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Abstract
This article studies a distinguished collection of so-called generalized Heegner cycles
in the product of a Kuga–Sato variety with a power of a CM elliptic curve. Its main
result is a p-adic analogue of the Gross–Zagier formula which relates the images of
generalized Heegner cycles under the p-adic Abel–Jacobi map to the special values
of certain p-adic Rankin L-series at critical points that lie outside their range of
classical interpolation.
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0. Introduction
This article studies a distinguished collection of algebraic cycles on varieties which
are fibered over modular curves. The cycles in question generalize the Heegner cycles
on Kuga–Sato varieties that are studied in [Sc], [Ne2], and [Z]; for the remainder of
this article, we will refer to them as generalized Heegner cycles. The main result (The-
orem 5.13) is a p-adic analogue of the Gross–Zagier formula which relates the images
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of generalized Heegner cycles under a p-adic Abel–Jacobi map to the special values
of certain p-adic Rankin L-series at critical points that lie outside the range of p-
adic interpolation. Even in the 0-dimensional limit case, where generalized Heegner
cycles are nothing but Heegner divisors on modular curves, this analogue differs from
the p-adic Gross–Zagier formula proved in [PR1] and provides a concrete instance
of the p-adic Beilinson conjectures of [PR2] and [PR3]. It can also be viewed as the
direct analogue of Leopoldt’s evaluation at s D 1 of the classical p-adic L-function
attached to an even Dirichlet character in terms of p-adic logarithms of cyclotomic
units. In this analogy, the Kubota–Leopoldt p-adic L-function is replaced by the p-
adic Rankin L-function attached to a cusp form and a theta series of an imaginary
quadratic field, and the cyclotomic units are replaced by (generalized) Heegner cycles.

Recall that the Kuga–Sato variety Wr is a smooth compactification of the r -fold
product of the universal generalized elliptic curve over a modular curve C D C�
attached to � D �1.N /. It is naturally fibered over C , with generic fiber isomorphic
to an r -fold product of elliptic curves. The variety W2r is equipped with a supply of
so-called Heegner cycles (in the Chow group with rational coefficients) of dimension
r , which were introduced in [GZ, Section V.4]. (See also [Ne2, Section II.3.6], where
a more precise definition is given.) These cycles are supported on fibers above CM
points of C and are defined over abelian extensions of imaginary quadratic fields. The
main theorem of [Z] relates their heights to the central critical derivatives of Rankin
convolution L-series of cusp forms of weight 2rC2 with weight 1 binary theta series
attached to finite order Hecke characters of an imaginary quadratic field. In the case
r D 0, where the Heegner cycles are Heegner points on the modular curve C DW0,
this is the theorem of Gross and Zagier [GZ]. A p-adic analogue of these formulae
has also been established (in [PR1] for r D 0 and in [Ne2] for general r ) in which
the Arakelov height pairing is replaced by a p-adic height pairing and the complex
L-series by a suitable two-variable p-adic L-function.

The present work replaces the Kuga–Sato variety W2r by the .2r C 1/-dimen-
sional variety

Xr WDWr �A
r ;

where A is a fixed elliptic curve with complex multiplication by the ring of integers
of an imaginary quadratic field K , defined, say, over the Hilbert class field H of K .
Like W2r , the variety Xr is fibered over the modular curve C and is also equipped
with an infinite collection of special cycles defined over abelian extensions of K .
These generalized Heegner cycles are naturally indexed by isogenies ' W A �! A0.
The cycle attached to ', denoted �' , is supported on the fiber .A0/r � Ar above a
point of C attached to A0, and is essentially equal to the r -fold self-product of the
graph of '.
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Section 2.3 defines the cycles �' precisely and establishes some of their basic
properties. In particular, it shows that generalized Heegner cycles are homologically
trivial. One can therefore consider their images under various (étale, p-adic, and also
complex) Abel–Jacobi maps defined on homologically trivial cycles modulo rational
equivalence. Moreover, it is observed in Section 2.4 that the classical Heegner cycles
on W2r attached to the imaginary quadratic field K can be obtained as the images
of generalized Heegner cycles on X2r under a suitable algebraic correspondence. It
follows that generalized Heegner cycles carry at least as much arithmetic informa-
tion as Heegner cycles on Kuga–Sato varieties. One expects that they carry substan-
tially more: namely, that their heights should encode the central critical derivatives of
Rankin L-series attached to the convolution of cusp forms of weight k WD r C 2 on
� with theta series of weight less than or equal to k � 1 attached to certain Hecke
characters of K (and not just with those arising from finite-order characters).

Section 3 describes the images of generalized Heegner cycles under the p-adic
Abel–Jacobi map for a prime p not dividing N . More precisely, Section 3.1 intro-
duces the étale Abel–Jacobi map

AJet
F W CHrC1.Xr/0;Q.F /�!H 1

�
F;H 2rC1

et . NXr ;Qp/.r C 1/
�

(0.0.1)

attached to any field F containing H , where H 1.F;M/ denotes the (continuous)
group cohomology of GF WD Gal. NF=F / with values in a GF -module M . (Here and
elsewhere, the subscript 0 stands for homologically trivial and the subscript Q denotes
the Chow group with rational coefficients.) As shown in the appendix, the variety Xr
admits a proper smooth model over Spec ZŒ1=N � and hence the image of AJet

F (for F a
finite extension of Qp) is contained in the Bloch–Kato subspaceH 1

f
. The comparison

theorems between p-adic étale cohomology and de Rham cohomology then allow us
to view (0.0.1) as a map AJF (called the p-adic Abel–Jacobi map):

AJF W CHrC1.Xr/0;Q.F /�! FilrC1H 2rC1
dR .Xr=F /

_: (0.0.2)

Section 3 explains how this map can be computed analytically via Coleman’s theory
of p-adic integration of differential forms attached to certain classes in the de Rham
cohomology H 2rC1

dR .Xr=F /.
We now describe briefly the anticyclotomic p-adic L-function that is constructed

in Sections 4 and 5. Let Sk.�0.N /; "/ denote the space of cusp forms of weight
k, level N , and character ". The quadratic imaginary field K is said to satisfy the
Heegner hypothesis (relative to N ) if OK possesses a cyclic ideal N of norm N , that
is, an ideal for which

OK=ND Z=NZ: (0.0.3)

Assume that this hypothesis is satisfied, and fix a normalized newform f 2 Sk.�0.N /;

"f /. Let � be a Hecke character of K of infinity type .j1; j2/ with j1 C j2 D k and
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satisfying

�jA�Q D "f �N
k; (0.0.4)

where N is the usual norm character. This condition implies that the Rankin L-series
L.f;��1; s/ is self-dual and that its functional equation relates its values at s to those
at �s, so that 0 is the point of symmetry. Such � will be called central critical for f .

At the cost of possibly interchanging j1 and j2, we will assume that j1 � 0.
Let †cc.N/ denote the set of central critical characters of conductor dividing N and
satisfying (0.0.4), as well as the following auxiliary condition: for all finite primes
q, the epsilon factor "q.f;��1/ D C1. Given our other hypotheses, this auxiliary
condition is automatic except at those primes q ramified in K , that divide N but do
not divide the conductor of "f . (In the text, we allow more generally the conductor
of � to divide cN where c is an auxiliary odd rational integer prime to NdK , where
�dK is the discriminant of K .) The set †cc.N/ can be written as the disjoint union of
two subsets,

†cc.N/D†
.1/
cc .N/[†

.2/
cc .N/;

where †.1/cc .N/ consists of the characters of infinity type .k � 1� j; 1C j / with 0�
j � r , and †.2/cc .N/ consists of those of infinity type .k C j;�j / with j � 0. When
� 2†

.1/
cc .N/, the sign "1.f;��1/ equals�1, hence the sign in the functional equation

for L.f;��1; s/ is also �1, and therefore the function � 7! L.f;��1; 0/ vanishes
identically on †.1/cc .N/. On the other hand, for � 2 †.2/cc .N/, the sign "1.f;��1/
equals C1 whence the sign in the functional equation for L.f;��1; s/ is C1 as well,
and so one expects that the associated central critical values should be nonzero most
of the time.

Section 4 is devoted to proving an explicit version of Waldspurger’s formula relat-
ing the central L-values L.f;��1; 0/, for � 2 †.2/cc .N/, to period integrals on tori.
Such explicit formulae have been studied by several authors recently, for example,
[X], [MW], and more recently [Hi3]. However, our approach is somewhat different
in that we always insist that our torus embeddings come from Heegner points and
that the test vectors are of minimal level. The relevant period integrals then reduce
to finite sums of values of (certain nonholomorphic derivatives of) the form f at all
conjugates of a CM point, twisted by the character ��1, which is key to providing a
link to the p-adic Abel–Jacobi images of generalized Heegner cycles supported on
the same set of conjugate CM points.

Section 5.1 recalls the algebraicity properties of these special values: for all � 2
†
.2/
cc .N/, we have that

Lalg.f;�
�1/ WD QC.f;�/�

L.f;��1; 0/

�2.kC2j /
(0.0.5)
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is an algebraic number. Here QC.f;�/ is an explicit, elementary constant and � is a
CM period attached to K whose value depends on the choice of a regular differential
!A on A=H . After fixing an embedding

� W NQ�! NQp;

the values Lalg.f;�
�1/ attached to � 2 †.2/cc .N/ can be viewed as p-adic numbers.

Section 5.2 takes up the question of their p-adic interpolation. As explained in that
section, the set†.2/cc .N/ is endowed with a natural p-adic topology, and can be viewed
as a dense subset of its completion O†cc.N/. Assume that the rational prime p is split in
K=Q, so that �.K/�Qp . Let p be the prime of K corresponding to the embedding �.
The main result of Section 5.2 is that, after setting

Lp.f;�/D�
2.kC2j /
p

�
1� ��1.Np/ap C "f .p/�.Np/

�2pk�1
�2
Lalg.f;�

�1/

for an appropriate p-adic period �p (which also depends on the choice of !A), the
assignment � 7! Lp.f;�

�1/ extends to a (necessarily unique) continuous function
on O†cc.N/, which we refer to as the anticyclotomic p-adic L-function attached to f
and K .

Now, let � be a character in †.1/cc .N/ having infinity type .k � 1� j; 1C j / for
some 0 � j � r . While the classical L-value L.f;��1; 0/ vanishes, the character �
can be viewed as an element of O†cc.N/ (lying outside the range of classical inter-
polation defining the anticyclotomic p-adic L-function Lp.f;�/), and the special
value Lp.f;�/—which may be thought of as a p-adic avatar of L0.f;��1; 0/—is not
forced to vanish a priori. Our main result relates Lp.f;�/ to the Abel–Jacobi images
of generalized Heegner cycles. For the sake of illustration, we state the main result
under the following simplifying assumptions, postponing the more general statement
to Theorem 5.13.
(1) The quadratic imaginary field K has class number 1 and odd discriminant

�dK < �3. Let "K W .Z=dKZ/� �! ¹˙1º be the associated odd Dirichlet
character, and denote by the same symbol the quadratic character of .OK=p
�dKOK/

� induced from the identification of OK=
p
�dKOK with Z=dKZ.

(2) The newform f belongs to Sk.�0.N /; "kK/. (Note that it is necessary that dK
divides N when k is odd.)

(3) The grossencharacter � 2†.1/cc .N/ is of the form

�
�
.˛/
�
D "kK.˛/˛

k�1�j N̨1Cj ;

for some integer 0� j � r .
In this special setting, our main result is the following.
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MAIN THEOREM

Let �D�1 be the generalized Heegner cycle attached to 1 W A �! A, viewed as an
element of CHrC1.Xr/0.Qp/Q via �. Then

Lp.f;�/

�
2.r�2j /
p

D
�
1� ��1.Np/ap C �

�2.Np/pk�1
�2
�
� 1
j Š

AJQp .�/.!f ^!
j
A�

r�j
A /

�2
;

where AJQp is the p-adic Abel–Jacobi map of (0.0.2), !f is the class in �rC1.Wr/

attached to f in Corollary 2.3 of Section 2.1, and !jA�
r�j
A is the class in H r.Ar/

defined in (1.4.6) of Section 1.4.

Note that it is a special value and not a derivative of the p-adic L-series that
occurs on the analytic side of this formula, while the algebraic side involves the Abel–
Jacobi images of generalized Heegner cycles rather than their (p-adic) heights. Note
also that if !A is replaced by a nonzero multiple 	!A, then both sides of the equation
above are multiplied by 	2.2j�r/.

Those approaching this paper for the first time may find it pedagogically help-
ful to focus on the simplest case r D j D 0, where f is a newform of weight 2 and
� 2†

.1/
cc .N/ is a grossencharacter of infinity type .1; 1/. In this case, our Main Theo-

rem involves the formal group logarithms of points in the Jacobians of modular curves
arising from certain divisors supported on Heegner points. It relates these p-adic log-
arithms to the values of the p-adic L-function Lp.f;�/ at characters of finite order
(shifted by the norm). One thus obtains a new p-adic variant of the Gross–Zagier for-
mula in the traditional setting of Heegner points on modular curves. As a first guide
to the somewhat lengthy arguments required to deal with forms and Hecke characters
of general weights and levels, here is a brief outline of the proof of the Main The-
orem in this simplest nontrivial setting, assuming further that K has class number 1
and a unit group of order 2, and that � WD �0 is the trivial character of weight .1; 1/
sending the (principal) ideal .˛/ to its norm ˛ N̨ . This norm character is the special-
ization at j D 0 of the sequence �j 2 †

.2/
cc .N/ of grossencharacters of infinity type

.1C j; 1� j / defined by

�j
�
.˛/
�
WD ˛1Cj N̨1�j :

Let ıj�12 denote the .j � 1/th iterate of the Shimura–Maass differential operator as
defined in Section 1.2; this sends weight 2 real analytic modular forms to those of
weight 2j . For all j � 1, Theorem 5.5 identifies the quantity Lalg.f;�

�1
j / of equa-

tion (0.0.5) with .ıj�12 f /.PA/
2, where PA denotes the triple .A;!A; tA/ attached to

the elliptic curve A with CM by the maximal order of K , the differential !A, and
a suitable �1.N /-level structure tA on A. (Here modular forms are viewed as func-
tions on triples, as explained in Section 1.1.) Using the well-known fact that the unit
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root splitting of the Hodge filtration agrees with the Hodge decomposition for ordi-
nary CM elliptic curves, Proposition 1.12 identifies .ıj�12 f /.PA/with .
j�1f /.PA/,
where 
 D q d

dq
is the Atkin–Serre theta operator on p-adic modular forms defined in

(1.3.2). This key identification leads to the p-adic interpolation of the special values
Lalg.f;�

�1
j / described in Section 5.2, and hence, to the Rankin p-adic L-function

Lp.f;�j / which arises in the Main Theorem above. This p-adic L-function satisfies
the equality

Lp.f;�j /D .

j�1f [/.P

.p/
A /2; 8j � 0;

where f [ is the p-depleted modular form associated to f as defined in (3.8.4) and
where P .p/A D .A;��1p !A; tA/. Taking a p-adic limit when j ! 0 shows that

Lp.f;�/D .

�1f [/.P

.p/
A /2:

One can see (either directly, or by specializing the calculations of Section 3 to the case
where r D 0) that the function 
�1f [—which is a p-adic and in fact overconvergent,
modular form of weight 0—is the unique rigid analytic primitive of the exact rigid
differential !f [ which vanishes at the cusp1, and its value at the triple P .p/A is an
explicit multiple of the formal group logarithm, relative to the differential !f , of the
degree 0 divisor �1 D .A; tA/� .1/ on the modular curve C .

We close this introduction by listing a few of the arithmetic applications of The-
orem 5.13.

Rubin’s formula
The article [BDP1] exploits Theorem 5.13 in the special case where f is itself a
weight 2 binary theta series attached to the quadratic imaginary field K to give a
new proof of the main result of [R], which relates the values of the Katz p-adic L-
function attached to K to the p-adic logarithms of global points on elliptic curves
with complex multiplication by K .

Chow–Heegner points
Because it involves Abel–Jacobi images rather than p-adic heights, Theorem 5.13 is
used in [BDP2] to study the algebraicity of the certain points on CM elliptic curves
arising from higher-dimensional cycles in the Chow groups of certain algebraic vari-
eties whose cohomology realizes the `-adic representations attached to theta series
of higher (possibly odd) weight. This construction provides a basic illustration of
the phenomenon of Chow–Heegner points arising from the image of algebraic cycles
under Abel–Jacobi maps (both complex and p-adic). The relevance of Theorem 5.13
to the notion of Chow–Heegner points was in fact the original motivation for the



1040 BERTOLINI, DARMON, and PRASANNA

present article, although Theorem 5.13 is considerably more general than the special
case exploited in [BDP2].

Coniveau and the Bloch–Beilinson conjecture
The article [BDP3] illustrates how Theorem 5.13 may be used to prove part of the
Bloch–Beilinson conjecture for the Rankin–Selberg motives that are studied in this
article. In particular, by verifying that specific values of the p-adic L-function
Lp.f;�/ are not zero, one can often show that generalized Heegner cycles are not
just nonzero in the Chow group but also nonzero in a certain graded piece for the
coniveau filtration on the Chow group, as predicted by a refined version (see [Bl1],
[Bl2]) of the Bloch–Beilinson conjecture.

Euler systems
Let F be any global field over which A is defined. For each cuspidal newform f

on C of weight r C 2 and each character � as in the previous statement, there is a
GF -equivariant projection

�f;� WH
2rC1
et . NXr ;Qp/.r C 1/�! .Vf ˝ �/.r C 1/DW Vf;�;

where Vf is the p-adic Galois representation attached to f and where � is viewed
as a 1-dimensional p-adic representation of GF in the usual way. Each generalized
Heegner cycle �' , defined over an appropriate extension F' � H , gives rise to a
global cohomology class

�' WD �f;�
�
AJet
F'
.�'/

�
2H 1.F' ; Vf;�/;

which belongs to a generalized Selmer group H 1
Sel.F' ; Vf;�/ attached to the p-adic

Galois representation Vf;�. If p is a prime of F' above p and if p does not divide
the level of � , the discriminant of K , or the degree of ', then the natural image
resp.�'/ of �' in the local cohomology group H 1.F';p; Vf;�/ belongs to the sub-
group H 1

f
.F';p; Vf;�/ corresponding to crystalline extensions of Vf;� by Qp . Our

Main Theorem above relates resp.�'/ to the values of the p-adic L-functionLp.f;�/
at points lying outside the range of classical interpolation. This suggests that the col-
lection ¹�'º of global cohomology classes, as ' ranges over the isogenies A �! A0,
should give rise to an Euler system attached to the compatible system Vf;� of p-adic
representations of GF . (See Section 2.4 for a discussion of the relation between these
cycles and classical L-series, and see [Ca1], where the connection between the results
of this paper and the theory of Euler systems obtained by interpolating generalized
Heegner cycles in p-adic families is described in more detail.)
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1. Preliminaries

1.1. Algebraic modular forms
Let N � 1 be an integer, and let � D �1.N / be the standard congruence subgroup of
level N :

�1.N / WD

²�
a b

c d

�
2 SL2.Z/ such that a� 1;d � 1; c 	 0 .modN/

³
:

We begin by recalling the geometric definition of modular forms over a field F that
is given in [Ka2] and [Hi4].

If R is a ring in which N is invertible and E is an elliptic curve over R, we
observe that a closed immersion t W Z=NZ ,!E of group schemes over SpecR gives
rise to a section s W Spec.R/�!E of orderN by restriction to the section 1 of Z=NZ.

Definition 1.1
An elliptic curve with �-level structure over a ring R is a pair .E; t/ consisting of
(1) an elliptic curve E over Spec.R/,
(2) a closed immersion t W Z=NZ ,!E of group schemes over SpecR.
A triple .E; t;!/, where .E; t/ is an elliptic curve with �-level structure and where
! 2�1

E=R
is a global section of �1E over Spec.R/, is called a marked elliptic curve

with �-level structure.

The notion of R-isomorphisms between elliptic curves or marked elliptic curves
with �-level structure is defined in the obvious way. Denote by Ell.�;R/ the set
of isomorphism classes of elliptic curves with �-level structure over R, and denote
by fEll.�;R/ the set of isomorphism classes of marked elliptic curves with �-level
structure.

Definition 1.2
A weakly holomorphic algebraic modular form of weight k on � defined over a field
F is a rule which to every isomorphism class of triples .E; t;!/ 2fEll.�;R/ defined
over an F -algebra R associates an element f .E; t;!/ 2R satisfying
(1) (compatibility with base change)—for all F -algebra homomorphisms of type

j WR �!R0,

f
�
.E; t;!/˝j R

0
�
D j

�
f .E; t;!/

�
I

(2) (weight k condition)—for all 	 2R�,

f .E; t; 	!/D 	�kf .E; t;!/:
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Let .Tate.q/; t;!can/=F ..q1=d // be the Tate elliptic curve Gm=q
Z, equipped with

some level N structure t defined over F..q1=d // (for some d jN ) and the canonical
differential !can WD

du
u

over F..q//, where u is the usual parameter on Gm.

Definition 1.3
An algebraic modular form on � over F is a weakly holomorphic modular form
satisfying

f
�
Tate.q/; t;!can

�
belongs to F ŒŒq1=d ��; for all t:

If these values belong to q1=dF ŒŒq1=d ��, then f is called a cusp form.

We denote by

Sk.�;F /�Mk.�;F /�M
�

k
.�;F /

the F -vector spaces of cusp forms, algebraic modular forms, and weakly holomorphic
modular forms, respectively, on � over F . Write

C 0 D Y1.N /; C DX1.N /D Y1.N /[ZN ;

for the usual modular curves over Q associated to � . The cuspidal subscheme ZN is
finite over Q. If N � 3, then the group �1.N / is torsion-free and the curve C 0 is a
fine moduli scheme having a canonical smooth proper model over Spec.ZŒ1=N �/. It
represents the functor on ZŒ1=N �-algebras which to R associates the set Ell.�;R/ of
Definition 1.1. We will not make use of the integral model for now and will view the
curves C 0 and C as defined over some base field F (of characteristic 0) for the rest
of this section.

Let � W E �! C 0 be the universal elliptic curve with level N structure over C 0,
and let ! WD ���1E=C0 be the line bundle of relative differentials on E=C 0. A weakly

holomorphic modular form f 2M
�

k
.�;F / can be viewed as a global section of the

sheaf !k over C 0 by setting

f .E; t/D f .E; t;!/!k; (1.1.1)

where .E; t/ is viewed as a point of C 0.R/ and where ! is an arbitrarily chosen
generator (locally on SpecR) of �1

E=R
. Note that the expression on the right-hand

side of (1.1.1) does not depend on the choice of !.
Consider the relative de Rham cohomology sheaf on C 0:

L1 WDR1��.0!OE!�1
E=C0

! 0/:
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It is a rank 2 algebraic vector bundle over C 0 whose fiber at any geometric point
x W SpecL�! C 0 is given by

.L1/x DH
1
dR.Ex/;

with Ex WD E �x SpecL. There is a nondegenerate (Poincaré) pairing

h ; i WL1 �L1 �!OC0 ;

and the Hodge filtration on the fibers corresponds to an exact sequence of coherent
sheaves over C 0:

0�! ! �!L1 �! !�1 �! 0: (1.1.2)

The vector bundle L1 is also equipped with the canonical integrable Gauss–Manin
connection

r WL1 �!L1˝�
1
C0
: (1.1.3)

The Kodaira–Spencer map KS is defined to be the composite

KS W ! �!L1
r
�!L1˝�

1
C0
�! !�1˝�1

C0

in which the first and last arrows arise from (1.1.2). This map is an isomorphism of
sheaves over C 0, and therefore it gives rise to an identification

 W !2
�
�!�1

C0
; .!1˝!2/ WD h!1;r!2i: (1.1.4)

In addition to the geometric interpretation (1.1.1), it will also be convenient to view
modular forms f 2M �

rC2.�;F / as global sections of the sheaf !r ˝�1
C0

by the rule

!f .E; t/ WD f .E; t;!/ �!
r ˝ .!2/: (1.1.5)

Assume for simplicity that all the cusps of X1.N / are regular in the sense of
[DS, Section 3.2]. (This condition is satisfied as soon as N > 4.) The line bundles
! and L1 and their attendant structures extend naturally to the complete curve C as
explained in the following.
� The line bundle ! admits an extension to C (denoted again by !) which is

characterized by the property

H 0.C;!k/DMk.�;F /:

By Definition 1.3, the local sections of ! in the neighborhood
SpecF.�N /ŒŒq1=d �� of the cusp attached to the pair .Tate.q/; q1=d �N / are
expressions of the form h!can with h 2 F.�N /ŒŒq1=d ��, where we recall that
!can is the canonical differential on the Tate curve.
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� The exact sequence (1.1.2), together with the given extensions of ! and !�1 to
C , determines an extension of L1 to C in such a way that (1.1.2) becomes an
exact sequence of sheaves over this base. The local sections of L1 in a neigh-
borhood of the cusp .Tate.q/; q1=d �N / are F.�N /ŒŒq1=d ��-linear combinations
of !can and the local section �can defined by

r!can DW �can˝
dq

q
: (1.1.6)

(The sheaf L1 is described in [Sch1, Section 2.4], where it is denoted E .)
� The Gauss–Manin connection r of (1.1.3) extends to a connection with log

poles

r WL1 �!L1˝�
1
C .logZN /; (1.1.7)

where �1C .logZN / denotes the sheaf of differentials on C with logarithmic
singularities on the cuspidal subscheme ZN . Over SpecF.�N /ŒŒq1=d ��, it is
described by the equation

r!can D �can˝
dq

q
; r�can D 0: (1.1.8)

� Finally, the Kodaira–Spencer isomorphism  gives an identification

 W !2
�
�!�1C .logZN / (1.1.9)

of sheaves over C . Over SpecF.�N /ŒŒq1=d ��, it is determined by

.!2can/D
dq

q
: (1.1.10)

� With these definitions, the rules (1.1.1) and (1.1.5) give identifications

MrC2.�;F /DH
0.C;!rC2/DH 0

�
C;!r ˝�1C .logZN /

�
; (1.1.11)

SrC2.�;F /DH
0.C;!r ˝�1C /: (1.1.12)

For any r � 1, let

Lr WD Symr L1:

The sheaf Lr inherits from (1.1.2) a canonical Hodge filtration by sheaves of OC -
modules

Lr �Lr�1˝! � � � � � !
r ;

and the relative Poincaré duality
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h ; i WLr �Lr �!OC ; (1.1.13)

whose reduction to the geometric fibers is given by the rule

h˛1 � � �˛r ; ˇ1 � � �ˇri D
1

rŠ

X
�2Sr

h˛1; ˇ�1i � � � h˛r ; ˇ�ri; (1.1.14)

where Sr denotes the symmetric group on r letters. The connection r on L1 gives
rise to a connection (which will also be denoted r)

r WLr �!Lr ˝�
1
C .logZN /:

Let Qr denote the composite

Qr WLr
r
�!Lr ˝�

1
C .logZN /

id˝��1
�����!Lr ˝!

2 �!Lr ˝L2 �!LrC2; (1.1.15)

where the penultimate arrow is induced from (1.1.2) and the last arises from the nat-
ural projection

Symr˝Sym2 �! SymrC2 :

The map Qr (which, like r , is a homomorphism of abelian sheaves but not of OC -
modules) gives rise to differential operators on modular forms. More precisely, let

‰ WL1 �! ! (1.1.16)

be a splitting of the Hodge filtration (1.1.2), and let ‰.k/ denote the corresponding
homomorphism Lk �! !k . The splitting ‰ determines a differential operator

‚‰ WMr.�;F /�!MrC2.�;F /; .‚‰f /.E; t/ WD‰
.rC2/. Qrf /.E; t/:

(1.1.17)

Example 1.4
We can construct a splitting ‰ as in (1.1.16) as follows. The datum of a pair .E;!/=R
determines (locally on SpecR) canonical elements x 2H 0.E;OE .2OE // and also
y 2H 0.E;OE .3OE // satisfying

y2 D 4x3C g2xC g3; for some g2; g3 2R; and
dx

y
D !:

The decomposition

H 1
dR.E=R/DR

hdx
y

i
˚R

hx dx
y

i
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determines a canonical algebraic (but not functorial) splitting ‰alg of the Hodge fil-
tration on L1. The resulting differential operator ‚alg on Mr.�;F / is given in terms
of q-expansions by the formula

‚alg.f /D 
f �
r

12
Pf; 
 D q

d

dq
;

where

P D 1� 24
X
n�1

1.n/q
n

�
with 1.n/D

X
d jn

d
�
;

arises from the Eisenstein series of weight 2. (See [Ka2, Section A1.4].)

