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Abstract

This article studies a distinguished collection of so-called generalized Heegner cycles
in the product of a Kuga—Sato variety with a power of a CM elliptic curve. Its main
result is a p-adic analogue of the Gross—Zagier formula which relates the images of
generalized Heegner cycles under the p-adic Abel-Jacobi map to the special values
of certain p-adic Rankin L-series at critical points that lie outside their range of
classical interpolation.
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0. Introduction

This article studies a distinguished collection of algebraic cycles on varieties which
are fibered over modular curves. The cycles in question generalize the Heegner cycles
on Kuga—Sato varieties that are studied in [Sc], [Ne2], and [Z]; for the remainder of
this article, we will refer to them as generalized Heegner cycles. The main result (The-
orem 5.13) is a p-adic analogue of the Gross—Zagier formula which relates the images
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of generalized Heegner cycles under a p-adic Abel-Jacobi map to the special values
of certain p-adic Rankin L-series at critical points that lie outside the range of p-
adic interpolation. Even in the 0-dimensional limit case, where generalized Heegner
cycles are nothing but Heegner divisors on modular curves, this analogue differs from
the p-adic Gross—Zagier formula proved in [PR1] and provides a concrete instance
of the p-adic Beilinson conjectures of [PR2] and [PR3]. It can also be viewed as the
direct analogue of Leopoldt’s evaluation at s = 1 of the classical p-adic L-function
attached to an even Dirichlet character in terms of p-adic logarithms of cyclotomic
units. In this analogy, the Kubota—Leopoldt p-adic L-function is replaced by the p-
adic Rankin L-function attached to a cusp form and a theta series of an imaginary
quadratic field, and the cyclotomic units are replaced by (generalized) Heegner cycles.

Recall that the Kuga—Sato variety W, is a smooth compactification of the r-fold
product of the universal generalized elliptic curve over a modular curve C = Cr
attached to I' = I'1 (V). It is naturally fibered over C, with generic fiber isomorphic
to an r-fold product of elliptic curves. The variety W5, is equipped with a supply of
so-called Heegner cycles (in the Chow group with rational coefficients) of dimension
r, which were introduced in [GZ, Section V.4]. (See also [Ne2, Section 11.3.6], where
a more precise definition is given.) These cycles are supported on fibers above CM
points of C and are defined over abelian extensions of imaginary quadratic fields. The
main theorem of [Z] relates their heights to the central critical derivatives of Rankin
convolution L-series of cusp forms of weight 2r 4 2 with weight 1 binary theta series
attached to finite order Hecke characters of an imaginary quadratic field. In the case
r = 0, where the Heegner cycles are Heegner points on the modular curve C = W,
this is the theorem of Gross and Zagier [GZ]. A p-adic analogue of these formulae
has also been established (in [PR1] for r = 0 and in [Ne2] for general r) in which
the Arakelov height pairing is replaced by a p-adic height pairing and the complex
L-series by a suitable two-variable p-adic L-function.

The present work replaces the Kuga—Sato variety W5, by the (2r + 1)-dimen-
sional variety

X, =W, x A",

where A is a fixed elliptic curve with complex multiplication by the ring of integers
of an imaginary quadratic field K, defined, say, over the Hilbert class field H of K.
Like W,,, the variety X, is fibered over the modular curve C and is also equipped
with an infinite collection of special cycles defined over abelian extensions of K.
These generalized Heegner cycles are naturally indexed by isogenies ¢ : A —> A’.
The cycle attached to ¢, denoted A, is supported on the fiber (4")" x A" above a
point of C attached to A’, and is essentially equal to the r-fold self-product of the
graph of ¢.
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Section 2.3 defines the cycles A, precisely and establishes some of their basic
properties. In particular, it shows that generalized Heegner cycles are homologically
trivial. One can therefore consider their images under various (étale, p-adic, and also
complex) Abel-Jacobi maps defined on homologically trivial cycles modulo rational
equivalence. Moreover, it is observed in Section 2.4 that the classical Heegner cycles
on W,, attached to the imaginary quadratic field K can be obtained as the images
of generalized Heegner cycles on X,, under a suitable algebraic correspondence. It
follows that generalized Heegner cycles carry at least as much arithmetic informa-
tion as Heegner cycles on Kuga—Sato varieties. One expects that they carry substan-
tially more: namely, that their heights should encode the central critical derivatives of
Rankin L-series attached to the convolution of cusp forms of weight k :=r + 2 on
I' with theta series of weight less than or equal to kK — 1 attached to certain Hecke
characters of K (and not just with those arising from finite-order characters).

Section 3 describes the images of generalized Heegner cycles under the p-adic
Abel-Jacobi map for a prime p not dividing N. More precisely, Section 3.1 intro-
duces the étale Abel-Jacobi map

AJ§ CH (X, )o,0(F) — H' (F, HY T (X, Qp)(r + 1)) (0.0.1)

et

attached to any field F containing H, where H!(F, M) denotes the (continuous)
group cohomology of G r := Gal(F /F) with values in a G r-module M. (Here and
elsewhere, the subscript 0 stands for homologically trivial and the subscript Q denotes
the Chow group with rational coefficients.) As shown in the appendix, the variety X,
admits a proper smooth model over Spec Z[1/N] and hence the image of AJ% (for F a
finite extension of Q) is contained in the Bloch—Kato subspace H}. The comparison
theorems between p-adic étale cohomology and de Rham cohomology then allow us
to view (0.0.1) as a map Al (called the p-adic Abel-Jacobi map):

AJp :CH " (X, )0.(F) —> Fil'T! H2I 1 (X, /F)V. (0.0.2)

Section 3 explains how this map can be computed analytically via Coleman’s theory
of p-adic integration of differential forms attached to certain classes in the de Rham
cohomology HZ t1(X,/F).

We now describe briefly the anticyclotomic p-adic L-function that is constructed
in Sections 4 and 5. Let Sx(I'g(N),e) denote the space of cusp forms of weight
k, level N, and character €. The quadratic imaginary field K is said to satisfy the
Heegner hypothesis (relative to N) if Qg possesses a cyclic ideal 91 of norm N, that
is, an ideal for which

Ox/MN=7Z/NZ. (0.0.3)

Assume that this hypothesis is satisfied, and fix a normalized newform f € S (I'o(N),
er). Let x be a Hecke character of K of infinity type (j1, j2) with j; 4+ j» =k and
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satisfying
Alax = &5 -NK, (0.0.4)
Q

where N is the usual norm character. This condition implies that the Rankin L-series
L(f. x~ ', s) is self-dual and that its functional equation relates its values at s to those
at —s, so that 0 is the point of symmetry. Such y will be called central critical for f.

At the cost of possibly interchanging j; and j,, we will assume that j; > 0.
Let X..(97) denote the set of central critical characters of conductor dividing 91 and
satisfying (0.0.4), as well as the following auxiliary condition: for all finite primes
q, the epsilon factor g4( f, x~ 1) = +1. Given our other hypotheses, this auxiliary
condition is automatic except at those primes ¢ ramified in K, that divide N but do
not divide the conductor of ¢ ¢. (In the text, we allow more generally the conductor
of y to divide ¢91 where ¢ is an auxiliary odd rational integer prime to Ndg, where
—dk is the discriminant of K.) The set X (%) can be written as the disjoint union of
two subsets,

(M) =P O U =P M),

where zéi’m) consists of the characters of infinity type (k — 1 — j, 1+ j) with 0 <
Jj <r,and P (1) consists of those of infinity type (k 4+ j,—j) with j > 0. When
X € = (D), the sign oo (£, x 1) equals —1, hence the sign in the functional equation
for L(f, y~',s) is also —1, and therefore the function y — L(f. x~',0) vanishes
identically on zéé’(m). On the other hand, for y € I (D), the sign eoo(fo x 1)
equals 41 whence the sign in the functional equation for L(f, y~1,s) is +1 as well,
and so one expects that the associated central critical values should be nonzero most
of the time.

Section 4 is devoted to proving an explicit version of Waldspurger’s formula relat-
ing the central L-values L(f, x',0), for y € 222) (M), to period integrals on tori.
Such explicit formulae have been studied by several authors recently, for example,
[X], [MW], and more recently [Hi3]. However, our approach is somewhat different
in that we always insist that our torus embeddings come from Heegner points and
that the test vectors are of minimal level. The relevant period integrals then reduce
to finite sums of values of (certain nonholomorphic derivatives of) the form f at all

conjugates of a CM point, twisted by the character y !

, which is key to providing a
link to the p-adic Abel-Jacobi images of generalized Heegner cycles supported on
the same set of conjugate CM points.

Section 5.1 recalls the algebraicity properties of these special values: for all y €
zﬁ? (91), we have that

- L(f, —1’0
Lag(f.x™") :=C(f.0) x % (0.0.5)
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is an algebraic number. Here C (f. x) is an explicit, elementary constant and €2 is a
CM period attached to K whose value depends on the choice of a regular differential
w4 on A/H . After fixing an embedding

1:Q—Q,,

the values Lyg(f, x~') attached to y € 253) (D) can be viewed as p-adic numbers.
Section 5.2 takes up the question of their p-adic interpolation. As explained in that
section, the set 28) (M) is endowed with a natural p-adic topology, and can be viewed
as a dense subset of its completion S (91). Assume that the rational prime p is split in
K/Q, so that t(K) C Q. Let p be the prime of K corresponding to the embedding ¢.

The main result of Section 5.2 is that, after setting

Ly(f.0) = 22D (1= y Y ®)ap + e (p)xB) 20 ) Lug(f 1™

for an appropriate p-adic period €2, (which also depends on the choice of w4), the

assignment y > L,(f, x!) extends to a (necessarily unique) continuous function

on e (M), which we refer to as the anticyclotomic p-adic L-function attached to f

and K.

Now, let y be a character in D% (M) having infinity type (k — 1 — j, 1 + j) for
some 0 < j < r. While the classical L-value L(f, )(_1, 0) vanishes, the character y
can be viewed as an element of f)cc(‘ﬁ) (lying outside the range of classical inter-
polation defining the anticyclotomic p-adic L-function L,(f, x)), and the special
value L ,( f, y)—which may be thought of as a p-adic avatar of L'(f, y !, 0)—is not
forced to vanish a priori. Our main result relates L ,(f, x) to the Abel-Jacobi images
of generalized Heegner cycles. For the sake of illustration, we state the main result
under the following simplifying assumptions, postponing the more general statement
to Theorem 5.13.

(1) The quadratic imaginary field K has class number 1 and odd discriminant
—dg < —=3. Let e : (Z/dgZ)* —> {1} be the associated odd Dirichlet
character, and denote by the same symbol the quadratic character of (Og/
V—dx Ok)* induced from the identification of O //—dx Ok with Z/dk Z.

(2)  The newform f belongs to Sx (I'o(N), 81;(). (Note that it is necessary that dg
divides N when k is odd.)

3) The grossencharacter y € Egé)(‘ﬁ) is of the form

x((@) = e (@ar 17"t

for some integer 0 < j <r.
In this special setting, our main result is the following.
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MAIN THEOREM
Let A = Ay be the generalized Heegner cycle attached to 1 : A — A, viewed as an
element of CH" "1 (X,)0(Q))q via t. Then

Lp(f’)() -1,z —2,=\ k—1\2 1 Jjor—j 2
iy = (1= B+ 0P (5890, A)@r non))
where Alq,, is the p-adic Abel-Jacobi map of (0.0.2), wy is the class in QL (W)
attached to f in Corollary 2.3 of Section 2.1, and winz_] is the class in H"(A")
defined in (1.4.6) of Section 1.4.

Note that it is a special value and not a derivative of the p-adic L-series that
occurs on the analytic side of this formula, while the algebraic side involves the Abel—
Jacobi images of generalized Heegner cycles rather than their (p-adic) heights. Note
also that if w4 is replaced by a nonzero multiple Aw 4, then both sides of the equation
above are multiplied by A2/=7).

