this equation by Xj_l(a) and summing over all the classes [a] € Pic(O,) gives the identity

S = {1 = apx'(B) + s ("X (B7)} Sy
The result now follows from Theorem 5.7 combined with the homogeneity properties of the p-adic modular
form 67 f* of weight k + 2j. |

Proposition 5.10. The function x — L,(f, x) extends to a continuous function on flcc(m),

Proof. Let x1,x2 € 2 (7) be two elements (of infinity type (k + j1, —j1) and (k + j2, —j2) respectively)
satisfying

x1(a) = x2(a) (mod p*),  for all a € Al .
By evaluating at ideles in Ak ¢ that are congruent to 1 modulo 9, we see that necessarily

Jj1=j2 (mod (p — l)pM_l).
Now we observe that, since
ejfb (Tate(q)v t, Wcan) = Z njanqna
(p,n)=1
the g-expansions of #7' f and 672 f are congruent modulo p™, and therefore agree modulo p™. If E is any
ordinary elliptic curve over Opy, and wean is any canonical differential on it as in (5.2.2), it follows that

071 f*(E,t,wean) = 072 f* (B, t,wean)  (mod p™).
(Cf. for example Sec.1.3.5 of [Gou].) It follows from the formula for L,(f,x) given in Theorem 5.9 that

Ly(f,x1) = Ly(f, x2) (mod pM)-
The proposition follows. O

The function L,(f,-) on Se. (M) is a type of anticyclotomic p-adic L-function attached to f and K (and
the triple (¢, M, e5)).

Remark 5.11. The p-adic L-functions attached to Rankin convolutions of p-adic families of modular
forms have been constructed in great generality by Hida [Hil]. In fact, our p-adic L-function L,(f,-) is the
restriction of a more general “two-variable p-adic L-function” defined over 3(M), the existence of which
can be deduced from the main result of [Hil].

Note that one obtains from Hida’s work two different p-adic L-functions by interpolating the L-values
corresponding to critical characters in XM (M) and (2 (N) respectively. The p-adic L-function obtained
by interpolating L(f, x~*,0) with x € 2 (M) has received much attention in the literature; for instance,
it is studied in the article [PR1] of Perrin-Riou (for k¥ = 2) and in [Ne2] (for k even and > 2.) Our focus
in this article has been instead on the p-adic L-function obtained by p-adic interpolation of the special
values corresponding to (central critical characters) y € (2 ().

5.3. The main theorem. For the convenience of the reader, we collect the notations and the running
assumptions that were made in the previous sections and are in force in the statement of Theorem 5.13
below.

Assumption 5.12. (1) The form f is a normalised cuspidal eigenform in Sk(To(N),e5).
(2) ¢ is an odd rational integer prime to Ndk.
(3) The quadratic imaginary field K has odd discriminant and satisfies the Heegner hypothesis stated
in Assumption 1.9, so that the order O. of K of conductor ¢ admits a cyclic ideal M of norm N.
(4) The sets Eéi)(m) and EE?)(m) consist of characters x of finite type (c,M,ey) and satisfying
gq(f,x 1) = +1 for all finite primes q, as described in Defn. 4.4 and the subsequent paragraph.
(5) The rational prime (p) = pp is split in K/Q and prime to Nec.

A character x € i (M) can be approximated by elements of x? (7)) (relative to the topology on

Y (M) discussed in the previous section) as follows. Let h denote the class number of K, and let ¢; be
the Hecke character of K of infinity type (th, —th) and trivial central character defined by

Pi(a) = a'/a’, where (a) = a”.
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If ¢ is a sufficiently large positive integer, then the Hecke character x1; belongs to Eg;) (M), and it converges

to x as t converges to 0 in Z/(p — 1)Z x Z,. This fact allows us to view IEY (M) as a subset of L (N).

The following Theorem, which relates the value of L,(f, x) at x € n () (which lies outside the range
of interpolation for the p-adic L-function) to Abel-Jacobi images of generalized Heegner cycles, is the main
result of this paper.