1.2. Modular forms over C
Assume now that F DC. The set C.C/ of complex points of C is a compact Riemann
surface, and the analytic map

pr WH �! C 0.C/; pr.�/ WD
�

C=h1; �i;
1

N

�
identifies C 0.C/with the quotient �nH , where we recall that � D �1.N /. The coher-
ent sheaf Lr gives rise to an analytic sheaf Lan

r on the Riemann surface C.C/; let
QLan
r WD pr�Lan

r denote its pullback to H .
Recall the elliptic fibration � W E �! C 0, and let

LB1 WDR
1��Z; LBr WD Symr LB1 ;

be the locally constant sheaves of Z-modules whose fibers at x 2 C 0.C/ are identified
with the Betti cohomology H 1

B.Ex ;Z/ and SymrH 1
B.Ex ;Z/, respectively. The local

system

Lr WD LBr ˝Z C (1.2.1)

is identified with the sheaf of horizontal sections of .Lan
r ;r/ over C 0.C/. (See [De2,

Théorème 2.17].)
A modular form f 2M

�

k
.�;C/ gives rise to a holomorphic section of !k viewed

as an analytic sheaf over C 0.C/. It also gives rise to a holomorphic function on H by
the rule

f .�/ WD f
�

C=h1; �i;
1

N
; 2�i dw

�
; (1.2.2)

where w is the standard coordinate on C=h1; �i. This function obeys the familiar
transformation rule
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f
�a� C b
c� C d

�
D .c� C d/kf .�/; for all

�
a b

c d

�
2 �1.N /; (1.2.3)

and the modular form f is completely determined by the associated function f .�/.
The Hodge filtration on H 1

dR.C=h1; �i/ admits a canonical, functorial (but non-
holomorphic) splitting

H 1
dR

�
C=h1; �i

�
WDCdw˚Cd Nw; (1.2.4)

called the Hodge decomposition. In terms of the local coordinates � , N� , dw, and d Nw,
the Gauss–Manin connection and the Kodaira–Spencer map are described by

rdwD
�dw � d Nw

� � N�

�
˝ d�; 

�
.2�i dw/2

�
D 2�i d�: (1.2.5)

The global sections of !rC2 and !r ˝�1C attached to f in (1.1.1) and (1.1.5) are
therefore given by the complex formulas

f
�

C=h1; �i;
1

N

�
D f .�/.2�i dw/rC2;

(1.2.6)
!f

�
C=h1; �i;

1

N

�
D f .�/.2�i dw/r ˝ .2�i d�/:

Let Lra
r denote the real analytic sheaf on C 0 associated to Lan

r by forgetting the
complex structure on C and retaining only its associated real analytic structure, and
denote by !rra the subsheaf of Lra

r for the real analytic topology associated to !r . The
global sections of !rra over C 0 are called real analytic modular forms of weight r
on � . They are identified, via (1.2.2), with real analytic functions on H satisfying the
transformation property (1.2.3).

Following [Ka4, (1.8.3)], we recall the Hodge decomposition of real analytic
sheaves

Lra
1 D !ra˚ N!ra; (1.2.7)

which induces (1.2.4) over the points of C 0.C/. It gives rise to real analytic splittings

‰Hodge WL
ra
1 �! !ra; ‰

.r/
Hodge WL

ra
r �! !rra: (1.2.8)

A section f of !rra which is of the form ‰
.r/
Hodge.s/ for some holomorphic section

s of Lr over C is called a nearly holomorphic modular form on � . The holomor-
phic section s of Lr associated to a given nearly holomorphic modular form f is
unique (see [Hi2, Section 10.1, equation (5A)]). Following a common abuse of nota-
tion, a nearly holomorphic modular form is treated interchangeably as a real analytic
section f .�/.2�i dw/r of !rra and as a real analytic function f .�/ on H transforming
under � like a modular form of weight r .
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Let ‚Hodge be the differential operator on nearly holomorphic modular forms
associated to the splitting (1.2.8) as in (1.1.17)—that is, satisfying

‚Hodge.f /D‰
.rC2/
Hodge

�
Qr.s/

�
; for all f D‰.r/Hodge.s/ with s 2H 0.C;Lr/:

The following lemma relates‚Hodge to the classical Shimura–Maass differential oper-
ator ır defined by

ırf .�/ WD
1

2�i

� @
@�
C

r

� � N�

�
f .�/; (1.2.9)

which maps real analytic modular forms of weight r to real analytic modular forms
of weight r C 2.

LEMMA 1.5
Let f be any nearly holomorphic modular form of weight r on � . Then

‚Hodgef D ırf: (1.2.10)

Proof
Write f D‰.r/Hodge.s/, where s is the holomorphic section of Lr giving rise to f , and
expand s in terms of the local coordinates � and w as

s D s0.�/d Nw
r C s1.�/d Nw

r�1 dwC � � � C sr�1.�/d Nwdw
r�1C f .�/.2�i dw/r :

Since s is a holomorphic section, its periods vary holomorphically, and therefore
rs D r1;0s, where r1;0 is the component of the Gauss–Manin connection on Lra

r

obtained by differentiating periods of real analytic sections in the holomorphic direc-
tion. Since the periods attached to the local section d Nw are antiholomorphic, it follows
that r1;0.d Nw/D 0; therefore, by (1.2.5), which continues to hold when r is replaced
by r1;0, we have

rs D r1;0s 	r1;0
�
f .�/.2�i dw/r

� �
modd NwH 0.C 0;Lr�1˝�

1
C /
�

	 .2�i/r �
�
f� .�/dw

r C rf .�/dwr�1
�dw � d Nw

� � N�

��
˝ d�;

where f� WD
@f
@�

is the derivative of f with respect to the holomorphic variable � . It
follows from the last identity in (1.2.5) and the definition of Qr that

‰
.rC2/
Hodge

�
Qr.s/

�
D .2�i/rC1 �‰

.rC2/
Hodge

�
f� .�/dw

rC2C rf .�/dwrC1
�dw � d Nw

� � N�

��
D ırf .�/.2�i dw/

rC2:

The lemma follows.
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More generally, letting

‚
j
Hodge W f 7!‰

.rC2j /
Hodge

�
Qrj .s/

�
;

one obtains ‚jHodge.f /D ı
j
r f , where ıjr WD ırC2j�2 ı � � � ı ır is the jth iterate of the

Shimura–Maass derivative, sending nearly holomorphic modular forms of weight r
to nearly holomorphic modular forms of weight r C 2j .

1.3. p-adic modular forms
A ring is called a p-adic ring if the natural homomorphism to its pro-p completion
is an isomorphism. If R is a p-adic ring, then a triple .E; t;!/=R as in Definition 1.2
is said to be ordinary if the mod p reduction of E (viewed as an elliptic curve over
R=pR) has invertible Hasse invariant. We briefly recall Katz’s definition of p-adic
modular forms, which is modeled on Definition 1.2. In this definition, we continue to
assume that k is an integer greater than or equal to 2.

Definition 1.6
A p-adic modular form of weight k on � defined over a p-adic ringZ is a rule which
to every isomorphism class of ordinary triples .E; t;!/ 2fEll.�;R/ defined over a p-
adic Z-algebra R associates an element f .E; t;!/ 2R satisfying the following.
(1) (Compatibility with base change). For all Z-algebra homomorphisms

j WR �!R0,

f
�
.E; t;!/˝j R

0
�
D j

�
f .E; t;!/

�
:

(2) (Weight k condition). For all 	 2R�,

f .E; t; 	!/D 	�kf .E; t;!/:

(3) (Behavior at the cusps). Let .Tate.q/; t;!can/ be the Tate elliptic curve Gm=q
Z

equipped with any level N structure t defined over the p-adic completion of
ZŒ�N �..q

1=d // and the canonical differential !can over Z..q//. Then

f
�
Tate.q/; t;!can

�
belongs to ZŒ�N �ŒŒq

1=d ��;

and f .Tate.q/; t� ;!can/D f .Tate.q/; t;!can/
� for all  2Aut.Z.�N /=Z/.

We now recall the geometric interpretation of p-adic modular forms as sections
of suitable rigid analytic line bundles. Assume that the prime p does not divide N ,
so that C extends to a canonical smooth proper model C over Spec Zp . Then write
CFp WD C �Zp Fp , and let
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redp W C.Cp/�! CFp .
NFp/

denote the natural reduction map.
Let ¹P1; : : : ;Ptº be the finite subset of CFp .

NFp/ consisting of the supersingular
points. The residue disk attached to Pj , denoted D.Pj /, is the set of points of C.Cp/
which have the same image as Pj under redp . Let

C ord D C.Cp/�D.P1/� � � � �D.Pt /:

Since the Pj are smooth points of CFp .
NFp/, the residue disks D.Pj / are conformal

to the open unit disk U � Cp consisting of z 2 Cp with jzj < 1. The set C ord is an
example of an affinoid subset of C.Cp/ with good reduction. (These concepts are
discussed in somewhat more detail in Section 3.5. For general definitions and a more
systematic discussion, see also, e.g., Sections II and III of [C2].)

The algebraic vector bundle Lr on C gives rise to a rigid analytic coherent sheaf
L

rig
r on C ord, equipped with the Gauss–Manin connection

r WLrig
r �!Lrig

r ˝�
1.logZN /;

and a subsheaf !r for the rigid analytic topology on C ord. A p-adic modular form f

of weight r for � corresponds, via (1.1.1), to a rigid analytic section of !r over C ord.
Following [Ka4, Theorem 1.11.27], there is a unique decomposition of rigid ana-

lytic sheaves

L
rig
1 D ! ˚LFrob

1 (1.3.1)

such that the Frobenius endomorphism preserves (and acts invertibly) on LFrob
1 . In

the p-adic theory, this unit root decomposition plays a role analogous to that of the
Hodge decomposition in the complex setting. Most importantly, (1.3.1) gives rise to
a rigid analytic splitting over C ord:

‰Frob WL
rig
1 �! !:

Let‚Frob be the differential operator associated to this splitting as in (1.1.17). It maps
p-adic modular forms of weight r to p-adic modular forms of weight r C 2. The
following lemma relates‚Frob to the classical Atkin–Serre theta operator whose effect
on q-expansions f .Tate.q/; �N ;!can/D

P
anq

n is given by


f
�
Tate.q/; �N ;!can

�
D q

d

dq

1X
nD1

anq
n D

1X
nD1

nanq
n: (1.3.2)

LEMMA 1.7
For all p-adic modular forms f of weight r ,

‚Frobf D 
f: (1.3.3)
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Proof
Since a p-adic modular form is determined by its q-expansion, it is enough to check
the identity on the Tate curve. By (1.1.8), we have

rf
�
Tate.q/; �N

�
D r

�
f .q/!rcan

�
D
�
q
d

dq
f .q/!rcanC rf .q/!

r�1
can �can

�dq
q
:

Therefore, by (1.1.10),

Qrf
�
Tate.q/; �N

�
D q

d

dq
f .q/!rC2can C rf .q/!

rC1
can �can: (1.3.4)

Since the Frobenius endomorphism respects the Gauss–Manin connection, it pre-
serves the line spanned by the unique horizontal section �can of L1 over Z0ŒŒq��, and
therefore �can is stable under Frobenius. (See [Ka2, Section A2.2 ].) It follows that the
unit root subspace of the Tate curve Tate.q/ over the p-adic completion R of Z0..q//
is equal to

H 1
dR

�
Tate.q/

�Frob
DR�can:

Hence ‰Frob.�can/D 0. Applying ‰.rC2/Frob to equation (1.3.4) shows that

‚Frobf
�
Tate.q/; �N ;!can

�
D 
f

�
Tate.q/; �N ;!can

�
:

1.4. Elliptic curves with complex multiplication
Let K be an imaginary quadratic field of discriminant �dK , let OK be its ring of
integers, and let H denote the Hilbert class field of K . Let A be a fixed elliptic curve
defined over H satisfying

EndH .A/'OK :

The identification OK D EndH .A/ is normalized so that the endomorphism Œ˛�

induces multiplication by ˛ on �1
A=H

.

Cohomology
The Hodge filtration on the de Rham cohomologyH 1

dR.A=F / (over any field F which
contains H ) admits a canonical, functorial algebraic splitting

H 1
dR.A=F /DH

1;0
dR .A=F /˚H

0;1
dR .A=F / (1.4.1)

which agrees with the Hodge decomposition of H 1
dR.A=C/ when F D C and which

agrees with the unit root decomposition over a p-adic ring when A is ordinary. This
decomposition is characterized by the conditions
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H
1;0
dR .A=F /D�

1
A=F ; 	��D 	��; 8	 2OK ; � 2H

0;1
dR .A=F /;

where 	 7! 	� is the nontrivial automorphism of K . The choice of a nonzero dif-
ferential !A 2�1A=F DH

1;0
dR .A=F / thus determines a generator �A of H 0;1

dR .A=F /

satisfying

h!A; �Ai D 1; (1.4.2)

where h ; i denotes the algebraic cup product pairing on de Rham cohomology.
Let Sr denote the symmetric group on r letters. Multiplication by �1 on A,

combined with the natural permutation action of Sr on Ar , gives rise to an action of
the wreath product

„r WD .�2/
r � Sr (1.4.3)

on Ar . Let j W„r �! �2 be the homomorphism which is the identity on �2 and the
sign character on Sr , and let

�A WD
1

2rrŠ

X
�2„r

j./ 2Q
�
Aut.Ar/

	
(1.4.4)

denote the associated idempotent in the rational group ring of Aut.Ar/; by functori-
ality, it induces an idempotent on H�dR.A

r=F /. Recall the Künneth decomposition

H�dR.A
r=F /D

M
.i1;:::;ir /

H
i1
dR.A=F /˝ � � � ˝H

ir
dR.A=F /; (1.4.5)

where the direct sum is taken over all r -tuples .i1; : : : ; ir/with 0� ij � 2. The natural
action of Sr on H 1

dR.A=F /
˝r gives rise to a subspace SymrH 1

dR.A=F / consisting of
classes which are fixed by this action.

LEMMA 1.8
The image of the projector �A acting on H�dR.A

r=F / is equal to SymrH 1
dR.A=F /.

More precisely,

�AH
j
dR.A

r=F /D

´
0 if j ¤ r;

SymrH 1
dR.A=F / if j D r:

Proof
Since multiplication by .�1/ acts as �1 on H 1

dR.A=F / and as 1 on H 0
dR.A=F / and

H 2
dR.A=F /, it follows that �A annihilates all the terms in the Künneth decomposition

(1.4.5) except H 1
dR.A=F /

˝r . The natural action of Sr on this term corresponds to the
geometric permutation action of Sr on Ar , twisted by the sign character. It follows
that the restriction of �A toH 1

dR.A=F /
˝r induces the natural projection onto the space

SymrH 1
dR.A=F / of symmetric tensors.
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For any j such that 0� j � r , we define !jA�
r�j
A by

!
j
A�

r�j
A WD ��A.p

�
1!A ^ � � � ^ p

�
j!A ^ p

�
jC1�A ^ � � � ^ p

�
r �A/

D
j Š.r � j /Š

rŠ

X
I�¹1;:::;rº

p�1$1;I ^ � � � ^ p
�
r$r;I ; (1.4.6)

where $i;I WD !A or �A according to whether i 2 I or i … I .
Note that the classes !jA�

r�j
A form a basis of the vector space

�AH
r
dR.A

r=F /D SymrH 1
dR.A=F /:

Isogenies
It will always be assumed that A satisfies the following Heegner hypothesis relative
to a fixed positive integer N mentioned in (0.0.3).

Assumption 1.9
There is an ideal N of OK of norm N such that OK=ND Z=NZ. (Such an ideal is
called a cyclic ideal of norm N in OK .)

Since both A and its endomorphisms are defined over the Hilbert class field H ,
the group scheme AŒN� of N-torsion in A is a cyclic subgroup scheme of A of order
N defined over this field. The absolute Galois group GH acts naturally on its set
of geometric points. Let QH be the smallest extension of H over which this Galois
representation becomes trivial. The choice of a section tA W Spec. QH/ �! AŒN� of
order N gives rise to a �-level structure on A defined over any field F that contains
QH . Fix such a tA once and for all.

Consider the set of pairs .';A0/, where A0 is an elliptic curve and where ' W
A�!A0 is an isogeny (defined over NK). Two pairs .'1;A01/ and .'2;A02/ are said to
be isomorphic if there is a NK-isomorphism � WA01 �!A02 satisfying �'1 D '2. Let

Isog.A/ WD
®
Isomorphism class of pairs .';A0/

¯
:

The absolute Galois group GK D Gal. NK=K/ acts naturally on Isog.A/, and a pair
.';A0/ admits a representative defined over a field F � NK if it is fixed by the group
GF � GK . Fix .';A0/ 2 Isog.A/. Since A has complex multiplication by OK , the
endomorphism ring of A0 is an order in OK . Such an order is completely determined
by its conductor, and therefore there is a unique integer c � 1 such that EndF .A0/D
Oc WD Z C cOK . A pair .';A0/ is said to be of conductor c if EndF .A0/ D Oc .
Clearly, this notion is well defined on isomorphism classes, and hence we may set

Isogc.A/ WD
®
Isomorphism classes of pairs .';A0/ of conductor c

¯
:
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More generally, let IsogN.A/ be the subset of Isog.A/ consisting of pairs .';A0/,
where ' is an isogeny whose kernel intersects AŒN� trivially, and set IsogNc .A/ WD
Isogc.A/\ IsogN.A/.

Let PK.Oc/ denote the group of projective rank 1 Oc-submodules of K , and let
P.Oc/ denote the subsemigroup of modules that are contained in Oc and are rela-
tively prime to Nc WDN\Oc . The semigroup P.Oc/ acts naturally on Isogc.A/ and
IsogNc .A/ by the rule a 
 .';A0/D .'a';A

0
a/, where

'a WA
0 �!A0a WDA

0=A0Œa� (1.4.7)

is the natural isogeny. Note that, if aDOc � a is free, then a 
 .';A0/D .a';A0/.
Let .A1; t1;!1/ and .A2; t2;!2/ be two marked elliptic curves with �-level struc-

ture. The following notion of an isogeny,

' W .A1; t1;!1/�! .A2; t2;!2/;

will be convenient from the notational viewpoint.

Definition 1.10
An isogeny from .A1; t1;!1/ to .A2; t2;!2/ is an isogeny ' WA1 �!A2 on the under-
lying elliptic curves satisfying

'.t1/D t2; '�.!2/D !1:

The action of P.Oc/ on IsogNc .A/ that was just defined gives rise to an action
of P.Oc/ on the set of isomorphism classes of triples .A0; t 0;!0/ with End.A0/DOc
and t 0 2A0ŒNc �, by the rule

a 
 .A0; t 0;!0/D
�
A0a; 'a.t

0/;!0a
�
; where '�a .!

0
a/D !

0: (1.4.8)

Remark 1.11
Let AK;f denote the ring of finite adèles of K , and let OOc denote .Oc ˝ OZ/, viewed
as a subring of AK;f . The group PK.Oc/ is naturally identified with A�

K;f
= OO�c , by

associating to a a generator .av/ 2A�K;f of a˝Oc
OOc .

1.5. Values of modular forms at CM points
Following the notation of Section 1.4, we continue to let .A; tA;!A/ be a marked
elliptic curve with �-level structure and complex multiplication by OK , defined over
a field F , and we let ' W .A; tA;!A/ �! .A0; t 0;!0/ be an isogeny of marked elliptic
curves over F .

Fix complex and p-adic embeddings �1 W F �! C and �p W F �! Cp , and use
these to view A and A0 as curves over C and OCp (by fixing a good integral model),
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respectively. If f belongs to the space M �

k
.�;F / of modular forms over F , then

by definition f .A0; t 0;!0/ belongs to F as well. Note that f can be viewed as a
p-adic modular form, after possibly rescaling it. The following algebraicity theo-
rem asserts that a similar conclusion holds for ‚Hodge.f / and ‚Frob.f /, evaluated on
�1.A

0; t 0;!0/ and �p.A0; t 0;!0/; respectively.

PROPOSITION 1.12
Let .A0; t 0;!0/=F be a marked elliptic curve with complex multiplication by an order
in K . Assume that A0, viewed as an elliptic curve over OCp , is ordinary. Then
(1) the complex number ‚Hodgef .A

0; t 0;!0/ belongs to �1.F /,
(2) the p-adic number ‚Frobf .A

0; t 0;!0/ belongs to �p.F /, and
(3) viewing these two quantities as elements of F , we have

‚Hodgef .A
0; t 0;!0/D‚Frobf .A

0; t 0;!0/:

Proof
Item (1) is due to Shimura [Sh1] and items (2) and (3) are due to Katz [Ka4]. Our
proof below follows Katz’s approach. (See also the article of Hida [Hi4].) The key
point is that any endomorphism ˛ 2 OK of A0 respects the algebraic splitting of the
Hodge filtration on H 1

dR.A
0=F / defined in equation (1.4.1) of Section 1.4, and it acts

on H 0;1
dR .A

0=F / via multiplication by N̨ . It follows that H 1
dR.A

0=F /D�1.A0=F /˚

H
0;1
dR .A

0=F / agrees with the Hodge decomposition of H 1
dR.A

0 ˝�1 C/ and with the
unit root decomposition of H 1

dR.A
0 ˝�p Cp/, which both share this property. More

precisely,

H
0;1
dR .A

0=F /˝�1 CDH 0;1
dR .A

0˝�1 C/;

H
0;1
dR .A

0=F /˝�p Cp DH 1
dR.A

0˝�p Cp/Frob:

Thus ‰.rC2/Hodge
Qrf .A0; t 0/ and ‰.rC2/Frob

Qrf .A0; t 0/ both belong to SymrC2�1.A0=F /,
and are equal. The proposition follows.

2. Generalized Heegner cycles

2.1. Kuga–Sato varieties
Let � W E �! C be the universal generalized elliptic curve with �1.N /-level struc-
ture, extending the universal elliptic curve over C 0 introduced in Section 1.1, which
exists because of our running assumption that N > 4. The variety W1 WD E is smooth
and proper, and the geometric fibers of � above a closed point x 2 C are singular pre-
cisely when x is a cusp. The geometric fiber ��1.x/ is then isomorphic to a chain of
projective lines intersecting at ordinary double points whose dual graph is an m-gon
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for a suitable m jN , depending on x. Let W �1 �W1 denote the relative identity com-
ponent of the Néron model of E over X1.N /, whose geometric fibers above the cusps
are isomorphic to the multiplicative group Gm.

Fix an integer r � 0, and let

W �r WDW
�
1 �C W

�
1 �C � � � �C W

�
1 �W

]
r WD E �C E �C � � � �C E

denote the r -fold fiber products of W �1 and E , respectively, over C .

Write Wr for the canonical desingularization of W ]
r , as described in [De1, Lem-

mes 5.4, 5.5], and [Sch2, Section 1.0.3], for example. In those articles, these construc-
tions are performed for the universal elliptic curve over the modular curve X.N/ with
full level N structure, but they can be adapted to deal with the case of X1.N /; see
the appendix of this article for further details on this more general construction, even
over Spec ZŒ1=N �.

Denote by

W 0
r WDWr �C C

0 DW ]
r �C C

0 DW �r �C C
0

the complement in Wr of the geometric fibers above the cusps, and let W reg
r 2 W

]
r

be the locus where the natural projection W ]
r �! C is smooth. As in [Sch2, Sec-

tion 1.3.2.], there is a noncanonical isomorphism

W reg
r �C Z1 D

a
d jN

�
Z1.d/� .Gm �Z=dZ/r

�
; (2.1.1)

where Z1 � C denotes the cuspidal subscheme and where Z1.d/ � Z1 is the
(possibly empty) subscheme of cusps with ramification degree d over the modular
curve of level 1. The varieties E , C , W ]

r , W �r , Wr , and W 0
r are all defined over Q,

and can therefore be viewed as defined over any field F of characteristic 0. It will be
convenient to fix such an F at the outset.

Translation by the sections of order N gives rise to an action of .Z=NZ/r on
W
]
r , which extends to Wr by the canonical nature of the desingularization. The group

.Z=NZ/r also acts transitively (but not freely, in general) on the set of components
of W ]

r above any cusp of C arising in (2.1.1). Let a denote the automorphism of Wr
associated to a 2 .Z=NZ/r , and let

�
.1/
W D

1

N r

X
a2.Z=NZ/r

a

denote the corresponding idempotent in the rational group ring of .Z=NZ/r . Simi-
larly, the group „r of (1.4.3) can be viewed as a subgroup of Aut.Wr=C / acting on
the fibers of the natural projection from Wr to C . Let �.2/W be the idempotent in the
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group ring ZŒ1=2rŠ�ŒAut.Wr=C /� which is defined by the same formula as in (1.4.4)
with Ar replaced by Wr=C . The idempotents �.1/W and �.2/W commute, and therefore
the composition

�W D �
.2/
W �

.1/
W (2.1.2)

defines a projector in the ring of rational correspondences on Wr .
Let

�0.Lr/ WDLr ; �1.Lr/ WDLr ˝�
1
C Cr.Lr/:

The complex

0�!�0.Lr/
r
�!�1.Lr/�! 0 (2.1.3)

of sheaves over C is the smallest subcomplex of

0�!Lr
r
�!Lr ˝�

1
C .logZN /�! 0 (2.1.4)

which contains Lr and Lr ˝ �
1
C in degrees 0 and 1, respectively. The de Rham

cohomology of C attached to Lr , denoted H i
dR.C=F;Lr ;r/, is defined to be the i th

hypercohomology of the complex (2.1.4):

H i
dR.C=F;Lr ;r/ WDHi

�
C=F;Lr ˝�

�.logZN /
�
:

The parabolic de Rham cohomology of C attached to Lr is defined, following [Sch1,
Section 2.6], as the hypercohomology of the subcomplex (2.1.3):

H i
par.C=F;Lr ;r/ WDHi

�
C=F;��.Lr/

�
:

In degree 0, we have

H 0
par.C=F;Lr ;r/DH

0
dR.C=F;Lr ;r/:

As explained in [Sch1, proof of Theorem 2.7(i)], the parabolic cohomology
H 1

par.C=F;Lr ;r/ in degree 1 is equipped with a natural filtration

0�!H 0.C=F;!r ˝�1C /�!H 1
par.C=F;Lr ;r/�!H 1.C=F;!�r /�! 0:

(2.1.5)

The de Rham cohomology groups H i
dR.X=F / (attached to any variety X over F )

andH i
dR.C=F;Lr ;r/will sometimes be abbreviated toH i

dR.X/ andH i
dR.C;Lr ;r/,

and likewise for the parabolic cohomology groups, when no confusion results from
suppressing the field of definition F in the notation.
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LEMMA 2.1
If r D 0, then H 0

dR.C;Lr ;r/D F , and H 0
dR.C;Lr ;r/D 0 otherwise.

Proof
Fix an embedding of F into C, and consider H 0

dR.C=C;Lr ;r/ D H
0
dR.C=F;Lr ;

r/˝F C. By the GAGA principle,

H 0
dR.C=C;Lr ;r/DH

0
dR.C;L

an
r ;r/:

The restriction map

H 0
dR.C;L

an
r ;r/�!H 0

dR.C
0;Lan

r ;r/

is injective, and

H 0
dR.C

0;Lan
r ;r/DH

0.C 0;Lr/;

where Lr is the local system introduced in (1.2.1). This local system corresponds
to the r th symmetric power of the standard 2-dimensional representation C2 of � �
SL2.Z/� SL2.C/, and therefore

H 0.C 0;Lr/DH
0
�
�;Symr .C2/

�
D

´
C if r D 0;

0 otherwise.

The lemma follows.

We wish to describe the image of �W on the (middle) cohomology of Wr and
relate this image to H 1

par.C;Lr ;r/.

LEMMA 2.2
Assume that r � 1. Then we have the following.
(1) The image of �.2/W (and of �W ) acting on H�dR.W

0
r =F / is canonically isomor-

phic to H 1
dR.C;Lr ;r/.

(2) The image of �W acting on H�dR.Wr=F / is canonically isomorphic to the
parabolic cohomology H 1

par.C;Lr ;r/.
(3) Furthermore, the Hodge filtration on �WH�dR.Wr=F /D �WH

rC1
dR .Wr=F / is

given by (2.1.5), that is,

Fil0 DH 1
par.C;Lr ;r/;

Fil1 D Fil2 D � � � D FilrC1 DH 0.C;!r ˝�1C /;

FilrC2 D � � � D 0;

where Filj denotes the j th step in the Hodge filtration on �WH
rC1
dR .Wr/.
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Proof
The arguments below are mild adaptations of those in [Sch2] and [Sch3].

(1) By [De2, Corollaire 3.15], the natural map

H i
dR.C;Lr ;r/!H i

dR.C
0;Lr jC0 ;r/ WDHi

�
C 0;�:.Lr/jC0

�
is an isomorphism. Consider the Leray spectral sequence for de Rham cohomology
(see [Ka1], Remark 3.3) applied to the map W 0

r ! C 0: that is,

E
pq
2 DH

p
dR

�
C 0;H

q
dR.W

0
r =C

0/;r
�
)H

pCq
dR .W 0

r /:

By the same argument as in [De1, Lemme 5.3], this spectral sequence degener-
ates at E2 and identifies the space Hp

dR.C
0;H

q
dR.W

0
r =C

0/;r/ with the subspace of
H
pCq
dR .W 0

r / on which Œm� acts as mq . (Here Œm� denotes multiplication by m on the

fibers of W 0
r =C

0.) Applying the projector �.2/W , we find that

�
.2/
W H�dR.W

0
r =C

0/D �
.2/
W H r

dR.W
0
r =C

0/DLr jC0

and that

H 1
dR.C

0;Lr jC0 ;r/' �
.2/
W H rC1

dR .W 0
r /D �

.2/
W H�dR.W

0
r /:

A similar statement holds with �.2/W replaced by �W , since translation by W 0
r .C

0/ on
H 1

dR.W
0
r =C

0/ is trivial (since W 0
r ! C 0 is an abelian scheme).

(2) We use the following fact due to Scholl: there is a canonical isomorphism

�WH
i
: .Wr/' �

.2/
W H i

: .W
�
r /;

for � D B; et, or dR. This is proved in [Sch2, Theorem. 3.1.0] for the case of full
level structure, and the modifications needed to extend this to X1.N / are described in
[Sch3, Sections 2.9–2.12]. Now consider the Gysin sequence for the inclusionW 0

r ,!

W �, writing Z WDW �r nW
0
r :

!H i .W �/!H i .W 0
r /!H i�1.Z/.�1/!H iC1.W �/!

Since by ([Sch2, Lemma 1.3.1(i)] and [Sch3, Section 2.9] we have

�
.2/
W H i .Z/D

´
0 if i ¤ r;

H 0.Z1/.�r/ if i D r;

we see from item (1) of Lemma 2.2 that �.2/W H i .W �/D 0 for i ¤ r C 1; r C 2. Fur-
thermore, there is an exact sequence (in any cohomology theory)
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0 	
.2/
W
H rC1.W �r / 	

.2/
W
H rC1.W 0

r /
�
H0.Z1/.�r � 1/

�
	
.2/
W
H rC2.W �r / 0

	WH
rC1.Wr / 	WH

rC2.Wr /

The map  vanishes since its source and image are pure of weight 2r C 2 and
r C 2, respectively, and r ¤ 0, hence �WH rC2.Wr/D 0. In the de Rham realization,
we have from item (1) that �.2/W H rC1.W 0

r /DH
1
dR.C;Lr ;r/DH

1
dR.C

0;Lr jC0 ;r/,

and hence �.2/W H rC1
dR .W �r / is identified naturally with the kernel of the map

H 1
dR.C

0;Lr jC0 ;r/
�dR
��!H 0

dR.Z1;�r � 1/;

which is just H 1
par.C;Lr ;r/.