Those approaching this paper for the first time may find it pedagogically help-
ful to focus on the simplest case r = j = 0, where f is a newform of weight 2 and
X E Egi)(‘ﬁ) is a grossencharacter of infinity type (1, 1). In this case, our Main Theo-
rem involves the formal group logarithms of points in the Jacobians of modular curves
arising from certain divisors supported on Heegner points. It relates these p-adic log-
arithms to the values of the p-adic L-function L,(f, x) at characters of finite order
(shifted by the norm). One thus obtains a new p-adic variant of the Gross—Zagier for-
mula in the traditional setting of Heegner points on modular curves. As a first guide
to the somewhat lengthy arguments required to deal with forms and Hecke characters
of general weights and levels, here is a brief outline of the proof of the Main The-
orem in this simplest nontrivial setting, assuming further that K has class number 1
and a unit group of order 2, and that y := yg is the trivial character of weight (1, 1)
sending the (principal) ideal («) to its norm oe. This norm character is the special-
ization at j = 0 of the sequence y; € Eg) (M) of grossencharacters of infinity type
(14 j,1—j) defined by

15 ((@) =o' tigl,

Let 85 ~! denote the (j — Dth iterate of the Shimura—Maass differential operator as
defined in Section 1.2; this sends weight 2 real analytic modular forms to those of
weight 2. For all j > 1, Theorem 5.5 identifies the quantity Ly ( f, )(J_.l) of equa-
tion (0.0.5) with (5£_1f)(PA)2, where P4 denotes the triple (A4, w4,14) attached to
the elliptic curve A with CM by the maximal order of K, the differential w4, and
a suitable I'y (V)-level structure t4 on A. (Here modular forms are viewed as func-
tions on triples, as explained in Section 1.1.) Using the well-known fact that the unit
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root splitting of the Hodge filtration agrees with the Hodge decomposition for ordi-
nary CM elliptic curves, Proposition 1.12 identifies (5g_1 F)(Py) with (8771 £)(Py),
where 6 = ¢ diq is the Atkin—Serre theta operator on p-adic modular forms defined in
(1.3.2). This key identification leads to the p-adic interpolation of the special values
Lag(f, )(J_.l) described in Section 5.2, and hence, to the Rankin p-adic L-function
L ,(f, xj) which arises in the Main Theorem above. This p-adic L-function satisfies
the equality

Lp(fix) =@ (P2, vj=o,

where £ is the p-depleted modular form associated to f as defined in (3.8.4) and
where Pflp) = (A,Q,"'w4.14). Taking a p-adic limit when j — 0 shows that

Ly(f,i0 =" e

One can see (either directly, or by specializing the calculations of Section 3 to the case
where r = 0) that the function 6~ f°>—which is a p-adic and in fact overconvergent,
modular form of weight 0—is the unique rigid analytic primitive of the exact rigid
differential @ z» which vanishes at the cusp oo, and its value at the triple P/EP ) is an
explicit multiple of the formal group logarithm, relative to the differential w , of the
degree 0 divisor A; = (A4,t4) — (c0) on the modular curve C.

We close this introduction by listing a few of the arithmetic applications of The-

orem 5.13.

Rubin’s formula

The article [BDP1] exploits Theorem 5.13 in the special case where f is itself a
weight 2 binary theta series attached to the quadratic imaginary field K to give a
new proof of the main result of [R], which relates the values of the Katz p-adic L-
function attached to K to the p-adic logarithms of global points on elliptic curves
with complex multiplication by K.

Chow—Heegner points

Because it involves Abel-Jacobi images rather than p-adic heights, Theorem 5.13 is
used in [BDP2] to study the algebraicity of the certain points on CM elliptic curves
arising from higher-dimensional cycles in the Chow groups of certain algebraic vari-
eties whose cohomology realizes the £-adic representations attached to theta series
of higher (possibly odd) weight. This construction provides a basic illustration of
the phenomenon of Chow—Heegner points arising from the image of algebraic cycles
under Abel-Jacobi maps (both complex and p-adic). The relevance of Theorem 5.13
to the notion of Chow—Heegner points was in fact the original motivation for the
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present article, although Theorem 5.13 is considerably more general than the special
case exploited in [BDP2].

Coniveau and the Bloch—Beilinson conjecture

The article [BDP3] illustrates how Theorem 5.13 may be used to prove part of the
Bloch-Beilinson conjecture for the Rankin—Selberg motives that are studied in this
article. In particular, by verifying that specific values of the p-adic L-function
L,(f. x) are not zero, one can often show that generalized Heegner cycles are not
just nonzero in the Chow group but also nonzero in a certain graded piece for the
coniveau filtration on the Chow group, as predicted by a refined version (see [Bl1],
[B12]) of the Bloch—Beilinson conjecture.

Euler systems

Let F be any global field over which A is defined. For each cuspidal newform f
on C of weight r + 2 and each character y as in the previous statement, there is a
G F-equivariant projection

Tfy: Heztr-i-l()?,,Qp)(r +1)— V@0 +1)=Vy,,

where Vy is the p-adic Galois representation attached to f and where y is viewed
as a 1-dimensional p-adic representation of G in the usual way. Each generalized
Heegner cycle Ay, defined over an appropriate extension F, O H, gives rise to a
global cohomology class

Ky = ”ﬁx(AJ%w (Ay)) € H'(Fp. V),

which belongs to a generalized Selmer group Hslel(F(p, Vs.,) attached to the p-adic
Galois representation V. If p is a prime of F, above p and if p does not divide
the level of I', the discriminant of K, or the degree of ¢, then the natural image
resy (k) of K, in the local cohomology group H'!(F,,, Vr.) belongs to the sub-
group H}(Fw,p, Vy.y) corresponding to crystalline extensions of Vs, by Qp. Our
Main Theorem above relates resy (k) to the values of the p-adic L-function L, (f, x)
at points lying outside the range of classical interpolation. This suggests that the col-
lection {k,} of global cohomology classes, as ¢ ranges over the isogenies A —> A’,
should give rise to an Euler system attached to the compatible system Vy,, of p-adic
representations of G . (See Section 2.4 for a discussion of the relation between these
cycles and classical L-series, and see [Cal], where the connection between the results
of this paper and the theory of Euler systems obtained by interpolating generalized
Heegner cycles in p-adic families is described in more detail.)
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1. Preliminaries

1.1. Algebraic modular forms
Let N > 1 be an integer, and let I' = I'; (V) be the standard congruence subgroup of
level N:

I'(N):= {(Z 2) €SL,(Z) suchthata —1,d —1,¢ =0 (modN)}.

We begin by recalling the geometric definition of modular forms over a field F that
is given in [Ka2] and [Hi4].

If R is a ring in which N is invertible and E is an elliptic curve over R, we
observe that a closed immersion ¢ : Z/ NZ — E of group schemes over Spec R gives
rise to a section s : Spec(R) —> E of order N by restriction to the section 1 of Z/ NZ.

Definition 1.1

An elliptic curve with T -level structure over aring R is a pair (E,t) consisting of
(1)  anelliptic curve E over Spec(R),

2) a closed immersion ¢t : Z/ NZ — E of group schemes over Spec R.

A triple (E,t,w), where (E,t) is an elliptic curve with I"-level structure and where
weQ /g 18 a global section of QL over Spec(R), is called a marked elliptic curve
with I'-level structure.

The notion of R-isomorphisms between elliptic curves or marked elliptic curves
with T'-level structure is defined in the obvious way. Denote by EII(T, R) the set
of isomorphism classes of elliptic curves with I"-level structure over R, and denote
by ETI(F, R) the set of isomorphism classes of marked elliptic curves with I'-level
structure.

Definition 1.2

A weakly holomorphic algebraic modular form of weight k on T defined over a field

F is a rule which to every isomorphism class of triples (E,f,w) € ETﬁ(F, R) defined

over an F-algebra R associates an element f(E,t,w) € R satisfying

(1) (compatibility with base change)—for all F'-algebra homomorphisms of type
j:R— R,

fU(E.t,0)®; R')=j(f(E.t,0));
2) (weight k condition)—for all A € R*,

FE.t. ) = 17K f(E.1,0).
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Let (Tate(q),?, Wean)  p((q1/4y) be the Tate elliptic curve Gy, / g%, equipped with
some level N structure ¢ defined over F((g'/¢)) (for some d | N) and the canonical
differential wcyy := ‘fl—” over F((g)), where u is the usual parameter on G,.

Definition 1.3
An algebraic modular form on T over F is a weakly holomorphic modular form
satisfying

f(Tate(q), t, wean) belongs to F[[g'/9]], forallz.

If these values belong to ¢/ F[[¢'/]], then f is called a cusp form.

We denote by
Sk(T, F) C My(T, F) C M (T, F)

the F-vector spaces of cusp forms, algebraic modular forms, and weakly holomorphic
modular forms, respectively, on I' over F. Write

C'=1i(N), C=Xi(N)=Yi(N)UZy,

for the usual modular curves over Q associated to I'. The cuspidal subscheme Zy is
finite over Q. If N > 3, then the group I';(N) is torsion-free and the curve C Oisa
fine moduli scheme having a canonical smooth proper model over Spec(Z[1/N]). It
represents the functor on Z[1/N]-algebras which to R associates the set Ell(T', R) of
Definition 1.1. We will not make use of the integral model for now and will view the
curves C? and C as defined over some base field F (of characteristic 0) for the rest
of this section.

Let  : & — C° be the universal elliptic curve with level N structure over C°,
and let @ 1= . Qg ,co be the line bundle of relative differentials on & /C 0. A weakly
holomorphic modular form f € M ]:r (T, F) can be viewed as a global section of the
sheaf w* over C° by setting

f(E.t)= f(E.1,w)0F, (1.1.1)

where (E,t) is viewed as a point of C°(R) and where o is an arbitrarily chosen
generator (locally on Spec R) of Q}s /R" Note that the expression on the right-hand
side of (1.1.1) does not depend on the choice of w.

Consider the relative de Rham cohomology sheaf on C°:

£1:=R'7.(0 > Og — Qg/co —0).
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It is a rank 2 algebraic vector bundle over C° whose fiber at any geometric point
x : Spec L —> CY is given by

(£1)x = Hyp (x),
with & := & X Spec L. There is a nondegenerate (Poincaré) pairing

(v):$1X$1—>(9C07

and the Hodge filtration on the fibers corresponds to an exact sequence of coherent
sheaves over C°:

1_o. (1.1.2)

0—w—&L£ — o

The vector bundle &£ is also equipped with the canonical integrable Gauss—Manin
connection

Vid— &1 Q. (1.1.3)
The Kodaira—Spencer map KS is defined to be the composite
v
KS:w — £1 — £ ®521C0—>Q_1 ®Qlco

in which the first and last arrows arise from (1.1.2). This map is an isomorphism of
sheaves over C?, and therefore it gives rise to an identification

o(w1 ® wy) := (w1, Vwa). (1.1.4)

In addition to the geometric interpretation (1.1.1), it will also be convenient to view
modular forms f € M;r 4»([, F) as global sections of the sheaf " ® Qlco by the rule

wr(E,t):= f(E,t,0) 0" ®c(0?). (1.1.5)

Assume for simplicity that all the cusps of X;(N) are regular in the sense of
[DS, Section 3.2]. (This condition is satisfied as soon as N > 4.) The line bundles
w and £ and their attendant structures extend naturally to the complete curve C as
explained in the following.

. The line bundle @ admits an extension to C (denoted again by w) which is
characterized by the property

H°(C.0") = My(T, F).

By Definition 1.3, the local sections of w in the neighborhood
SpecF(¢n)[[g"/?]] of the cusp attached to the pair (Tate(q),q/9¢y) are
expressions of the form hwe,, with i € F(¢x)[[g"/4]], where we recall that
Wean 1S the canonical differential on the Tate curve.
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The exact sequence (1.1.2), together with the given extensions of w and ™! to
C, determines an extension of £; to C in such a way that (1.1.2) becomes an
exact sequence of sheaves over this base. The local sections of &£ in a neigh-
borhood of the cusp (Tate(q), ¢4y ) are F(Zn)[[g"/¢]]-linear combinations
of w.,, and the local section &,, defined by

dq

Va)can = gcan & — (116)
q

(The sheaf £ is described in [Sch1, Section 2.4], where it is denoted &.)
The Gauss—Manin connection V of (1.1.3) extends to a connection with log
poles

Vi — £1®Q(ogZy), (1.1.7)

where Q2 1C(10g Z n) denotes the sheaf of differentials on C with logarithmic
singularities on the cuspidal subscheme Zy. Over Spec F(¢n)[[g"/4]], it is
described by the equation

d
Ve = Ecan ® _q» v%_can =0. (1.1.8)
q

Finally, the Kodaira—Spencer isomorphism o gives an identification
00> QL(logZy) (1.1.9)
of sheaves over C. Over Spec F(¢x)[[¢"/¢]], it is determined by
o(ws,) = —. (1.1.10)

With these definitions, the rules (1.1.1) and (1.1.5) give identifications
M, 5(T,F) = H(C.0"*?) = H%(C.0" ® Q¢ (log Zy)). (1.1.11)
Sr+2(T, F) = H*(C,0" ® Q). (1.1.12)

For any r > 1, let

£, :=Sym" £;.

The sheaf &£, inherits from (1.1.2) a canonical Hodge filtration by sheaves of O¢-
modules

£, D& 1Q@wD---Dw’,

and the relative Poincaré duality
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(,): & x £, — Oc, (1.1.13)

whose reduction to the geometric fibers is given by the rule

(o BB = Y lonfor) o o). (L114)
‘o€S,

where S, denotes the symmetric group on r letters. The connection V on £ gives
rise to a connection (which will also be denoted V)

Vi€, — £, ® Qlc(logZN).

Let V denote the composite

~ v i -1
Vidr > L @QhlogZy) <2 £, @ 02 —> Ly ® L2 —> Lrsa. (1.1.15)

where the penultimate arrow is induced from (1.1.2) and the last arises from the nat-
ural projection

Sym” ® Sym? — Sym’ 2.