Theorem 5.13. Suppose that x € I (M) is a character of infinity type (k—1—j,1+7), with0 < j <.

Then

% = (1= X' By + X2 ) x
P

™’ -1 J =i
7 Z X~ (@)N(a) - AJp(Ag,p) (Wr A Wially )
" [a]€Pic(0O,)

Proof. The proof of Proposition 5.10 shows that the formula in Theorem 5.9 for L,(f, x) at x € n? (N)

extends to x € nl (9) in the obvious way, and gives

L;D(f7X) = Z X:%fj(a) '9_1_jfb(a* (A()athwcan))

[a]ePic(O.)

Therefore, by (5.2.2) and the fact that #~177 f* is a p-adic modular form of weight r — 2j, we have

2
LP(fﬂX) —1 —1—14 ¢b
Q220 Z X_1—;(@) - 077 f7(ax (Ao, to, wo))
p [a]€Pic(O.)
By Proposition 3.24,
2
Ly(f.x) 1 _
(5:3.1) o = |51 2 XTo() - Gjlax (Ao to,wo))
P " [a]€Pic(O.)

In view of Proposition 3.24 and of the relation 7 f|T,, = p’a, - 67 f, for j > 0, one sees by p-adic approxi-
mation that

TpGj = p_l_japGj.
Then, by Lemma 3.23,

Gg(a * (Ao,to,wo)) = Gj(a * (Ao,to,wo)) — ;J;(_p])ff Gj(pa * (Ao,to,uJo)) + pfigfj-l G(p2a * (Ao,to,WQ)).

Substituting this expression for G;(a % (Ao, to,wp) into (5.3.1) and rewriting the second and the third
summands by substituting a for ap and ap? respectively, we obtain

(5.3.2) Ly(fix) G_xljw%q@+xaﬁmq@>2

QZQ)(T—Qj) pritl pr2itl

% ST xTi(a) - Gylax (Ao, to,wo))
[a]€Pic(O,)
Using the fact that
X-1-5(p) = x(0)p~ " =ex(p) P x(p) 7,

the Euler factor that appears in (5.3.2) can be rewritten as

E(f,x) == (1= x""(Pay + x (s (p)p" )
Now, applying Lemma 3.22 to the isogeny

2

SDCLQOO : (A,tA,WA)_)a* (A07t07w0)
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of degree ¢N(a), and using the fact that Xj_j(a) = x "' (a)N(a)'*7, we find

LU e[S S v @N@) - ATr(Bpago)ws Ak ) |

2(r—2j) P S
Q) I alePico.)

as was to be shown. O

APPENDIX A. KUGA-SATO SCHEMES
BY BRIAN CONRAD

The aim of this appendix is to explain the relative version of Deligne’s method for constructing a smooth
projective compactification of the fiber powers E* of the universal elliptic curve E with “enough level-N
structure” over an open modular curve Y over Z[1/N] (for applications in this paper with Y = Y7(N)).
This was originally developed in 1968 for applications over finite fields F' of characteristic not dividing N
(see [De2, Lemma 5.5]), and later found uses for X (N) over Z[1/N] (see [Schol2, 4.2.1]). For applications
over such fields F' (e.g., Q or finite fields) one can compactify Er — Yp over the associated smooth
complete modular curve Xz by using the technique of minimal regular proper models of relative smooth
proper curves over a Dedekind base (such as Er — Yp relative to the Dedekind base X ), together with
their relation to Néron models of elliptic curves, and then try to explicitly resolve singularities of fiber
powers over X of that minimal regular proper model. Thus, when working over such a field F' there is
no need for the concept of a generalized elliptic curve (which was introduced only in 1972 in the work of
Deligne and Rapoport [DR], building on Artin’s theory of algebraic spaces).