(3) See [Sch1, Theorem 2.7(i), Remark 2.8].

COROLLARY 2.3
The assignment

f 7! !f D f .E; t;!/!
r ˝ .!2/

induces an identification

SrC2.�;F /
�
�! FilrC1 �WH

rC1
dR .Wr=F /:

Proof
This follows from item (2) of Lemma 2.2 combined with (1.1.12) (the case r D 0
being well known).

2.2. The variety Xr and its cohomology
Recall that A is the elliptic curve with complex multiplication by OK that was fixed
in Section 1.4, defined over the Hilbert class field H of K . Fix a field F �H , and,
for each r � 0, consider the .2r C 1/-dimensional variety over F given by

Xr WDWr �A
r :

Like the Kuga–Sato variety W2r , the variety Xr is equipped with a proper morphism

�r WXr �! C

with 2r -dimensional fibers. The fibers above points of C 0 are products of elliptic
curves of the form Er �Ar , where E varies and A is fixed.
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The projectors �A and �W defined in (1.4.4) and (2.1.2), respectively, give rise
to commuting idempotents in the ring of correspondences on Xr which preserve the
fibers of the projection �r WXr �! C . We set

�X WD �W �A: (2.2.1)

By functoriality, the idempotent �X acts as a projector on the various cohomology
groups associated to the variety Xr .

We define a coherent sheaf of OC -modules by setting

Lr;r DLr ˝ SymrH 1
dR.A/: (2.2.2)

Note that Lr;r is equipped with the self-duality

h ; i WLr;r �Lr;r �!OC (2.2.3)

arising from Poincaré duality on the fibers. It is described explicitly in terms of equa-
tion .1.1.14/ and its analogue for SymrH 1

dR.A/. Let

Lr;r WD Lr ˝ SymrH 1
dR.A=C/ (2.2.4)

denote the corresponding locally constant sheaf (for the complex topology onC 0.C/).
The sheaf Lr;r is the sheaf of horizontal sections of Lan

r;r relative to the Gauss–Manin
connection

r WLr;r �!Lr;r ˝�
1
C .logZN /:

This connection is induced by the Gauss–Manin connection on Lr combined with
the trivial connection on H 1

dR.A/. The de Rham cohomology attached to .Lr;r ;r/ is
defined in the same way as for .Lr ;r/, and one has

H 1
dR.C;Lr;r ;r/DH

1
dR.C;Lr ;r/˝ SymrH 1

dR.A/;

H 1
par.C;Lr;r ;r/DH

1
par.C;Lr ;r/˝ SymrH 1

dR.A/:

PROPOSITION 2.4
Assume that r � 1. The image of the projector �X acting on H�dR.Xr/ is given by

�XH
�
dR.Xr/DH

1
par.C;Lr;r ;r/DH

1
par.C;Lr ;r/˝ SymrH 1

dR.A/:

In particular,

�XH
j
dR.Xr/D

´
0 if j ¤ 2r C 1;

H 1
par.C;Lr;r ;r/ if j D 2r C 1:
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Furthermore, if Filj denotes the j th step in the Hodge filtration on �XH
2rC1
dR .Xr/,

then

FilrC1 DH 0.C;!r ˝�1C /˝ SymrH 1
dR.A/: (2.2.5)

Proof
This follows directly from Lemmas 1.8 and 2.2 in light of the Künneth decomposition
for the cohomology of Xr DWr �Ar .

PROPOSITION 2.5
The assignment f ˝ ˛ 7! !f ^ ˛ induces an identification

SrC2.�;F /˝ SymrH 1
dR.A=F /D FilrC1 �XH

2rC1
dR .Xr=F /:

Proof
This follows directly from Corollary 2.3, combined with Proposition 2.4 when r � 1.

Given any integer 0� j � r , note in particular that the class

!f ^!
j
A�

r�j
A ;

where !jA�
r�j
A is the class introduced in (1.4.6), belongs to H 0.C;!r ˝ �1C / ˝

SymrH 1
dR.A/, and can thus be viewed, via Proposition 2.5, as an element of the mid-

dle step FilrC1 in the Hodge filtration of �XH
2rC1
dR .Xr=F /.

2.3. Definition of the cycles
In this section, we will assume the Heegner hypothesis 1.9 that was discussed in
Section 1.4. As in Section 1.4, fix once and for all a �-level structure tA on A in such
a way that tA belongs to AŒN�.

The datum .A; tA/ determines a point PA on C , as well as a canonical embedding
�A of Ar into the fiber in Wr above PA. More generally, any pair .';A0/ 2 IsogN.A/
determines a pointPA0 onC attached to the pair .A0; '.tA//; along with an embedding

�A0 W .A
0/r �!Wr

defined over F .
We associate to any .';A0/ 2 IsogN.A/ a codimension r C 1 cycle �' on Xr by

letting Graph.'/�A�A0 denote the graph of ' and by setting

�' WD Graph.'/r � .A�A0/r
'
�! .A0/r �Ar �Wr �A

r ;
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where the last inclusion is induced from the pair .�A0 ; idrA/. We then set

�' WD �X�' ;

where �X is the idempotent given in equation (2.2.1), viewed as an element of the ring
of algebraic correspondences from Xr to itself. Note that�' is supported on the fiber
��1r .PA0/ of �r above PA0 and gives an element in CHrC1.Xr/Q, the Chow group of
codimension r C 1 cycles with rational coefficients.

Remark 2.6
The generalized Heegner cycles �' are all defined over abelian extensions of K .
More precisely, if .';A0/ belongs to IsogNc .A/, then the associated cycles can be
defined over the compositum of the abelian extension QH=K over which the isomor-
phism class of .A; tA/ is defined with the ring class field Hc of conductor c.

When r D 0, the generalized Heegner cycle �' is a CM point on the modular
curve C . In this case, we replace �' by �' �1, where 1 is any cusp, in order
to make �' homologically trivial. The same is true when r � 1 by Proposition 2.4,
which implies that �XH 2rC2.X;Q/D 0. Thus we record the following.

PROPOSITION 2.7
The cycle �' is homologically trivial on Xr .

Remark 2.8
Another approach to proving the homological triviality of �' by deforming these
cycles to the fibers supported above the cusps of the modular curve is described in
[Sc]. The approach we have given adapts more readily to the setting of Shimura curves
attached to arithmetic subgroups of SL2.R/ with compact quotient.

2.4. Relation with Heegner cycles and L-series
This motivational section discusses the relation between generalized Heegner cycles
and the more classical Heegner cycles on Kuga–Sato varieties that are studied in [Ne2]
and [Z], as well as the expected relation with derivatives of L-series.

Keeping the same notation as in the previous section, the traditional Heegner
cycles are codimension r C 1 cycles on the Kuga–Sato variety W2r which are sup-
ported on fibers for the natural projection to the modular curve C . These cycles
are indexed by elliptic curves with �-level structure having endomorphisms by an
order in an imaginary quadratic field. More precisely, if A0 is an elliptic curve with
endomorphism by the order Oc D ZŒ.d C

p
�d/=2� of conductor c of the imaginary

quadratic field K , then we set
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�
heeg
A0 WD graph.

p
�d/r � .A0 �A0/r ; �

heeg
A0 WD �W .�

heeg
A0 /:

We will now construct an explicit correspondence from the .4r C 1/-dimensional
varietyX2r to the .2rC1/-dimensional varietyW2r which maps generalized Heegner
cycles to Heegner cycles.

Let …DW2r �Ar , viewed as a subvariety of W2r �X2r DW2r �W2r � .A2/r

via the map �
idW2r ; idW2r ; .idA;

p
�dK/

r
�
:

This subvariety induces a correspondence from X2r to W2r , yielding a map on Chow
groups:

ˆ… W CH2rC1.X2r/Q �! CHrC1.W2r/Q:

If ' W A �! A0 is an isogeny of elliptic curves with �-level structure, a direct cal-
culation (which will not be used in the rest of this article and is therefore left to the
reader) shows that the cycles ˆ….�'/ and �heeg

A0 generate the same Q-subspace of
CHrC1.W2r/Q.

This relation shows that the generalized Heegner cycles carry at least as much
information as the classical Heegner cycles on Kuga–Sato varieties studied in [Ne2]
and [Z]. One expects them to enjoy similar relationships with central critical deriva-
tives of Rankin L-series. More precisely, we expect that the Arakelov heights of the
generalized Heegner cycles �' should encode the derivatives L0.f;��1; 0/, where �
are Hecke characters of infinity type .k�1�j; 1Cj / with 0� j � r . The case r D 0
corresponds to the classical Gross–Zagier formula, and the case where r is even and
j D r=2 corresponds to the setting treated in [Z]. We expect that there should also
be a generalization of the p-adic result of [Ne2] expressing the p-adic height of gen-
eralized Heegner cycles in terms of the derivative in the cyclotomic direction of a
two variable p-adic L-function attached to f and �, at a point which corresponds to
the special value L.f;��1; 0/ and which lies in the range of classical interpolation
defining this p-adic L-function.

The present article avoids height calculations altogether by focusing instead on
the images of generalized Heegner cycles under Abel–Jacobi maps. In the p-adic
setting, we will relate these images to the special values of an anticyclotomic p-
adic L-function attached to f and K at a point lying outside its range of classical
interpolation.

3. p-adic Abel–Jacobi maps
The goal of this section is to compute the images of the generalized Heegner cycles
�' under the p-adic Abel–Jacobi map. The resulting formulae of Sections 3.7 and 3.8
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are a key ingredient in the proof of our p-adic Gross–Zagier formula. Some of the
techniques used in this section, particularly those of Sections 3.1–3.4, are drawn from
[IS], which treats the case of Heegner cycles on the r -fold product of the universal
fake elliptic curve over a Shimura curve attached to a quaternion algebra which is
ramified at p. This Shimura curve admits an explicit description as a rigid analytic
quotient of the p-adic upper half-plane, via the Cerednik–Drinfeld theory of p-adic
uniformization of Shimura curves. The present section treats classical modular curves
at primes p of good reduction, for which no p-adic uniformization à la Cerednik–
Drinfeld is available. The techniques employed in Section 3.5 onwards therefore differ
markedly from those of [IS].

3.1. The étale Abel–Jacobi map
Recall the generalized Heegner cycle �' associated to the pair .';A0/ 2 Isogc.A/,
where ' W .A; t/! .A0; t 0/ is an isogeny of elliptic curves with �-level structure. Let
P D PA0 be the point of C associated to the pair .A0; t 0/, and let

XP WD �
�1
r P; X [r WDXr �XP :

Fix any field F over which the pair .Xr ;�'/ is defined, and fix a rational prime p.
Consider the following Gysin sequence in p-adic étale cohomology (see [Mi, Corol-
lary 16.2]). After setting X D NXr , Z D NXP , U D NX [r , and F D Qp.r C 1/ in the
statement of that corollary (with r replaced by 2r ), we obtain the following exact
sequence in the category RepF of continuous p-adic representations of GF D
Gal. NF=F /:

H 2r�1
et . NXP ;Qp/.r/�!H 2rC1

et . NXr ;Qp/.r C 1/

�!H 2rC1
et . NX [r ;Qp/.r C 1/�!H 2r

et .
NXP ;Qp/.r/0 �! 0; (3.1.1)

where

H 2r
et .
NXP ;Qp/.r/0 WD ker

�
H 2r

et .
NXP ;Qp/.r/�!H 2rC2

et . NXr ;Qp/.r C 1/
�
:

By applying the projector �X to (3.1.1), we obtain

0�! �XH
2rC1
et . NXr ;Qp/.r C 1/�! �XH

2rC1
et . NX [r ;Qp/.r C 1/

�! �XH
2r
et .
NXP ;Qp/.r/�! 0; (3.1.2)

where we have used the fact that, when r > 0,

�XH
2r�1
et .XP /.r/D 0; �XH

2r
et .XP /.r/0 D �XH

2r
et .XP /.r/:

Since � D �' is equal to �X�' by definition, its image under the étale cycle
class map
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clP W CHr.XP /Q.F /�!H 2r
et .
NXP ;Qp/.r/

belongs to �XH 2r
et .
NXP ;Qp/.r/. Let

cl
 WQp �! �XH
2r
et .
NXP ;Qp/.r/

be the map of p-adic representations of GF defined by cl
.1/D clP .�/, and con-
sider the extension V
 of Qp by �XH

2rC1
et . NXr ;Qp/.r C 1/ arising from pullback in

the following commutative diagram with exact rows in which the right-most square is
Cartesian:

0 	XH
2rC1
et . NXr ;Qp/.r C 1/ V� Qp

cl�

0

0 	XH
2rC1
et . NXr ;Qp/.r C 1/ 	XH

2rC1
et . NX[r ;Qp/.r C 1/ 	XH

2r
et .
NXP ;Qp/.r/ 0

(3.1.3)

Given two objects V 00, V 0 in the category RepF , write

ExtF .V
00; V 0/ WDH 1

�
F;hom.V 00; V 0/

�
for the set of isomorphism classes of extensions

0�! V 0 �!E �! V 00 �! 0:

(Here H 1.F;�/ denotes continuous Galois cohomology and hom.V 00; V 0/ is the
object of RepF equipped with the natural action of GF .)

Definition 3.1
The étale Abel–Jacobi map

AJet
F W CHrC1.Xr/0;Q.F /�!H 1

�
F; �XH

2rC1
et

�
NXr ;Qp.r C 1/

��
sends the class of the null-homologous codimension-.r C 1/ cycle � to the isomor-
phism class of the extension V
 of (3.1.3) in

ExtF
�
Qp; �XH

2rC1
et . NXr ;Qp/.r C 1/

�
DH 1

�
F; �XH

2rC1
et . NXr ;Qp/.r C 1/

�
:

Remark 3.2
Definition 3.1 applies directly to cycle classes in CHrC1.Xr/0;Q.F / which are rep-
resented by a cycle supported on XP . Usually, the map AJet

F is defined on a general
cycle� by replacing, in the diagrams above,XP by� andX [ byX��, respectively.
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In this case, one obtains an analogue of the commutative diagram (3.1.3) without the
need of applying �X . It can be checked, following the argument that is explained in
[Ne2, Proposition II.2.4] that this more general definition, once composed with �X , is
compatible with Definition 3.1, which is adapted to our subsequent calculations.

3.2. The comparison isomorphism
The p-adic Abel–Jacobi map arises from the map AJet

F by considering the case where
F is a finite extension of Qp . Let OF denote the ring of integers of F , and let k be
its residue field. We will make the following assumptions on F , which are satisfied in
our application.
(1) The extension F is a finite unramified extension of Qp .
(2) The varieties C and Xr over F extend to smooth proper models C and Xr

over OF .
If ' belongs to IsogNc .A/ and p does not divide cNdK , then the field F can be taken
to be the p-adic completion of the compositum of QH , the extension of the Hilbert class
field ofK over which AŒN� is defined, withHc , the Hilbert class field of conductor c.
By abuse of notation, we will use the same letter  to denote the p-power Frobenius
automorphism of k and its canonical lift to F .

The de Rham cohomology groupsH j
dR.Xr=F /, equipped with their  -semilinear

Frobenius endomorphisms and Hodge filtrations, are examples of filtered Frobenius
modules (see [B], [Fo], [I], or [FoI] for details concerning the category of these
objects).

The fundamental comparison theorem between p-adic étale cohomology and de
Rham cohomology of varieties over p-adic fields relates the p-adic representation
H
j
et . NXr ;Qp/ of GF to the filtered Frobenius moduleH j

dR.Xr=F /. To any continuous
p-adic representation V of GF , we may associate the F -vector space

Dcris.V / WD .V ˝Qp Bcris/
GF ;

where Bcris is Fontaine’s ring of crystalline periods over F , which is called the
crystalline Dieudonné module attached to V . Recall that a p-adic representation V of
GF is said to be crystalline if

dimF Dcris.V /D dimQp .V /:

The category of crystalline representations of GF is an abelian tensor subcategory of
RepF . Given objects V1 and V2 of this category, denote by Extcris.V1; V2/ the group
of extensions of V2 by V1 which are crystalline. The Dieudonné module attached to
a crystalline representation V inherits from Bcris the structure of a filtered Frobenius
module. The following deep theorem will be used to make the p-adic Abel–Jacobi
map amenable to computation.
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THEOREM 3.3 ([Fa, Theorem 5.6])
The p-adic representationH 2rC1

et . NXr ;Qp/.rC1/ is crystalline, and there is a canon-
ical, functorial isomorphism of filtered Frobenius modules:

Dcris
�
H 2rC1

et . NXr ;Qp/.r C 1/
�
DH 2rC1

dR .Xr=F /.r C 1/:

Proof
For a proof of the theorem, see [Fa, Theorem 5.6] or [T].

The comparison theorem will be applied via the following corollary.

COROLLARY 3.4
The assignment V 7!Dcris.V / induces an isomorphism

comp W Extcris
�
Qp;H

2rC1
et . NXr ;Qp/.r C 1/

� �
�! Extffm

�
F;H 2rC1

dR .Xr=F /.r C 1/
�
:

(3.2.1)

Proof
The injectivity follows from the comparison theorem and the fact that the functorDcris

is fully faithful, while the surjectivity follows from a comparison with the Bloch–Kato
exponential, as in [Ne1, Proposition 1.21, Corollary 1.22].

3.3. Extensions of filtered Frobenius modules
We now give a general abstract description of the group of extensions in the category
of filtered Frobenius modules.

LetH be a filtered Frobenius module of strictly negative weight, and consider an
extension

0�!H
i
�!E

�
�! F �! 0 (3.3.1)

of filtered Frobenius modules. Let �hol
E and �frob

E be elements of Fil0E and E�
nD1,

respectively, satisfying

�.�hol
E /D 1; �.�frob

E /D 1: (3.3.2)

The element

�E WD �
hol
E � �

frob
E

is in the kernel of � and hence can be viewed as an element of H . The lifts �hol
E and

�frob
E are well defined up to Fil0H andH�nD1, respectively. By the assumption on the

weight ofH , we haveH�nD1 D 0, and the class of �E inH=Fil0H does not depend
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on the choices that were made in (3.3.2). The reader should compare the following
proposition with [IS, Lemma 2.1], which treats the more complicated situation of
extensions of filtered Frobenius monodromy modules arising from semistable (and
not necessarily crystalline) p-adic representations of GF .

PROPOSITION 3.5
The assignment E 7! �E yields an isomorphism

Extffm.F;H/DH=Fil0H:

Sketch of proof
The isomorphism E�

nD1 �! F induced by � determines a canonical vector space
splitting of (3.3.1) which preserves the �-module structure of the extension, but need
not respect the filtrations. In other words, the extension (3.3.1) is trivial when viewed
as an extension of �-modules. Fix the resulting identification

E DH ˚F (3.3.3)

so that �frob
E is identified with the element .0; 1/ of H ˚ F . We are left with the

problem of classifying the filtrations which may arise on the splitting of �-modules
(3.3.3). This splitting is compatible with filtrations if and only if �hol

E D .h; 1/ is such
that h belongs to Fil0H (since in this case Fil0E D Fil0H ˚ F , and this equality
determines the filtration on E in all degrees). In general, the datum �hol

E D .h; 1/ com-
pletely determines the filtration on E in terms of the filtration on H (since Fil0E D
span.Fil0H;�hol

E /), and .h; 1/ and .h0; 1/ give rise to the same filtration if and only if
h� h0 belongs to Fil0H .

3.4. The p-adic Abel–Jacobi map
We can now define the p-adic Abel–Jacobi map attached to the p-adic field F intro-
duced in Section 3.2. By Theorem 3.1.1. of [Ne3] (see also [Ni]), the image of
CHrC1.Xr/0;Q.F / by the étale Abel–Jacobi map AJet

F is contained in the subgroup

H 1
f

�
F; �XH

2rC1
et . NXr ;Qp/.r C 1/

�
WD Extcris

�
Qp; �XH

2rC1
et . NXr ;Qp/.r C 1/

�
ofH 1.F; �XH

2rC1
et . NXr ;Qp/.rC1//whose elements correspond to crystalline exten-

sions. By Corollary 3.4, this group is identified with Extffm.F; �XH
2rC1
dR .Xr=F /.rC

1//. Applying Proposition 3.5 to the filtered Frobenius module H D �XH
2rC1
dR .Xr=

F /.r C 1/ which is of weight �1, we find an isomorphism

J W Extffm
�
F; �XH

2rC1
dR .Xr=F /.r C 1/

�
�!

�XH
2rC1
dR .Xr=F /.r C 1/

Fil0 �XH
2rC1
dR .Xr=F /.r C 1/

D Fil1 �XH
2rC1
dR .Xr=F /.r/

_; (3.4.1)
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where the last identification arises from the Poincaré duality

�XH
2rC1
dR .Xr=F /.r/� �XH

2rC1
dR .Xr=F /.r C 1/�! F;

in which the spaces Fil1 �XH
2rC1
dR .Xr=F /.r/ and Fil0 �XH

2rC1
dR .Xr=F /.r C 1/ are

exact annihilators of each other.
The p-adic Abel–Jacobi map, denoted AJF , is the diagonal map in the diagram

CHrC1.Xr/0;Q.F /
AJet
F

AJF

H 1
f

�
F; �XH

2rC1
et . NXr ;Qp/.r C 1/

�

Extcris
�
Qp; �XH

2rC1
et . NXr ;Qp/.r C 1/

�
comp

Extffm
�
F; �XH

2rC1
dR .Xr/.r C 1/

�
J�

Fil1 �XH
2rC1
dR .Xr=F /.r/

�_
where the second vertical isomorphism is given in (3.2.1).

After invoking Proposition 2.5, we can view AJF as a map

AJF W CHrC1.Xr/.F /0;Q �!
�
SrC2.�;F /˝ SymrH 1

dR.A=F /
�_
: (3.4.2)

Further, applying the comparison isomorphisms to the diagram (3.1.3) gives a corre-
sponding diagram of filtered Frobenius modules:

0 	XH
2rC1
dR .Xr=F /.r C 1/ D� F

cl�

0

0 	XH
2rC1
dR .Xr=F /.r C 1/ 	XH

2rC1
dR .X[r =F /.r C 1/ 	XH

2r
dR .XP =F /.r/ 0

(3.4.3)

By Proposition 2.4 (and an analogue with C replaced by C � ¹P º), this diagram can
be rewritten as
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0 H1par.C;Lr;r ;r/.r C 1/ D� F

cl�

0

0 H1par.C;Lr;r ;r/.r C 1/ H1par

�
C � ¹P º;Lr;r ;r

�
.r C 1/ Lr;r .P /.r/ 0

(3.4.4)

The image of the cycle class � under the p-adic Abel–Jacobi map is thus described
by the class of the extension D
 in the category of filtered Frobenius modules.

3.5. de Rham cohomology over p-adic fields
In this section, we give an explicit description of the action of the Frobenius operator
on

�XH
2rC1
dR .Xr=F /DH

1
par.C;Lr;r ;r/

in terms of Lr;r -valued rigid analytic differentials on appropriate subsets of the
curve C . (The reader is referred to [C1] and [C2] for more details on the concepts
and definitions discussed below.)

Viewing C as a rigid analytic space over F , let O
rig
C denote the sheaf of rigid

analytic functions on C and let L
rig
r;r denote the rigid analytic coherent sheaf on C

associated to Lr;r .
We now define certain basic affinoid subsets of C for the rigid analytic topology.

For this, recall from Section 3.2 that C is a smooth proper model of C over Spec.OF /.
Write Ck WD C �OF k, and let

redp W C.Cp/�! Ck. Nk/

denote the natural reduction map.
Let ¹P1; : : : ;Ptº be any collection of points on C.F / which maps to a set of

distinct points of Ck.k/ under redp and which contains all the cusps of C . Recall that
the residue disk attached to Pj , denoted D.Pj /, is the set of points of C.Cp/ which
have the same image as Pj under redp . Let

AD C.Cp/�D.P1/� � � � �D.Pt /:

Because the points Pj reduce to smooth points of Ck.k/, the residue disksD.Pj / are
conformal to the open unit disk U � Cp consisting of z 2 Cp with jzj< 1. For each
j D 1; : : : ; t , fix an isomorphism hj WD.Pj /�! U sending Pj to 0. Given a rational
number rj < 1, we then let

DŒPj ; rj �D
®
z 2D.Pj / such that

ˇ̌
hj .z/

ˇ̌
� rj

¯
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denote the closed disk of radius rj in D.Pj /. Finally, fixing a collection of rational
numbers r1; : : : ; rt with 0 < rj < 1, we write

W D C.Cp/�DŒP1; r1�� � � � �DŒPt ; rt �

DA[V1 [ � � � [Vt ;

where

Vj WD V.Pj ; rj ; 1/ WD
®
z 2D.Pj / such that rj <

ˇ̌
hj .z/

ˇ̌
< 1

¯
:

Define the positive orientation of the annulus Vj by choosing the subset ¹z 2D.Pj /
such that jhj .z/j � rj º of its complement.

The set A is an example of an affinoid subset of C.Cp/ with good reduction,
while the set W is an example of a wide-open neighborhood of the affinoid A. The
set Vj is called a wide-open annulus around the point Pj . The wide-open space W is
thus obtained by adjoining to A a finite union of open annuli about the boundaries of
the deleted residue disks. (For general definitions and a more systematic discussion
of these concepts, see [C2, Sections II, III].)

Because W is contained in C 0.Cp/, the Gauss–Manin connection (1.1.3) gives
rise to a rigid analytic connection

r WLrig
r;r �!Lrig

r;r ˝�
1
W :

The de Rham cohomology H 1
dR.W ;L

rig
r;r ;r/ is defined to be the quotient

H 1
dR.W ;Lrig

r;r ;r/ WD
L

rig
r;r.W/˝�1

W

rL
rig
r;r.W/

:

A meromorphic Lr;r -valued differential on C which is regular on C � ¹P1; : : : ;Ptº
can be viewed as a rigid section of Lr;r ˝�

1
C over W . In this way, one obtains by

restriction a natural map from the algebraic de Rham cohomology over Cp to the
rigid de Rham cohomology.

THEOREM 3.6
The natural restriction map

H 1
dR

�
C � ¹P1; : : : ;Ptº;Lr;r ;r

�
�!H 1

dR.W ;Lrig
r;r ;r/

is an isomorphism.

Proof
In the case r D 0, this corresponds to [C2, Theorem 4.2]. The proof in the general case
follows from a similar argument, as explained in [C3, proof of Proposition 10.3].
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A set W 0 of the form

W 0 D C.Cp/�DŒP1; r 01�� � � � �DŒPt ; r
0
t �; with rj < r

0
j < 1

is called a wide-open neighborhood of the affinoid A in W . The following is an
immediate corollary of Theorem 3.6.

COROLLARY 3.7
Let W 0 be any wide-open neighborhood of A in W . The natural map

resW ;W 0 WH
1
dR.W ;Lrig

r;r ;r/�!H 1
dR.W

0;Lrig
r;r ;r/

induced by restriction is an isomorphism.

We want to describe the image of H 1
dR.C;Lr;r ;r/ in H 1

dR.W ;L
rig
r;r ;r/. For this,

we recall the notion of the p-adic annular residue

resVj .!/ 2
�
H 0.Vj ;L

rig
r;r/
rD0

�_
of a L

rig
r;r -valued 1-differential form ! on W . It is defined by the formula

resVj .!/.˛/D resVj h˛;!i; for all ˛ 2H 0.Vj ;L
rig
r;r/
rD0;

where the residue on the right-hand side is the usual p-adic annular residue of the rigid
analytic 1-form h˛;!i on the oriented annulus Vj , as it is defined in [C2, Section II],
for example.

By [Ka3, Proposition 3.1.2], the sheaf Lr;r admits a basis of horizontal sections
on each noncuspidal residue disk D.Pj /, so that the target of the residue map on the
corresponding annulus is identified with�

H 0.Vj ;L
rig
r;r/
rD0

�_
D
�
H 0

�
D.Pj /;Lr;r

�rD0�_
DLr;r.Pj /

_ DLr;r.Pj /;

where the last identification arises from the self-duality on Lr;r.Pj /. We will always
view the residue map on a noncuspidal residue disk as taking values on Lr;r.Pj /, so
that for all ˛ 2Lr;r.Pj / one has˝

˛; resVj .!/
˛
D resVj h˛

r ;!i;

where ˛r is the unique horizontal section on D.Pj / satisfying ˛r.Pj /D ˛.
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On the cuspidal residue disk of the cusp P attached to the pair .Tate.q/; t/, the
space of horizontal sections of Lr is 1-dimensional and generated by the local section
�rcan. One therefore has

resVj

�� rX
jD0

aj .q/!
j
can�

r�j
can

�dq
q

�
.b�rcan/D resqD0

�
bar.q/

dq

q

�
D bar.0/:

Note that if ! is any global section of Lr;r ˝�
1
C over C � ¹P1; : : : ;Ptº, it can

also be viewed as a rigid section over W , and

resVj ! D resPj !: (3.5.1)

If Pj is not a cusp, the residue resPj ! that appears on the right-hand side of this
formula satisfies ˝

G.Pj /; resPj !
˛
D resPj hG;!i:

In this formula, G can be taken to be any regular (not necessarily horizontal) section
of Lr;r over D.Pj /, and the residue on the right-hand side is the residue at Pj of the
differential hG;!i on D.Pj /� ¹Pj º.