The map \Y (which, like V, is a homomorphism of abelian sheaves but not of O¢-
modules) gives rise to differential operators on modular forms. More precisely, let

U E —w (1.1.16)

be a splitting of the Hodge filtration (1.1.2), and let W*) denote the corresponding
homomorphism £ —> w¥. The splitting ¥ determines a differential operator

Oy : M (I.F) — M, »(I.F),  (Ogf)(E 1):=VD(Vf)(E,1).
(1.1.17)

Example 1.4

We can construct a splitting W as in (1.1.16) as follows. The datum of a pair (£, )/
determines (locally on Spec R) canonical elements x € H°(E,Og(20Eg)) and also
y € H'(E,Og(30g)) satisfying

y? =4x> 4+ gox + g3, for some g3, g3 € R, and — =w.

The decomposition

Hi(E/R) = R[”’y—x] ® R[%]
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determines a canonical algebraic (but not functorial) splitting W, of the Hodge fil-
tration on &£1. The resulting differential operator ©,4, on M, (I", F) is given in terms
of g-expansions by the formula

r d
CH =0f - —Pf, 0=qg—,
where

P=1 —24201(11)6]” (With o1(n) = Zd),

n>1 dln

arises from the Eisenstein series of weight 2. (See [Ka2, Section A1.4].)

1.2. Modular forms over C
Assume now that F = C. The set C(C) of complex points of C is a compact Riemann
surface, and the analytic map

1
pr: ¥ — C°(C), pr(z) := (C/(l,r),ﬁ>

identifies C °(C) with the quotient I'\ #, where we recall that I' = I'; (N ). The coher-
ent sheaf &£, gives rise to an analytic sheaf £2" on the Riemann surface C(C); let
£3 .= pr* £2 denote its pullback to H.

Recall the elliptic fibration 7 : & —> C°, and let

L% :=R'%z, LB:=sym L2,

be the locally constant sheaves of Z-modules whose fibers at x € C?(C) are identified
with the Betti cohomology H 113 (Ex,Z) and Sym" H 11; (&x,7Z), respectively. The local
system

L,:=L2®;C (1.2.1)

is identified with the sheaf of horizontal sections of (£, V) over C°(C). (See [De2,
Théoreme 2.17].)

A modular form f e M ,j (T, C) gives rise to a holomorphic section of w* viewed
as an analytic sheaf over C°(C). It also gives rise to a holomorphic function on # by
the rule

F@ = £(C/40, 7). 52w dw), (122)

where w is the standard coordinate on C/(1, t). This function obeys the familiar
transformation rule
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b b
f(j::d) — (et +d)* f(r), forall (i d) e (N), (1.2.3)
and the modular form f is completely determined by the associated function f (7).

The Hodge filtration on H j(C/(1, 7)) admits a canonical, functorial (but non-
holomorphic) splitting

Hgi(C/(1,7)) :=Cdw & Cdw, (1.2.4)

called the Hodge decomposition. In terms of the local coordinates 7, T, dw, and d w,
the Gauss—Manin connection and the Kodaira—Spencer map are described by
dw—dw
Vdw = (w—_w> ®dr, o((2ni dw)z) =2ridrt. (1.2.5)
T—7T
The global sections of @"*? and @” ® Q¢ attached to f in (1.1.1) and (1.1.5) are
therefore given by the complex formulas

F(C/ta) ) = foCri dwy 2,

) (1.2.6)
ws (C/(l,f), N> = f(1)Q2ridw)" ® 2ni d7).
Let £ denote the real analytic sheaf on C? associated to £ by forgetting the
complex structure on C and retaining only its associated real analytic structure, and
denote by !, the subsheaf of £ for the real analytic topology associated to @”. The
global sections of w”, over C are called real analytic modular forms of weight r
on I'. They are identified, via (1.2.2), with real analytic functions on # satisfying the
transformation property (1.2.3).
Following [Ka4, (1.8.3)], we recall the Hodge decomposition of real analytic

sheaves
LY =, ®o,, (1.2.7)
which induces (1.2.4) over the points of C°(C). It gives rise to real analytic splittings

Whogge : L5 —> 0, Wit £ —> 0. (1.2.8)

A section f of w], which is of the form \Ilgo)dge(s) for some holomorphic section
s of £, over C is called a nearly holomorphic modular form on T'. The holomor-
phic section s of £, associated to a given nearly holomorphic modular form f is
unique (see [Hi2, Section 10.1, equation (5A)]). Following a common abuse of nota-
tion, a nearly holomorphic modular form is treated interchangeably as a real analytic
section f(t)(2wi dw)" of !, and as a real analytic function f(t) on # transforming

—Ta
under I like a modular form of weight r.
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Let ®pogee be the differential operator on nearly holomorphic modular forms
associated to the splitting (1.2.8) as in (1.1.17)—that is, satisfying

Otodge () = W2 (V()). forall f =W (s) withs € HO(C. £,).

The following lemma relates Ooqge to the classical Shimura—Maass differential oper-
ator §, defined by

b f(®) 1= 5

(%Jr ") @, (1.2.9)

T—7T

which maps real analytic modular forms of weight r to real analytic modular forms
of weight r + 2.

LEMMA 1.5
Let f be any nearly holomorphic modular form of weight r on I'. Then

®Hodgcf = Srf (1.2.10)
Proof

Write f = \Ilgo)dge(s), where s is the holomorphic section of £, giving rise to f, and
expand s in terms of the local coordinates T and w as

s =50(1)dw" +s1(x)dw" dw + -+ s,_1 () dwdw " + f(2)Qmidw)".

Since s is a holomorphic section, its periods vary holomorphically, and therefore
Vs = V1.9, where V10 is the component of the Gauss-Manin connection on £%
obtained by differentiating periods of real analytic sections in the holomorphic direc-
tion. Since the periods attached to the local section d w are antiholomorphic, it follows
that V1-%(dw) = 0; therefore, by (1.2.5), which continues to hold when V is replaced
by V10, we have

Vs = Vs =VhO(f(r)2ridw)") (moddwH*(C% £,-1 ® Q¢))

= (2ni) - (fr(r)dw’ + rf(r)dw’_1<
where f; := % is the derivative of f with respect to the holomorphic variable 7. It

follows from the last identity in (1.2.5) and the definition of V that
~ . dw—dw
\IJIEIrOZgZe) (V(S)) — (27.”)r+1 . \Ijgojgi) (fr(t) dwr+2 + rf(r) dwr-i-l (?))
=6, f(v)2mi dw) 2.

The lemma follows. O
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More generally, letting
J . r+2)) (gJj
®Hodge . f = \pHodge (V (S)),

one obtains @éodge(f) = 8{f, where 8{ :=08,42j—2 008, is the jth iterate of the
Shimura—Maass derivative, sending nearly holomorphic modular forms of weight r
to nearly holomorphic modular forms of weight r + 2; .

1.3. p-adic modular forms

A ring is called a p-adic ring if the natural homomorphism to its pro-p completion
is an isomorphism. If R is a p-adic ring, then a triple (E,,w),g as in Definition 1.2
is said to be ordinary if the mod p reduction of E (viewed as an elliptic curve over
R/ pR) has invertible Hasse invariant. We briefly recall Katz’s definition of p-adic
modular forms, which is modeled on Definition 1.2. In this definition, we continue to
assume that k is an integer greater than or equal to 2.

Definition 1.6

A p-adic modular form of weight k on T defined over a p-adic ring Z is a rule which

to every isomorphism class of ordinary triples (E,f,®) € ET](F, R) defined over a p-

adic Z-algebra R associates an element f(E,t,®) € R satisfying the following.

(1) (Compatibility with base change). For all Z-algebra homomorphisms
j:R— R,

F((E.t.0)®; R)=j(f(E.t.0)).
2) (Weight k condition). For all A € R*,
fE.t, ) = 17K f(E.1,0).

3) (Behavior at the cusps). Let (Tate(q), ¢, @ean) be the Tate elliptic curve G, /¢
equipped with any level N structure ¢ defined over the p-adic completion of
Z[¢n]((g"?)) and the canonical differential we, over Z((¢)). Then

S (Tate(CI)7 t, wcan) belongs to Z[{N][[ql/d”,

and f(Tate(q),t%, wean) = f(Tate(q),?, wean)® forall o € Aut(Z(¢n)/ Z).

We now recall the geometric interpretation of p-adic modular forms as sections
of suitable rigid analytic line bundles. Assume that the prime p does not divide N,
so that C extends to a canonical smooth proper model € over SpecZ,. Then write
Cr, :=C xz, Fj, and let
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red, : C(Cp) — Cy, (Fp)

denote the natural reduction map.

Let {Py...., P} be the finite subset of Cf,, (F p) consisting of the supersingular
points. The residue disk attached to P;, denoted D(P;), is the set of points of C(C))
which have the same image as P; under red,. Let

C™=C(Cp)— D(Py)—---— D(P).

Since the P; are smooth points of Cf,, (Fp), the residue disks D(P;) are conformal
to the open unit disk U C C,, consisting of z € C,, with |z| < 1. The set C* is an
example of an affinoid subset of C(C,) with good reduction. (These concepts are
discussed in somewhat more detail in Section 3.5. For general definitions and a more
systematic discussion, see also, e.g., Sections II and III of [C2].)

The algebraic vector bundle £, on C gives rise to a rigid analytic coherent sheaf
£ on €, equipped with the Gauss—Manin connection

VLt £ @ Ql(log Zy),

and a subsheaf " for the rigid analytic topology on C°. A p-adic modular form f
of weight r for " corresponds, via (1.1.1), to a rigid analytic section of @” over C ord

Following [Ka4, Theorem 1.11.27], there is a unique decomposition of rigid ana-
Iytic sheaves

£ =@ £FrP (1.3.1)

such that the Frobenius endomorphism preserves (and acts invertibly) on éﬁlfmb. In
the p-adic theory, this unit root decomposition plays a role analogous to that of the
Hodge decomposition in the complex setting. Most importantly, (1.3.1) gives rise to
a rigid analytic splitting over C°:

. oplig
qurob . 0(51 — .

Let ®gp be the differential operator associated to this splitting as in (1.1.17). It maps
p-adic modular forms of weight r to p-adic modular forms of weight r + 2. The
following lemma relates O, to the classical Atkin—Serre theta operator whose effect
on g-expansions f(Tate(q),{n,®ean) = Y_ anq" is given by

o0

d o0
6 (Tate(q). {N . @can) = q% Zanq” = Znanq”. (1.3.2)
n=1

n=1

LEMMA 1.7
For all p-adic modular forms f of weight r,

OFrob [ = 0f. (1.3.3)
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Proof
Since a p-adic modular form is determined by its g-expansion, it is enough to check
the identity on the Tate curve. By (1.1.8), we have

V £ (Tate(q), tn) = V(f(@) L)
d d
= (45 S @0+ 1 @0l ben) T
q q
Therefore, by (1.1.10),

¥ f (Tate(q). n) = qj—qf(q)w:atz @O e (134)

Since the Frobenius endomorphism respects the Gauss—Manin connection, it pre-
serves the line spanned by the unique horizontal section &, of £ over Z’[[¢]], and
therefore &.,, is stable under Frobenius. (See [Ka2, Section A2.2 ].) It follows that the
unit root subspace of the Tate curve Tate(g) over the p-adic completion R of Z'((g))
is equal to

Frob

Hle(Tate(Q)) = Rgcan-
Hence Wgeob(écan) = 0. Applying \IJg:gZ) to equation (1.3.4) shows that
OFrob f (Tate(q). {n . wean) = 0 (Tate(q), {n . Wean)- O

1.4. Elliptic curves with complex multiplication

Let K be an imaginary quadratic field of discriminant —dg, let Ok be its ring of
integers, and let H denote the Hilbert class field of K. Let A be a fixed elliptic curve
defined over H satisfying

EndH(A) ~ 0Ok.

The identification O = Endg (A4) is normalized so that the endomorphism [c]
induces multiplication by « on 9}4 JH-

Cohomology
The Hodge filtration on the de Rham cohomology H ; (4/ F) (over any field F which
contains H') admits a canonical, functorial algebraic splitting

HY(A/F)=H (A/F)® HY' (A/F) (1.4.1)

which agrees with the Hodge decomposition of H;(4/C) when F = C and which
agrees with the unit root decomposition over a p-adic ring when A is ordinary. This
decomposition is characterized by the conditions
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Hy’(A/F)=QYp.  An=2n VYAeOg.neHy'(A/F),

where A — A? is the nontrivial automorphism of K. The choice of a nonzero dif-
ferential wy € Q}q JF= HdlliO(A / F) thus determines a generator 14 of H(ﬁil(A /F)
satisfying

(wa,na) =1, (1.4.2)

where (, ) denotes the algebraic cup product pairing on de Rham cohomology.

Let S, denote the symmetric group on r letters. Multiplication by —1 on A,
combined with the natural permutation action of S, on A", gives rise to an action of
the wreath product

Eri=(u2)" xS, (1.4.3)

on A”. Let j : B, —> u; be the homomorphism which is the identity on p, and the
sign character on S, and let

1
= 2!

€4

> j(0)o € Q[Aut(4")] (1.4.4)

o€E,

denote the associated idempotent in the rational group ring of Aut(A”); by functori-
ality, it induces an idempotent on Hj, (A" / F). Recall the Kiinneth decomposition

Hp(A"/JF)= @ HEA/F) @ ® Hi(A/F), (1.4.5)
(15eees ir)

where the direct sum is taken over all r-tuples (i1, ...,i,) with 0 <i; <2. The natural
action of S, on Hj;(A/F)®" gives rise to a subspace Sym” H J, (4/ F) consisting of
classes which are fixed by this action.