The viewpoint of minimal regular proper models is insufficient in the relative situation over Z[1/N]
since now X is 2-dimensional rather than Dedekind. In such settings we use the proper flat universal
generalized elliptic curve E — X over Z[1/N] (for a modular curve X classifying rigid fiberwise ample
level-N structures on generalized elliptic curves over Z[1/N]-schemes) as a compactification of E over
Z[1/N]. Such E are smooth over Z[1/N] (see Lemma A.2) but not smooth over X, so for k& > 2 the

compactification E" of E* is not smooth over Z[1/N] (as we will see explicitly below). In Scholl’s work
with X (V) over Z[1/N] in [Schol2, 4.2.1], for each k > 2 he used Deligne’s method to construct a smooth

projective Z[1/N]-scheme equipped with a proper birational map onto the fiber power E" over X such that
the map is an isomorphism over E* and can be described étale-locally near the fibers over the cuspidal
locus on X. The method is a series of successive blow-ups, organized in terms of the number of coordinates
of a geometric point £ = (&1,...,&;) € E" for which & is singular in its geometric fiber for £ — X.

The hard part is to give an intrinsic description of what to blow-up at each step; once we have defined
an intrinsic algorithm, we can carry out computations étale-locally to see that we reach a smooth Z[1/N]-
scheme. These étale-local computations are sketched over Q in Scholl’s work (see [Schol2, 2.0.1-2.1.1])
but the details on how to carry it out over Z[1/N] are omitted there (and the intrinsic definitions of what

the pieces correspond to in terms of E is not given). Thus, at the request of the referee, in this appendix
we explain the procedure in more detail over Z[1/N].

We shall axiomatize the calculation so that it applies to “all” modular curves (with enough étale level
structure). The intrinsic nature of the method also makes it applicable to cases in which the modular
curve only exists as a Deligne-Mumford stack (such as Xo(IV) over Z[1/N] for any N > 1), but we leave
that generalization to the interested reader. The “étale” nature of the level structure (i.e., using N-torsion
level structures over Z[1/N]-schemes) is essential to the method because only in such cases can certain
deformation-theoretic problems with generalized elliptic curves be reduced to the case of a Tate curve with
geometrically irreducible fibers; see [DR, II1, 1.4.2; VII, 2.1].

Fix an integer N > 1, and let X be a modular curve over Z[1/N] classifying a rigid fiberwise ample level-
N structure on generalized elliptic curves over Z[1/N]-schemes (e.g., I'1 (V)-structures with N > 5, or full
level-N structures with N > 3). Here, by “rigid” we mean that generalized elliptic curves equipped with
such a level structure admit no nontrivial automorphisms. The work of Deligne and Rapoport provides
such modular curves X as smooth proper Z[1/N]-schemes with fibers of pure dimension 1, equipped with a
universal generalized elliptic curve £ — X. (Even though such an X is initially built only as an algebraic
space, it is a scheme. This can be seen in a couple of ways, perhaps the most concrete being that the
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j-map from X to Plz[1 /N] is quasi-finite, and any algebraic space that is separated and quasi-finite over a
noetherian scheme is a scheme [K, II, 6.16].)

Remark A.1l. For the reader who is interested in schemes being projective rather than just proper, we
make some side remarks now (not to be used in what follows). The fiberwise ample level structure on £
over X defines a closed subgroup scheme of the open X-smooth locus E™ that is finite étale over X and
so is closed in E with ideal sheaf in O that is a line bundle on E whose inverse is fiberwise ample over X.
But a fiberwise ample line bundle on a proper finitely presented scheme over a base S is relatively ample
over S [EGA, IV3, 9.6.4], so the projectivity and flatness of X over Z[1/N] implies that E is projective

and flat over Z[1/N]. Likewise, the fiber powers E' over X are projective and flat over Z[1/N] for all
k > 1. In particular, any scheme obtained from Ek by a composition of successive blow-ups is projective

over Z[1/N]. This ensures that the Z[1/N]-smooth compactification of E" built below is projective over
Z[1/N].