The following rigid analytic analogue of the classical residue theorem for mero-
morphic differentials on curves (see, e.g., [C2]) will play an important role in the
calculations of the next section.

THEOREM 3.8
If ! 2�1

W
is a rigid analytic 1-form on W , then

tX
jD1

resVj ! D 0:

PROPOSITION 3.9
A class � 2 H 1

dR.W ;L
rig
r;r ;r/ represented by an L

rig
r;r -valued differential form !

belongs to the natural image of H 1
par.C;Lr;r ;r/ under restriction if and only if

resVj .!/D 0; for j D 1; : : : ; t:

Proof
The Gysin exact sequence applied to the cohomology of the pair of rigid spaces W �

C 0 shows that

H 1
dR.C;Lr;r ;r/D

®
! s.t. resVj .!/D 0 for all noncuspidal annuli Vj

¯
:
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On the other hand, the definition ofH 1
par.C;Lr;r ;r/ shows that this space is identified

with the space of classes in H 1
dR.C;Lr;r ;r/ represented by Lr;r -valued differentials

! satisfying

resVj .!/D 0; for all cuspidal annuli Vj :

The result follows.

Let �1; �2 be classes inH 1
par.C;Lr;r ;r/, and let !1, !2 be rigid analytic sections

of L
rig
r;r˝�

1
C over W representing them. The fact that resVj .!1/D 0 on all the annuli

Vj �W allows us to find an analytic solution F!1;j on Vj to the equation

rF!1;j D !1;

which is well defined up to horizontal sections of L
rig
r;r over Vj . Such an F!1;j is

called a local primitive of !1 on Vj . Note that the expression resVj hF!1;j ;!2i does
not depend on the choice of the local primitive F!1;j , since !2 is of the second kind.

The following proposition expresses the Poincaré duality on H 1
par.C;Lr;r ;r/ in

terms of the residues of rigid Lr;r -valued forms on W .

PROPOSITION 3.10
For all �1; �2 2H 1

par.C;Lr;r ;r/,

h�1; �2i D

tX
jD1

resVj hF!1;j ;!2i;

where !1;!2 2H 1
dR.W ;L

rig
r;r ;r/ are representatives for �1 and �2 and where F!1;j

is any local primitive for !1 on Vj .

Proof
This follows from [C3, Lemma 7.1] combined with equation (3.5.1) comparing the
rigid analytic and algebraic residue maps.

Theorem 3.6 will now be used to give an explicit description of the action of the
Frobenius operator on the algebraic de Rham cohomology. Since the pointsP1; : : : ;Pt
are defined over F , the points QPj WD redp.Pj / are defined over k and the curve
Uk WD Ck�¹ QP1; : : : ; QPtº is a smooth affine open subset of Ck . As before, let  denote
the Frobenius automorphism of k which sends x to xp , and let U �

k
DUk �� k. There

is a canonical morphism � W Uk �! U �
k

characterized by

��f � D f p; for all f 2OCk .Uk/:
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Definition 3.11
A morphism

�A WA�!A�

which lifts the canonical Frobenius morphism Uk �! U �
k

to characteristic 0 is called
a lifting of Frobenius for the affinoid A.

A Frobenius lifting always exists under our hypotheses (see [C1, Corollary 1.1a]).
Assume from now on that the set ¹ QP1; : : : ; QPtº is stable under �, so that A� DA.

Definition 3.12
A Frobenius neighborhood of A in W is a pair .W 0; �/, where A �W 0 �W is a
wide-open neighborhood of A in W and where � WW 0 �!W is a morphism whose
restriction to A is a lifting of Frobenius in the sense of Definition 3.11.

Definition 3.13
An overconvergent Frobenius isocrystal on W is a triple .L; �;Fr/, where
(1) L is a rigid analytic coherent sheaf on W equipped with a rigid analytic inte-

grable connection

r WL�!L˝�1W I

(2) .W 0; �/ is a Frobenius neighborhood of A in W ;
(3) Fr is a horizontal morphism

Fr W ��L�!LjW 0 :

The condition that Fr be horizontal amounts to requiring that the diagram

��L
r

Fr

��L˝�1
W 0

Fr˝ id

L
r

L˝�1
W 0

be commutative.
Given a Frobenius neighborhood .W 0; �/ of A in W , the canonical functorial

action of a lifting of Frobenius on the relative de Rham cohomology H 2r
dR .Xr=C / is

compatible with the Gauss–Manin connection and gives rise to a horizontal morphism
Fr W ��Lrig

r;r �! L
rig
r;r jW 0 . In this way, the triple .Lrig

r;r jW ; �;Fr/ is equipped with the
structure of an overconvergent Frobenius isocrystal.
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The action of the p-power Frobenius operator (denoted by the letter ˆ0, to dis-
tinguish it from the lifting � of Frobenius on the curve C ) onH 1

dR.W ;L
rig
r;r ;r/ is then

given by the sequence of maps

H 1
dR.W ;Lrig

r;r ;r/
��

�!H 1
dR.W

0; ��Lrig
r;r ;r/

Fr
�!H 1

dR.W
0;Lrig

r;r ;r/
�
�!H 1

dR.W ;Lrig
r;r ;r/;

where the last map is the inverse of the restriction resW ;W 0 , which is an isomorphism
by Corollary 3.7 (see the discussion preceding Theorem 10.1 of [C3], or the more
detailed discussion in [CI]).

Notice that the operator ˆ0 acting on the group H 1
dR.W ;L

rig
r;r ;r/ preserves the

natural images of H 1
dR.C;Lr;r ;r/ and of H 1

par.C;Lr;r ;r/ (this follows, e.g., from
Proposition 3.9). The map ˆ0 on H 1

par.C;Lr;r ;r/ agrees with the Frobenius
endomorphism on �XH

2rC1
dR .Xr=F / via the identification H 1

par.C;Lr;r ;r/ D

�XH
2rC1
dR .Xr=F /. It is  -semilinear. In order to work with an F -linear endomor-

phism, we set

ˆDˆn0; where nD ŒF WQp�:

By abuse of notation, we will also denote by ˆ the Frobenius endomorphism acting
on the space H 0

la.C;Lr/
r of locally analytic horizontal sections of Lr over C , as it

is described in the paragraph preceding Theorem 10.1 of [C3].
A similar discussion applies of course when Lr;r is replaced by Lr , and the

symbol ˆ will also be used to denote the F -linear Frobenius endomorphism acting
on H 1

par.C;Lr ;r/ and H 0
la.C;Lr/

r .

3.6. The Coleman primitive

LEMMA 3.14
Let ! be a global (rigid) section of the sheaf !r ˝�1C over C , and let Œ!� 2H 1

par.C;

Lr ;r/ be its associated cohomology class. There exists a polynomial P 2 F Œx� sat-
isfying the following.
(1) P.ˆ/.Œ!�/D 0.
(2) The map P.ˆ/ is an isomorphism on H 0

la.C;Lr/
r , and P.1/¤ 0.

Proof
This follows from the ideas explained in [C3, Section 11] (in particular, see the
argument following [C3, Lemma 11.1]). One can use the fact that the eigenvalues
of ˆ acting on H 1

dR.C;Lr ;r/ and on any (finite-dimensional) ˆ-stable subspace
of H 0

la.C;Lr/
r differ, since they have complex absolute values prC1=2 and pr=2,

respectively.
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THEOREM 3.15 ([C3, Theorem 10.1])
Let ! be a global section of the sheaf !r ˝ �1C over C . Choose a polynomial P
satisfying the properties of Lemma 3.14, and let d be its degree. There exists a locally
analytic section F! of Lr over C satisfying the following conditions:
(1) rF! D !;
(2) P.ˆ/.F!/ is a rigid analytic section of Lr on some wide-open neighborhood

W 0 of A in W satisfying �n.W 0/�W , for all n� d .
The locally analytic section F! is called the Coleman primitive of ! on C .

Note that our setting, where p is assumed to not divide the level of the modular
curve C , differs from the semistable reduction case considered in [C3]. In fact it is
simpler, and the assumptions that are required for [C3, Theorem 10.1 ], such as the
regular singular annuli assumption on the cuspidal annuli, are satisfied a fortiori in
the setting of Theorem 3.15. Note also that Theorem 10.1 as stated produces a locally
analytic primitive on each wide-open W , but expressing C as a finite union of wide-
opens and gluing the different primitives (which, by their uniqueness, agree on the
overlaps) leads to a locally analytic primitive on all of C . The uniqueness clause in
the definition of the Coleman primitive also implies that F! is defined over the field
F over which ! is defined.

Remark 3.16
The definition of F! depends a priori on several choices: the choice of an affinoid A

in C , a lifting of Frobenius to A, a Frobenius neighborhood W 0 of A in W , and the
polynomial P . It can be shown that the Coleman primitive does not depend on these
choices, and therefore the Coleman primitives on a covering of C by affinoid regions
can be pieced together to give a locally analytic section of Lr over C which is well
defined up to global rigid analytic horizontal sections of Lr over C . This latter space
is trivial when r > 0 and is the space of constant functions on C when r D 0 (see [C3,
Proposition 5.1]).

Remark 3.17
It can be shown that the Coleman primitive F! is in fact analytic on each residue disk
D.P / associated to any point P of C.Qunram

p /.

3.7. p-adic integration and the p-adic Abel–Jacobi map
The following is one of the main results of this section.

PROPOSITION 3.18
Let �' be a generalized Heegner cycle attached to an isogeny of ordinary pairs ' W
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.A; t/�! .A0; t 0/, and let PA0 be the point of C attached to .A0; t 0/. Then

AJF .�'/.!f ^ ˛/D
˝
Ff .PA0/^ ˛; clPA0 .�'/

˛
;

where the pairing on the right-hand side is the natural one on Lr;r.PA0/, and Ff is
the Coleman primitive of !f 2H 0.C;!r ˝�1C /.

Proof
In order to ease notation, we drop the index ' in this proof, by setting �D�' , and
write P D P 0A and U D C � ¹P º. By definition of the p-adic Abel–Jacobi map, we
have

AJF .�/.!f ^ ˛/D h!f ^ ˛;�
i;

where the class �
 represents the extension D
 of (3.4.4) following the recipe given
in Section 3.3. We may write

�
 D �
hol

 � �

frob

 ;

where the following conditions hold.
(1) The cohomology class �hol


 is represented by a section of Lr;r ˝�
1
C .logZN /

over U having residue 0 at the cusps and a simple pole at P with residue
equal to clP .�/. By abuse of notation, we will use the same symbol �hol


 to
denote the associated Lr;r -valued differential on C . If P1; : : : ;Pt were chosen
in such a way that P1 D P , and if Gj is any rigid analytic section of L

rig
r;r over

D.Pj /, then by (3.5.1), for all noncuspidal annuli Vj , we have

resV1hG1; �
hol

 i D

˝
G1.P /; clP .�/

˛
; resVj hGj ; �

hol

 i D 0 for j � 2:

(3.7.1)

If Vj is a cuspidal annulus, then we at least have

resVj hFf;j ^ ˛;�
hol

 i D 0; (3.7.2)

where Ff;j is a local primitive of !f on Vj . To see this, use the fact that �hol



has residue 0 along Vj to write �hol

 DrH
 for some section of L

rig
r;r over Vj ,

and observe that

0D resVj d hFf;j ^ ˛;H
i D resVj
�
h!f ;H
i C hFf;j ^ ˛;�

hol

 i
�

D resVj hFf;j ^ ˛;�
hol

 i:

(2) The differential �frob

 is a section of L

rig
r;r ˝ �

1
C over W , chosen so that it

satisfies
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ˆ�frob

 D �

frob

 CrG; (3.7.3)

for some rigid section G of L
rig
r;r over W 0, and of course

resV1hG1; �
Frob

 i D

˝
G1.P /; clP .�/

˛
: (3.7.4)

By Proposition 3.10, the Poincaré pairing between H 1
dR.C;Lr;r.r/;r/ and H 1

dR.C;

Lr;r.r C 1/;r/ is given by the formula

h!f ^ ˛;�
i D

tX
jD1

resVj hFf;j ^ ˛;�
i (3.7.5)

D
� tX
jD1

resVj hFf;j ^ ˛;�
hol

 i
�
�
� tX
jD1

resVj hFf;j ^ ˛;�
frob

 i

�
; (3.7.6)

where the sum is taken over the t annuli Vj in W �A and where Ff;j is an analytic
primitive of !f on the residue disk D.Pj /. Note that if !r is any horizontal section
of Lr;r onD.Pj /, the residue of the differential h!r ; �
i on the annulus Vj is 0, and
therefore the expression on the right-hand side of (3.7.5) is independent of the choice
of local primitives on each residue disk. The same is not true for either of the sums
that appear on the right-hand side of (3.7.6), since the differentials �hol


 and �Frob

 each

have nonzero residue along the annulus V1.
In order to compute each of the terms appearing in (3.7.6) individually, we need to

make a coherent choice of local primitives. This is done by fixing a Coleman primitive
Ff of !f . Once this choice is made, the two terms appearing in (3.7.6) are controlled
in the following two lemmas.

LEMMA 3.19
If Ff;j is any choice of local primitives of !f on each residue disk D.Pj /, then

tX
jD1

resVj hFf;j ^ ˛;�
hol

 i D

˝
Ff;1.PA0/^ ˛; clPA0 .�/

˛
:

Proof
Since the local primitive Ff;j ^ ˛ is analytic on the residue disk D.Pj /, and since
Q�hol

 has 0 residue on Vj when j � 2, it follows from (3.7.1) and (3.7.2) that

tX
jD1

resVj hFf;j ^ ˛;�
hol

 i D resV1hFf;1 ^ ˛;�

hol

 i D

˝
Ff .PA0/^ ˛; clPA0 .�/

˛
:

The lemma follows.
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LEMMA 3.20
Let Ff be the Coleman primitive of !f on C . Then

tX
jD1

resVj hFf ^ ˛;�
frob

 i D 0: (3.7.7)

Proof
We begin by noting that for each j D 1; : : : ; t ,

resVj hFf ^ ˛;�
Frob

 i D resVj hˆFf ^ ˛;ˆ�

Frob

 i

D resVj hˆFf ^ ˛;�
Frob

 i C resVj hˆFf ^ ˛;rGi; (3.7.8)

where G is the rigid analytic section of Lr;r over W 0 given by (3.7.3). The fact that
ˆ is horizontal for the Gauss–Manin connection (combined with the Leibniz rule)
shows that

d hˆFf ^ ˛;Gi D hˆFf ^ ˛;rGi C hˆ!f ^ ˛;Gi:

In particular, the expression appearing on the right-hand side is exact on each annulus
Vj , and therefore

tX
jD1

resVj hˆFf ^ ˛;rGi D �
tX

jD1

resVj hˆ!f ^ ˛;Gi

D 0;

where the last vanishing follows from the rigid analytic residue theorem (Theorem 3.8),
in light of the fact that hˆ!f ^ ˛;Gi belongs to �1

W 0
. Hence by summing equation

(3.7.8) over j D 1; : : : ; t , we get

tX
jD1

resVj hFf ^ ˛;�
Frob

 i D

tX
jD1

resVj hˆFf ^ ˛;�
Frob

 i:

More generally, if L is any polynomial in F Œx�, we get

L.1/

tX
jD1

resVj hFf ^ ˛;�
Frob

 i D

tX
jD1

resVj
˝
L.ˆ/Ff ^ ˛;�

Frob



˛
:

Now, choosing the polynomial L.x/D P.x/ as in Lemma 3.14 preceding the defini-
tion of the Coleman primitive, we get

L.1/

tX
jD1

resVj hFf ^ ˛;�
Frob

 i D

tX
jD1

resVj
˝
L.ˆ/Ff ^ ˛;�

Frob



˛
D 0;
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where the vanishing follows by noting that L.ˆ/Ff ^ ˛ is a rigid analytic section
of Lr;r over W 0 and by applying Theorem 3.8 once again. Lemma 3.20 now follows
from the fact that L.1/¤ 0.

The proof of Proposition 3.18 now follows from (3.7.6) combined with Lemmas
3.19 and 3.20, all of which shows that

AJF .�'/.!f ^ ˛/D h!f ^ ˛;�
i D
˝
Ff .PA0/^ ˛; clPA0 .�/

˛
when Ff is a Coleman primitive for !f .

PROPOSITION 3.21
With the same notation as in Proposition 3.18, we have

AJF .�'/.!f ^ ˛/D
˝
'�Ff .PA0/; ˛

˛
A
;

where the pairing h ; iA on the right-hand side is the natural one on SymrH 1
dR.A=F /.

Proof
Let

% WD .'r ; idr/ WAr �! �' � .A
0/r �Ar :

Note that

%�
�
Ff .PA0/^ ˛

�
D '�

�
Ff .PA0/

�
^ ˛; %

�
ŒAr �

�
D clPA0 .�'/;

where ŒAr � 2H 0
dR.A

r=F / is the fundamental class associated to the variety Ar . Let

h ; iA;j WH
2r�j
dR .Ar=F /�H

j
dR.A

r=F /�!H 2r.Ar=F /D F

denote the Poincaré pairing, so that the restriction of h ; iA;r to SymrH 1
dR.A=F /�

H r
dR.A=F / agrees with h ; iA. Observe that˝
Ff .PA0/^ ˛; clPA0 .�'/

˛
D
˝
Ff .PA0/^ ˛; clPA0 .�'/

˛
D
˝
Ff .PA0/^ ˛;%

�
ŒAr �

�˛
:

(3.7.9)

The functoriality properties of the Poincaré pairing imply that˝
Ff .PA0/^ ˛;%

�
ŒAr �

�˛
D
˝
%�
�
Ff .PA0/^ ˛

�
; ŒAr �

˛
A;0

D
˝
'�
�
Ff .PA0/

�
^ ˛; ŒAr �

˛
A;0

D
˝
'�
�
Ff .PA0/

�
; ˛
˛
A
: (3.7.10)
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Proposition 3.21 follows by combining Proposition 3.18 with (3.7.9) and (3.7.10).

Let ¹ NP1; : : : ; NPtº be the set of supersingular points of Ck , and let Pj 2 C.F / be
an arbitrary lift of NPj under the reduction map. The residue disks D.Pj / are called
the supersingular disks of C and the complement A WD C ord is called the ordinary
locus of C . A locally analytic p-adic modular form of weight k is a locally analytic
section of !k over C ord. Following equation (1.1.1), a modular form G of this type
can also be viewed as a function on ordinary triples of generalized elliptic curves
.E; t;!/=R, where R is a p-adic ring of finite type over Zp satisfying

G.E; t; 	!/D 	�kG.E; t;!/; for all 	 2R�:

Following [DeR, Chapitre VII, Corollaire 2.2], the formal completion along a
cusp of a suitable cuspidal p-adic neighborhood D ' Spec.R/ in C ord can be iden-
tified with Spf.ZŒŒq1=d ��/, for Z finite unramified over Zp and d j N , in such a
way that the universal object over D pulls back to Tate.q/, equipped with a suit-
able level structure. By an abuse of notation, we will denote by G.Tate.q/; t;!can/ the
q-expansion obtained by evaluating G at a generalized marked elliptic curve corre-
sponding to .Tate.q/; t;!can/ via the above identifications.

For 0 � j � r , let Gj denote the j th component of the Coleman primitive Ff ,
defined (as a function on ordinary triples) by the rule

Gj .E; t;!/ WD
˝
F.E; t/;!j�r�j

˛
;

where � is the generator of the unit root subspace of H 1
dR.E=R/, normalized so that

h!;�i D 1. The rule Gj thus defined satisfies

Gj .E; t; 	!/D 	
2j�rGj .E; t;!/; for all 	 2R�;

and therefore defines a locally analytic p-adic modular form of weight r � 2j .
The next lemma expresses the Abel–Jacobi images of the cycles �' in terms of

the modular forms Gj .

LEMMA 3.22
Let

' W .A; t;!/�! .A0; t 0;!0/

be an isogeny of ordinary marked elliptic curves of degree d' D deg.'/, and let �'
be the associated generalized Heegner cycle on Xr . Then

AJF .�'/.!f ^!
j�r�j /D d j'Gj .A

0; t 0;!0/:
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Proof
By Proposition 3.21,

AJF .�'/.!f ^!
j�r�j /D

˝
'�Ff .A

0; t 0/;!j�r�j
˛
A
: (3.7.11)

Since h'�!0; '��0i D d' ; we have

'�.�0/D d'�: (3.7.12)

Hence ˝
'�Ff .A

0; t 0/;!j�r�j
˛
A
D d j�r'

˝
'�Ff .A

0; t 0/; '�
�
.!0/j .�0/r�j

�˛
A

D d j'
˝
Ff .A

0; t 0/; .!0/j .�0/r�j
˛
A0

D d j'Gj .A
0; t 0;!0/:

3.8. Calculation of the Coleman primitive
We now turn to the explicit calculation of the Coleman primitive Ff of the regu-
lar L

rig
r -valued differential !f , or rather, of its components Gj . In order to do this,

we begin by introducing an operator, V U � UV , on locally analytic p-adic modu-
lar forms, which plays the role of the operator P.ˆ/ in Theorem 3.15 defining the
Coleman primitive, in the sense that it maps the locally analytic forms Gj to genuine
p-adic modular forms in the sense of Section 1.3. As a consequence of the use of this
operator, it will be possible to resort to q-expansions in our calculation of Coleman
primitive (see the proof of Proposition 3.24).

We recall the definition of the operators U and V (as they are described, e.g., in
[Se]). Given an ordinary triple .E; t;!/, let

'
.p/
j W .E; t;!/�! .Ej ; tj ;!j /; j D 0; 1; : : : ; p

denote the distinct p-isogenies on E , ordered in such a way that '.p/0 is the distin-
guished p-isogeny whose kernel is the canonical subgroup of E . For instance, when
.E; t;!/D .Tate.q/; �N ;!can/, the canonical subgroup is �p , and we can take

.E0; t0;!0/D
�

Tate.qp/; �pN ;
1

p
!can

�
; .Ej ; tj ;!j /D

�
Tate.q1=p�jp/; �N ;!can

�
:

(3.8.1)

The Hecke operators U and V are defined by setting

.G jU /.E; t;!/ WDG
�
U.E; t;!/

�
; .G j V /.E; t;!/ WDG

�
V.E; t;!/

�
;

where
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U.E; t;!/ WD
1

p

pX
jD1

.Ej ; tj ;!j /; V .E; t;!/ WD
�
E0;

1

p
t0; p!0

�
:

These operators are related to the usual Hecke operator Tp by the rule

Tp DU C
1

p
Œp�V;

where Œp� denotes the isogeny given by multiplication by p. In particular,

V U �UV D 1� TpV C
1

p
Œp�V 2: (3.8.2)

The diamond operator hai attached to a 2 .Z=NZ/� is defined on locally analytic
p-adic modular forms by the rule

G j hai.E; t;!/DG.E;a�1t;!/:

Given a locally analytic p-adic modular form G, we set

G[ WDG j .V U �UV /:

In terms of the q-expansion

G
�
Tate.q/; �N ;!can

�
D

1X
nD1

bnq
n

of G, the operators U and V satisfy

.G j U /
�
Tate.q/; �N ;!can

�
D

1X
nD1

bnpq
n;

(3.8.3)

.G j V /
�
Tate.q/; �N ;!can

�
D

1X
nD1

bnq
np;

so that the q-expansion of G[ is given by

G[
�
Tate.q/; �N ;!can

�
D

X
.p;n/D1

bnq
n: (3.8.4)

LEMMA 3.23
Let K be a quadratic imaginary field in which the prime .p/ D pNp splits, and let
.A0; t 0/ be a point in C ord corresponding to an elliptic curve A0 with complex mul-
tiplication by (an order in) K . Let G be a locally analytic p-adic modular form of
weight k satisfying
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TpG D bpG; hpiG D �G.p/G:

Then

G[.A0; t 0;!0/

DG.A0; t 0;!0/�
�G.p/bp

pk
G
�
p 
 .A0; t 0;!0/

�
C
�G.p/

pkC1
G
�
p
2 
 .A0; t 0;!0/

�
;

where the action of ideals on CM triples is the one given in (1.4.8).

Proof
Because A0 has complex multiplication, its canonical subgroup is identified with the
kernel A0Œp� of multiplication by p, and therefore,

V.A0; t 0;!0/D p 
 .A0; p�1t 0; p!0/; Œp�V 2.A0; t 0;!0/D p
2 
 .A0; p�1t 0; p!0/:

Therefore,

G[.A0; t 0;!0/

DG
��
1� TpV C

1

p
Œp�V 2

�
.A0; t 0;!0/

�
DG.A0; t 0;!0/� bpG

�
p 
 .A0; p�1t 0; p!0/

�
C
1

p
G
�
p
2 
 .A0; p�1t 0; p!0/

�
DG.A0; t 0;!0/�

�G.p/bp

pk
G
�
p 
 .A0; t 0;!0/

�
C
�G.p/

pkC1
G
�
p
2 
 .A0; t 0;!0/

�
:

The result follows.

Proposition (3.24) below gives an explicit formula for G[j in terms of the Atkin–
Serre operator 
 defined in equation (1.3.2) acting on the modular form f . Note that,
for any j � 0, the expression


�1�jf [ WD lim
t!�1�j


 tf [

is a p-adic modular form of weight r � 2j (see [Se, Théorème 5(b)]).

PROPOSITION 3.24
For all .E; t/ 2 C ord,

G[j .E; t;!/D j Š

�1�jf [.E; t;!/: (3.8.5)

(In particular, the Coleman primitive F [
f

of !f [ is a rigid analytic section of L
rig
r

over C ord.)
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Proof
For 0� j � r , set F [ WD F [

f
D Ff j .V U �UV /. Then

G[j .E; t;!/D
˝
F [.E; t/;!j�r�j

˛
:

Equation (3.8.5) amounts to the statement that


G[0 D f
[; 
G[j D jG

[
j�1; for 1� j � r: (3.8.6)

We verify that this holds on q-expansions, working with the basis .!can; �can/ for the
de Rham cohomology of the Tate curve which is described in equation (1.1.6) of
Section 1.1. To check (3.8.6), note that

rG[0
�
Tate.q/; �N

�
Dr

�
G[0
�
Tate.q/; �N ;!can

�
!rcan

�
Dr

�˝
F [
�
Tate.q/; �N

�
; �rcan

˛
!rcan

�
D
˝
!f [

�
Tate.q/; �N

�
; �rcan

˛
!rcanC r

˝
F [
�
Tate.q/; �N

�
; �rcan

˛
!r�1can �can

dq

q

D f [
�
Tate.q/; �N ;!can

�
!rcan

dq

q
C r

˝
F [
�
Tate.q/; �N

�
; �rcan

˛
!r�1can �can

dq

q
;

where the last equality follows from (1.1.10).
After applying the inverse of the Kodaira–Spencer isomorphism and using

(1.1.10) again, we find that

QrG[0
�
Tate.q/; �N

�
D f [

�
Tate.q/; �N ;!can

�
!rC2can C r

˝
F [
�
Tate.q/; �N

�
; �rcan

˛
!rC1can �can:

Applying the unit root splitting ‰Frob to this identity then gives

‚FrobG
[
0

�
Tate.q/; �N

�
D f [

�
Tate.q/; �N

�
:

This proves (3.8.6) for j D 0, in light of Lemma 1.7. For the case j � 1, we note that,
because h!f [ ;!

j
can�

r�j
can i D 0,

rG[j
�
Tate.q/; �N

�
D r

�
G[j
�
Tate.q/; �N ;!can

�
!r�2jcan

�
D r

�˝
F [
�
Tate.q/; �N

�
;!jcan�

r�j
can

˛
!r�2jcan

�
D j

˝
F [
�
Tate.q/; �N

�
;!j�1can �

r�jC1
can

˛
!r�2jcan

dq

q

C .r � 2j /
˝
F [
�
Tate.q/; �N

�
;!jcan�

r�j
can

˛
!r�2j�1can �can

dq

q
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D jG[j�1
�
Tate.q/; �N ;!can

�
!r�2jcan

dq

q

C .r � 2j /G[j
�
Tate.q/; �N ;!can

�
!r�2j�1can �can

dq

q
:

Applying �1 followed by the unit root splitting to this identity gives

‰Frob QrG
[
j

�
Tate.q/; �N

�
D jG[j�1

�
Tate.q/; �N ;!can

�
!rC2�2jcan :

Therefore,

‚FrobG
[
j

�
Tate.q/; �N ;!can

�
D jG[j�1

�
Tate.q/; �N ;!can

�
;

and (3.8.6) follows from Lemma 1.7 for all 1 � j � r . This completes the proof of
Proposition 3.24 (see also [C3, Lemma 9.2], where a similar result is proved).

4. Period integrals and central values of Rankin–Selberg L-functions

4.1. Rankin L-series and their special values
Let f D

P
ane

2�inz 2 Sk.�0.N /; "f / be a normalized newform. Write

L.f; s/D
X
n�1

ann
�s D

Y
q

.1� ˛qq
�s/�1.1� ˇqq

�s/�1

for its Hecke L-series, where the product on the right-hand side, taken over all the
rational primes, should be taken as the definition of the parameters ¹˛q; ˇqº. In par-
ticular, ˛qˇq D qk�1"f .q/ if q does not divide N , and ˛qˇq D 0 otherwise. Let N"f
denote the conductor of "f .