LEMMA 1.8
The image of the projector €4 acting on Hjy (A" | F) is equal to Sym” H}(A/F).
More precisely,

~ 0 ifj #r.
J Ar —
“allan(AT/E) {sym’ L(AJF) ifj=r

Proof

Since multiplication by (—1) acts as —1 on HJ,(A/F) and as 1 on H%(A/F) and
HZ (A/F), it follows that € 4 annihilates all the terms in the Kiinneth decomposition
(1.4.5) except H z(A/ F)®". The natural action of S, on this term corresponds to the
geometric permutation action of S, on A", twisted by the sign character. It follows
that the restriction of € 4 to H;(4/ F)®" induces the natural projection onto the space
Sym” H};(A/ F) of symmetric tensors. O
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For any j such that 0 < j <r, we define w’n’, / by
Jo r—Jj . %/ * * *
wyly ' = e€q(PTWAN - APTOANDTLNAN A DrTA)

JNr =)
( ]) S piwir A A prwnr. (1.4.6)

where @; ; := w4 or n4 according to whetheri € [ ori ¢ I.
Note that the classes @’ n’, ’ form a basis of the vector space

€aHJR(A"/F) =Sym" Hjz(A/F).

Isogenies
It will always be assumed that A satisfies the following Heegner hypothesis relative
to a fixed positive integer N mentioned in (0.0.3).

Assumption 1.9
There is an ideal 91 of O of norm N such that Og /9 = Z/NZ. (Such an ideal is
called a cyclic ideal of norm N in Og.)

Since both A and its endomorphisms are defined over the Hilbert class field H,
the group scheme A[91] of H-torsion in A is a cyclic subgroup scheme of A of order
N defined over this field. The absolute Galois group Gy acts naturally on its set
of geometric points. Let H be the smallest extension of H over which this Galois
representation becomes trivial. The choice of a section 74 : Spec(H) — A[N] of
order N gives rise to a I'-level structure on A defined over any field F that contains
H . Fix such a t 4 once and for all.

Consider the set of pairs (¢, A”), where A’ is an elliptic curve and where ¢ :
A — A’ is an isogeny (defined over K). Two pairs (g1, A}) and (g2, A}) are said to
be isomorphic if there is a K -isomorphism ¢ : A} — A, satisfying 1@ = . Let

Isog(A) := {Isomorphism class of pairs (¢, A/)}.

The absolute Galois group Gx = Gal(K/K) acts naturally on Isog(A4), and a pair
(¢, A") admits a representative defined over a field F C K if it is fixed by the group
GFr C Gg. Fix (p, A") € Isog(A). Since A has complex multiplication by Ok, the
endomorphism ring of A’ is an order in @ . Such an order is completely determined
by its conductor, and therefore there is a unique integer ¢ > 1 such that Endg (4’) =
O. :=7Z + cOk. A pair (¢, A") is said to be of conductor ¢ if Endg(A") = O,

Clearly, this notion is well defined on isomorphism classes, and hence we may set

Isog,.(A4) := {Isomorphism classes of pairs (¢, A”) of conductor c}.
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More generally, let Isog” (A4) be the subset of Isog(A) consisting of pairs (¢, A’),
where ¢ is an isogeny whose kernel intersects A[1] trivially, and set Isoggrt (A4) =
Isog,.(A) NIsog™(A).

Let Px(0O.) denote the group of projective rank 1 @.-submodules of K, and let
P(0O.) denote the subsemigroup of modules that are contained in @, and are rela-
tively prime to 91, := 91N O.. The semigroup P(O.) acts naturally on Isog,.(A) and
IsogY'(A) by the rule a * (¢, A') = (pqp, A,), where

@a: A —> Al = A"/ A'[q] (1.4.7)

is the natural isogeny. Note that, if a = O, - a is free, then a x (¢, A') = (ap, A").
Let (A1,t1, 1) and (A3, 1, w2) be two marked elliptic curves with I"-level struc-
ture. The following notion of an isogeny,

¢ : (A1, t1,01) — (A2, 12, w2),

will be convenient from the notational viewpoint.

Definition 1.10
Anisogeny from (41,11, 1) to (A3, 12, wy) is anisogeny ¢ : Ay —> A, on the under-
lying elliptic curves satisfying

@(t) =12, @™ (w2) = wy.

The action of P(O.) on Isog>'(A) that was just defined gives rise to an action
of P(0O.) on the set of isomorphism classes of triples (A’,#’, ') with End(A") = O,
and ¢’ € A'[91.], by the rule

ax (At w") = (AL, ga(t)). 0)), where ¢} (w)) =o' (1.4.8)

Remark 1.11
Let Ak, r denote the ring of finite adéles of K, and let O, denote (0. ® Z), viewed
as a subring of Ag, r. The group Pg(O.) is naturally identified with A% I /OX, by

A

associating to a a generator (a,) € Ay rofa®o, O.

1.5. Values of modular forms at CM points
Following the notation of Section 1.4, we continue to let (A4,¢4,w,4) be a marked
elliptic curve with I'-level structure and complex multiplication by O g, defined over
afield F,and we let ¢ : (4,14, w4) —> (A’,1’,®’) be an isogeny of marked elliptic
curves over .

Fix complex and p-adic embeddings (o : F —> C and ¢, : F —> C,,, and use
these to view A and A as curves over C and Oc,, (by fixing a good integral model),
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respectively. If f belongs to the space M ,j (T, F) of modular forms over F, then
by definition f(A’,t',w’) belongs to F as well. Note that f can be viewed as a
p-adic modular form, after possibly rescaling it. The following algebraicity theo-
rem asserts that a similar conclusion holds for Opodge (/) and Oprob( f), evaluated on
loo(A' 1" ') and 1, (A", 1, 0’), respectively.

PROPOSITION 1.12

Let (A',t',0"),F be a marked elliptic curve with complex multiplication by an order
in K. Assume that A’, viewed as an elliptic curve over (9cp, is ordinary. Then

(1) the complex number Oyogge [ (A’ 1", ") belongs to 1 (F),

(2)  the p-adic number Oy, f (A’ 1", w") belongs to 1, (F), and

3) viewing these two quantities as elements of F, we have

®H0dgef(A/,t/v w/) = ®Fr0bf(A,9l/7 a)/)-

Proof

Item (1) is due to Shimura [Sh1] and items (2) and (3) are due to Katz [Ka4]. Our
proof below follows Katz’s approach. (See also the article of Hida [Hi4].) The key
point is that any endomorphism o € Ok of A’ respects the algebraic splitting of the
Hodge filtration on H};(A’/F) defined in equation (1.4.1) of Section 1.4, and it acts
on HY'(A’'/F) via multiplication by &@. It follows that HL (4'/F) = Q'(A'/F) &
H C?lil (A'/ F) agrees with the Hodge decomposition of H (A’ ®,., C) and with the
unit root decomposition of H le(A/ ®., Cp), which both share this property. More
precisely,

HY'N(A'/F)®,, C=Hx' (A &, C),
HY'(A'/F)®,, Cp= Hg(A' ®,, Cp)T™®.

Thus Wi 2V f (A1) and WPV f(A'.1') both belong to Sym™+2Q1(A'/F),
and are equal. The proposition follows. O

2. Generalized Heegner cycles

2.1. Kuga—Sato varieties

Let 7 : & — C be the universal generalized elliptic curve with I'; (N )-level struc-
ture, extending the universal elliptic curve over C introduced in Section 1.1, which
exists because of our running assumption that N > 4. The variety W; := & is smooth
and proper, and the geometric fibers of 7 above a closed point x € C are singular pre-
cisely when x is a cusp. The geometric fiber 7! (x) is then isomorphic to a chain of
projective lines intersecting at ordinary double points whose dual graph is an m-gon
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for a suitable m | N, depending on x. Let W;* C W, denote the relative identity com-
ponent of the Néron model of & over X; (/N ), whose geometric fibers above the cusps
are isomorphic to the multiplicative group G, .

Fix an integer r > 0, and let

Wr*:: Wl* Xc Wl* Xc X WI*CWr#IZEXC Exc-xc €

denote the r-fold fiber products of W;* and &, respectively, over C.

Write W, for the canonical desingularization of Wrn, as described in [Del, Lem-
mes 5.4, 5.5], and [Sch2, Section 1.0.3], for example. In those articles, these construc-
tions are performed for the universal elliptic curve over the modular curve X (N ) with
full level N structure, but they can be adapted to deal with the case of X;(N); see
the appendix of this article for further details on this more general construction, even
over SpecZ[1/N].

Denote by

WO =W, xc C®=Wixc C®=W*xc C°

the complement in W, of the geometric fibers above the cusps, and let W% € W;*
be the locus where the natural projection Wrﬁ —> C is smooth. As in [Sch2, Sec-
tion 1.3.2.], there is a noncanonical isomorphism

W xc Zoo = | [(Zood) X (G x Z/dZ)"), (2.1.1)
d|N

where Zo, C C denotes the cuspidal subscheme and where Zy(d) C Zo is the
(possibly empty) subscheme of cusps with ramification degree d over the modular
curve of level 1. The varieties &, C, Wrﬁ, wr, W, and Wr0 are all defined over Q,
and can therefore be viewed as defined over any field F' of characteristic 0. It will be
convenient to fix such an F at the outset.

Translation by the sections of order N gives rise to an action of (Z/NZ)" on
Wrﬁ, which extends to W, by the canonical nature of the desingularization. The group
(Z/NZ)" also acts transitively (but not freely, in general) on the set of components
of Wrti above any cusp of C arising in (2.1.1). Let o, denote the automorphism of W,
associated toa € (Z/NZ)", and let

a_ 1
GW—W Z Oa

ac(Z/NZ)"

denote the corresponding idempotent in the rational group ring of (Z/NZ)". Simi-

larly, the group E, of (1.4.3) can be viewed as a subgroup of Aut(W,/C) acting on

the fibers of the natural projection from W, to C. Let 6%,12,) be the idempotent in the



GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES 1057

group ring Z[1/2r][Aut(W, /C)] which is defined by the same formula as in (1.4.4)

with A" replaced by W, /C. The idempotents 61(41,) and 61(42,) commute, and therefore

the composition
ew =eDel) 2.1.2)

defines a projector in the ring of rational correspondences on W;..
Let

QUL =&, QUL =L, @ QL + V(L).
The complex
0—> Q&) —> Q' (£,) —> 0 (2.1.3)
of sheaves over C is the smallest subcomplex of
0— £, V> &, ® QL(log Zy) —> 0 (2.1.4)

which contains £, and £, ® QIC in degrees 0 and 1, respectively. The de Rham
cohomology of C attached to £, denoted HjR(C /F,&£,,V),is defined to be the ith
hypercohomology of the complex (2.1.4):

HR(C/F,&,,V):=H'(C/F,£, ® Q*(log Zy)).

The parabolic de Rham cohomology of C attached to £, is defined, following [Sch1,
Section 2.6], as the hypercohomology of the subcomplex (2.1.3):

Hi\((C/F, £, V) :=H (C/F.Q"(£,)).
In degree 0, we have
HO,(C/F.£,.V) = HY(C/F.£,.V).

As explained in [Schl, proof of Theorem 2.7(i)], the parabolic cohomology
leaI(C /F,&,,V) in degree 1 is equipped with a natural filtration
0— H%(C/F.0" ® Q¢) — Hp, (C/F.%,.V)— H'(C/F.0™") —0.
(2.1.5)

The de Rham cohomology groups HéR(X / F) (attached to any variety X over F)
and HG{R(C/F, £, V) will sometimes be abbreviated to HjR(X) and Hé'R(C, £, V),
and likewise for the parabolic cohomology groups, when no confusion results from
suppressing the field of definition F in the notation.
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LEMMA 2.1
Ifr =0, then Hé)R(C,SK,,V) =F, and HC?R(C,ir,V) = 0 otherwise.

Proof
Fix an embedding of F into C, and consider H%(C/C,%,,V) = H&(C/F,£,,
V) ® r C. By the GAGA principle,

HY(C/C,&,,V) = HX(C,£™ V).
The restriction map
Hix(C, &5, V) — Hg (CO, &3, V)
is injective, and
Hip(CO.£7".V) = H(C® L),

where I, is the local system introduced in (1.2.1). This local system corresponds
to the rth symmetric power of the standard 2-dimensional representation C2 of I' C
SL,(Z) C SL;(C), and therefore

C ifr=0,

H°(C°L,)= H°(T,Sym" (C?)) = ,
0 otherwise.

The lemma follows. O

We wish to describe the image of ey on the (middle) cohomology of W, and
relate this image to H,, (C, £,, V).