We now recall that for any generalized elliptic curve f : £ — S over a scheme, Deligne and Rapoport
introduced canonical closed subscheme structures S, C S and £"8 C & respectively supported at the set
of s € S such that & is not k(s)-smooth and at the set of £ € £ at which the proper fppf map £ — S is not
smooth. Explicitly, £58 is defined by the annihilator ideal of Q% /s (the first Fitting ideal of Qé / 5), and
S is defined to be the scheme-theoretic image of £5°8 in S. The formation of both of these commutes
with any base change on S (though this has some hidden subtleties for S ; see [Con, 2.1.11, 2.1.12]). We
call these closed subschemes the “loci of non-smoothness” in S and £ for f. Their compatibility with base
change on S enables us to compute completions along these loci via deformation theory.

Let Xoo C X be the locus of non-smoothness for the universal generalized elliptic curve £ — X.
Computations with the deformation theory of generalized elliptic curves equipped with ample level-N
structure over Z[1/N] show that X is (finite) étale over Z[1/N] (see [DR, III, 1.2(iv); IV, 3.4(ii)]). The

structure of E around E-© can also be understood via deformation theory, leading to:
Lemma A.2. The scheme E is smooth over Z[1/N].

Proof. The problem is to prove smoothness at non-smooth points £ in fibers over points * € X, and
since E is fppf over Z[1/N] it suffices to work on geometric fibers over Spec(Z[1/N]). In other words, for
an algebraically closed field F' of characteristic not dividing N and the universal generalized elliptic curve
Er — Xp, we want to prove that the surface Ep is smooth at points ¢ € E(F) that are non-smooth
in the fiber over z € X (F). It is equivalent to prove the formal smoothness of O | over F. But

o Er¢§
O%F ¢ coincides with the completed local ring at £ on the formal completion of Er — Xp along x. This

latter formal completion is the universal deformation of (E ), equipped with its ample level-N structure,
and O%, , is its universal deformation ring. Since char(F) { N, by [DR, III, 1.2(iv); VII, (1.1.1), 1.11,
2.1] there is an F-isomorphism between the universal deformation ring O%, . and F[q] such that the
completed local ring at £ is F[g]-isomorphic to F[q,u,v]/(uv — q) = F[u,v]. O

Now we shall prove a general resolution result for generalized elliptic curves over a family of smooth
curves:

Theorem A.3. Let S be a scheme, X — S a smooth map with all fibers of pure dimension 1, and
f:+E — X a generalized elliptic curve such that:
(1) the locus of non-smoothness Xoo C X for f is étale over S,
(2) the scheme E is S-smooth.
For each k > 1, let Ek denote the kth fiber power over X.
There exists a smooth S-scheme Zy, and a proper birational map Zj, — Ek that is an isomorphism over
—k
E*. The map Z, — E is a composition of finitely many blow-ups.
We emphasize that although E is assumed to be S-smooth, in practice it is not X-smooth, so the closed

subscheme E° 8 (which encodes non-smoothness over X) is generally not empty. The proof of the theorem
consists of giving an explicit definition of the blow-up process. If k¥ = 1 then we may take Z; = E by
hypothesis (2), so we now assume k > 2.
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By hypothesis (1), the pair (X, X+) looks étale-locally like (AL,0). Thus, the étale-local structure of
relative semi-stable curves [FK, III, 2.7] and the “homogeneity” of E around B (via translation by
Esm) implies that Zariski-locally over an affine open Spec R in S the pair (E, Esmg) has a common étale
neighborhood with

(Spec(R[q,u,v]/(uv — q)),{g=u=v=0})
(see the proof of [DR, II, 1.16]). Up to permutation of coordinates, a geometric point & = (£1,...,&;) € o
that is non-smooth over S has £1,...,&, non-smooth in E over X and &,41,...,& smooth in F over X

for some r > 2 (the case r = 1 being ruled out by the hypothesis that E is S-smooth). Thus, (Ek, ¢) has
a common étale neighborhood with the spectrum of

(AO?)) R[q7X1,Y1, .. '7XT7YT7TT+17 .. '7Tk:]/(X1Yl == XTYT = q) >~
R[X17Y17' "7X7‘7YI'7TT+17' 7Tk]/(XlY1 == X’I‘YF)

Of course, we have an analogous ring for any permutation of the &;’s.