In this section, it will also be convenient to view f as a function on pairs .L; t/,
where L is a lattice in C and t is an element of exact order N in C=L. The lattice
function f is determined by the rules

f
�
h1; �i; 1=N

�
D f .�/; for all � 2H ; (4.1.1)

f .	L;	t/D 	�kf .L; t/; for all 	 2C�; (4.1.2)

f .L;at/D "f .a/f .L; t/; for all a 2 .Z=NZ/�: (4.1.3)

Let wf 2C� be the scalar of norm 1 defined by the rule

wN .f /Dwf f�; (4.1.4)

where f� 2 Sk.�0.N /; N"f / is the modular form obtained by applying complex conju-
gation to the coefficients of f and where wN is the Atkin–Lehner involution (which
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is described precisely in Lemma 5.2 and the discussion preceding it). We note that the
Hecke L-series L.f; s/ satisfies the functional equation

ƒ.f; s/Dwfƒ.f�; k � s/;

where ƒ.f; s/D .2�/�s�.s/N s=2L.f; s/.
Let K be an imaginary quadratic field with discriminant �dK , equipped with

a fixed complex embedding. Recall that for any pair of integers .`1; `2/, a Hecke
character of K of infinity type .`1; `2/ is a continuous homomorphism

� WA�K �!C�

satisfying

�.˛ � x � z1/D �.x/ � z
�`1
1 Nz�`21 ; for all ˛ 2K�; z1 2K

�
1:

For each prime q of K , let �q WK�q �! C� denote the local character associated to
�. The conductor of � is the largest integral ideal f� of K such that �q.u/D 1 for all
u 2 .1C f�OK;q/

� ,!K�q . In the usual way, we can identify � with a character on
OK -ideals prime to f� by defining

�.a/D
Y
qja

�q.�q/
vq.a/; (4.1.5)

where �q is any uniformizer at q, this assignment being independent of the choice of
�q. As a function on ideals, � satisfies �..˛//D ˛`1 N̨ `2 for all principal ideals .˛/
with ˛	 1 mod f�.

The focus of this section is on the special values of the Rankin–Selberg L-
function L.f � 
�; s/, where 
� denotes the theta function associated to �. For
simplicity, we will denote this L-function by L.f;�; s/. If we set ˛pj WD ˛

j
p and

ˇpj WD ˇ
j
p , then it can be defined as an Euler product of terms Lp.f;�; s/, where for

good p, (i.e., for p � f�N )

Lp.f;�; s/D
�
1� �.p/˛Np.Np/�s

��1�
1� �.p/ˇNp.Np/�s

��1
:

The local factors at ramified places are described in [J, Section 15]. Indeed, up to
a shift L.f;�; s/ is identified with the Rankin–Selberg L-function L.�f � ��; s/,
where �f and �� are the automorphic representations of GL2.AQ/ associated to f
and 
�, respectively. More precisely, after normalizing �f and �� to be unitary, we
have

L.f;�; s/DL
�
�f � ��; s �

k � 1C `1C `2

2

�
:
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Set ` WD j`1 � `2j and `0 WDmin.`1; `2/. Define

L1.f;�; s/D �C.s � `0/�C
�
s �min.k � 1; `/� `0

�
;

where �C.s/D 2 � .2�/
�s�.s/, and set

ƒ.f;�; s/ WDL1.f;�; s/ �L.f;�; s/:

The function ƒ.f;�; s/ (defined a priori in some right half-plane) extends to a
meromorphic function on C and satisfies a functional equation of the form

ƒ.f;�; s/D �.f;�; s/ƒ.f�; N�;kC `1C `2 � s/;

where f� is as in (4.1.4) and where �.f;�; s/ is an epsilon factor again described in
[J, Section 15]. In the case of interest to us below, �f � �� will be self-dual and the
value of �.f;�; s/ at the center of the critical strip, denoted �.f;�/, is equal to ˙1.
If "K is the quadratic character associated to K and if "� is the Dirichlet character
attached to � by

"� WD �jA�Q �N
�.`1C`2/;

then the function ƒ.f;�; s/ is known to be holomorphic when "f "�"K is nontrivial
(for more details on the above, see [J, Section 19]).

An integer n is said to be critical (in the sense of Deligne) forL.f;�; s/ if none of
the Gamma factors that occur on either side of the functional equation for L.f;�; s/
have a pole at s D n. The corresponding values of L.f;�; s/ are called critical val-
ues. Deligne made precise conjectures (proved by Shimura in [Sh2]) that predict
the rationality of these critical L-values over specific number fields, after dividing
them by appropriate (ostensibly transcendental) periods. It turns out that the nature
of the period depends qualitatively on the infinity type of �. Indeed, assuming for the
moment that � is of type .0; `/ with `� 0, the form of the gamma factor L1.f;�; s/
shows that the following two cases arise naturally.

Case 1: `� k � 2. In this case, the critical integers j for L.f;�; s/ are those in
the closed segment Œ`C 1; k � 1�. The transcendental part of L.f;�; j / depends only
on f and not on �, and is expressible in terms of the Petersson inner product hf;f i.

Case 2: ` � k. In this case, the critical integers j for L.f;�; s/ are those in the
closed segment Œk; `�. The transcendental part of L.f;�; j / depends only on K and
not on f , and is expressible as a power of a CM period attached to K . (This period
will be defined precisely in Section 5.1.)

We now return to considering characters � of more general infinity type .`1; `2/.
It will be convenient in what follows to work with the L-function L.f;��1; s/. Note
that the critical values of L.f;��1; s/ (as � and s both vary) are completely captured
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by the critical values of L.f;��1; 0/ (as only � is made to vary). This motivates the
following definition.

Definition 4.1
A Hecke character � of infinity type .`1; `2/ is said to be critical if s D 0 is a critical
point for L.f;��1; s/.

Let us define �0 by �0 WD ��1 �N`1 so that the infinity type of �0 is .0; `1 � `2/.
Then

L.f;��1; s/DL.f;�0N�`1 ; s/DL.f;�0; sC `1/:

By the previous discussion applied to �0 (and to ��0—see Remark 4.2), the character
� of weight .`1; `2/ is then critical if one of the following hypotheses is satisfied:

Case 1: 1� `1; `2 � k � 1—this implies that `� k � 2;
Case 2: `1 � k and `2 � 0, and Case 20: `1 � 0 and `2 � k—in both these cases,

`� k.
Let †.1/, †.2/, and †.2

0/ denote the set of Hecke characters satisfying the con-
ditions in Case 1, Case 2, and Case 20, respectively, so that the set † of all critical
characters is the disjoint union

†D†.1/ t†.2/ t†.2
0/:

Remark 4.2
The weights of characters in †.1/ are the integer lattice points in the lightly shaded
square in Figure 1, and those attached to characters in †.2/ are the lattice points
in the darker lower right-hand side quadrant of this figure. The region †.2

0/ is the
reflection of †.2/ around the principal diagonal, and the map � 7! �� (where ��

is the composition of � with complex conjugation on A�K ) interchanges these two
regions.

A character � 2† is said to be central critical if

`1C `2 D k; "� D "f :

The terminology is justified by the fact that in this case �f � ���1 is self-dual and 0
is the central (critical) point for L.f;��1; s/. Let †cc denote the set of central critical
characters, and write (for i D 1; 2; 20)

†.i/cc WD†cc \†
.i/:

The weights of central critical characters are the lattice points on the central critical
line which is depicted in Figure 1.
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Figure 1. Critical and central critical weights for � 7!L.f;��1; 0/.

Remark 4.3
This article is concerned with the p-adic L-function obtained by interpolating the
L-values L.f;��1; 0/ for � in †.2/ or †.2

0/. Since this L-value is unchanged if � is
replaced by ��, we may assume that `1 � 0 and work simply with the region †.2/.
The main result of this paper (Theorem 5.13) relates the special values of this p-
adic L-function at characters � in †.1/cc (which is outside the range of interpolation)
to the p-adic Abel–Jacobi images of generalized Heegner cycles. It would also be
very interesting to study the values of this p-adic L-function at � in †.2

0/
cc . We do not

address this issue here. However, one could speculate that a study of the triple product
L-function analogous to the one for the Rankin–SelbergL-function in this article may
shed light on this issue. This intuition is suggested by the way in which the results
of the present article are used in [BDP2] to yield information about the Katz p-adic
L-function at critical characters that are outside the range of p-adic interpolation.
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We assume henceforth that K satisfies the Heegner hypothesis for f —that is,
that all the primes q j N are either split or ramified in K and, furthermore, that if
q2 j N , then q is split in K . This implies that there exists a cyclic OK -ideal N of
norm N . We fix once and for all such a choice of N. We also fix an integer c prime
to NdK , and we set (as in Section 1.4) Nc WDN\Oc . Thus Nc is a proper Oc-ideal
and Oc=Nc ' OK=N ' Z=NZ. Let Uc D OO�c denote the corresponding compact
open subgroup of A�

K;f
, so that Uc D

Q
q Uc;q with Uc;q WD .Oc ˝ Zq/�. For " any

character of conductorN" jN , we define N" to be the unique ideal in OK that divides
N and has norm equal to N". Let  " be the composite homomorphism

Uc D OO
�
c ,!

OO�K!
Y
qjN"

.OK;q=N"OK;q/
� '

Y
qjN"

.Zq=N"Zq/�
Q
"q
���!C�: (4.1.6)

Equivalently, if we set Nc;" WDN" \Oc , then  " is the composite

Uc D OO
�
c ! . OOc=Nc;"

OOc/
� ' .OK=N"OK/

� ' .Z=N"Z/�
"�1

��!C�:

The following definition will be key in what follows.

Definition 4.4
A Hecke character � of K is said to be of finite type .c;N; "/ if c divides f� and if

�jUc D ":

Note that a character � of finite type .c;N; "/ is necessarily unramified outside
cN". Further, we may think of � as a character on proper Oc-ideals prime to Nc;".
Indeed, any such ideal a is locally principal (i.e., a D xOc for some x D .xq/ 2
A�K;fin), and we set

�.a/ WD
Y
q�N"

�q.xq/: (4.1.7)

This is independent of the choice of x since �jO�c;q D "jO�c;q D 1 for q �N , and � is
unramified at the primes ofK dividingN but not dividing N". Viewed in this manner,
� satisfies

�
�
.˛/
�
D ˛`1 N̨ `2".˛ mod N"/ (4.1.8)

for any ˛ 2K� that is a unit at all the primes dividing N".
Let †cc.N/ denote the set of those characters in †.1/cc t †

.2/
cc that are of finite

type .c;N; "f / and that satisfy the following auxiliary condition: the local sign "q.f;
��1/DC1 for all finite primes q. In view of our other hypotheses, this condition is
automatic except possibly at those primes q lying in the set
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S.f / WD
®
q W q

ˇ̌
.N;dK/; q �N"f

¯
:

For i D 1; 2; we define †.i/cc .N/ by

†.i/cc .N/ WD†
.i/
cc \†cc.N/;

so that †cc.N/ is the disjoint union:

†cc.N/D†
.1/
cc .N/t†

.2/
cc .N/:

For � 2†cc.N/, writing .kCj;�j / for the weight of �, we see that � 2†.2/cc .N/

or †.1/cc .N/, according to whether j � 0 or j 2 Œ�.k � 1/;�1�. Let � 2†.2/cc .N/ be a
Hecke character of infinity type .k C j;�j /. Recall the Shimura–Maass operator ık
of equation (1.2.9), and let

ı
j

k
D ıkC2j�2 � � � ıkC2ık

be the differential operator sending holomorphic modular forms of weight k to nearly
holomorphic modular forms of weight k C 2j . The modular form ı

j

k
f can also be

viewed as a function on pairs .L; t/ consisting of a lattice L in C and an element t of
order N in C=L, satisfying the homogeneity properties of (4.1.3) with k replaced by
kC 2j .

In what follows, we also fix a generator t of N�1c =Oc ' Z=NZ. Let a be a proper
Oc-ideal prime to Nc , and choose ˛ 2K� such that b WD ˛a�Oc and ˛	 1 mod N.
Then the image of t under the composite map

N
�1
c =Oc!N

�1
c b
�1=b�1

	˛
�!N

�1
c a
�1=a�1

is independent of the choice of ˛, and it will be denoted ta. Thus the choice of t gives
rise to a generator ta of N�1c a�1=a�1 for every proper Oc-ideal a prime to Nc .

LEMMA 4.5
Let a be any proper Oc-ideal prime to Nc , and suppose that � is a Hecke character
in †.2/cc .N/ of infinity type .kC j;�j /. With t fixed, the expression

��1.a/Na
�j � ı

j

k
f .a�1; ta/ (4.1.9)

depends only on the class of a in Pic.Oc/.

Proof
Note that since a is prime to Nc , it is certainly prime to Nc;" as well and so the
expression ��1.a/ is well defined. The lemma then follows immediately from the
equations (4.1.2) (with f replaced by ıj

k
.f / and k replaced by kC 2j ), (4.1.3), and

(4.1.8).
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THEOREM 4.6
Let f be a normalized eigenform in Sk.�0.N /; "f /, and let � 2†.2/cc .N/ be a Hecke
character of K of infinity type .kC j;�j /. Suppose also that c and dK are odd, and
let wK denote the number of roots of unity in K . Then

C.f;�; c/ �L.f;��1; 0/D
ˇ̌̌ X
Œa2Pic.Oc/

��1.a/Na
�j � .ı

j

k
f /.a�1; ta/

ˇ̌̌2
;

where the representatives a of the ideal classes in Pic.Oc/ are chosen to be prime to
Nc and where the constant C.f;�; c/ is given by

C.f;�; c/D
1

4
�kC2j�1�.j C 1/�.kC j /wK jdK j

1=2

� c vol.Oc/
�` � 2#Sf �

Y
qjc

.q � "K.q//

q � 1
:

Remark 4.7
The restriction that c and dK are odd is made for convenience to simplify the local
calculations in Section 4.6 at primes dividing cdK .

The rest of this section is devoted to proving Theorem 4.6 using Waldspurger’s
results relating period integrals to L-values. The reader whose main interest is in
p-adic methods can take this result on faith and continue reading from Section 5.1
onwards.

4.2. Differential operators
We recall some general facts about the Shimura–Maass operators that were introduced
in Section 1.2 and appear in the statement of the theorem above. Let � be a congru-
ence subgroup of SL2.Z/, and denote by C1

k
.�/ the space of C1-modular forms of

weight k on � . We also denote by QC1
k
.�/ the space of C1-functions on H such that

f .�z/D .c0zC d 0/kjc0zC d 0j�kf .z/

for all � D
�
a0

c0
b0

d 0

�
2 � (for the moment, we will use the symbol f for an arbitrary

modular form in C1
k
.�/ or QC1

k
.�/). Recall that the weight k Shimura–Maass raising

operator ık W C1k .�/! C1
kC2

.�/ is defined by

ık.f /D
1

2�i

� @
@z
C

k

z � Nz

�
f: (4.2.1)

Via the isomorphism

C1k .�/'
QC1k .�/; f .z/ 7! Qf .z/ WD f .z/yk=2; (4.2.2)
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we see that ık is identified with �.1=4�/Rk , where

Rk W QC
1
k .�/!

QC1kC2.�/; Rk.f /D
�
.z � Nz/

@

@z
C
k

2

�
f: (4.2.3)

Let us define (following the discussion in [Bp, Section 2.1])

Lk W QC
1
k .�/!

QC1k�2.�/; Lk.f /D�
�
.z � Nz/

@

@ Nz
C
k

2

�
f; (4.2.4)

and

�k W QC
1
k .�/!

QC1k .�/; �k.f /D�y
2
� @2
@x2
C

@2

@y2

�
C iky

@

@x
: (4.2.5)

These operators satisfy

�k D�LkC2Rk �
k

2

�
1C

k

2

�
D�Rk�2Lk C

k

2

�
1�

k

2

�
: (4.2.6)

Note that via the isomorphism (4.2.2), the lowering operator Lk corresponds to f 7!
2i @
@ Nz
f on C1

k
.�/. Thus if f is holomorphic, then Lk. Qf /D 0.

Definition 4.8
Let j be a nonnegative integer, and let f 2 QC1

k
.�/. Then Rjf is defined by

Rjf D .RkC2j�2 ıRkC2j�4 ı � � � ıRkC2 ıRk/f:

LEMMA 4.9
Suppose that f 2 C1

k
.�/ is holomorphic. Then for j � 0, the form Rj Qf is an eigen-

function of �kC2j with eigenvalue �j C 	j , where �j WD j.k C j � 1/ and where
	j WD .kC 2j =2/.1� .kC 2j =2//.

Proof
Since f is holomorphic, we have Lk. Qf / D 0. Hence �k Qf D .k=2/.1 � k=2/ by
(4.2.6), and the result holds for j D 0. We now work inductively, assuming that the
result holds for j � 1. By (4.2.6) again, we have

�kC2jR
j Qf D .�RkC2j�2LkC2j C 	j /R

j Qf

D�RkC2j�2LkC2jRkC2j�2R
j�1 Qf C 	jR

j Qf

D RkC2j�2

�
�kC2j�2C

kC 2j � 2

2

�
1C

kC 2j � 2

2

��
�Rj�1 Qf C 	jR

j Qf
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D RkC2j�2

�
�j�1C 	j�1C

kC 2j � 2

2

�
1C

kC 2j � 2

2

��
�Rj�1 Qf C 	jR

j Qf

D RkC2j�2.�j�1C kC 2j � 2/R
j�1 Qf C 	jR

j Qf

D .�j�1C kC 2j � 2C 	j /R
j Qf D .�j C 	j /R

j Qf :

Definition 4.10
Let f;g 2 C1

k
.�/, and suppose that at least one of f or g is a cusp form. Then set

hf;gi D
1

ŒSL2.Z/ W ��

Z
�nH

f .z/g.z/yk
dx dy

y2
:

Likewise, for f;g 2 QC1
k
.�/ with at least one being cuspidal, we set

hf;gi D
1

ŒSL2.Z/ W ��

Z
�nH

f .z/g.z/
dx dy

y2
:

Clearly, for f;g 2 C1
k
.�/, we have hf;gi D h Qf ; Qgi.

LEMMA 4.11
Suppose that f;g 2 C1

k
.�/ are holomorphic. Then

hRj Qf ;Rj Qgi D
�.j C 1/�.kC j /

�.k/
h Qf ; Qgi (4.2.7)

and

hı
j

k
f; ı

j

k
gi D

1

.4�/2j
�.j C 1/�.kC j /

�.k/
hf;gi: (4.2.8)

Proof
Clearly, (4.2.7) and (4.2.8) are equivalent. We will prove (4.2.7) inductively. Invoking
[Bp, Proposition 2.1.3], equation (4.2.6), and Lemma 4.9 in turn, we find that

hRj Qf ;Rj Qgi D hRj�1 Qf ;�LkC2jRkC2j�2R
j�1 Qgi

D
D
Rj�1 Qf ;

�
�kC2j�2C

kC 2j � 2

2

�
1C

kC 2j � 2

2

��
Rj�1 Qg

E
D
D
Rj�1 Qf ;

�
�j�1C 	j�1C

kC 2j � 2

2

�
1C

kC 2j � 2

2

��
Rj�1 Qg

E
D �j hR

j�1 Qf ;Rj�1 Qgi:
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Hence

hRj Qf ;Rj Qgi D h Qf ; Qgi �
Y
1
t
j

�t D
�.j C 1/�.kC j /

�.k/
h Qf ; Qgi:

4.3. Period integrals and values at CM points
Let A0 WDC=Oc , and let t0 be the N-torsion point on A0 corresponding to our choice
of t 2 N�1c =Oc . The pair .A0; t0/ determines a point PA0 on the modular curve
X1.N /. Let � 2H be any point lying over PA0 . Thus there is a unique isomorphism

A� WDC=Z� CZ
	ƒ�
' C=Oc

sending Œ1=N � to t0, which on tangent spaces is given by multiplication by a scalar
ƒ� 2K

�. Hence Oc Dƒ� .Z� CZ/ and

ƒ�

N
	 t mod Oc :

Thus

ƒ� 2Nc ; and .ƒ� ;Nc/D 1: (4.3.1)

Let � WK ,!M2.Q/ be the embedding that describes the action of K on H1.A� .C/;
Q/ with respect to the basis .�; 1/, that is, given by

˛ �



�

1

�
D �.˛/



�

1

�
:

Explicitly, for a; b 2Q,

�.aC b�/D

�
aC b Tr.�/ �bN�

b a

�
: (4.3.2)

Let M0.N / be the order defined by

M0.N / WD

²�
a0 b0

c0 d 0

�
2M2.Z/ W c0 	 0 modN

³
:

Then, via the embedding �,

K \M0.N /D End
�
A� ;

˝
Œ1=N �

˛�
D End

�
C=Oc; hti

�
DOc ;

so that � is a Heegner embedding of conductor c. A different choice of � will give an
embedding �0 that is conjugate to � by an element of �0.N /. Note that � gives rise to
a map of algebraic groups
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� W ResK=QGm ,!GL2;Q

and hence a map on adelic points �A W A
�
K ,!GL2.AQ/. We consider A�K as a sub-

group of GL2.AQ/ via this embedding.
As in the previous section, let ıj

k
f denote the nearly holomorphic modular form

of weight ` WD kC 2j obtained by applying the Shimura–Maass differential operator
j times to f . We use the embedding � to associate to the classical modular form ı

j

k
f

an automorphic form F j on GL2.AQ/, as follows. First, let

U 0q WD
�
M0.N /˝Zq

��
; U 0 WD M̂0.N /

�
D
Y
q

U 0q �GL2.Af /

and define a character !f D
Q
q !f;q of U 0 by setting

!f;q

�
a0 b0

c0 d 0

�
D "f;q.d

0/

for
�
a0

c0
b0

d 0

�
2 U 0q . Now, for g 2GL2.AQ/, write

gD � � .u�1/; with � 2GL2.Q/; u 2 U 0; �1 2GL2.R/C:

Then set

F j .g/D ı
j

k
.f /

�
�1.�/

�
j.�1; �/

�`!f .u/;

where we define

J.� 0; z/ WD c0zC d 0 and j.� 0; z/ WD det.� 0/�1=2.c0zC d 0/;

for any � 0 D
�
a0

c0
b0

d 0

�
2GL2.R/. One checks easily that this definition is independent

of the choice of decomposition of g. Further, for any ˛ 2K�1,

F j .g˛/D F j .g/j.˛; �/�` D ˛�`NK.˛/`=2F j .g/:

Here NK DN ıNK=Q is the usual norm character on K , N being the norm character
on Q.

LEMMA 4.12
The restriction of the character !f of U 0 to Uc (via the embedding �A) is  "f .

Proof
For q � N , the restrictions of !f to U 0q and of  "f to Uc;q are both trivial. Suppose
therefore that q dividesN . Let aCb� 2Oc\Uc;q . By (4.3.2), we have a 2 Z and b 2
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NZ. Since N=ƒ� lies in Nc ˝ Zq and since ƒ�� 2Oc , the element N� D .N=ƒ� / �
ƒ�� also lies in Nc ˝Zq so that

 "f ;q.aC b�/D "f;q.a/D !f;q
�
�q.aC b�/

�
:

Since Oc \ Uc;q is dense in Uc;q , it follows that  "f .u/ D !f .�A.u// for all u 2
Uc;q � Uc .

PROPOSITION 4.13
Suppose that � 2†.2/cc .N/ is of infinity type .kCj;�j /. Let � and �0 be grossenchar-
acters defined by

� WD ��1N�jK ; �0 WD �N`=2K ;

so that �0 is unitary. Then

1

hc

X
Œa2Pic.Oc/

��1.a/Na
�j � .ı

j

k
f /.a�1; ta/

D .2�i/`ƒ�`�

Z
K�K�1nA

�
K

F j
�
�A.x/

�
� �0.x/d�x;

where hc WD # Pic.Oc/ and the measure d�x on K�K�1 nA
�
K is chosen to have total

volume 1.

Proof
Let us pick elements yi 2 OOc such that A�K D

Fh
iD1K

� �Uc �K
�
1 �yi . We may assume

that we have picked yi to satisfy

yi;q 	 1 mod NOK;q for q jN: (4.3.3)

Let ai WD yiOc be the associated proper Oc-ideal so that

�.yi /D �.ai /D �
�1.ai /Na

�j
i : (4.3.4)

Let U 00 WD
Q
q U
00
q be the subgroup of U 0 defined by U 00q WDU

0
q if q �N , and let

U 00q WD

²�
a0 b0

c0 d 0

�
2 U 0q W d

0 	 1 modN

³
:

By strong approximation for GL2, we may write

�A.yi /D gi .gU;i � �i / with gi 2GL2;Q; gU;i 2 U 00; �i 2GL2.R/C:
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Since gi�i D 1, we have ��1i D gi 2GL2.Q/C. Further, since � is a Heegner embed-

ding, we have gigU;i 2 M̂0.N /, and consequently ��1i 2 M̂0.N / \ GL2.Q/C, that
is,

��1i D

�
ai bi

ci di

�
2M2.Z/\GL2.Q/C; ci 2NZ: (4.3.5)

In fact, on account of (4.3.3) and the fact that N� 2Nc ˝Zq for q jN (see the proof
of Lemma 4.12 above), we also have di 	 1modN . Now, for u 2 Uc ,

F j
�
�A.xu/

�
D F j

�
�A.x/

�
!f
�
�A.u/

�
D F j

�
�A.x/

�
"f .u/:

HenceZ
K�K�1nA

�
K

F j
�
�A.x/

�
� �0.x/d�x D

1

hc

hcX
iD1

ı
j

k
.f /.�i�/j.�i ; �/

�`!f .gU;i /�
0.yi /

D
1

hc

hcX
iD1

ı
j

k
.f /.�i�/J.�i ; �/

�`�.yi /;

since !f .gU;i /D 1. Taking into account (4.3.4), it will suffice to show that

.2�i/`ƒ�`� ı
j

k
.f /.�i�/J.�i ; �/

�` D .ı
j

k
f /.a�1i ; tai /:

From the choice of �i , we see that the class of �i� in X1.N / corresponds to the pair
.C=a�1i ; tai /, and there is a unique isomorphism

C=.Z�i� CZ/
	�i
' C=a�1i ;

sending Œ1=N � to tai , with a scalar 	i 2K�. Note that

J.�i ; �/
�1 D J.��1i ; �i�/D c

0.�i�/C d
0:

The scalar 	i may then be identified from the fact that there is a commutative diagram

C=.Z� CZ/
J.�i ;�/

�1

ƒ�

C=.Z�i� CZ/

�i

C=Oc C=a�1i

Thus 	i Dƒ� � J.�i ; �/, and

ı
j

k
.f /.a�1i ; tai /D ı

j

k
.f /

�
C=.Z�i� CZ/; 	�1i dz; Œ1=N �

�
Dƒ�`� .2�i/

`ı
j

k
.f /.�i�/J.�i ; �/

�`:
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In the next few sections, we will study the period integral

L�0;�.F
j / WD

Z
K�K�1nA

�
K

F j
�
�A.x/

�
� �0.x/d�x (4.3.6)

using the method of Waldspurger.

4.4. Explicit theta lifts
Let  denote the additive character of A=Q given by  ..xv/v/D

Q
v  v.xv/, where

 1.x/D e
2�ix;  q.x/D e

�2�ix for x 2 Z
h1
q

i
�Qq :

Let .V; h ; i/ be an even-dimensional orthogonal space over Q, and denote by O.V /
(resp., GO.V /) its isometry group (resp., orthogonal similitude group). Recall the
Weil representation r D

Q
v r ;v of the group SL2.A/�O.V /.A/ on the Schwartz

space S.V .A//. On the orthogonal group, r ;v is given by

r ;v.g/'.x/D '.g
�1 � x/ for g 2O.V /.Qv/; ' 2 S

�
V.Qv/

�
:

On SL2.Qv/, the representation r ;v is described by its action on the matrices

U.a/ WD

�
1 a

0 1

�
; D.a/ WD

�
a 0

0 a�1

�
; W WD

�
0 1

�1 0

�
;

by the equations

r ;v
�
U.a/

�
'.x/D  v

�1
2
hax;xi

�
'.x/;

r ;v
�
D.a/

�
'.x/D �V;v.a/jaj

dim.V /=2
v '.ax/;

r ;v.W /'.x/D �V;v O'.x/;

where �V;v is a quadratic character and �V;v is an eighth root of unity, that can be read
off from [JL, Section 1]. In the cases of interest to us, they can also be found listed in
the table in [P, Section 3.4]. The Fourier transform O' is defined by

O'.x/D

Z
V.Qv/

'.y/ v
�
hy;xi

�
dy;

the measure dy on V.Qv/ being chosen such that OO'.x/D '.�x/.
We will need to extend the Weil representation to similitude groups, following

Harris–Kudla in [HK2]. Let R be the group defined by

R WD
®
.g; h/ 2GL2 �GO.V / W det.g/D �.h/

¯
;
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where � denotes the similitude character of GO.V /. Then r can be extended to
R.A/ by

r .g; h/' D r 

�
g �

�
1 0

0 detg�1

��
L.h/';

where

L.h/'.x/D
ˇ̌
�.h/

ˇ̌�dim.V /=4
'.h�1x/:

Let GO.V /0 denote the algebraic connected component of GO.V /. If F is an
automorphic form on GL2.A/ and if ' 2 S.V .A//, we define, for h 2GO.V /.A/,


'.F /.h/ WD

Z
SL2.Q/nSL2.A/

X
x2V.Q/

r .gg
0; h/'.x/F.gg0/d .1/g;

where g0 is chosen such that det.g0/ D �.h/. Likewise, in the opposite direction, if
F 0 is an automorphic form on GO.V /0.A/ and if g 2GL2.A/ is such that det.g/ 2
�.GO.V /.A//, then we set


 t'.F
0/.g/ WD

Z
O.V /.Q/nO.V /.A/

X
x2V.Q/

r .g; hh
0/'.x/F 0.hh0/ dh;

where h0 2 GO.V /0.A/ is chosen such that det.g/ D �.h0/ (we refer the reader to
[P, Section 1] for the choices of measures in the above and in what follows). If �
(resp., …) is an automorphic representation of GL2.A/ (resp., of GO.V /0.A/), then
we define


.�/ WD
®

'.F / W F 2 �;' 2 S

�
V.A/

�¯
;


 t .…/ WD
®

 t'.F

0/ W F 0 2…;' 2 S
�
V.A/

�¯
:

Now set V WDM2.Q/, and consider V as an orthogonal space over Q with bilin-
ear form

hx;yi D
1

2
.xy�C yx�/;

�
a b

c d

��
D

�
d �b

�c a

�
:

The associated quadratic form is just x 7! xx� D det.x/. The group GO.V /0 is
identified with the quotient Q� n GL2 � GL2 via the map .˛;ˇ/ 7! ı.˛;ˇ/, where
ı.˛;ˇ/.x/D ˛xˇ�1. Thus an automorphic representation of GO.V /0.A/ is identi-
fied with a pair .�1; �2/ of representations of GL2.A/, such that the product of the
central characters of �1 and �2 is trivial. To ease notation, we will often just write
.˛;ˇ/ to denote the element ı.˛;ˇ/.
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Let � denote the (unitary) automorphic representation of GL2.A/ associated
to f . The following theorem is the classical Jacquet–Langlands correspondence real-
ized using theta functions, and is essentially due to Shimizu [Sz, Theorem 1] (see also
[W, Section 3.2]).