LEMMA 2.2
Assume that r > 1. Then we have the following.
(1) The image of 6;12/) (and of ew ) acting on Hjx (W, / F) is canonically isomor-
phic to Hiz (C,£,, V).
2) The image of ew acting on Hj(W,/F) is canonically isomorphic to the
parabolic cohomology lear(C, £, V).
(3)  Furthermore, the Hodge filtration on ew Hjy (W, /F) = ew H(fl{H(Wr/F) is
given by (2.1.5), that is,
Fil’ = H}, (C.%,.V),
Fil! =Fi? =-.-=Fil'"! = H(C,0" ® Qf),
Fil't? =...=0,

where Fil/ denotes the jth step in the Hodge filtration on ey Hdrl{H (W,).
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Proof
The arguments below are mild adaptations of those in [Sch2] and [Sch3].
(1) By [De2, Corollaire 3.15], the natural map

HiR(C,£r, V) > HR(C Lr|co, V) :i=H (C, Q (L)) o)

is an isomorphism. Consider the Leray spectral sequence for de Rham cohomology
(see [Kal], Remark 3.3) applied to the map Wro — CO: that is,

EP? = HL(CO, HEW?/C®), V) = HETI(W?).

By the same argument as in [Del, Lemme 5.3], this spectral sequence degener-
ates at E and identifies the space HJ (C®, HL (W°/C?), V) with the subspace of
HE +q(WO) on which [m] acts as m9. (Here [m] denotes multiplication by m on the
fibers of W,%/C°.) Applying the projector e( ). we find that

€D HEW/CO) =3 Hir W2/ C%) = &, co
and that
HL(CO 2,0, V) ~ @ HIF W) = @ HE (W),

A similar statement holds with 6;12/) replaced by e, since translation by W,2(C°) on
H . (W2 /CP) is trivial (since W,? — C? is an abelian scheme).
(2) We use the following fact due to Scholl: there is a canonical isomorphism

ewH' (Wy) ~ e D HI (W),

for - = B,et, or dR. This is proved in [Sch2, Theorem. 3.1.0] for the case of full
level structure, and the modifications needed to extend this to X; (/) are described in
[Sch3, Sections 2.9-2.12]. Now consider the Gysin sequence for the inclusion W2 <
W*, writing Z := W} \ W2:

- H' W*)— H W) - H Y (Z)(-1) > HT'(W*) -
Since by ([Sch2, Lemma 1.3.1(i)] and [Sch3, Section 2.9] we have

(2) 0 if i ;ér,
H'(2)= {HO(ZOO)(—r) ifi=r,

we see from item (1) of Lemma 2.2 that 61(42,)Hi(W*) =0fori #r+1,r +2. Fur-
thermore, there is an exact sequence (in any cohomology theory)
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0—= e H (W) —= D H 1 (W) —2 HO(Zoo) (1 — 1) T2 HI +2 (W) —>0

EWHr+1(Wr) EWHr—i_z(Wr)

The map o vanishes since its source and image are pure of weight 2r 4+ 2 and
r + 2, respectively, and r # 0, hence ey H"2(W,) = 0. In the de Rham realization,
we have from item (1) that €2 H" 1 (W) = HA (C, &, V) = HL(C®, £,|c0, V),

and hence eaz,) H (IRJF ! (W,F) is identified naturally with the kernel of the map

PdR

HR(C° Lr|c0,V) — HR(Zoo,—1 — 1),

which is just HPIM(C, £, V).
(3) See [Schl, Theorem 2.7(i), Remark 2.8]. U

COROLLARY 2.3
The assignment

frop=f(Et,0)o" ®c(®?)
induces an identification

Sy+2(T, F) — Fil" tl ey HIFY (W, / F).

Proof
This follows from item (2) of Lemma 2.2 combined with (1.1.12) (the case r = 0
being well known). U

2.2. The variety X, and its cohomology

Recall that A is the elliptic curve with complex multiplication by Qg that was fixed
in Section 1.4, defined over the Hilbert class field H of K. Fix a field F D H, and,
for each r > 0, consider the (2r + 1)-dimensional variety over F given by

X, =W, xA".
Like the Kuga—Sato variety W,,, the variety X, is equipped with a proper morphism
X, —C

with 2r-dimensional fibers. The fibers above points of C° are products of elliptic
curves of the form E” x A", where E varies and A is fixed.
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The projectors €4 and ey defined in (1.4.4) and (2.1.2), respectively, give rise
to commuting idempotents in the ring of correspondences on X, which preserve the
fibers of the projection , : X, — C. We set

€X = €EWEY. 2.2.1)

By functoriality, the idempotent €x acts as a projector on the various cohomology
groups associated to the variety X,.
We define a coherent sheaf of O¢-modules by setting

Lrr =&, ®Sym” Hj(A). (2.2.2)
Note that £, , is equipped with the self-duality
(,):&rrxLrr—0Oc (2.2.3)

arising from Poincaré duality on the fibers. It is described explicitly in terms of equa-
tion (1.1.14) and its analogue for Sym” H [, (4). Let

L,,:=L, ® Sym" Hj,(A/C) (2.2.4)

denote the corresponding locally constant sheaf (for the complex topology on C°(C)).
The sheaf Ly, is the sheaf of horizontal sections of £}, relative to the Gauss—Manin
connection

Vikr, — L @ Qelog Zy).

This connection is induced by the Gauss—Manin connection on £, combined with
the trivial connection on H f (A). The de Rham cohomology attached to (£, V) is
defined in the same way as for (£,, V), and one has

Hi(C, L, V) = Hiz(C,£,,V) ® Sym” Hj(A),
Hp (C. & V) = Hy (C.£,,V) ® Sym” Hy (A).

PROPOSITION 2.4
Assume that r > 1. The image of the projector €x acting on Hj; (X,) is given by

ex Hip(Xr) = Hy (C. £, V) = Hy (C. £, V) ® Sym” Hyp (A).

par
In particular,

0 ifj#2r+1,

ex HL(X,) =
B HA(C. L0, V) ifj =27+ 1.
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Furthermore, if Fil/ denotes the Jj th step in the Hodge filtration on ex H der LX),
then

Fil't! = H(C,0" ® Q¢) ® Sym” Hz (A). (2.2.5)
Proof
This follows directly from Lemmas 1.8 and 2.2 in light of the Kiinneth decomposition
for the cohomology of X, = W, x A". O

PROPOSITION 2.5
The assignment [ @ a > w s A« induces an identification

Sy1+2(T, F) ® Sym” Hjz(A/F) =Fil' ' ex HZ (X, /F).

Proof
This follows directly from Corollary 2.3, combined with Proposition 2.4 when r > 1.
O

Given any integer 0 < j <r, note in particular that the class
J o r=J
wrANoyny .

where a)ﬁng_j is the class introduced in (1.4.6), belongs to H°(C,0" ® Q¢) ®
Sym” H le (A), and can thus be viewed, via Proposition 2.5, as an element of the mid-
dle step Fil"*! in the Hodge filtration of ex Hza "' (X, / F).

2.3. Definition of the cycles
In this section, we will assume the Heegner hypothesis 1.9 that was discussed in
Section 1.4. As in Section 1.4, fix once and for all a I"-level structure 4 on A in such
a way that 74 belongs to A[91].

The datum (A4, ¢4) determines a point P4 on C, as well as a canonical embedding
14 of A” into the fiber in W, above P4. More generally, any pair (¢, A’) € Isog” (A)
determines a point P4/ on C attached to the pair (A’, ¢(t4)), along with an embedding

Lgr e (A/)r — W,

defined over F.
We associate to any (¢, A’) € Isog” (A4) a codimension r + 1 cycle T, on X, by
letting Graph(¢) C A x A" denote the graph of ¢ and by setting

Y, := Graph(¢)” C (A x A')" —> (A') x A" C W, x A",
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where the last inclusion is induced from the pair (14/,id’y). We then set
A(p =€y Yo,

where ey is the idempotent given in equation (2.2.1), viewed as an element of the ring
of algebraic correspondences from X, to itself. Note that A, is supported on the fiber
771 (P4) of m, above P4 and gives an element in CH” ™! (X )@, the Chow group of
codimension 7 4 1 cycles with rational coefficients.

Remark 2.6

The generalized Heegner cycles A, are all defined over abelian extensions of K.
More precisely, if (¢, A’) belongs to Isog>2'(A), then the associated cycles can be
defined over the compositum of the abelian extension H /K over which the isomor-
phism class of (A4,¢4) is defined with the ring class field H. of conductor c.

When r = 0, the generalized Heegner cycle A, is a CM point on the modular
curve C. In this case, we replace A, by A, — oo, where oo is any cusp, in order
to make A, homologically trivial. The same is true when r > 1 by Proposition 2.4,
which implies that e x H2"72(X, Q) = 0. Thus we record the following.

PROPOSITION 2.7
The cycle Ay is homologically trivial on X,.

Remark 2.8

Another approach to proving the homological triviality of A, by deforming these
cycles to the fibers supported above the cusps of the modular curve is described in
[Sc]. The approach we have given adapts more readily to the setting of Shimura curves
attached to arithmetic subgroups of SL;(R) with compact quotient.

2.4. Relation with Heegner cycles and L-series

This motivational section discusses the relation between generalized Heegner cycles
and the more classical Heegner cycles on Kuga—Sato varieties that are studied in [Ne2]
and [Z], as well as the expected relation with derivatives of L-series.

Keeping the same notation as in the previous section, the traditional Heegner
cycles are codimension r + 1 cycles on the Kuga—Sato variety W,, which are sup-
ported on fibers for the natural projection to the modular curve C. These cycles
are indexed by elliptic curves with I'-level structure having endomorphisms by an
order in an imaginary quadratic field. More precisely, if A’ is an elliptic curve with
endomorphism by the order O, = Z[(d + v/—=d) /2] of conductor ¢ of the imaginary
quadratic field K, then we set
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hy hy h
T 4% = graph(v—d)" C (A’ x A")", AE = ew (T ).

We will now construct an explicit correspondence from the (4r + 1)-dimensional
variety X, to the (2r 4 1)-dimensional variety W,, which maps generalized Heegner
cycles to Heegner cycles.

Let IT = W, x A", viewed as a subvariety of Ws, x X5, = Wa, x Wy, x (42)"
via the map

(idw,, . idws, . (id4, v/—dg)").

This subvariety induces a correspondence from X5, to W,;, yielding a map on Chow
groups:

@1 : CHY t1(X5,)g —> CH 1 (Wy,)g.

If p : A —> A’ is an isogeny of elliptic curves with T'-level structure, a direct cal-
culation (which will not be used in the rest of this article and is therefore left to the
reader) shows that the cycles ®1(A,) and A}::f ¢ generate the same Q-subspace of
CH ' (Wa)0.

This relation shows that the generalized Heegner cycles carry at least as much
information as the classical Heegner cycles on Kuga—Sato varieties studied in [Ne2]
and [Z]. One expects them to enjoy similar relationships with central critical deriva-
tives of Rankin L-series. More precisely, we expect that the Arakelov heights of the
generalized Heegner cycles A, should encode the derivatives L'(f, ™1, 0), where x
are Hecke characters of infinity type (k —1—j, 1+ j) with0 < j <r.Thecaser =0
corresponds to the classical Gross—Zagier formula, and the case where r is even and
Jj = r/2 corresponds to the setting treated in [Z]. We expect that there should also
be a generalization of the p-adic result of [Ne2] expressing the p-adic height of gen-
eralized Heegner cycles in terms of the derivative in the cyclotomic direction of a
two variable p-adic L-function attached to f and y, at a point which corresponds to
the special value L( f, y~',0) and which lies in the range of classical interpolation
defining this p-adic L-function.

The present article avoids height calculations altogether by focusing instead on
the images of generalized Heegner cycles under Abel-Jacobi maps. In the p-adic
setting, we will relate these images to the special values of an anticyclotomic p-
adic L-function attached to f and K at a point lying outside its range of classical
interpolation.

3. p-adic Abel-Jacobi maps
The goal of this section is to compute the images of the generalized Heegner cycles
A, under the p-adic Abel-Jacobi map. The resulting formulae of Sections 3.7 and 3.8
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are a key ingredient in the proof of our p-adic Gross—Zagier formula. Some of the
techniques used in this section, particularly those of Sections 3.1-3.4, are drawn from
[IS], which treats the case of Heegner cycles on the r-fold product of the universal
fake elliptic curve over a Shimura curve attached to a quaternion algebra which is
ramified at p. This Shimura curve admits an explicit description as a rigid analytic
quotient of the p-adic upper half-plane, via the Cerednik—Drinfeld theory of p-adic
uniformization of Shimura curves. The present section treats classical modular curves
at primes p of good reduction, for which no p-adic uniformization a la Cerednik—
Drinfeld is available. The techniques employed in Section 3.5 onwards therefore differ
markedly from those of [IS].

3.1. The étale Abel-Jacobi map

Recall the generalized Heegner cycle A, associated to the pair (¢, A) € Isog,(A),
where ¢ : (A,1) — (A4’,t') is an isogeny of elliptic curves with I'-level structure. Let
P = P4 be the point of C associated to the pair (4’,1’), and let

Xp:=n'P, X’:=X,-Xp.