Let F* denote the k-fold fiber product of E over X.,. We define a stratification of e E by closed
subschemes

—k
F'=F2F 2 2F DF =

—k . . . ..
where, for 0 <r < k, Fﬁ C F" is the scheme-theoretic union of the closed subschemes defined by requiring
at least k — r factors to lie in B °. For example, working étale locally over E, we see that FF_ is

supported at precisely the closed non-smooth locus for the fppf map E S.

Define E¥(0) = E" and FFO) = FF for 0 < i < k. For 1 < r < k — 1, we recursively define
E¥(r) = B1F£1<T_1>(Ek<r — 1)), and we let F(r) be the proper transform in E*(r) of F}'(r — 1) for
r <i<k—1. (Equivalently, F¥(r) is the blow-up of F}{r — 1) along F¥ | (r —1).)

We claim several properties:

(i) E*{r) and all F¥(r) are S-flat,

(ii) F¥(r) is contained in the closed locus where the S-flat E*(r) is non-smooth over S for all 0 < r <
k — 2 (so the map E¥(k — 1) — E*(0) = E" is an isomorphism over the S-smooth locus of Ek,
which contains Fk),

(ii) E*(k — 1) is S-smooth,

(iv) the formation of these blow-ups and strict transforms commutes with any base change on S (via

the evident base change morphisms).

To verify these claims we may work étale-locally over a non-smooth point of E" over affine open Spec R C S,
which amounts to replacing E" with
E™(0) = RIX1,Y1, -, X, Yoo, Tt - -, Tl / (X Y1 = -+ = XYy,
where 2 <m < k. B
We define F/"(0) to be the R-flat locus in E™(0) where m — 4 pairs (X;,Y;) vanish. Using inductive
definitions analogous to those above, we define E™(r) and F/™(r) (with 7 <i < m—1) for 0 <r <m—1.
We can replace the above claims with analogues in this new setting, so we aim to prove:

. ﬁim (r) and Em<r> are R-flat and their formation commutes with base change on R;
e F™(r) is contained in the closed non-smooth locus for E™(r) over R for all 0 < r < m —2 (so the
blow-up steps are always isomorphisms over the smooth locus of the previous stage);
e E™(m —1) is R-smooth.
This will clearly finish the proof. The Ty,41,..., Tk just get “carried along”, so they can (and will) now
be dropped.
It is easy to see that E™(1) has an open cover by 2m-copies U; of A! x E™=1(0) such that U; N F™ (1) =
Al x F7H0) for 1 <i < m — 1. Here, we define E'(0) = Spec R[X1,Y1]/(X1Y1) and FE = (0,0).
By induction on r for each m (with the case r = 0 always trivial and the case r = 1 just settled for all
m) we see that for 0 < 7 < m — 2 there exists an open cover of E™(r) by copies V; of A” x E™"(0) with
Vin Em{r) = A" x F"-7(0) for all r < i < m — 1. Thus, F™(r) is contained in F"~", which in turn is
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contained in the closed locus of non-smooth points in Em’r<0> over R since m —r > 2. These Zariski-local
descriptions yield the desired R-flatness and compatibility with base change on R.
Taking r = m — 2 at the end of the induction, E™{m — 2) is covered by open subschemes R-isomorphic
to A™=2 x E?(0). Since
E%(0) = Spec R[X1,Y1, X3, Ya]/(X1Y1 — X2Y2)

with F2(0) equal to the origin over R, so it remains to note that the R-scheme Bl o) (E2(0)) is covered by
copies of A3.
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