THEOREM 4.14
We have
(1) 
. N�/D N� � � , where N� D �_ D � ˝ "�1

f
;

(2) 
 t .� � N�/D � .

We will need a statement involving specific forms in � and N� and explicit theta
functions (i.e., explicit choices of Schwartz functions). For any finite prime q, let qnq

be the exact power of q dividing N , and for any set A, let IA denote the characteristic
function of A. For q a prime dividing N , we set

'1q

�
a b

c d

�
WD

´
IZq .a/IZq .b/IqnqZq .c/IZq .d/ if q �N"f ;

"f;q.d/IZq .a/IZq .b/IqnqZq .c/IZ�q .d/ if q jN"f :
(4.4.1)

'2q

�
a b

c d

�
WD

´
1
q

IZq .a/IZq .b/Iqn�1Zq .c/IZq .d/ if q �N"f ;
1
q
"f;q.d/IZq .a/IZq .b/Iqnq�1Zq .c/IZ�q .d/ if q jN"f :

(4.4.2)

Let † denote the set of primes dividing N . For now, we fix a subset „ of †, and
we consider the Schwartz function '„ WD

N
q '

„
q , where

(i) for q �N , '„q D IM0.N/˝Zq D IM2.Zq/;
(ii) for q jN , '„q D '

1
q or '2q according as q …„ or q 2„;

(iii) for q D1, we identify M2.R/D .K ˝R/C .K ˝R/? D CCC?, and we
set '„1 D '1, with

'1.uC v/D Nu`pj
�
4�hv;vi

�
e�2�.jhu;uijCjhv;vij/; (4.4.3)

for u 2C;v 2C?, where pj denotes the jth Laguerre polynomial

pj .X/D

jX
sD0

 
j

s

!
.�X/s

sŠ
:

LEMMA 4.15
Suppose that �� WD

�
cos�
sin�

� sin�
cos�

�
2 SO2.R/ and that �1; �2 2 .K˝R/.1/ �GL2.R/.

Then

r 
�
�� ; .�1; �2/

�
'1 D e

ik� � �`1 � �
�`
2 '1:
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Proof
This is proved in [X, Proposition 2.2.5].

For q jN , set U 1q WD U
0
q (recall that U 0q was defined to be .M0.N /˝Zq/�), and

set

U 2q WD

²�
a b

c d

�
2GL2.Zq/ a; d 2 Z�q ; b 2 qZq; c 2 qnq�1Zq

³
:

We also set U„q equal to U 0q if q � N and equal to U 1q or U 2q according to whether
q …„ or q 2„, if q jN .

LEMMA 4.16
Let q be a finite prime, and suppose that ˛;ˇ 2 U 0q , � 2 U„q are such that

det.˛/D det.ˇ/ � det.�/�1;

so that .˛; .ˇ; �// may be viewed as an element of R.Qq/.
(1) Suppose that q �N"f . Then

r 
�
˛; .ˇ; �/

�
'„q D '

„
q :

(2) Suppose that q jN"f . Then

r 
�
˛; .ˇ; �/

�
'„q D "f;q

�
a.˛/

�
"f;q

�
d.ˇ/�1d.�/

�
'„q ;

where for any matrix ˛ in GL2, we define a.˛/ and d.˛/ to be the upper left
and lower right entries of ˛, respectively.

Proof
Let us write 'q instead of '„q for simplicity. Clearly, we may assume that

det.˛/D det.ˇ/det.�/�1 D 1:

Then

r 
�
˛; .ˇ; �/

�
'q.x/D r .˛/L.ˇ; �/'q.x/D r .˛/'q.ˇ

�1x�/:

In case (1), we have 'q.ˇ
�1x�/ D 'q.x/, while in case (2), 'q.ˇ�1x�/ D

"f;q.d.ˇ/�1d.�//'q.x/. So it suffices to consider the action of r .˛/ on 'q . Let us
first check case (1). If further q �N , then ˛ is in the subgroup generated by matrices
of the formD.a/, U.y/, andW with a 2 Z�q and y 2 Zq . Thus we may assume that ˛
is in fact one of these three possibilities. Since 'q D IM2.Zq/ in this case, one checks
easily that
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r 
�
D.a/

�
'q.x/D 'q.ax/D 'q.x/; (4.4.4)

r 
�
U.y/

�
'q.x/D  q

�
y det.x/

�
'q.x/D 'q.x/; (4.4.5)

r .W /'q.x/D O'q.x/D 'q.x/: (4.4.6)

Next let us suppose that we are still in case (1) but that q jN and qn kN , so that

'q

�
a b

c d

�
D

´
IZq .a/IZq .b/IqnZq .c/IZq .d/ if q …„;
1
q

IZq .a/IZq .b/Iqn�1Zq .c/IZq .d/ if q 2„:

Note that

O'q

�
a b

c d

�
D

´
1
qn

IZq .a/Iq�nZq .b/IZq .c/IZq .d/ if q …„;
1
qn

IZq .a/Iq�.n�1/Zq .b/IZq .c/IZq .d/ if q 2„:

Set

V.z/ WD

�
1 0

z 1

�
:

Then ˛ is in the subgroup generated by matrices of the form D.a/, U.y/, and V.z/
with a 2 Z�q , y 2 Zq , and z 2 qnZq . Now one checks immediately that the rela-
tions (4.4.4) and (4.4.5) continue to hold for such q. As for V.z/, note that V.z/D
D.�1/W U.z/W . Further, for z 2 qnZq ,

r 
�
U.z/

�
O'q D 'q :

Hence for such z,

r 
�
V.z/

�
'q D r 

�
D.�1/W U.z/W

�
'q D r 

�
D.�1/W U.z/

�
O'q

D r 
�
D.�1/W

�
O'q D r 

�
D.�1/

�
OO'q D 'q :

Thus case (1) is entirely verified. We now deal with case (2). In this case,

'q

�
a b

c d

�
D

´
"f;q.d/IZq .a/IZq .b/IqnZq .c/IZ�q .d/ if q …„;
1
q
"f;q.d/IZq .a/IZq .b/Iqn�1Zq .c/IZ�q .d/ if q 2„:

Thus

r 
�
D.a/

�
'q.x/D 'q.ax/D "f;q.a/'q.x/

for a 2 Z�q , and r .U.y//'q.x/D q.y det.x//'q.x/D 'q.x/ for y 2 Zq .
It remains to consider the action of r .V .z// on 'q for z 2 qnZq . For this, we

need as before to compute the Fourier transform of 'q . Suppose that cond."f;q/ D
qmZq , so that m� n. Then
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O'q

�
a b

c d

�
D

´
1

qmCn
"�1
f;q
.qma/Iq�mZ�q .a/Iq�nZ�q .b/IZq .c/IZq .d/ if q …„;

1
qmCn

"�1
f;q
.qma/Iq�mZ�q .a/Iq�.n�1/Z�q .b/IZq .c/IZq .d/ if q 2„:

Thus r .V .z// O'q D O'q in this case as well, and we see as above that r .V .z//'q D
'q .

We need the following lemma in order to study explicit theta lifts in both direc-
tions. For any q 2† and for ˇ 2GL2.A/, we define

ˆq.ˇ/ WD

Z
SL2.Qq/

'2q .˛
�1
q /F j .ˇ˛q/d

.1/˛q :

LEMMA 4.17
Let†0 denote the subset of† consisting of those primes q such that �f;q ' �.�1;�2/
is a ramified principal series representation with �1 unramified and with �2 ramified
of conductor exactly qnq , where qnq k N . Then for q 2 †, the function ˆq.ˇ/ is
identically zero unless q 2†0. If q 2†0, then

ˆq.ˇ/D q
�1=2�1.q/

�1F j .ˇ�q/;

where �q is the element of GL2.A/, that is,
�
q
0

0
1

�
at q and 1 at all other places.

Proof
Let us write n instead of nq for ease of notation. We suppose first that q 2 † n†0.
In this case, �f;q is either supercuspidal or a ramified special representation or a
ramified principal series' �.�1;�2/, where�1 and�2 both have conductor dividing
qn�1. In any case, the central character "f;q has conductor dividing qn�1 (see [Tu1,
Proposition 3.4]). We claim then that

ˆq.ˇu/D "f;q.d/ˆq.ˇ/; (4.4.7)

for uD
�
a
c

b
d

�
2 �q.n� 1/, where for any integer m� 1, we define

�q.m/ WD

²�
a b

c d

�
2GL2.Zq/ W c 	 0 modqm

³
:

It suffices to verify (4.4.7) for � a matrix in one of the three forms:

D.a; b/ WD

�
a 0

0 b

�
; a; b;2 Z�q I U.y/; y 2 ZqI

and

V.z/; z 2 qn�1Zq :
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This follows from the following set of computations. First, let a; b 2 Z�q . Then

ˆq
�
ˇ �D.a; b/

�
D

Z
SL2.Qq/

'2q .˛
�1
q /F j

�
ˇ �D.a; b/ � ˛q �D.a; b/

�1 �D.a; b/
�
d .1/˛q

D "f;q.b/

Z
SL2.Qq/

'2q
�
D.a; b/ � ˛�1q �D.a; b/

�1
�
F j .ˇ � ˛q/d

.1/˛q

D "f;q.b/

Z
SL2.Qq/

'2q .˛
�1
q /F j .ˇ � ˛q/d

.1/˛q D "f;q.b/ˆq.ˇ/:

Next, let y 2 Zq . Then

ˆq
�
ˇ �U.y/

�
D

Z
SL2.Qq/

'2q .˛
�1
q /F j

�
ˇ �U.y/ � ˛q

�
d .1/˛q

D

Z
SL2.Qq/

'2q
�
˛�1q �U.y/

�
F j .ˇ˛q/d

.1/˛q :

Suppose that ˛�1q D
�
a
c

b
d

�
. Then

˛�1q �U.y/D

�
a ay C b

c cy C d

�
:

If '2q .˛
�1
q / ¤ 0, then a; b; d 2 Zq and c 2 qn�1Zq . Hence cy C d 	 d modqn�1.

Since the conductor of "f;q divides qn�1, it follows that '2q .˛
�1
q U.y// D '2q .˛

�1
q /

for all ˛q , and consequently ˆq.ˇ �U.y//Dˆq.ˇ/. Finally, let z 2 qn�1Zq . Then

ˆq
�
ˇ � V.z/

�
D

Z
SL2.Qq/

'2q .˛
�1
q /F j

�
ˇ � V.z/ � ˛q

�
d .1/˛q

D

Z
SL2.Qq/

'2q
�
˛�1q � V.z/

�
F j .ˇ˛q/d

.1/˛q :

But

˛�1q V.z/D

�
aC bz b

cC dz d

�
:

Since z 2 qn�1Zq , one finds that '2q .˛
�1
q V.z// D '2q .˛

�1
q / for all ˛q . This proves

(4.4.7). But now by Casselman’s theorem, we see that ˆq.ˇ/must be identically zero
for such q.
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We now turn to q 2 †0. In this case, one cannot argue as above since "f;q has
conductor qn. However, the argument above shows that ˆq is right invariant by V.z/
for z 2 qn�1Zq and by U.y/ for y 2 qZq , and transforms by "f;q.b/ under the right
action of D.a; b/. We conclude that if u lies in the subgroup²�

a b

c d

�
2GL2.Zq/ W a;d 2 Z�q ; b 2 qZq; c 2 qn�1Zq

³
;

then ˆq.ˇ � u/D "f;q.d.u//ˆq.ˇ/. By Casselman’s theorem, we see that

ˆq.ˇ�
�1
q /D Qc �F j .ˇ/

for some scalar Qc. We now compute the value of Qc. Letting �.1/q .m/ WD �q.m/ \

SL2.Qq/, note that

ˆq.ˇ/D
1

q

Z
�
.1/
q .n�1/

"f;q
�
d.˛�1q /

�
F j .ˇ˛q/d

.1/˛q :

Let us first suppose that n� 2. Then the collection

V.x/D

�
1 0

x 1

�
; x 2 qn�1Zq=qnZq;

is a set of coset representatives for �.1/q .n� 1/=�
.1/
q .n/. Hence

Qc �F j .ˇ�q/D ˆq.ˇ/

D
1

q

X
x2qn�1Zq=qnZq

Z
�
.1/
q .n/

"f;q
�
d
�
˛�1q V.x/

��
F j
�
ˇV.x/˛q

�
d .1/˛q

D
1

q

X
x2qn�1Zq=qnZq

Z
�
.1/
q .n/

"f;q
�
d.˛�1q /

�
F j
�
ˇV.x/

�
"f;q

�
d.˛q/

�
d .1/˛q

D
1

q
vol.U 0q

.1/
/

X
x2qn�1Zq=qnZq

F j
�
ˇV.x/

�
: (4.4.8)

To find the value of Qc, we may substitute ˇD 1 and compute in a convenient model for
the local representation �f;q ' �.�1;�2/. We use the standard model of the induced
representation V.�1;�2/, and we denote by fq a new vector in this representation,
normalized so that fq.1/D 1. Then (see [S, Proposition 2.1.2]), we have

fq.�q/D �1.q/
1�njqj1=2q ;

while
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fq

�
1 0

x 1

�
D

´
�1.q/

�n if vq.x/� n;

0 if vq.x/ < n:

It follows that

Qc D
1

q
�1.q/

�1jqj�1=2q vol.U 0q
.1/
/D q�1=2�1.q/

�1 vol.U 0q
.1/
/:

If on the other hand n D 1, then the matrices V.x/ with x 2 Zq=qZq along with
W form a set of coset representatives for �.1/q =�

.1/
q .1/. Again, we can use the stan-

dard model of the induced representation to compute the value of Qc. However, since
fq.W /D 0 (see [S, Proposition 2.1.2]), the expression for Qc remains the same in this
case too.

Definition 4.18
For „�†, we set F j„.g/D F

j .g �
Q
q2„ �q/, where �q is as in Lemma 4.17 above.

PROPOSITION 4.19
We have


 t
'„
.F j �F

j
„/D C

„
1 �F

0;];

where

C„1 WD

´
0 if „ 6�†0;

.4�/�.j�1/ �.kCj /
�.k/

vol.U 0.1// � hF j ;F j i �
Q
q2„.q

�1=2�1.q// if „�†0;

(4.4.9)

and F 0;] is the unique form in � characterized by the following.
(i) If q �N , then F 0;].gu/D F 0;].g/ for u 2GL2.Zq/.

(ii) If q jN , then F 0;].gu/D "f;q.a/F 0;].g/ for uD
�
a
c

b
d

�
2 �q.nq/.

(iii) Let a 2 R�, a1 WD d.a/ 2 GL2.R/, �� D
�

cos�
sin�

� sin�
cos�

�
2 SO2.R/. Let .1;

a1�� / denote the element of GL2.A/ which is 1 at all finite places and a1��
at the infinite place. Then

WF 0;]; .1; a1�� /D a
k=2e�2�aeik� IRC.a/:

HereW	; denotes as usual the  -Whittaker coefficient and hF j ;F j i denotes
the Petersson inner product:

hF j ;F j i D
1

2

Z
PGL2.Q/nPGL2.A/

F j .ˇ/F j .ˇ/d�ˇ:
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Proof

Let F 0 WD 
 t
'„
.F j �F

j
„/. We first show that F 0 D C„1 �F

0;] for some constant C„1 .
Note that for u 2 U 0 and for �� 2 SO2.R/, by Lemmas 4.15 and 4.16, we have

F 0.gu�� /

D

Z
O.V /.Q/nO.V /.A/

X
x2V.Q/

r 
�
gu�� ; h � .u; 1/

�
'„.x/.F j �F

j
„/
�
h � .u; 1/

�
dh

D eik�
Y
qjN"f

"f;q
�
a.uq/

�
"f;q

�
d.uq/�1

�
� "f;q

�
d.uq/

�
F 0.g/

D eik�
Y
qjN"f

"f;q
�
a.uq/

�
F 0.g/: (4.4.10)

Since 
 t .� ˝ N�/D � , it follows by Casselman’s theorem that F 0 D C„1 � F
0;] for

some scalar C„1 . Clearly, C„1 is just the first Fourier coefficient of F 0. To evaluate
C„1 , we compute the Whittaker coefficients of F 0. As in [W, Section 3.2.1],

WF 0; .g/D
1

2

Z
PGL2.Q/nPGL2.A/

‰.g;ˇ/F
j
„.ˇ/d

�ˇ;

where

‰.g;ˇ/D

Z
GL2.A/det.g/

r 
�
g; .˛; 1/

�
'„.1/F j .ˇ˛/d .1/˛:

Note that

‰.1; ˇ/D
Z

SL2.A/
r 
�
1; .˛; 1/

�
'„.1/F j .ˇ˛/d .1/˛

D

Z
SL2.A/

'„.˛�1/F j .ˇ˛/d .1/˛:

This integral can be computed one place at a time since both F j and '„ are pure
tensors. We first consider finite primes q such that q …„. In this case, if 'q.˛�1q /¤ 0,
then ˛�1q 2 U

0
q . Hence ˛q 2 U 0q as well. If further q � N"f , then 'q.˛�1q / D 1 and

F j .ˇ˛q/ D F
j .ˇ/. On the other hand, if q j N"f , then 'q.˛�1q / D "f;q.d.˛q/�1/

and F j .ˇ˛q/D "f;q.d.˛q//F j .ˇ/, so that in any case, for q …„, we haveZ
SL2.Qq/

'„q .˛
�1
q /F j .ˇ˛q/d

.1/˛q D vol.U 0q
.1/
/ �F j .ˇ/:

For q 2„, it follows from Lemma 4.17 that
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SL2.Qq/

'„q .˛
�1
q /F j .ˇ˛q/d

.1/˛q

D

´
0 if q …†0;

vol.U 0q
.1/
/ � q�1=2��11 .q/F

j .ˇ�q/ if q 2†0:

Finally, the computation of the local integral at the infinite place can be found in [X,
Proposition 4.3.4]. Accounting for our different choice of measures, this contribution
equals e�2�.4�/�.j�1/�.k C j /=�.k/. Putting together the local computations, we
find

‰.1; ˇ/D

8̂̂<̂
:̂
0 if „ 6�†0;

e�2� � .4�/�.j�1/ �.kCj /
�.k/

� vol.U 0.1// �
Q
q2„.q

�1=2��11 .q// �F
j
„.ˇ/

if „�†0:

Thus C„1 D 0 unless „�†0, and in that case,

C„1 D e
2�WF 0; .1/

D .4�/�.j�1/ vol.U 0.1//
�.kC j /

�.k/
�
Y
q2„

�
q�1=2��11 .q/

�
hF

j
„;F

j
„i

D .4�/�.j�1/
�.kC j /

�.k/
� vol.U 0.1//hF j ;F j i �

Y
q2„

�
q�1=2��11 .q/

�
:

PROPOSITION 4.20
We have


'.F 0;]/D C
„
2 � .F

j �F
j
„/;

where

C„2 D

´
0 if „ 6�†0;
.4�/jC1

�.jC1/
=.�/` vol.U 0.1//

Q
q2†0.q

�1=2��11 .q// if „�†0:
(4.4.11)

(Recall that †0 was defined in Lemma 4.17.)

Proof
By a calculation as in (4.4.10) and another application of Casselman’s theorem, we
have 
'.F 0;]/D C„2 � .F

j � F
j
„/ for some constant C„2 . To compute C„2 , one stud-

ies the theta lift in the opposite direction and uses the seesaw principle. Indeed, the
seesaw principle and Proposition 4.19 imply that
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C„2 hF
j ;F j i2 D

˝

'.F 0;]/;F j �F

j
„

˛
D
˝
F 0;]; 
 t'.F

j �F
j
„/
˛
D C„1 hF

0;];F 0;]i;

that is, C„2 D C
„
1 hF

0;];F 0;]i=hF j ;F j i2. But (see Lemma 4.11),

hF j ;F j i=hF 0;];F 0;]i D =.�/�`.4�/�2j�.j C 1/�.kC j /=�.k/:

(The term =.�/�` appears since F 0 and F 0;] are normalized differently: the former
is the adelic form associated to f and the base point � , while the latter uses the base
point i . To translate from one to other involves picking an element � 2 SL2.R/ such
that �i D � , and one checks that hF 0;F 0i=hF 0;];F 0;]i D j.�; i/2` D =.�/�`.) The
proposition now follows by using the value of C„1 from Proposition 4.19.

We now make the following key definition, namely that of the Schwartz function
in the explicit theta correspondence.

Definition 4.21
The explicit Schwartz function ' is defined by ' WD˝q'q , where '1 is as in (4.4.3)
and for finite primes q, the 'q are as below.
(i) If q �N , then 'q D IM0.N/˝Zq D IM2.Zq/.
(ii) If q j N , then 'q D '1q for q …†0 and 'q WD '1q � '

2
q for q 2 †0. Recall that

'1q and '2q were defined previously in (4.4.1) and (4.4.2), respectively, and that
†0 was defined in Lemma 4.17.

The following lemma which will be used in the next section is an easy conse-
quence of the fact that � is of type .c;N; "�1

f
/.

LEMMA 4.22
For q 2 †0, fix an isomorphism Kq ' Qq � Qq such that via this identification the
embedding �q WKq ,!M2.Qq/ is conjugate by an element of U 0q to the embedding

.a; b/ 7!

�
a 0

0 b

�
:

Let �0q D .�1; �2/ via this identification. Then
(1) �1 is unramified and �2 is ramified,
(ii) �2�

�1
2 is unramified.

4.5. Seesaw duality and the Siegel–Weil formula
Let V1 DK (viewed as a subspace of V via �), and let V2 D V ?1 . Then

GO.V1/0 ' GO.V2/0 'K�;

H WD G
�
O.V1/�O.V2/

�0
DG.K� �K�/;
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and via this identification the map ı WK� �K�!H is

ı.˛;ˇ/D
�
˛ˇ�1; ˛.ˇ�/�1

�
:

Since �0.˛/�0.ˇ/D �0.˛ˇ�1/, the character .�0; �0/ of K� �K� is the pullback via ı
of the character � WD .�0; 1/ on H. Suppose that

'q D
X
iq2Iq

'
iq
1 ˝ '

iq
2 2 S.V1˝Qq/˝ S.V2˝Qq/:

Then by an application of seesaw duality for the seesaw pair,

GL2 �GL2 GO.V /

GL2 G
�
O.V1/�O.V2/

�
;

we have (as in [HK1, (14.5)])Z
H.Q/nH.A/


 ;'.F 0;]/jH.A/.h/�.h/d
�h

D

Z
GL2.Q/A�nGL2.A/

F 0;].g/ � 
 t'.�/jGL2.A/.g/dg

D

Z
GL2.Q/A�nGL2.A/

F 0;].g/ �
X

iD.iq/2ID
Q
q Iq


 t
˝q'

iq
1

.�0/.g/
 t
˝q'

iq
2

.1/.g/dg:

(4.5.1)

Here 
 t .�0/ and 
 t .1/ are defined as follows. Set

GL2.A/K WD
®
g 2GL2.A/ W det.g/ 2NK.A�K/

¯
:

For g 2GL2.A/K , & 2 S.V1.A//, and h 2A�K such that det.g/DNK.h/,


 t& .�
0/.g/ WD

Z
K.1/nK

.1/
A

X
x2V1

r .g; hh1/&.x/�0.hh1/ d
.1/h1:

One then extends the definition to the index 2 subgroup GL2.Q/ � GL2.A/K of
GL2.A/ by requiring it to be left invariant by GL2.Q/. Finally, one extends it by
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zero outside this index 2 subgroup. The theta lift 
 t .1/ is defined similarly with �0

replaced by the trivial character and with V1 replaced by V2. Here the measure d .1/h1
is chosen such that it lifts to a Haar measure on K.1/A and vol.K.1/ nK.1/A /D 1.

Now, by the Siegel–Weil formula, the theta lift 
 t .1/ is an Eisenstein series.
Unfolding this Eisenstein series by the standard Rankin–Selberg method, one finds
that the integral in (4.5.1) above is equal to the expression I.';�/, where (defining
ˆs as in [P, Proposition 3.1]) we have

I.';�/

WD �.2/�1
Z
A�Q

Z
K0

W N .F
0;]/

�
d.a/k

�
�

X
iD.iq/2ID

Q
q Iq

W 
�

 t
˝q'

iq
1

.�0/
��
d.a/k

�
ˆs
˝q'

iq
2

�
d.a/k

�
.1/jaj�1d�adk:

Here K0 D
Q
q GL2.Zq/�SO2.R/), the measure dk is a product of local Haar mea-

sures such that vol.GL2.Zq// D 1 and vol.SO2.R// D 2� , and the factor �.2/�1

accounts for the change in measure normalization. We now state two propositions
that will be useful in computing the integral above.

We note first that W N .F
0;]/DW .F 0;]/ and that W .F 0;]/D

Q
vW ;v.F

0;]/,

whereW ;v.F 0;]/ is normalized to take value 1 on the identity matrix in GL2.Zq/ for
finite q and where W ;1.F 0;]/.d.a// D e�2�aak=2IRC.a/. The proposition below
(which is simply copied from [S, Section 2.4], taking into account the fact that F 0;]

transforms by the central character of the upper left entry at ramified places as opposed
to the lower right entry as in [S, Section 2.4]) lists the values of W ;q.F 0;]/ on matri-

ces of the form d.a/ WD
�
a
0

0
1

�
.

PROPOSITION 4.23
Let a 2Q�q . Then W ;q.F 0;]/.d.a// is equal to
(i) jaj1=2.

P
rCsDvq.a/

�1.q/
r�2.q/

s/IZq .a/, if �f;q ' �.�1;�2/ is an unrami-
fied principal series representation;

(ii) jaj�.a/IZq .a/, if �f;q ' St.�/ is a special representation with � unramified;
(iii) IZ�q .a/, if �f;q ' St.�/ is a special representation with � ramified;

(iv) jaj1=2�2.a/IZq .a/, if �f;q ' �.�1;�2/ is a ramified principal series repre-
sentation with �1 unramified and �2 ramified;

(v) "f;q.a/IZ�q .a/, if �f;q ' �.�1;�2/ is a ramified principal series representa-
tion with both �1 and �2 ramified, or if �f;q is supercuspidal.

For simplicity, in our local calculations below, we simply write WF for
W N ;q.F

0;]/. The following proposition follows from the discussion in [P, Section 3.3].
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PROPOSITION 4.24
The Whittaker function W .
 t˝q#q .�

0// factors as

W 
�

 t˝q#q .�

0/
�
D

1

hK

Y
q

W‚;#q ;

where for any prime q, either finite or infinite, we have

W‚;#q
�
d.a/

�
D

Z
K
.1/
q

#q
�
a.hh0/�1

�
�0q.hh

0/ dh

D jaj1=2q

Z
K1q

#q
�
.hh0/�

�
�0q.hh

0/ dh (4.5.2)

for any h0 such that N.h0/D a. (Here the Haar measure dh on K.1/v is chosen such
that vol.K.1/1 /D 1 and for finite primes q, vol.OK ˝Zq/.1/ D 1.) Also,

ˆs˝&q

�
d.a/

�
D jajs

Y
q

&q.0/:

More generally, suppose that jq WKq! Vq is an embedding of quadratic spaces,
where Kq D K ˝Qq and Vq D V.Qq/. For & 2 S.Vq/D S.Kq//˝ S.K?q /, write
& D

P
i &1;i ˝ &2;i , and define

I.&; jq/D
X
i

Z
Q�q

Z
K0;q

WF
�
d.a/k

�
W‚;&1;i

�
d.a/k

�
ˆs&2;i

�
d.a/k

�
jaj�1d�adk:

(4.5.3)

Since W‚;&1;i �ˆ
s
2;i .�/ is bilinear in .&1;i ; &2;i /, the expression on the right-hand side

in (4.5.3) is independent of the decomposition & D
P
i &1;i ˝ &2;i . In this notation,

we have

I.';�/D
�.2/�1

hK

Y
q<1

I.'q;�q/ � I.'1;�1/: (4.5.4)

Thus to compute I.';�/ it suffices to compute I.'q;�q/ for all q. However, for
finite primes q, it is easier to compute I.'q; � 0q/ for a modified embedding � 0q which
is defined by

� 0q.x/D u
�1
q �q.x/uq

for some suitable choice of uq 2 U 0q . If '0q is the Schwartz function defined by

'0q.x/D 'q.u
�1
q xuq/;
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then it is immediate that

I.'0q;�q/D I.'q; �
0
q/:

Define '0 by '0 D .
N
q '
0
q/˝ '1.