Fix any field F' over which the pair (X,, A,) is defined, and fix a rational prime p.
Consider the following Gysin sequence in p-adic étale cohomology (see [Mi, Corol-
lary 16.2]). After setting X = X,, Z = Xp, U = X!, and ¥ = Q,(r + 1) in the
statement of that corollary (with r replaced by 2r), we obtain the following exact
sequence in the category Repp of continuous p-adic representations of Gp =
Gal(F/F):

HY ' (Xp,Qp)(r) — H (X, Qp)(r + 1)

— HZ (X2, Qp)(r + 1) — HZ (Xp,Qp)(r)o — 0, (3.1.1)
where

HY (Xp.Qp)(n)o :=ker(HZ (Xp.Qp)(r) — HZ (X, Qp)(r + 1))
By applying the projector €y to (3.1.1), we obtain
0— ex HX ™' (X, Qp)(r + 1) — ex HZ (XD, Q) (r + 1)
— exHY (Xp.Qp)(r) —0, (3.1.2)
where we have used the fact that, when r > 0,
exHI '(Xp)(r)=0,  exHI (Xp)(r)o=exHZ (Xp)(r).

Since A = A, is equal to ex A, by definition, its image under the étale cycle
class map
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clp : CH' (Xp)o(F) — HZ (Xp,Q,)(r)
belongs to ex H2" (X p,Q,)(r). Let
cla:Qp — exHY (Xp.Qp)(r)

be the map of p-adic representations of G defined by cla(1) = clp(A), and con-
sider the extension Va of Q, by ex H3" "1 (X,,Q,)(r + 1) arising from pullback in
the following commutative diagram with exact rows in which the right-most square is
Cartesian:

0—exHZ TN (X,,Qp)(r +1) Va Q» 0

| 2

0—ex HZ TH(Xr,Qp)(r + 1) —=ex HZ T (X2,Qp)(r + 1) —=ex HZ (X p,Qp)(r) —=0

(3.1.3)
Given two objects V", V' in the category Rep, write
Extp (V" V') := H'(F,hom(V", V"))
for the set of isomorphism classes of extensions
0—V —E—V"'—0.

(Here H'!(F,—) denotes continuous Galois cohomology and hom(V”, V') is the
object of Repy equipped with the natural action of GF.)

Definition 3.1
The étale Abel-Jacobi map

AJS CH P (X, )o,0(F) — HY (F,ex HZ (X, Qp(r + 1))

sends the class of the null-homologous codimension-(7 4 1) cycle A to the isomor-
phism class of the extension Va of (3.1.3) in

Extr (Qp.ex HY ™1 (X,,Qp)(r + 1)) = H' (F.ex HY 1 (X, Qp)(r + 1)).

Remark 3.2

Definition 3.1 applies directly to cycle classes in CH " (X, ) o(F) which are rep-
resented by a cycle supported on X p. Usually, the map AJ% is defined on a general
cycle A by replacing, in the diagrams above, X p by A and X by X — A, respectively.
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In this case, one obtains an analogue of the commutative diagram (3.1.3) without the
need of applying e€x. It can be checked, following the argument that is explained in
[Ne2, Proposition I1.2.4] that this more general definition, once composed with €y, is
compatible with Definition 3.1, which is adapted to our subsequent calculations.

3.2. The comparison isomorphism

The p-adic Abel-Jacobi map arises from the map AJ% by considering the case where

F is a finite extension of Q,. Let O denote the ring of integers of F, and let k be

its residue field. We will make the following assumptions on F', which are satisfied in

our application.

(D The extension F is a finite unramified extension of Q.

(2)  The varieties C and X, over F extend to smooth proper models € and X,
over Of.

If ¢ belongs to Isog>' (A) and p does not divide ¢ Ndk, then the field F can be taken

to be the p-adic completion of the compositum of H , the extension of the Hilbert class

field of K over which A[1] is defined, with H,, the Hilbert class field of conductor c.

By abuse of notation, we will use the same letter o to denote the p-power Frobenius

automorphism of k and its canonical lift to F.

The de Rham cohomology groups H, ({k(X r/ F), equipped with their o-semilinear
Frobenius endomorphisms and Hodge filtrations, are examples of filtered Frobenius
modules (see [B], [Fo], [1], or [Fol] for details concerning the category of these
objects).

The fundamental comparison theorem between p-adic étale cohomology and de
Rham cohomology of varieties over p-adic fields relates the p-adic representation
He{ (X,.Q p) of GF to the filtered Frobenius module H, dJR (X,/ F). To any continuous
p-adic representation V' of G, we may associate the F-vector space

Deris(V) :=(V ®Q, Bcris)GF,

where B is Fontaine’s ring of crystalline periods over F, which is called the
crystalline Dieudonné module attached to V. Recall that a p-adic representation V' of
G is said to be crystalline if

dimp Des(V) = dimg,, (V).

The category of crystalline representations of G is an abelian tensor subcategory of
Repr. Given objects V7 and V5 of this category, denote by Ext.is(V71, V2) the group
of extensions of V, by V; which are crystalline. The Dieudonné module attached to
a crystalline representation V' inherits from B the structure of a filtered Frobenius
module. The following deep theorem will be used to make the p-adic Abel-Jacobi
map amenable to computation.
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THEOREM 3.3 ([Fa, Theorem 5.6])
The p-adic representation H2" (X, Qp)(r +1) is crystalline, and there is a canon-
ical, functorial isomorphism of filtered Frobenius modules:

Dais(HG 1 (X, Qp)(r + 1)) = HZ (X, /F)(r +1).

Proof
For a proof of the theorem, see [Fa, Theorem 5.6] or [T]. O

The comparison theorem will be applied via the following corollary.

COROLLARY 3.4
The assignment V +> D;5(V) induces an isomorphism

Comp:EXtcris(va Heztr—i_l()?r, Qp)(r + 1)) ;)Ethfm(Fv H(121{+1(Xr/F)(r + 1))
(3.2.1)

Proof

The injectivity follows from the comparison theorem and the fact that the functor D
is fully faithful, while the surjectivity follows from a comparison with the Bloch—-Kato
exponential, as in [Nel, Proposition 1.21, Corollary 1.22]. O

3.3. Extensions of filtered Frobenius modules
We now give a general abstract description of the group of extensions in the category
of filtered Frobenius modules.

Let H be a filtered Frobenius module of strictly negative weight, and consider an
extension

0—H-SEL F—s0 (3.3.1)

of filtered Frobenius modules. Let 7' and ni®® be elements of Fil’ E and E¢"=1,
respectively, satisfying

P =1, p(E") =1. (3:32)

The element

.__ .;hol frob
Ne -=MNg —NEg

is in the kernel of p and hence can be viewed as an element of H. The lifts n%’l and

N1 are well defined up to Fil® H and H?"=1, respectively. By the assumption on the
weight of H, we have H?"=! =0, and the class of ng in H/Fil® H does not depend
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on the choices that were made in (3.3.2). The reader should compare the following
proposition with [IS, Lemma 2.1], which treats the more complicated situation of
extensions of filtered Frobenius monodromy modules arising from semistable (and
not necessarily crystalline) p-adic representations of Gr.

PROPOSITION 3.5
The assignment E +— ng yields an isomorphism

Extym(F, H) = H/ Fil° H.

Sketch of proof

The isomorphism E ¢"=1 _ F induced by p determines a canonical vector space
splitting of (3.3.1) which preserves the ¢-module structure of the extension, but need
not respect the filtrations. In other words, the extension (3.3.1) is trivial when viewed
as an extension of ¢-modules. Fix the resulting identification

E=H®F (3.3.3)

so that 779}01’ is identified with the element (0,1) of H & F. We are left with the
problem of classifying the filtrations which may arise on the splitting of ¢-modules
(3.3.3). This splitting is compatible with filtrations if and only if 7' = (h, 1) is such
that /1 belongs to Fil® H (since in this case Fil° E = Fil H @ F, and this equality
determines the filtration on E in all degrees). In general, the datum nl}ii’l = (h, 1) com-
pletely determines the filtration on E in terms of the filtration on H (since Fil’ E =
span(Fil® H, n}g’l)), and (h, 1) and (4’, 1) give rise to the same filtration if and only if
h — I’ belongs to Fil® H. O

3.4. The p-adic Abel-Jacobi map

We can now define the p-adic Abel-Jacobi map attached to the p-adic field F intro-
duced in Section 3.2. By Theorem 3.1.1. of [Ne3] (see also [Ni]), the image of
CH (X r)0,o(F) by the étale Abel-Jacobi map AJ% is contained in the subgroup

H}(F.ex HI (X0, Qp)(r + 1) := Exteris(Qp. ex HZ (X, Qp) (r + 1))

of H'(F,ex HZ"t1(X,,Q,)(r + 1)) whose elements correspond to crystalline exten-
sions. By Corollary 3.4, this group is identified with Extg, (F,ex H der tUX,/F)(r+
1)). Applying Proposition 3.5 to the filtered Frobenius module H = ex H der tl(x,/
F)(r 4+ 1) which is of weight —1, we find an isomorphism

J ZEthfm(F,GXHdZI{+1(Xr/F)(r + 1))

H2r+1 X F 1
Cxflig /DD g g x, py )Y, G4
Fillex Hi P 1 (X, /F)(r + 1)
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where the last identification arises from the Poincaré duality
2r+1 2r+1
ex HX (X, /F)(r) xex HZ TN (X, /F)(r + 1) — F,

in which the spaces Fil' ex Hjz T (X, /F)(r) and Fil’ ex Hix 71 (X, /F)(r + 1) are
exact annihilators of each other.
The p-adic Abel-Jacobi map, denoted AJF, is the diagonal map in the diagram

et

Al —
CH™ (X,)0.(F) —= H}(F.ex HY "1 (X,.Q,)(r + 1))

EXtcris(Q[h €XI_Ieztr-‘r_1 (er Qp)(r + 1))

comp

Extem (F, ex Hp V1 (X)) (r + 1))

(Fil' ex HX TV (X, / F)(r))”

where the second vertical isomorphism is given in (3.2.1).
After invoking Proposition 2.5, we can view AJr as a map

AJp :CH Y (X,)(F)o.0 — (Sr42(T, F) ® Sym”™ Hix(A/F))". (3.4.2)

Further, applying the comparison isomorphisms to the diagram (3.1.3) gives a corre-
sponding diagram of filtered Frobenius modules:

0—=ex HXTU(X,/F)(r +1) Da F 0
l CIA
0—=exHy "' (X, /F)r + 1) —>ex Hyl T (X2 /F)(r + 1) —>ex HY (X p / F)(r) —>0

(3.4.3)

By Proposition 2.4 (and an analogue with C replaced by C — { P}), this diagram can
be rewritten as
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0—=Hpo (C. &y r. V)(r + 1) Da F 0

ar

cla

0—=H) (C. Ly r . V) + 1) —=H) (C—{P}. &Ly r.V)(r + 1) —=&,,(P)(r)—>0

par

(344

The image of the cycle class A under the p-adic Abel-Jacobi map is thus described
by the class of the extension D in the category of filtered Frobenius modules.

3.5. de Rham cohomology over p-adic fields
In this section, we give an explicit description of the action of the Frobenius operator
on

ex HZ ™' (X, /F)=Hy,(C.%,.,.V)

in terms of £, ,-valued rigid analytic differentials on appropriate subsets of the
curve C. (The reader is referred to [C1] and [C2] for more details on the concepts
and definitions discussed below.)

Viewing C as a rigid analytic space over F, let (92g denote the sheaf of rigid
analytic functions on C and let jﬁrrlgr denote the rigid analytic coherent sheaf on C
associated to &£, ;.

We now define certain basic affinoid subsets of C for the rigid analytic topology.
For this, recall from Section 3.2 that € is a smooth proper model of C over Spec(OF ).

Write Cy :=€ X, k, and let
red, : C(Cp) — Cr (k)

denote the natural reduction map.

Let {Pq,..., P;} be any collection of points on C(F) which maps to a set of
distinct points of Cy (k) under red,, and which contains all the cusps of C. Recall that
the residue disk attached to P;, denoted D(P;), is the set of points of C(C,) which
have the same image as P; under red,. Let

A=C(Cp) = D(Py) —---— D(Py).

Because the points P; reduce to smooth points of Cy (k), the residue disks D(P;) are
conformal to the open unit disk U C C, consisting of z € C,, with |z| < 1. For each
Jj =1,...,t, fixanisomorphism 4 : D(Pj) —> U sending P; to 0. Given a rational
number r; < 1, we then let

D[P;j,r;]= {Z € D(P;) such that |hj(z)} grj}
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denote the closed disk of radius r; in D(P;). Finally, fixing a collection of rational
numbers rq,...,7; with 0 <r; <1, we write

W=C(Cp)—D[P1,r1] —+++— D[P, 1]
=AUV U---UV,,
where
VYV, =V(Pj,rj,1):= {Z € D(P;) suchthatr; < |hj(z)| < 1}.

Define the positive orientation of the annulus 'V; by choosing the subset {z € D(P;)
such that |h; (z)| <r;} of its complement.