PROPOSITION 4.25
Suppose that the uq 2 U 0q have been chosen such that for all q 2 †0, � 0q is given on
Kq DQq �Qq by

� 0q.a; b/D

�
a 0

0 b

�
:

ThenZ
H.Q/nH.A/


'0.F 0;]/jH.A/.h/�.h/d
�h

D
.4�/jC1=.�/`

�.j C 1/
vol.U 0.1// �

Y
q2†0

�
1���11 .q/�1.q/q

�1=2
�
�
ˇ̌
L�0;�.F

j /2
ˇ̌
:

Proof
Let u 2 GL2.Af / be the element whose coordinate at q is uq . Observe here that

'0 D r .1; .u;u//'. Hence 
'0.F 0;]/.h/D 
'.F 0;]/.h � .u;u// andZ
H.Q/nH.A/


'0.F 0;]/jH.A/.h/�.h/d
�h

D 
'.F 0;]/jH.A/
�
h � .u;u/

�
�.h/d�h

D
X
„�†0

.�1/j„j
'„.F
0;]/jH.A/

�
h � .u;u/

�
�.h/d�h

D
X
„�†0

.�1/j„jC„2

Z
K��K�nA�

K
�A�

K

.F j �F
j
„/.˛u;ˇu/

� .�0 � �0/.˛;ˇ/d�˛ d�ˇ

D
X
„�†0

.�1/j„jC„2 �L�0;�
�
F j .�u/

�
�L�0;�

�
F
j
„.�u/

�
:

But setting ˛q WD .q�1; 1/ 2 K�q , ˛„ WD
Q
q2„ ˛q , and �„ WD

Q
q2„ �q , we have

�A.˛„/ � u�„u
�1 D 1 and

L�0;�
�
F
j
„.�u/

�
D

Z
K�nA�

K

F j
�
�A.x/u�„

�
�0.x/d�x
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D

Z
K�nA�

K

F j
�
�A.x˛„/u�„

�
�0.x˛„/ d

�x

D �0.˛„/L�0;�
�
F j .�u/

�
D
�Y
q2„

�1.q/
�
�L�0;�

�
F j .�u/

�
:

Since F j .�u/D F j .�/!f .u/, the proposition follows by using the value of C„2 from
(4.4.11).

We record the following corollary, which follows from Proposition 4.25 and the
preceding discussion.

COROLLARY 4.26
We have

I.'0;�/D
.4�/jC1=.�/`

�.j C 1/
vol.U 0.1// �

Y
q2†0

�
1���11 .q/�1.q/q

�1=2
�
�
ˇ̌
L�0;�.F

j /2
ˇ̌
:

Applying (4.5.4) (with ' replaced by '0), we see that to compute jL�0;�.F j /j2, it
suffices to compute I.'0q;�q/D I.'q; �

0
q/ for convenient choices of � 0q satisfying the

hypotheses of the lemma above. This is the content of the next section.

4.6. Local zeta integrals
To handle the local computations, it will be useful to set up the following notation.
Define

J.&;#/ WD

Z
Q�q

WF
�
d.a/

�
W‚;&

�
d.a/

�
ˆs#
�
d.a/

�
jaj�1 d�a;

and, for ˛ 2GL2.Qq/, define

J.&;#;˛/ WD

Z
Q�q

WF
�
d.a/˛

�
W‚;&

�
d.a/

�
ˆs#
�
d.a/

�
jaj�1 d�a:

We first dispose the simple case q D1.

PROPOSITION 4.27
For q D1, we have

I.'1; �1/D .2�/ � .4�/
�.kCj /�.kC j /:

Proof
One sees easily that I.'1; j1/D J.&;#/, where
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&.u/D ule�2�hu;ui

and

#.v/D pj
�
4�hv;vi

�
e�2�hv;vi:

Thus ˆs&1.d.a//D jaj
s#.0/. Taking h0 D a1=2 in (4.5.2), we find that

W‚;&
�
d.a/

�
D IRC.a/jaj

1=2

Z
K
.1/
1

&.a1=2h�1/h�`dh

D a.`C1/=2e�2�aIRC.a/D a
.`C1/=2e�2�aIRC.a/:

Thus I.'1; �1/D 2� �
R

R� a
k=2e�2�a � a.`C1/=2e�2�a � jajs�1IRC.a/d

�a and

I.'1; �1/jsD1=2 D 2� �

Z 1
0

a.kC`/=2e�4�a d�aD .2�/ � .4�/�.kCj /�.kC j /:

Next let q be a finite prime, and denote by oq and rq the maximal orders in Kq
and Qq , respectively. We split the calculations into several cases:
(I) q � cNdK ,
(II) q j c,
(III) qnq kN , with nq � 2,
(IV) q kN , q � dK ,
(V) q kN , q j dK ,
(VI) q j dK , q �N .

For the rest of this section, we simply write I for I.'0;�q/D I.'; �
0
q/.

4.6.1. Case I: q � cNdK
In this case, all the data is unramified and we have by a standard computation:

I DLq. N�f ; � N�; s/Lq.2s; "K/
�1:

4.6.2. Case II: q j c
Write oq D ZqCZq$ , where tr.$/D 0. Let$2 D u. We may assume that � 0q.$/D�
0
uqr

1=qr

0

�
, where qr k c. Set jq WD

�
1
0

0
�1

�
. For 0� i; j � qr � 1, set

&i;j D IZqC.qrZqCiCj=qr /$ #i;j D I.ZqC.qrZqCiCj=qr /$/jq :

Then
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'q D
X
i;j

&i;j ˝ #i;j :

Since WF and 'q are invariant under GL2.Zq/, it follows that

I D
X
i;j

J.&i;j ; #i;j /D J.&0;0; #0;0/:

Now,

W‚;&0;0
�
d.a/

�
D

Z
Q�q

&0;0.t; at
�1/�1.at

�1/�2.t/ d
�t

D

Z
0
vq.t/
vq.a/

vq.t�at�1/�r

�1.at
�1/�2.t/ d

�t:

Suppose that vq.a/ � 2r � 1. Then either vq.t/ � r or vq.at�1/ � r . In this case,
vq.t �at

�1/� r () both vq.t/� r and vq.at�1/� r . For such a then, the region
of integration in the last integral above is unchanged if a is replaced by ua for any
u 2 Z�q . Thus W‚;&0;0.d.au//D �1.u/W‚;&0;0.a/. Since WF .d.au//DWF .d.a//,
by picking u such that �1.u/¤ 1, we see thatZ

vq.a/�2r�1

WF
�
d.a/

�
W‚;&0;0

�
d.a/

�
jajs�1 d�aD 0:

So we may restrict attention to a such that 0 � vq.a/ � 2r � 2, and let t be in the
region of integration above. Since either vq.t/ � r � 1 or vq.at�1/ � r � 1, we see
that vq.t � at�1/ � r is only possible if vq.t/D vq.at�1/. This implies that vq.a/
must be even. Suppose that vq.a/D 2m� 2r � 2 so that m� r � 1, and suppose that
vq.t/Dm. Write aD q2mu, t D qmv with u;v 2 Z�q . The condition vq.t�at�1/� r
then translates to vq.v2 � u/� r �m, and �1.at�1/�2.t/D �1.qmuv�1/�2.qmv/D
"f;q.q/

m�1.uv
�2/ since �1�2 D "f;q is unramified. Then for m fixed,Z

vq.a/Dm

WF
�
d.a/

�
W‚;&0;0

�
d.a/

�
jajs�1d�a

D constant �
Z Z

u;v2Z�q
u�v2 modqr�m

�1.uv
�2/ d�v d�u:

Suppose that m> 0. Since the conductor of �1 is qr , there exists ˛ 2 Z�q , ˛ 	 1
mod qr�m such that �1.˛/¤ 1. Then for v fixed the integral over u is seen to be zero
by making a change of variables u 7! ˛u. Thus we are reduced to considering only
the case mD 0, and
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I D vol
�
.u; v/ 2 Z�q �Z�q ; u	 v

2 modqr
�

D
1

qr�1.q � 1/
D

1

qr
�K;q.1/ �Lq. N�f ; � N�0 ; s/Lq.2s; "K/

�1jsD1=2:

Here �K;q.1/D .1� .1=q//�2 if q is split in K and equal to .1� .1=q2//�1 if q
is inert in K .

4.6.3. Case III: qn kN with n� 2
In this case, q is split in K , that is, q D qNq and K ˝Qq ' Qq �Qq corresponding
to the completions at q and Nq, respectively. We suppose that q and Nq are chosen such
that N˝Zq D Nqn. We may assume that

� 0q.a; b/D

�
a 0

0 b

�
:

Then �0q D .�1; �2/, where �1 and �2"�1f;q are both unramified. Set jq WD
�
0
1

1
0

�
. Then

#
�
.a; b/jq

�
D IZq .a/

�
IqnZq �

1

q
Iqn�1Zq

�
.b/

and

&.a; b/D

´
IZq .a/IZq .b/ if q �N"f ;

IZq .a/IZ�q .b/"f;q.b/ if q jN"f :

Now

GL2.Zq/D �q.1/
G q�1G

zD0

U.z/w�q.1/

and

�q.1/D
G

y2qZq=qnZq

V.y/�q.n/;

so that

GL2.Zq/D
G

y2qZq=qnZq

V.y/�q.n/
G G

y2qZq=qnZq
z2Zq=qZq

U.z/wV.y/�q.n/:

Now V.y/D�wU.�y/w and wV.y/DU.�y/w. Thus
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r .w; 1/#
�
.a; b/jq

�
D O#

�
.a; b/jq

�
D

1

qn
Iq�nZ�q .a/IZq .b/;

r 
�
U.�y/; 1

�
O#
�
.a; b/jq

�
D

1

qn
 q.yab/Iq�nZ�q .a/IZq .b/;

r 
�
wV.y/; 1

�
#.0/D r 

�
U.�y/w;1

�
#.0/D r 

�
U.�y/; 1

�
O#.0/D O#.0/D 0;

and

r 
�
V.y/; 1

�
#.0/D r 

�
�wU.�y/w;1

�
#.0/

D

Z
1

qn
 q.yab/Iq�nZ�q .a/IZq .b/dadb

D
1

qn

Z
IZq .ya/Iq�nZ�q .a/da

D

´
0 if y … qnZqI

1� 1
q

if y 2 qnZq :

Thus

I D
�
1�

1

q

�
vol
�
�q.n/

�Z
WF

�
d.a/

�
W‚;&

�
d.a/

�
jajs�1 d�a:

Now suppose first that q �N"f . Then �1 and �2 are both unramified and

W‚;&
�
d.a/

�
D jaj1=2

�1.aq/� �2.aq/

�1.q/� �2.q/
IZq .a/:

In this case, �f;q is either a supercuspidal or a ramified principal series isomorphic to
�.�1;�2/ with both �1 and �2 ramified. In any case, WF .d.a//D IZ�q .a/ and

I D
�
1�

1

q

�
vol
�
�q.n/

�
D

1

qn�1.qC 1/
�Lq. N�f ; � N�0 ; s/Lq.2s; "K/

�1jsD1=2:

Next suppose that q jN"f . Then

W‚;&
�
d.a/

�
D jaj1=2�2.a/IZq .a/:

As for WF , we have

WF
�
d.a/

�
D

8̂̂̂̂
<̂
ˆ̂̂:
"�1
f;q
.a/IZ�q .a/

if q …†0I

��12 .a/jaj
1=2IZq .a/

if q 2†0 and �f;q ' �.�1;�2/ with �2 ramified.
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From this we find that

I D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

.1� 1
q
/vol.�q.n//D 1

qn�1.qC1/
�Lq. N�f ; � N�0 ; s/Lq.s; "K/

�1jsD1=2

if q 2† n†0;

.1� 1
q
/vol.�q.n//.1���12 �2.q/q

�s/

D 1
qn�1.qC1/

�
Lq. N�f ;� N�0 ;s/Lq.s;"K/

�1

1���1
1
�1.q/q�s

jsD1=2

if q 2†0:

4.6.4. Case IV: q kN , q � dK
In this case, q is split in K , that is, q D qNq and K ˝Qq ' Qq �Qq corresponding
to the completions at q and Nq, respectively. We suppose that q and Nq are chosen such
that N˝Zq D Nq. We may assume that

� 0q.a; b/D

�
a 0

0 b

�
:

The character N�0q is identified with .�1; �2/. Set jq WD
�
0
1

1
0

�
. Then

#
�
.a; b/jq

�
D IZq .a/

�
IqZq �

1

q
IZq

�
.b/;

and

&.a; b/D

´
IZq .a/IZq .b/ if q �N"f ;

IZq .a/IZ�q .b/"f;q.b/ if q jN"f ;

I D
1

qC 1

�
J.&;#/C qJ.w; O&; O#/

�
:

But #.0/D 1� .1=q/ and O#.0/D 0. Hence

I D
1

qC 1
J.&;#/D

1

qC 1
�
�
1�

1

q

�
�

Z
WF

�
d.a/

�
W‚;&

�
d.a/

�
jajs�1d�a;

where

W‚;&
�
d.a/

�
D jaj1=2

Z
Q�q

&.t; at�1/�1.at
�1/�2.t/ d

�t:

Suppose that q �N"f . Then �1 and �2 are unramified and

W‚;&
�
d.a/

�
D jaj1=2

� X
rCsDvq.a/

�1.q/
r�2.q/

s
�

IZq .a/:
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In this case, �f;q is a special representation St.�/with� unramified andWF .d.a//D
jaj��1.a/IZq .a/. Hence

I D
1

.qC 1/

1� 1=q

.1� q�1=2��1.q/�1.q/q�s/.1� q�1=2��1.q/�2.q/q�s/

D
1

qC 1
Lq. N�f ; � N�0 ; s/Lq.2s; "K/

�1jsD1=2:

Next suppose that q jN"f , so that �1 is unramified and �2 is ramified but �2"�1f;q
is unramified. Then

W‚;&
�
d.a/

�
D jaj1=2�2.a/:

In this case, �f;q is a ramified principal series representation �.�1;�2/ with, say, �1
unramified and �2 ramified. Since WF .d.a//D jaj1=2��12 .a/IZq .a/, we get

I D
1

.qC 1/

1� 1=q

1���12 .q/�2.q/q
�s
D

1

qC 1
Lq. N�f ; � N�0 ; s/Lq.2s; "K/

�1jsD1=2:

4.6.5. Case V: q kN , and q j dK
Then nD 1. Recall that we have assumed q odd in this case. Let$q 2Kq WDK˝Qq

be such that …q WD$
2
q is a uniformizer in Zq . We may assume that

� 0q.$q/D

�
0 1

…q 0

�
:

Set jq WD
�
1
0

0
�1

�
. First we suppose that we are in

Subcase Va: q �N"f , that is, q 2 S.f /. Then 'q D & ˝ # , where

&.aC b$q/D IZq .a/IZq .b/; #
�
.cC d$q/jq

�
D IZq .c/IZq .d/;

so that

O&.aC b$q/D q
�1=2IZq .a/I1=qZq .b/;

O#
�
.cC d$q/jq

�
D q�1=2IZq .c/I1=qZq .d/;

I D
1

qC 1

�
J.&;#/C qJ.w; O&; O#/

�
:

Let ˇq denote the matrix
�
1
0

0
…�1q

�
. Then

r .ˇq;$
�1
q /&.aC b$q/D IZq .a/I1=qZq .b/D q

1=2 O&.aC b$q/
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and likewise r .ˇq;$�1q /# D q1=2 O# . Thus

I D
1

qC 1

�
J.&;#/C �0q.$q/J.ˇ

�1
q w;&;#/

�
:

But �f;q is special, say, isomorphic to St.�/, hence WF .gˇ�1q w/D �.…q/WF .g/.
Hence

I D
.1��.…q/�0q.$q//

qC 1
J.&;#/D

2

qC 1
J.&;#/;

on account of our assumption that "q.f;��1/DC1 and [Tu2, Proposition 1.7]. Since
�0q is unramified in this case, we can write �0q D �1ıNKq=Qq D �2ıNKq=Qq , where �1
is an unramified character of Q�q and �2 D �1 � "K;q . Then W‚;& .d.a// D

jaj1=2.�1.a/C �2.a//IZq .a/. Since WF .d.a//D jaj��1.a/IZq .a/, we have

I D
2

qC 1
�

1

.1� q�1=2��1.q/�1.q/q�s/

D
2

qC 1
�Lq. N�f ; � N�0 ; s/Lq.2s; "K/

�1jsD1=2:

Subcase Vb: q jN"f . Then

'q D
X

i;j2Zq=qZq
i¤j

"f;q.i � j / � &i ˝ #j ;

where

&i .aC b$q/D IqZqCi .a/IZq .b/; #j
�
.cC d$q/jq

�
D IqZqCj .c/IZq .d/;

I.'q/D
1

qC 1
�

X
i;j2Zq=qZq

i¤j

"f;q.i � j /
�
J.&i ; #j /C qJ. O&i ; O#j /

�
:

Note that O#j is independent of j . Thus, for any fixed i , the sum
P
j¤i "f;q.i �

j /J. O&i ; O#j /D 0. Also, #j .0/D ıj0. Consequently,

I.'q/D
1

qC 1

X
i¤0

"f;q.i/J.&i ; #0/D
1

qC 1
J.&;#0/;

where & WD
P
i¤0 "f;q.i/&i . Now W‚;& .d.a//D "f;q.a/.1C "K;q.a//IZ�q .a/. Since

�f;q is a ramified principal series of the form �.�1;�2/ with �1 unramified and �2
ramified, we have WF .d.a//D jaj1=2��12 .a/IZq .a/ and

I D
1

qC 1
D

1

qC 1
�Lq. N�f ; � N�0 ; s/Lq.2s; "K/

�1jsD1=2:
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4.6.6. Case VI: q j dK , q �N
Again we may assume that

� 0q.$q/D

�
0 1

�q 0

�
:

Set jq WD
�
1
0

0
�1

�
. Then

'q D

q�1X
iD0

&i ˝ #i ;

where

&i .aC b$q/D IZq .a/I i
qCZq

.b/; #i
�
.aC b$q/jq

�
D IZq .a/I i

qCZq
.b/:

Since q � N , we have I D
P
i J.&i ; #i /D J.&0; #0/. Since �0q is unramified in this

case, we can write �0q D �1 ıNKq=Qq D �2 ıNKq=Qq , where �1 is an unramified char-
acter of Q�q and �2 D �1 � "K;q . Then W‚;&0.d.a//D jaj

1=2.�1.a/C �2.a//IZq .a/.

If �f;q ' �.�1;�2/, then WF .d.a//D jaj1=2
��1.aq/���1

2
.aq/

��1
1
.q/���1

2
.q/

IZq .a/ and

I D
1

.1���11 .q/�1.q/q
�s/.1���12 .q/�1.q/q

�s/
DLq. N�f ; � N�0 ; s/Lq.2s; "K/

�1:

4.7. The explicit form of Waldspurger’s formula
We can now state the main result on the absolute value squared of the period inte-
gral L�;�.F j / defined in equation (4.3.6). We will need the class number formula
L.1; "K/D 2�hK=wK

p
jdK j and the volume of U 0.1/:

vol.U 0.1//D �.2/�1 �
Y

qnq kN

1

qnq�1.qC 1/
:

Combining these with Corollary 4.26, equation (4.5.4) (with ' replaced by '0), and
the computations of the previous section, we obtain the following.

THEOREM 4.28
Suppose that cdK is odd and that � is a character of K of infinity type .�`; 0/ (`D
kC 2j ) and finite type .c;N; "�1

f
/. Then

ˇ̌
L�0;�.F

j /
ˇ̌2
D C �L

�1
2
;�f � � N�0

�
D C �L

�1
2
;�f � ��0

�
;

with
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C D
�.j C 1/�.kC j /wK

p
jdK j=.�/

�`

.4�/kC2jC1 � h2K � c
� 2#S.f / �

Y
qjc

�K;q.1/: (4.7.1)

Since L.1=2;�f � ��0/ D L.f;��1; 0/, jƒ� j2=.�/ D vol.Oc/, and hc=hK D
c
Q
qjc.1�"K.q/=q/, we obtain Theorem 4.6 by combining Theorem 4.28 and Propo-

sition 4.13.

5. Anticyclotomic p-adic L-functions

5.1. Periods and algebraicity
We will now use Theorem 4.6 of Section 4.1 to deduce algebraicity properties of the
central critical values L.f;��1; 0/ attached to characters � 2†.2/cc .N/. In order to do
this, recall the dictionary between pairs .L; t/ as in Section 4.1 and triples .E; t;!/
consisting of an elliptic curve over C, a point t on E of order N , and a differen-
tial ! 2 �1

E=C. Under this correspondence, the pair .L; t/ corresponds to the triple
.C=L; t; 2�i dw/, where the differential 2�i dw arises from the standard coordinate
w on C; in the other direction, the triple .E; t;!/ corresponds to the pair .ƒ! ; t /,
where 2�iƒ! is the period lattice attached to the differential !. Viewing a nearly
holomorphic modular form of weight kC 2j as a function on triples, we can rewrite
the expression ıj

k
f .a�1; t / that appears in Theorem 4.6 as

ı
j

k
f .a�1; t /D ı

j

k
f .C=a�1; t; 2�i dw/D ıj

k
f
�
a 
 .A0; t; 2�i dw/

�
;

where A0 WD C=Oc , and we recall that the action of Oc-ideals of norm prime to N
on marked elliptic curves with �-level structure of the form .A0; t0;!0/ is the one
described in equation (1.4.8).

Recall the triple .A; tA;!A/ with EndF .A/D OK that was fixed until now. The
curve A0 is the image of A by an isogeny '0 WA�!A0 of degree c. Let .A0; t0;!0/
be the marked elliptic curve induced from .A; tA;!A/ via '0, that is, the unique triple
for which

'0 W .A; tA;!A/�! .A0; t0;!0/ (5.1.1)

is an isogeny of marked elliptic curves with �-level structure in the sense of Defini-
tion 1.10.

Given a Hecke character � 2 †.2/cc .N/ of infinity type .k C j;�j /, it will be
convenient to set

�j WD �Nj

for the associated Hecke character of infinity type .k C 2j; 0/. Following the usual
conventions, we will view �j as a multiplicative function on the fractional Oc-ideals
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that are prime to Nc. This character satisfies

�j .xa/D x
kC2j "f .x mod N/�j .a/ (5.1.2)

for all x 2K� that are prime to Nc. After fixing the triple .A0; t; 2�i dw/, with t an
(arbitrarily chosen, but fixed from now on) generator of A0ŒN�, the expression

��1j .a/ı
j

k
f
�
a 
 .A0; t; 2�i dw/

�
depends only on the class of a in Pic.Oc/ (see Lemma 4.5.) We can now restate
Theorem 4.6 of Section 4.1 as follows.

THEOREM 5.1
Let f be a normalized eigenform in Sk.�0.N /; "f /, and let � 2†.2/cc .N/ be a Hecke
character of K of infinity type .kC j;�j /. Then

C.f;�; c/L.f;��1; 0/D
ˇ̌̌ X
Œa2Pic.Oc/

��1j .a/ � ı
j

k
f
�
a 
 .A0; t; 2�i dw/

�ˇ̌̌2
; (5.1.3)

where the sum is taken over a system of representatives of the elements of Pic.Oc/
that are prime to Nc, and the constant C.f;�; c/ is given in Theorem 4.6.

Note that the sum appearing in the right-hand side of (5.1.3) does depend on the
choice of generator t of A0ŒN�, but only up to multiplication by an N th root of unity;
in particular, its absolute value is independent of the choice of t that was made.

For the purposes of algebraicity statements, p-adic interpolation, and the appli-
cations that are given in [BDP1] and [BDP2], it will be useful to have a formula in
which the absolute value signs that occur in Theorem 5.1 are replaced by squares. In
order to do this, we will need to examine the behavior of

J.f;�/ WD
X

Œa2Pic.Oc/

��1j .a/ � ı
j

k
f
�
a 
 .A0; t; 2�i dw/

�
(5.1.4)

under complex conjugation.
The choice of a primitive N th root of unity � and of a square root of �N deter-

mines an Atkin–Lehner involution wN acting on triples .E; t;!/ by the rule

wN .E; t;!/D
�
E=hti; t 0;

p
�N!0

�
;

where t 0 is the image in E=hti of any element t 00 2EŒN � satisfying

ht; t 00i D �

for the Weil pairing h ; i, and !0 is the differential on E 0 DE=hti which pulls back to
! under the natural projection. It is straightforward to verify that the function wN is
an involution on triples and that it satisfies the commutation relation
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a 
wN .A0; t; 2�i dw/DwN a 
 .A0;Na
�1t; 2�i dw/: (5.1.5)

Recall the decomposition N DN NN of N as a product of two cyclic ideals of Oc of
norm N . Choose an integral Oc-ideal b and a nonzero element bN 2Oc satisfying

.b;Nc/D 1; bND .bN /: (5.1.6)

The multiplication by bN map identifies the quotient A0ŒN �=A0ŒN� with the submod-
ule A0Œ NN� of A0ŒN �. Furthermore, the elliptic curve A0 and its differential dw are
defined over R. Hence complex conjugation preserves them, but interchanges A0ŒN�
and A0Œ NN�. The pair .b; bN / therefore determines an element t 00 of A0ŒN � satisfying

A0ŒN �D .Z=NZ/t C .Z=NZ/t 00; bN t
00 D Nt : (5.1.7)

This element is uniquely determined by bN up to addition of a multiple of t . There-
fore, the primitive N th root of unity

� WD ht; t 00i (5.1.8)

depends only on bN and not on the choice of t 00 satisfying (5.1.7). Let wN denote
the Atkin–Lehner involution associated to the root of unity �. If f is a modular form
in Sk.�0.N /; "f /, recall that f� is the form in Sk.�0.N /; N"f / whose Fourier coeffi-
cients are the complex conjugates of those of f . If f is a normalized eigenform and
an denotes the eigenvalue of the Hecke operator Tn acting on f , then we have the
relation

Nan D "
�1
f .n/an (5.1.9)

for all n which are relatively prime to N . In particular, the form f� is also a normal-
ized eigenform and corresponds to the twist of f by the character "�1

f
. The following

lemma is well known.

LEMMA 5.2
Suppose that f 2 Sk.�0.N /; "f / is a newform. Then there exists a complex scalar
wf of norm 1 satisfying (for all triples .E; t;!/)

f�
�
wN .E; t;!/

�
Dwf f .E; t;!/:

Proof
The operator wN satisfies the following commutation relation relative to the Hecke
operators:

TnwN D hniwNTn; hniwN DwN hn
�1i: (5.1.10)
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Equations (5.1.9) and (5.1.10) imply that the eigenvalue of Tn acting on wNf� is
equal to an. By multiplicity 1, it follows that wNf� is a nonzero scalar multiple
of f , that is, wNf� D wf f for some wf 2 C�. The fact that wN is defined over
R and hence commutes with the action of complex conjugation, implies also that
wNf D Nwf f�, and therefore that jwf j2 D 1 since w2N D 1.

It should be noted that the scalar wf is not entirely intrinsic to f , but depends on
the choice of N th root of unity � that was made in (5.1.8) prior to defining the Atkin–
Lehner involution wN . Over C, it is customary to take � D e

2�i
N but our choice of �

may differ.
After these preliminaries, we define a complex scalar of norm 1 by the rule:

w.f;�/ WDwf � "f .Nb/�1�j .b/.�N/
k=2Cjb

�k�2j
N : (5.1.11)

Ostensibly, this scalar depends on the choice of .b; bN / satisfying (5.1.6), but in fact
we have the following.

LEMMA 5.3
The scalar w.f;�/ satisfies the following properties:
(1) it depends only on f and � and not on the choice of pair .b; bN / satisfying

(5.1.6);
(2) it belongs to the finite extension L of K generated by Kf , K�, and

p
�N ;

(3) for all  2Gal.L=K/,

w.f � ; �� /Dw.f;�/� :

Proof
Properties .2/ and .3/ follow directly from the definition of w.f;�/. The truth of .1/
follows from Theorem 5.4 below (since none of the terms other than w.f;�/ that
appear in (5.1.12) depend on .b; bN /) but it may be helpful to supply an independent,
self-contained argument. If the pair .b; bN / is replaced by the pair .b0; b0N /, then

b
0 D b.a/; b0N D bNa;

where a is an element ofK� which is prime to Nc. The conditions (5.1.7) and (5.1.8)
that are required to be satisfied by bN and b0N imply that a 	 1 .mod NN/. The con-
stants w.f;�/ attached to the choices .b; bN / and .b0; b0N / therefore differ by a factor
of

"f .a Na/
�1�j .a/a

�k�2j D "f .a mod N/�1�j .a/a
�k�2j :

But this factor is equal to 1, by (5.1.2).
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THEOREM 5.4
Let f be a normalized eigenform in Sk.�0.N /; "f /, and let � 2†.2/cc .N/ be a Hecke
character of K of infinity type .kC j;�j /. Then

C.f;�; c/L.f;��1; 0/Dw.f;�/
� X
Œa2Pic.Oc/

��1j .a/ � ı
j

k
f
�
a 
 .A0; t; 2�i dw/

��2
;

(5.1.12)

where the constants C.f;�; c/ andw.f;�/ are described in Theorem 4.6 and in equa-
tion (5.1.11), respectively.

Proof
Theorem 5.4 is proved by computing the effect of complex conjugation on the quan-
tity J.f;�/ of equation (5.1.4). Observe the following.
(1) Since .A0; 2�i dw/D .A0; 2�i dw/ and since bN satisfies (5.1.7) and (5.1.8),

the action of complex conjugation on .A0; t; 2�i dw/ is given by

.A0; t; 2�i dw/D .A0; Nt ; 2�i dw/D b 
wN .A0; t; bN
p
�N

�1
2�i dw/:

(2) The action of complex conjugation on ��1j .a/ is given by

��1j .a/D "f .Na/��1j .Na/:

Hence we have

��1j .a/ı
j

k
f
�
a 
 .A0; t; 2�i dw/

�
D "f .Na/��1j .Na/ı

j

k
f�
�
Na 
 .A0; Nt ; 2�i dw/

�
(5.1.13)

D "f .Na/��1j .Na/ı
j

k
f�
�
Nab 
wN .A0; t; bN

p
�N

�1
2�i dw/

�
(5.1.14)

D .�N/k=2Cj b
�k�2j
N "f .Na/��1j .Na/ � ı

j

k
f�
�
Nab 
wN .A0; t; 2�i dw/

�
:

But now, by (5.1.5), we have

ı
j

k
f�
�
Nab 
wN .A0; t; 2�i dw/

�
D ı

j

k
f�
�
wN Nab 


�
A0; .N Nab/

�1t; 2�i dw
��

D wf "f .N Nab/
�1 � ı

j

k
f
�
Nab 
 .A0; t; 2�i dw/

�
:

(5.1.15)

Combining equations (5.1.14) and (5.1.15), we obtain

��1j .a/ı
j

k
f
�
a 
 .A0; t; 2�i dw/

�
Dwf � .�N/

k=2Cj b
�k�2j
N �j .b/"f .Nb/�1�j .Nab/

�1ı
j

k
f
�
Nab 
 .A0; t; 2�i dw/

�
:
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Summing this relation over all classes a 2 Pic Oc , we obtain

J.f;�/Dw.f;�/J.f;�/;

and Theorem 5.4 follows.

We now turn to the algebraicity properties of L.f;��1; 0/. We begin by defining
a complex period attached to K . For this, we observe that the complex elliptic curve
A0 has endomorphism ring equal to the order Oc of conductor c, and therefore is
defined over a subfield Hc of C which is isomorphic to the ring class field of K of
conductor c. The choice of the differential !0 2 �1.A0=Hc/ determined by (5.1.1)
determines a complex period �, defined as the nonzero complex scalar satisfying

!0 D� � 2�i dw; (5.1.16)

where w is the standard complex coordinate on A0.C/DC=Oc .
Theorem 5.5 below asserts that the ratios w�1.f;�/C.f;�; c/L.f;��1; 0/=

�2.kC2j / are algebraic numbers. In order to make a more precise claim about the
fields of definition, we remark that the point t0 belongs (by assumption) to the N-
torsion subgroup of A0, which is defined over Hc . Let H 0c be the abelian extension of
Hc over which the individual N-torsion points of A0 are defined, so that in particular
the pair .A0; t0/ is defined over H 0c . The Galois group of Gal.H 0c=Hc/ is canonically
identified with a subgroup of .Z=NZ/� via its faithful action on A0ŒN�. Let QHc �H 0c
be the subfield which is fixed by ker."f /. Let F �C be the finite extension ofK gen-
erated by QHc , by the values of the Hecke character � on A�

K;f
, and by the Fourier

coefficients of f . We can now state Shimura’s algebraicity theorem on the special
values L.f;��1; 0/ in a precise form.

THEOREM 5.5
For all � 2†.2/cc .N/ of infinity type .kC j;�j /, the quantity

Lalg.f;�
�1; 0/ WDw.f;�/�1C.f;�; c/ �L.f;��1; 0/=�2.kC2j /

belongs to F .

Proof
By Theorem 5.4,

w.f;�/�1C.f;�; c/L.f;��1; 0/

D
� X
Œa2Pic.Oc/

��1j .a/ � ı
j

k
f
�
a 
 .A0; t0; 2�i dw/

��2
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D
� X
Œa2Pic.Oc/

��1j .a/ � ı
j

k
f
�
a 
 .A0; t0;�

�1!0/
��2

D�2.kC2j /
� X
Œa2Pic.Oc/

��1j .a/ � ı
j

k
f
�
a 
 .A0; t0;!0/

��2
:

It follows from Lemma 1.5 that

Lalg.f;�
�1; 0/D

� X
Œa2Pic.Oc/

��1j .a/ �‚
j
Hodgef

�
a 
 .A0; t0;!0/

��2
: (5.1.17)

Part 1 of Proposition 1.12 implies that the terms ‚jHodgef .a 
 .A0; t0;!0// belong
to F . Theorem 5.5 follows.

Remark 5.6
The datum of Oc determines the elliptic curve A0=Hc together with the embedding of
Hc into C. Both sides of (5.1.17) depend on the further choice of a regular differential
!0 on A0=Hc , which was determined by our choice of !A. Note that a change in !A
(or !0) affects both sides of (5.1.17) in the same way.

5.2. p-adic interpolation
Let p be a rational prime which splits in K=Q, and fix a prime p of K above p.
Extend the associated embedding of K into Qp to an embedding �p W F �!Cp . The
special values Lalg.f;�

�1; 0/ can be viewed, through the embedding �p , as p-adic
numbers. The following theorem gives a p-adic formula for these special values, in
terms of the Atkin–Serre operator 
 on p-adic modular forms.

THEOREM 5.7
For all � 2†.2/cc .N/ of infinity type .kC j;�j /,

Lalg.f;�
�1; 0/D

� X
a2Pic.Oc/

��1j .a/.

jf /

�
a 
 .A0; t0;!0/

��2
:

Proof
The fact that p is split in K implies that the elliptic curve �p.A0/ has good ordinary
reduction. By part 3 of Proposition 1.12, combined with (5.1.17), we have

Lalg.f;�
�1; 0/D

� X
Œa2Pic.Oc/

��1j .a/ �‚
j
Frobf

�
a 
 .A0; t0;!0/

��2
: (5.2.1)

Theorem 5.7 now follows from Lemma 1.7.
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Although the set †.2/cc .N/ is infinite, its elements take values in a finite extension
of K . By possibly enlarging the finite extension F of K that appears in the statement
of Theorem 5.5, we will assume that it contains the values �.a/ as � ranges over all
characters in †.2/cc .N/ and a ranges over A�

K;f
.

Let A0
K;f

denote the subgroup of A�
K;f

of idèles which are prime to p, and
choose any prime pF of F above p. We observe that the values �.a/ as a ranges
over A0

K;f
are integral at pF , that is, they belong to the ring of integers OF;pF

of the completion FpF . It follows that †.2/cc .N/ is naturally embedded in the space
F .A0

K;f
;OF;pF / of OF;pF -valued functions on A0

K;f
. We equip †.2/cc .N/ with the

topology induced by the compact open topology on this function space, that is, the
topology of uniform convergence on A0

K;f
relative to the p-adic topology on OF;p.

Let O†cc.N/ be the completion of †.2/cc .N/ relative to this topology.
To p-adically interpolate the values Lalg.f;�

�1; 0/ we need to modify them by
dropping a suitable Euler factor at p, and multiplying by a suitable p-adic period. We
begin by attaching to A0 a p-adic period �p as follows. Let A0 be a good integral
model of A0 over OCp . The formal completion OA0 of A0 along its identity section
is (noncanonically) isomorphic to OGm over OCp ; fix such an isomorphism � W OA0 �!
OGm. (This amounts to fixing an isomorphism between the p-divisible groups �p1
and A0Œp

1�, which is determined up to a scalar in Z�p .) Fixing the isomorphism �

once and for all, we define �p 2C�p by the rule, analogous to (5.1.16),

!0 D�p �!can; where !can WD �
� du

u
; (5.2.2)

and u denotes the standard coordinate on OGm.
For all � 2†.2/cc .N/ of infinity type .kC j;�j /, we set

Lp.f;�/

WD�2.kC2j /p

�
1� ��1.Np/ap C �

�2.Np/"f .p/p
k�1

�2
Lalg.f;�

�1; 0/ (5.2.3)

D�2.kC2j /p

�
1� ˛p�

�1.Np/
�2�
1� ˇp�

�1.Np/
�2
Lalg.f;�

�1; 0/; (5.2.4)

where ˛p; ˇp denote the parameters of f at p described at the beginning of Sec-
tion 4.1.

Remark 5.8
Note that both Lalg.f;�/ and �p depend on the choice of the differential !A on

A, but that the ratio Lalg.f;�/=�
2.kC2j /
p does not depend on this choice, once an

isomorphism � between OA0 and OGm has been chosen. Replacing � by a Z�p-multiple
a� has the effect of multiplying Lp.f;�/ by a2.kC2j /.

Recall the form f [ D f j.V U�UV / that was introduced in equation (3.8.4).
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THEOREM 5.9
Assume that p is split in K=Q. For all � 2†.2/cc .N/ of infinity type .kC j;�j / (with
j � 0), we have

Lp.f;�/D
� X
Œa2Pic.Oc/

��1j .a/ � 

jf [

�
a 
 .A0; t;!can/

��2
:

Proof
Set

S� WD
X
Œa

��1j .a/ � 

jf
�
a 
 .A0; t0;!0/

�
and

S [� WD
X
Œa

��1j .a/ � 

jf [

�
a 
 .A0; t0;!0/

�
:

Now pjap � 

jf D 
jf j Tp D 


jf j .U C "f .p/p
kC2j�1V / and

.
jf j V /
�
a 
 .A0; t0;!0/

�
D .
jf /

�
Np�1a 
 .A0; t0;!0/

�
:

Thus


jf [
�
a 
 .A0; t0;!0/

�
D
®

jf

ˇ̌
.V U �UV /

¯�
a 
 .A0; t0;!0/

�
D
®

jf

ˇ̌ �
1� TpV C "f .p/p

kC2j�1V 2
�¯�

a 
 .A0; t0;!0/
�

D 
jf
�
a 
 .A0; t0;!0/

�
� pjap � 


jf
�
Np�1a 
 .A0; t0;!0/

�
C "f .p/p

kC2j�1
jf
�
Np�2a 
 .A0; t0;!0/

�
:

Multiplying this equation by ��1j .a/ and summing over all the classes Œa� 2 Pic.Oc/
gives the identity

S [� D
®
1� ap�

�1.Np/C "f .p/p
k�1��1.Np2/

¯
S�:

The result now follows from Theorem 5.7 combined with the homogeneity properties
of the p-adic modular form 
jf [ of weight kC 2j .

PROPOSITION 5.10
The function � 7!Lp.f;�/ extends to a continuous function on O†cc.N/.

Proof
Let �1; �2 2 †

.2/
cc .N/ be two elements (of infinity type .k C j1;�j1/ and .k C

j2;�j2/, respectively) satisfying
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�1.a/	 �2.a/ .mod p
M /; for all a 2A0K;f :

By evaluating at idèles in A0
K;f

that are congruent to 1 modulo N, we see that neces-
sarily

j1 	 j2
�
mod.p � 1/pM�1

�
:

Now we observe that, since


jf [
�
Tate.q/; t;!can

�
D

X
.p;n/D1

njanq
n;

the q-expansions of 
j1f and 
j2f are congruent modulo pM , and therefore agree
modulo pM . If E is any ordinary elliptic curve over OF p, and !can is any canonical
differential on it as in (5.2.2), it follows that


j1f [.E; t;!can/	 

j2f [.E; t;!can/ .mod p

M /

(see, e.g., [Go, Section I.3.5]). It follows from the formula for Lp.f;�/ given in
Theorem 5.9 that

Lp.f;�1/	Lp.f;�2/ .mod p
M /:

The proposition follows.

The function Lp.f; �/ on O†cc.N/ is a type of anticyclotomic p-adic L-function
attached to f and K (and the triple .c;N; "f /).

Remark 5.11
The p-adic L-functions attached to Rankin convolutions of p-adic families of mod-
ular forms have been constructed in great generality by Hida [Hi1]. In fact, our p-
adic L-function Lp.f; �/ is the restriction of a more general two-variable p-adic L-
function defined over O†.N/, the existence of which can be deduced from the main
result of [Hi1].

Note that one obtains from Hida’s work two different p-adic L-functions by
interpolating the L-values corresponding to critical characters in †.1/.N/ and
†.2/.N/, respectively. The p-adic L-function obtained by interpolating L.f;��1; 0/
with � 2†.1/.N/ has received much attention in the literature; for instance, it is stud-
ied in the article [PR1] (for k D 2) and in [Ne2] (for k even and greater than or equal
to 2). Our focus in this article has been instead on the p-adic L-function obtained by
p-adic interpolation of the special values corresponding to (central critical characters)
� 2†.2/.N/.
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5.3. The main theorem
For the convenience of the reader, we collect the notation and the running assump-
tions that were made in the previous sections and are in force in the statement of
Theorem 5.13 below.

Assumption 5.12
(1) The form f is a normalized cuspidal eigenform in Sk.�0.N /; "f /.
(2) Here c is an odd rational integer prime to NdK .
(3) The quadratic imaginary field K has odd discriminant and satisfies the Heeg-

ner hypothesis stated in Assumption 1.9, so that the order Oc of K of conduc-
tor c admits a cyclic ideal N of norm N .

(4) The sets †.1/cc .N/ and †.2/cc .N/ consist of characters � of finite type .c;N; "f /
and satisfying "q.f;��1/DC1 for all finite primes q, as described in Defini-
tion 4.4 and the subsequent paragraph.

(5) The rational prime .p/D pNp is split in K=Q and prime to Nc.

A character � 2 †.1/cc .N/ can be approximated by elements of †.2/cc .N/ (rela-
tive to the topology on †cc.N/ discussed in the previous section) as follows. Let h
denote the class number of K , and let  t be the Hecke character of K of infinity type
.th;�th/ and trivial central character defined by

 t .a/D a
t= Nat ; where .a/D a

h:

If t is a sufficiently large positive integer, then the Hecke character � t belongs to
†
.2/
cc .N/, and it converges to � as t converges to 0 in Z=.p � 1/Z � Zp . This fact

allows us to view †
.1/
cc .N/ as a subset of O†cc.N/.

The following theorem, which relates the value of Lp.f;�/ at � 2 †.1/cc .N/

(which lies outside the range of interpolation for the p-adic L-function) to Abel–
Jacobi images of generalized Heegner cycles, is the main result of this paper.

THEOREM 5.13
Suppose that � 2 †.1/cc .N/ is a character of infinity type .k � 1 � j; 1 C j /, with
0� j � r . Then

Lp.f;�/

�
2.r�2j /
p

D
�
1� ��1.Np/ap C �

�2.Np/"f .p/p
k�1

�2
�
�c�j
j Š

X
Œa2Pic.Oc/

��1.a/N.a/ �AJF .�'a'0/.!f ^!
j
A�

r�j
A /

�2
:
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Proof
The proof of Proposition 5.10 shows that the formula in Theorem 5.9 for Lp.f;�/ at
� 2†

.2/
cc .N/ extends to � 2†.1/cc .N/ in the obvious way, and gives

Lp.f;�/D
� X
Œa2Pic.Oc/

��1�1�j .a/ � 

�1�jf [

�
a 
 .A0; t0;!can/

��2
:

Therefore, by (5.2.2) and the fact that 
�1�jf [ is a p-adic modular form of weight
r � 2j , we have

Lp.f;�/

�
2.r�2j /
p

D
� X
Œa2Pic.Oc/

��1�1�j .a/ � 

�1�jf [

�
a 
 .A0; t0;!0/

��2
:

By Proposition 3.24,

Lp.f;�/

�
2.r�2j /
p

D
� 1
j Š

X
Œa2Pic.Oc/

��1�1�j .a/ �G
[
j

�
a 
 .A0; t0;!0/

��2
: (5.3.1)

In view of Proposition 3.24 and of the relation 
jf j Tp D pjap � 
jf , for j � 0,
one sees by p-adic approximation that

TpGj D p
�1�japGj :

Then, by Lemma 3.23,

G[j
�
a 
 .A0; t0;!0/

�
D Gj

�
a 
 .A0; t0;!0/

�
�
�f .p/ap

pr�jC1
Gj
�
pa 
 .A0; t0;!0/

�
C

�f .p/

pr�2jC1
G
�
p
2
a 
 .A0; t0;!0/

�
:

Substituting this expression for G[j .a 
 .A0; t0;!0// into (5.3.1) and rewriting the
second and the third summands by substituting a for ap and ap2, respectively, we
obtain

Lp.f;�/

�
2.r�2j /
p

D
�
1�

��1�j .p/ap"f .p/

pr�jC1
C
�2�1�j .p/"f .p/

pr�2jC1

�2
�
� 1
j Š

X
Œa2Pic.Oc/

��1�1�j .a/ �Gj
�
a 
 .A0; t0;!0/

��2
: (5.3.2)

Using the fact that

��1�j .p/D �.p/p
�1�j D "f .p/

�1prC1�j�.Np/�1;

the Euler factor that appears in (5.3.2) can be rewritten as

Ep.f;�/ WD
�
1� ��1.Np/ap C �

�2.Np/"f .p/p
k�1

�2
:
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Now, applying Lemma 3.22 to the isogeny

'a'0 W .A; tA;!A/�! a 
 .A0; t0;!0/

of degree cN.a/, and using the fact that ��1�1�j .a/D �
�1.a/N.a/1Cj , we find

Lp.f;�/

�
2.r�2j /
p

D Ep.f;�/
�c�j
j Š

X
Œa2Pic.Oc/

��1.a/N.a/ �AJF .�'a'0/.!f ^!
j
A�

r�j
A /

�2
;

as was to be shown.

Appendix. Kuga–Sato schemes

BRIAN CONRAD

The aim of this appendix is to explain the relative version of Deligne’s method for
constructing a smooth projective compactification of the fiber powers Ek of the uni-
versal elliptic curve E with enough level-N structure over an open modular curve
Y over ZŒ1=N � (for applications in this paper with Y D Y1.N /). This was originally
developed in 1968 for applications over finite fields F of characteristic not dividingN
(see [De1, Lemme 5.5]), and later found uses for X.N/ over ZŒ1=N � (see [Sch2, Sec-
tion 4.2.1]). For applications over such fields F (e.g., Q or finite fields) one can com-
pactify EF ! YF over the associated smooth complete modular curve XF by using
the technique of minimal regular proper models of relative smooth proper curves over
a Dedekind base (such as EF ! YF relative to the Dedekind base XF ), together with
their relation to Néron models of elliptic curves, and then try to explicitly resolve sin-
gularities of fiber powers over XF of that minimal regular proper model. Thus, when
working over such a field F there is no need for the concept of a generalized ellip-
tic curve (which was introduced only in 1972 in the work of Deligne and Rapoport
[DeR], building on Artin’s theory of algebraic spaces).

The viewpoint of minimal regular proper models is insufficient in the relative sit-
uation over ZŒ1=N � since now X is 2-dimensional rather than Dedekind. In such set-
tings we use the proper flat universal generalized elliptic curve E!X over ZŒ1=N �
(for a modular curve X classifying rigid fiberwise ample level-N structures on gener-
alized elliptic curves over ZŒ1=N �-schemes) as a compactification of E over ZŒ1=N �.
Such E are smooth over ZŒ1=N � (see Lemma A.2) but not smooth over X , so for

k � 2 the compactification E
k

of Ek is not smooth over ZŒ1=N � (as we will see
explicitly below). In Scholl’s work with X.N/ over ZŒ1=N � in [Sch2, Section 4.2.1],
for each k � 2 he used Deligne’s method to construct a smooth projective ZŒ1=N �-

scheme equipped with a proper birational map onto the fiber power E
k

over X
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such that the map is an isomorphism over Ek and can be described étale-locally
near the fibers over the cuspidal locus on X . The method is a series of succes-
sive blowups, organized in terms of the number of coordinates of a geometric point

� D .�1; : : : ; �k/ 2E
k

for which �i is singular in its geometric fiber for E!X .
The hard part is to give an intrinsic description of what to blow up at each step;

once we have defined an intrinsic algorithm, we can carry out computations étale-
locally to see that we reach a smooth ZŒ1=N �-scheme. These étale-local computations
are sketched over Q in Scholl’s work (see [Sch2, Sections 2.0.1–2.1.1]) but the details
on how to carry it out over ZŒ1=N � are omitted there (and the intrinsic definition of

what the pieces correspond to in terms of E
k

is not given). Thus, at the request of the
referee, in this appendix we explain the procedure in more detail over ZŒ1=N �.

We axiomatize the calculation so that it applies to all modular curves (with enough
étale level structure). The intrinsic nature of the method also makes it applicable to
cases in which the modular curve only exists as a Deligne–Mumford stack (such as
X0.N / over ZŒ1=N � for anyN � 1), but we leave that generalization to the interested
reader. The étale nature of the level structure (i.e., using N -torsion-level structures
over ZŒ1=N �-schemes) is essential to the method because only in such cases can cer-
tain deformation-theoretic problems with generalized elliptic curves be reduced to the
case of a Tate curve with geometrically irreducible fibers; see [DeR, III, Section 1.4.2;
VII, Section 2.1].

Fix an integer N � 1, and let X be a modular curve over ZŒ1=N � classifying a
rigid fiberwise ample level-N structure on generalized elliptic curves over ZŒ1=N �-
schemes (e.g., �1.N /-structures with N � 5, or full level-N structures with N � 3).
Here, by rigid we mean that generalized elliptic curves equipped with such a level
structure admit no nontrivial automorphisms. The work of Deligne and Rapoport pro-
vides such modular curves X as smooth proper ZŒ1=N �-schemes with fibers of pure
dimension 1, equipped with a universal generalized elliptic curve E ! X . (Even
though such an X is initially built only as a separated algebraic space, it is a scheme.
This can be seen in a couple of ways, perhaps the most concrete being that the j -
map from X to P1ZŒ1=N is quasi-finite, and any algebraic space that is separated and
quasi-finite over a Noetherian scheme is a scheme [K, II, Section 6.16].)

Remark A.1
For the reader who is interested in schemes being projective rather than just proper,
we make some side remarks now (not to be used in what follows). The fiberwise
ample level structure on E over X defines a closed subgroup scheme G of the open
X -smooth locus E

sm
with G finite étale over X , and so G is closed in E with ideal

sheaf in OE that is a line bundle on E whose inverse is fiberwise ample over X . But
a fiberwise ample line bundle on a proper finitely presented scheme over a base S is
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relatively ample over S [EGA, IV3, Section 9.6.4], so the projectivity and flatness of
X over ZŒ1=N � implies that E is projective and flat over ZŒ1=N �. Likewise, the fiber

powers E
k

over X are projective and flat over ZŒ1=N � for all k � 1. In particular, any

scheme obtained from E
k

by a composition of successive blowups is projective over

ZŒ1=N �. This ensures that the ZŒ1=N �-smooth compactification of E
k

built below is
projective over ZŒ1=N �.

We now recall that for any generalized elliptic curve f W E! S over a scheme,
Deligne and Rapoport introduced canonical closed subscheme structures S1 � S and
Esing � E respectively supported at the set of s 2 S such that Es is not k.s/-smooth
and at the set of � 2 E at which the proper fppf map E! S is not smooth. Explicitly,
Esing is defined by the annihilator ideal of �2

E=S
(the first Fitting ideal of �1

E=S
), and

S1 is defined to be the scheme-theoretic image of Esing in S . The formation of both
of these commutes with any base change on S (though this has some hidden subtleties
for S1; see [Cn, Sections 2.1.11, 2.1.12]). We call these closed subschemes the loci of
nonsmoothness in S and E for f . Their compatibility with base change on S enables
us to compute completions along these loci via deformation theory.

Let X1 � X be the locus of nonsmoothness for the universal generalized ellip-
tic curve E! X . Computations with the deformation theory of generalized elliptic
curves equipped with ample level-N structure over ZŒ1=N � show that X1 is (finite)
étale over ZŒ1=N � (see [DeR, III, Section 1.2(iv); IV, Section 3.4(ii)]). The struc-

ture of E around E
sing

can also be understood via deformation theory, leading to the
following.

LEMMA A.2
The scheme E is smooth over ZŒ1=N �.

Proof
The problem is to prove smoothness at nonsmooth points � in fibers over points
x 2 X1, and since E is fppf over ZŒ1=N � it suffices to work on geometric fibers
over Spec.ZŒ1=N �/. In other words, for an algebraically closed field F of character-
istic not dividing N and the universal generalized elliptic curve EF !XF , we want
to prove that the surface EF is smooth at points � 2 E.F / that are nonsmooth in
the fiber over x 2X1.F /. It is equivalent to prove the formal smoothness of O^

EF ;�

over F . But O^
EF ;�

coincides with the completed local ring at � on the formal com-

pletion of EF !XF along x. This latter formal completion is the universal deforma-
tion of .EF /x equipped with its ample level-N structure, and O^XF ;x is its universal
deformation ring. Since char.F / �N , by [DeR, III, Section 1.2(iv); VII, (1.1.1), Sec-
tions 1.11, 2.1] there is an F -isomorphism between the universal deformation ring
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O^XF ;x and F ŒŒq�� such that the completed local ring at � is F ŒŒq��-isomorphic to
F ŒŒq;u; v��=.uv � q/D F ŒŒu; v��.

Now we prove a general resolution result for generalized elliptic curves over a
family of smooth curves.

THEOREM A.3
Let S be a scheme, let X ! S be a smooth map with all fibers of pure dimension 1,
and let f WE!X be a generalized elliptic curve such that
(1) the locus of nonsmoothness X1 �X for f is étale over S ,
(2) the scheme E is S -smooth.

For each k � 1, let E
k

denote the kth fiber power over X . Define E DEjX�X1 .

There exists a smooth S -scheme Zk and a proper birational map h W Zk ! E
k

that is an isomorphism over Ek . The map Zk!E
k

is a composition of finitely many
blowups, so h is birational.

We emphasize that although E is assumed to be S -smooth, in practice it is not

X -smooth, so the closed subscheme E
sing

(which encodes nonsmoothness over X ) is
generally not empty. The proof of the theorem consists of giving an explicit definition
of the blow-up process. If k D 1, then we may take Z1 DE by hypothesis (2), so we
now assume that k � 2.

By hypothesis (1), the pair .X;X1/ looks étale-locally like .A1S ; 0/. Thus, the
étale-local structure of relative semistable curves [FK, III, Section 2.7] and the homo-
geneity of E around E

sing
(via translation by E

sm
) implies that, Zariski-locally over

an affine open SpecR in S , the pair .E;E
sing
/ has a common étale neighborhood with�

Spec
�
RŒq;u; v�=.uv � q/

�
; ¹q D uD vD 0º

�
(see the proof of [DeR, II, 1.16]). Up to permutation of coordinates, a geometric

point � D .�1; : : : ; �k/ 2E
k

that is nonsmooth over S has �1; : : : ; �r nonsmooth in E
over X and �rC1; : : : ; �k smooth in E over X for some r � 2 (the case r D 1 being

ruled out by the hypothesis that E is S -smooth). Thus, .E
k
; �/ has a common étale

neighborhood with the spectrum of

RŒq;X1; Y1; : : : ;Xr ; Yr ; TrC1; : : : ; Tk�=.X1Y1 D � � � DXrYr D q/

'RŒX1; Y1; : : : ;Xr ; Yr ; TrC1; : : : ; Tk�=.X1Y1 D � � � DXrYr/: (A.0.3)

Of course, we have an analogous ring for any permutation of the �i .

Let F
k

denote the k-fold fiber product of E over X1. We define a stratification

of F
k
,!E

k
by closed subschemes
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F
k
D F kk � F kk�1 � � � �� F

k
0 � F

k
�1 D;;

where, for 0 � r � k, F kr � F
k

is the scheme-theoretic union of the closed sub-

schemes defined by requiring at least k � r factors to lie in E
sing

. For example, work-
ing étale-locally over E , we see that F k

k�2
is supported at precisely the closed non-

smooth locus for the fppf map E
k
! S .

Define Ekh0i D E
k

and F ki h0i D F
k
i for 0 � i � k. For 1 � r � k � 1, we

recursively define Ekhri D BlF k
r�1
hr�1i.E

khr � 1i/, and we let F ki hri be the proper

transform inEkhri of F ki hr�1i for r � i � k�1. (Equivalently, F ki hri is the blowup
of F ki hr � 1i along F kr�1hr � 1i.)

We claim several properties:
(i) Ekhri and all F ki hri are S -flat,
(ii) F kr hri is contained in the closed locus where the S -flat Ekhri is nonsmooth

over S for all 0 � r � k � 2 (so the map Ekhk � 1i ! Ekh0i D E
k

is an

isomorphism over the S -smooth locus of Ek , which contains E
k

),
(iii) Ekhk � 1i is S -smooth,
(iv) the formation of these blowups and strict transforms commutes with any base

change on S (via the evident base change morphisms).

To verify these claims we may work étale-locally over a nonsmooth point of E
k

over

affine open SpecR� S , which amounts to replacing E
k

with the R-flat

eEmh0i D SpecRŒX1; Y1; : : : ;Xm; Ym; TmC1; : : : ; Tk�=.X1Y1 D � � � DXmYm/;

where 2�m� k.
We define eFmi h0i to be the R-flat closed subscheme in eEmh0i where at least

m � i pairs .Xj ; Yj / vanish. Using inductive definitions analogous to those above,
we define eEmhri and eFmi hri (with r � i �m� 1) for 0� r �m� 1. We can replace
the above claims with analogues in this new setting, so we aim to prove the following:
� eFmi hri and eEmhri are R-flat and their formation commutes with base change

on R;
� eFmr hri is contained in the closed nonsmooth locus for eEmhri over R for all

0� r �m�2 (so the blow-up steps are always isomorphisms over the smooth
locus of the previous stage);

� eEmhm� 1i is R-smooth.
This will clearly finish the proof. The TmC1; : : : ; Tk just get carried along, so they can
(and will) now be dropped.

It is easy to see that eEmh1i has an open cover by 2m-copies Uj of A1� eEm�1h0i
such that Uj \ eFmi h1i DA1 � eFm�1i�1 h0i for 1� i �m� 1. Here, we define eE1h0i D
SpecRŒX1; Y1�=.X1Y1/ and eF 10 D .0; 0/D Spec.R/� eE1h0i.
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By induction on r for each m (with the case r D 0 always trivial and the case
r D 1 just settled for all m), we see that for 0� r �m� 2 there exists an open cover
of eEmhri by copies Vj of Ar � eEm�rh0i with Vj \ eFmi hri D Ar � eFm�ri�r h0i for all
r � i �m� 1. Thus, eFmr hri is contained in eFm�r0 , which in turn is contained in the
closed locus of nonsmooth points in eEm�rh0i over R sincem� r � 2. These Zariski-
local descriptions yield the desired R-flatness and compatibility with base change
on R.

Taking r D m � 2 at the end of the induction, eEmhm � 2i is covered by open
subschemes R-isomorphic to Am�2 � eE2h0i. Since

eE2h0i D SpecRŒX1; Y1;X2; Y2�=.X1Y1 �X2Y2/

with eF 20 h0i equal to the origin over R, it remains to observe here that the R-scheme
Bl.0/.eE2h0i/ is covered by copies of A3.
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