The set #4 is an example of an affinoid subset of C(C,) with good reduction,
while the set ‘W is an example of a wide-open neighborhood of the affinoid 4. The
set V; is called a wide-open annulus around the point P;. The wide-open space W is
thus obtained by adjoining to + a finite union of open annuli about the boundaries of
the deleted residue disks. (For general definitions and a more systematic discussion
of these concepts, see [C2, Sections II, III].)

Because W is contained in C%(C,), the Gauss—Manin connection (1.1.3) gives
rise to a rigid analytic connection

. cprig rig 1
Vg g @Ol

The de Rham cohomology HL (W, £5%, V) is defined to be the quotient

. (W) @ QL
HL(W, £ V)= M
’ VR (W)
A meromorphic £, ,-valued differential on C which is regular on C — {Py,..., P}

can be viewed as a rigid section of £, , ® 2 lc over W. In this way, one obtains by
restriction a natural map from the algebraic de Rham cohomology over C, to the
rigid de Rham cohomology.

THEOREM 3.6
The natural restriction map

Hip(C—{P1,.... P}, &rs V) —> Hipg(W, L52.V)

r,r
is an isomorphism.
Proof

In the case r = 0, this corresponds to [C2, Theorem 4.2]. The proof in the general case
follows from a similar argument, as explained in [C3, proof of Proposition 10.3]. [
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A set W’ of the form
/ / / . /
W =C(Cp) —D[P1,r1]—++-— D[P, 1], withr; < r; <1

is called a wide-open neighborhood of the affinoid +4 in ‘W. The following is an
immediate corollary of Theorem 3.6.

COROLLARY 3.7
Let W' be any wide-open neighborhood of A in 'W. The natural map

resy wr : Hig (W, £ V) — HL (W, L1, V)

r,r’ rr’
induced by restriction is an isomorphism.

We want to describe the image of H{y (C, £, V) in Hjz (W, éCr,i,gr, V). For this,
we recall the notion of the p-adic annular residue

resy, (w) € (H(V;, £52)v=0)"
ofa éﬁf,g,-valued 1-differential form w on W. It is defined by the formula
resy, (0)(a) =resy; (o, @), forallae HO(V;, éﬁr,ifr)v=0,

where the residue on the right-hand side is the usual p-adic annular residue of the rigid
analytic 1-form (o, w) on the oriented annulus V;, as it is defined in [C2, Section II],
for example.

By [Ka3, Proposition 3.1.2], the sheaf £, , admits a basis of horizontal sections
on each noncuspidal residue disk D(P;), so that the target of the residue map on the
corresponding annulus is identified with

(HO(V;. £55)7=0)" = (HO(D(P)). £1,r) ")
= ;ﬁr,r(Pj)v = xr,r(Pj)v

where the last identification arises from the self-duality on &£, ,(P;). We will always
view the residue map on a noncuspidal residue disk as taking values on &£, (P}), so
that for all « € &, (P;) one has

(o resy, (@) =resy, (@, w),

where oV is the unique horizontal section on D(P ;) satisfying aV(P i) =q.
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On the cuspidal residue disk of the cusp P attached to the pair (Tate(q),?), the
space of horizontal sections of &£, is 1-dimensional and generated by the local section

-
Tn- One therefore has

;
o er—i\ 94 dq
resy; ((Z aj (q)a)c]an cranj) _) (b cran) =1IC8¢=0 (bar(q)_) = ba,(0).
=0 q q
Note that if @ is any global section of £, , ® QIC over C —{Pq,..., P}, it can
also be viewed as a rigid section over ‘W, and
resy, w =Tresp; . (3.5.1)

If P; is not a cusp, the residue resp; w that appears on the right-hand side of this
formula satisfies

(G(Pj),rest a)) =resp; (G, w).

In this formula, G can be taken to be any regular (not necessarily horizontal) section
of £, , over D(P;), and the residue on the right-hand side is the residue at P; of the
differential (G,w) on D(P;) —{P;}.

The following rigid analytic analogue of the classical residue theorem for mero-
morphic differentials on curves (see, e.g., [C2]) will play an important role in the
calculations of the next section.

THEOREM 3.8
Ifwe Q%/v is a rigid analytic 1-form on 'W, then

t
Zresvj w=0.
Jj=1

PROPOSITION 3.9 A .
A class k € H le("W, £:5.V) represented by an £,5-valued differential form w
belongs to the natural image of lear(C , £r.r. V) under restriction if and only if

resy, (w) =0, forj=1,....1.

Proof
The Gysin exact sequence applied to the cohomology of the pair of rigid spaces W C
C? shows that

Hle(C, £rr V)= {a) s.t. resy, (@) = 0 for all noncuspidal annuli "Vj}.
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On the other hand, the definition of lear(C , &£r.r, V) shows that this space is identified
with the space of classes in H le(C ,&£rr, V) represented by £, ,-valued differentials

w satisfying
resy, (w) =0, for all cuspidal annuli V;.
The result follows. O

Let k1, k5 be classes in lea

[(C. &, V), and let w1, w, be rigid analytic sections
of £, ® Q¢ over W representing them. The fact that resy; (1) = 0 on all the annuli

Vi C ‘W allows us to find an analytic solution Fy,, ; on V; to the equation
Vle Jj = w1,

which is well defined up to horizontal sections of éﬁ;i,gr over V;. Such an Fy, ; is
called a local primitive of w1 on V;. Note that the expression resy, (Fy, ,;, @2) does
not depend on the choice of the local primitive F,,, ;, since w; is of the second kind.

The following proposition expresses the Poincaré duality on lear(C ,&£rr,V)in
terms of the residues of rigid £, ,-valued forms on ‘W.

PROPOSITION 3.10

1
Forall ky, k2 € H,,

(C7 ir,r» V))

t
(k1,K2) = Z resy, (Fu,,j,2),
j=1

where w1, w, € Hle('W, £:5,V) are representatives for k1 and k» and where F, ;

is any local primitive for w1 on'V;.

Proof
This follows from [C3, Lemma 7.1] combined with equation (3.5.1) comparing the
rigid analytic and algebraic residue maps. O

Theorem 3.6 will now be used to give an explicit description of the action of the
Frobenius operator on the algebraic de Rham cohomology. Since the points Py, ..., P;
are defined over F, the points P; := red,(P;) are defined over k and the curve
U :=Cr— {131 s 15,} is a smooth affine open subset of Cy. As before, let o denote
the Frobenius automorphism of k which sends x to x?, and let U? = Uy x4 k. There
is a canonical morphism ¢ : Uy —> U] characterized by

¢* f° = fP, forall feOc, (Uk).
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Definition 3.11
A morphism

¢.A t oA —> A
which lifts the canonical Frobenius morphism Uy —> U7 to characteristic 0 is called

a lifting of Frobenius for the affinoid .

A Frobenius lifting always exists under our hypotheses (see [C1, Corollary 1.1a]).
Assume from now on that the set { Py, ..., P;} is stable under ¢, so that A° = A.

Definition 3.12

A Frobenius neighborhood of A in ‘W is a pair (W', ¢), where A C W C Wis a
wide-open neighborhood of #4 in W and where ¢ : W — ‘W is a morphism whose
restriction to # is a lifting of Frobenius in the sense of Definition 3.11.

Definition 3.13

An overconvergent Frobenius isocrystal on ‘W is a triple (£, ¢, Fr), where

(1) &£ is arigid analytic coherent sheaf on ‘W equipped with a rigid analytic inte-
grable connection

Vi — £ Qy;

2) (W', ¢) is a Frobenius neighborhood of + in W;
3) Fr is a horizontal morphism

Fr:¢*L — L|w.
The condition that Fr be horizontal amounts to requiring that the diagram

(]5*;6 J_ ¢*§C®Ql,

Frl \LFr@id

£ V. 2ol

be commutative.

Given a Frobenius neighborhood (W’,¢) of 4 in W, the canonical functorial
action of a lifting of Frobenius on the relative de Rham cohomology H7 (X,/C) is
compatible with the Gauss—Manin connection and gives rise to a horizontal morphism
Fr: qf)*é@r,i,% — éﬁr,i,gr|wz. In this way, the triple (éC;i,g”w, ¢, Fr) is equipped with the
structure of an overconvergent Frobenius isocrystal.
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The action of the p-power Frobenius operator (denoted by the letter @y, to dis-
tinguish it from the lifting ¢ of Frobenius on the curve C) on Hjp (W, £5, V) is then
given by the sequence of maps
HL (W, 28 v) 25 gL ow, ¢* e

r,r r,r’

V)

I HL oW e vy s gL (w, £t v,

r,r’ r,r’

where the last map is the inverse of the restriction resyy -, which is an isomorphism
by Corollary 3.7 (see the discussion preceding Theorem 10.1 of [C3], or the more
detailed discussion in [CI]).

Notice that the operator @ acting on the group H (W, cﬂif’;, V) preserves the
natural images of Hj,(C, &£, ,,V) and of lear(C, &£, V) (this follows, e.g., from

Proposition 3.9). The map ®, on Hl (C,£,,,V) agrees with the Frobenius

par

endomorphism on ex Hiy *'(X,/F) via the identification HJ(C.&.,.V) =
ex H3 Y (X, /F). 1t is o-semilinear. In order to work with an F-linear endomor-

phism, we set
& =, wheren =[F:Q,).

By abuse of notation, we will also denote by @ the Frobenius endomorphism acting
on the space H2(C, £,)V of locally analytic horizontal sections of £, over C, as it
is described in the paragraph preceding Theorem 10.1 of [C3].

A similar discussion applies of course when £, , is replaced by £,, and the
symbol ® will also be used to denote the F-linear Frobenius endomorphism acting
on H! (C,%,,V)and H2(C,£,)V.

par

3.6. The Coleman primitive

LEMMA 3.14

Let w be a global (rigid) section of the sheaf @™ ® QIC over C, and let [@] € lear(C,
&£, V) be its associated cohomology class. There exists a polynomial P € F[x] sat-
isfying the following.

(1) P(@)(w]) =0.

2) The map P(®) is an isomorphism on ng (C.%,)Y, and P(1) #0.

Proof

This follows from the ideas explained in [C3, Section 11] (in particular, see the
argument following [C3, Lemma 11.1]). One can use the fact that the eigenvalues
of ® acting on Hj(C,¥£,,V) and on any (finite-dimensional) ®-stable subspace
of HX(C,%,)V differ, since they have complex absolute values p”*1/2 and p"/2,

respectively. O
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THEOREM 3.15 ([C3, Theorem 10.1])

Let @ be a global section of the sheaf @™ ® Qlc over C. Choose a polynomial P

satisfying the properties of Lemma 3.14, and let d be its degree. There exists a locally

analytic section Fy, of £, over C satisfying the following conditions:

(1) VF, =w;

2) P(D)(Fy) is a rigid analytic section of £, on some wide-open neighborhood
W of A in W satisfying ¢" (W) C W, foralln <d.

The locally analytic section F,, is called the Coleman primitive of w on C.

Note that our setting, where p is assumed to not divide the level of the modular
curve C, differs from the semistable reduction case considered in [C3]. In fact it is
simpler, and the assumptions that are required for [C3, Theorem 10.1 ], such as the
regular singular annuli assumption on the cuspidal annuli, are satisfied a fortiori in
the setting of Theorem 3.15. Note also that Theorem 10.1 as stated produces a locally
analytic primitive on each wide-open W, but expressing C as a finite union of wide-
opens and gluing the different primitives (which, by their uniqueness, agree on the
overlaps) leads to a locally analytic primitive on all of C. The uniqueness clause in
the definition of the Coleman primitive also implies that F,, is defined over the field
F over which w is defined.

Remark 3.16

The definition of F,, depends a priori on several choices: the choice of an affinoid 4
in C, a lifting of Frobenius to #, a Frobenius neighborhood W’ of + in ‘W, and the
polynomial P. It can be shown that the Coleman primitive does not depend on these
choices, and therefore the Coleman primitives on a covering of C by affinoid regions
can be pieced together to give a locally analytic section of &£, over C which is well
defined up to global rigid analytic horizontal sections of &£, over C. This latter space
is trivial when r > 0 and is the space of constant functions on C when r = 0 (see [C3,
Proposition 5.1]).

Remark 3.17
It can be shown that the Coleman primitive Fy, is in fact analytic on each residue disk
D(P) associated to any point P of C(Q,"™™).

3.7. p-adic integration and the p-adic Abel-Jacobi map
The following is one of the main results of this section.

PROPOSITION 3.18
Let Ay, be a generalized Heegner cycle attached to an isogeny of ordinary pairs ¢ :
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(A,t) —> (A', "), and let P4 be the point of C attached to (A’,t). Then
Alf (Aw)(a)f Ao) = (Ff(PA/) N, ClpA, (A(p)),

where the pairing on the right-hand side is the natural one on &£, ,(Py4), and Fy is
the Coleman primitive of w s € H*(C,0" ® Qlc)

Proof

In order to ease notation, we drop the index ¢ in this proof, by setting A = Ay, and
write P = P} and U = C — {P}. By definition of the p-adic Abel-Jacobi map, we
have

AJp(A)(wy Aa) = (wf Aa,na),

where the class na represents the extension D of (3.4.4) following the recipe given
in Section 3.3. We may write

_ . hol frob
A =Ta —Na >

where the following conditions hold.

(1) The cohomology class 7'y" is represented by a section of £, ® Qf (log Zy)
over U having residue O at the cusps and a simple pole at P with residue
equal to clp(A). By abuse of notation, we will use the same symbol nkg’l to
denote the associated £, ,-valued differential on C. If Py, ..., P; were chosen
in such a way that P; = P, and if G; is any rigid analytic section of iirri,gr over
D(Pj), then by (3.5.1), for all noncuspidal annuli V;, we have

resy, (G1, r]kX’l) = (Gl(P),clp(A)), resy, (G, ntg’l) =0 forj>2.
(3.7.1)
If V; is a cuspidal annulus, then we at least have

resy; (Frj Aa,1fy') =0, (3.7.2)

where F ; is a local primitive of w s on V;. To see this, use the fact that n'’!

has residue 0 along V; to write n'\! = V H for some section of £, over V;,

and observe that

0=resy, d(Fp; Aa,Hpa) =tesy, ((wr, HA) + (Frj Ao, n'ih)

=resy,; (Fr; na, h.

(2)  The differential 7 is a section of éﬁr,i,gr ® Q¢ over W, chosen so that it
satisfies
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DnoP = b + VG, (3.7.3)

for some rigid section G of éﬁrri,g; over W, and of course
resy, (G1.Na*") = (G1(P),clp(A)). (3.7.4)

By Proposition 3.10, the Poincaré pairing between HJ,(C, £,.,(r), V) and HJ(C,
&£,r(r +1),V) is given by the formula

t
(wr Na,na) = Zresvj (Fr; Aa,na) (3.7.5)
j=1
t

t
= (D resw, (Fpy nani)) = (X resv, (Frj Aans™)), (3.7.6)
j=1 =1

where the sum is taken over the ¢ annuli V; in ‘W — # and where F; is an analytic
primitive of w s on the residue disk D(P;). Note that if wV is any horizontal section
of £, on D(P;), the residue of the differential (w¥,na) on the annulus 'V 115 0, and
therefore the expression on the right-hand side of (3.7.5) is independent of the choice
of local primitives on each residue disk. The same is not true for either of the sums
that appear on the right-hand side of (3.7.6), since the differentials nlg’l and nFA’Ob each
have nonzero residue along the annulus V;.

In order to compute each of the terms appearing in (3.7.6) individually, we need to
make a coherent choice of local primitives. This is done by fixing a Coleman primitive
F of w r. Once this choice is made, the two terms appearing in (3.7.6) are controlled

in the following two lemmas.

LEMMA 3.19
If Fz; is any choice of local primitives of w y on each residue disk D(Pj}), then

t
D resy, (Frj Aany) =(Fri(Pa) Aa.clp,, (D)),
j=1

Proof
Since the local primitive Fz; A « is analytic on the residue disk D(P;), and since
7]2"1 has O residue on 'V; when j > 2, it follows from (3.7.1) and (3.7.2) that

t
Z resy, (Frj A, r)lg’l) =resy, (Fr1 Aa, ntX’]) = (Ff(PAr) Aa,clp,, (A))
Jj=1

The lemma follows. O
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LEMMA 3.20
Let F¢ be the Coleman primitive of w y on C. Then

t

> resy, (Fr Aa.niy®) =0. (3.7.7)
j=1

Proof
We begin by noting that for each j =1,...,1,

resy, (Fr Aa, NPy = resy, (OFr A, Dby
=resy,; (PFr A, ey + resy, (®Fs Aa,VG), (3.7.8)

where G is the rigid analytic section of £, over W’ given by (3.7.3). The fact that
@ is horizontal for the Gauss—Manin connection (combined with the Leibniz rule)
shows that

d(®Fr ANat,G) = (PFr A, VG) + (Pwr A, G).

In particular, the expression appearing on the right-hand side is exact on each annulus
V;, and therefore

Zresv (PFr A, VG) Zresv (Pwr Aa,G)
j=1 j=1
=0,

where the last vanishing follows from the rigid analytic residue theorem (Theorem 3.8),
in light of the fact that (Pw s A a, G) belongs to Qlw,. Hence by summing equation
(3.7.8)over j =1,...,t, we get

Zresv (Fr Aa, ity = Zresv (PFf Na, nheeby.
j=1 j=1
More generally, if L is any polynomial in F[x], we get

t

L(I)Zresv (Fr Ana,ni®) = ZTCSV L(®)Fr A, r}FrOb).
j=1 j=1

Now, choosing the polynomial L(x) = P(x) as in Lemma 3.14 preceding the defini-
tion of the Coleman primitive, we get

L(I)Zresv (FrAa, ity = Zresv L(®)Fr Aa, nF“’b) 0,
j=1 j=1
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where the vanishing follows by noting that L(®)F s A « is a rigid analytic section
of &£, over W and by applying Theorem 3.8 once again. Lemma 3.20 now follows
from the fact that L(1) # 0. O

The proof of Proposition 3.18 now follows from (3.7.6) combined with Lemmas
3.19 and 3.20, all of which shows that

AJF(Aq,)(a)f /\Ol) = (a)f N, T]A) = <Ff(PA/) /\O(,CIPA,(A)>

when F is a Coleman primitive for w r. O

PROPOSITION 3.21
With the same notation as in Proposition 3.18, we have

ATr(A) (@5 na) =(p*Fr(Pa).a),,

where the pairing ( , ) 4 on the right-hand side is the natural one on Sym” H,(A/ F).

Proof
Let

0:=(p",id"): A" —T,C(A) xA".
Note that
O (Fr(Pa)na) =" (Fr(Pa)) na,  o([A7]) =clp,, (Ty),
where [A"] € H% (A" / F) is the fundamental class associated to the variety A”. Let
(,Vaj Hy 7 (A"/F)x Hi (A" JF) — H¥ (A" /F) = F

denote the Poincaré pairing, so that the restriction of (, )4, to Sym” H(A/F) C
H(A/F) agrees with (, ) 4. Observe that

(Fr(Pa) Aaclp,,(Ag))=(Fr(Pa) Aa,clp,, (Ty)) = (Fr(Pa) Aa.o([AT])).
(3.7.9)

The functoriality properties of the Poincaré pairing imply that
(FrPa) nao([AT])) = (0" (Fr(Pa) Ane).[A]) 1
= ¢ (Fr(Pa)) ne[47])
=(¢*(Fr(Pa)).at) . (3.7.10)
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Proposition 3.21 follows by combining Proposition 3.18 with (3.7.9) and (3.7.10).
O

Let {Py,..., P;} be the set of supersingular points of C, and let P;eC(F)be
an arbitrary lift of P '+ under the reduction map. The residue disks D(P;) are called
the supersingular disks of C and the complement 4 := C° is called the ordinary
locus of C. A locally analytic p-adic modular form of weight k is a locally analytic
section of w¥ over C°. Following equation (1.1.1), a modular form G of this type
can also be viewed as a function on ordinary triples of generalized elliptic curves
(E,t,w)/r, where R is a p-adic ring of finite type over Z, satisfying

G(E,t,A0) =2 XG(E,t,w), forall A e R*.

Following [DeR, Chapitre VII, Corollaire 2.2], the formal completion along a
cusp of a suitable cuspidal p-adic neighborhood D ~ Spec(R) in C° can be iden-
tified with Spf(Z[[¢'/¢]]), for Z finite unramified over Z, and d | N, in such a
way that the universal object over D pulls back to Tate(q), equipped with a suit-
able level structure. By an abuse of notation, we will denote by G (Tate(q), f, @can) the
g-expansion obtained by evaluating G at a generalized marked elliptic curve corre-
sponding to (Tate(q), ¢, wcan) via the above identifications.

For 0 < j <r,let G; denote the jth component of the Coleman primitive F,
defined (as a function on ordinary triples) by the rule

G;(E.t,0):=(F(E.t),0'n"7),

where 7 is the generator of the unit root subspace of H le(E /R), normalized so that
(w,n) =1. The rule G thus defined satisfies

G;(E.t,A\w) =A*""G;(E,t,w), forall A€ R*,

and therefore defines a locally analytic p-adic modular form of weight r — 2; .
The next lemma expresses the Abel-Jacobi images of the cycles A, in terms of
the modular forms G ;.

LEMMA 3.22
Let

p:(At,w)— (A, 1", o)

be an isogeny of ordinary marked elliptic curves of degree d, = deg(p), and let A,
be the associated generalized Heegner cycle on X,. Then

Alp(Ap)(@f A’ n)=d]G; (A1 ).
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Proof
By Proposition 3.21,

ATF(Ap)@p Aol ™) = (p*Fr(A 1)), 0 0" 7) . (3.7.11)
Since (¢*w’. ¢*n') = d,, we have
" (') = dyn. (3.7.12)
Hence
(p*FrA 1),/ ") = d] (@  Fr(A'. 1)), 0* (@) 1) 7)),
= dJ(Fs(A". 1), (@) ) ),
=d]Gj(A .1 ). O

3.8. Calculation of the Coleman primitive
We now turn to the explicit calculation of the Coleman primitive F s of the regu-
lar é@rrig-valued differential w 7, or rather, of its components G ;. In order to do this,
we begin by introducing an operator, VU — UV, on locally analytic p-adic modu-
lar forms, which plays the role of the operator P(®) in Theorem 3.15 defining the
Coleman primitive, in the sense that it maps the locally analytic forms G; to genuine
p-adic modular forms in the sense of Section 1.3. As a consequence of the use of this
operator, it will be possible to resort to g-expansions in our calculation of Coleman
primitive (see the proof of Proposition 3.24).

We recall the definition of the operators U and V' (as they are described, e.g., in
[Se]). Given an ordinary triple (E, ¢, ®), let

o (E.t.w) — (Ej.tj,0), j=0.1,....p

denote the distinct p-isogenies on E, ordered in such a way that go((,p ) is the distin-

guished p-isogeny whose kernel is the canonical subgroup of E. For instance, when
(E,t,w) = (Tate(q), {N . Wcan), the canonical subgroup is it ,, and we can take

(Eooto.on) = (Tate(q?). o). (Epoty0) = (Tatel/PE]). v o).
(3.8.1)
The Hecke operators U and V are defined by setting
(G|U)E,t,w):=G(U(E,1,0)), (G| V)(E.t,0):=G(V(E.t,0)),

where
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1 < 1
UE,t,0):= — Z(Ej,lj,a)j), V(E,t,0):= (Eo, —lo,Pwo)-
P p
These operators are related to the usual Hecke operator 7, by the rule
1
Tp=U+—[plV,
p
where [p] denotes the isogeny given by multiplication by p. In particular,
1
VU —-UV =1-T,V + —[p]V2 (3.8.2)
p

The diamond operator (a) attached to a € (Z/NZ)* is defined on locally analytic
p-adic modular forms by the rule

G| (a)(E.t,0)=G(E,a 't,w).
Given a locally analytic p-adic modular form G, we set
G’ :=G|(VU=-UYV).

In terms of the g-expansion
oo
G (Tate(CI)’ ;Ny wcan) = Z bnqn
n=1
of G, the operators U and V satisfy

(G | U)(Tate(q)’ é‘vacan) = anpqn,
n=1

oo (3.8.3)
(G | V)(Tate(q), {n » @ean) = ) bug"”,
n=1
so that the ¢-expansion of G” is given by
G’ (Tate(q), {N, Wean) = Z buq". (3.8.4)

(p;n)=1

LEMMA 3.23

Let K be a quadratic imaginary field in which the prime (p) = pp splits, and let
(A’,t") be a point in C°™ corresponding to an elliptic curve A’ with complex mul-
tiplication by (an order in) K. Let G be a locally analytic p-adic modular form of
weight k satisfying
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TpGprG7 (P)GZGG(P)G
Then
G (A 1,0

€6 (p)
PR

b
=Gt o) - GG(#G(FJ x (A1, 0") + G(p? = (4.1, 0"),
P

where the action of ideals on CM triples is the one given in (1.4.8).

Proof
Because A’ has complex multiplication, its canonical subgroup is identified with the
kernel A’[p] of multiplication by p, and therefore,

VAt o) =px (A, p~It, po'), [pIV2(A' 1, 0) =p*x (A", p~ I, po').
Therefore,
G (A1, )

_ 1 2 /Y /

— G((l =TV + -1V )(A o ))
1

=G(A 1,0 —bpyG(p* (A, p~'t' po)) + =G(p*> * (A", p~'1, po'))
P

€c(p)
P+

b
=G(A .t o)~ %G(p * (A1, 0)) + G(p?x (4.1, o).
P

The result follows. O

Proposition (3.24) below gives an explicit formula for G';. in terms of the Atkin—
Serre operator € defined in equation (1.3.2) acting on the modular form f. Note that,
for any j > 0, the expression

071 fPi= lim 6 fP
t—>—1—j
is a p-adic modular form of weight r — 2 (see [Se, Théoreme 5(b)]).

PROPOSITION 3.24
Forall (E,t) € C°9,

b n—1—j ¢b
GHE.t.w)=j107"7 f*(E.1.0). (3.8.5)

(In particular, the Coleman primitive F; of w v is a rigid analytic section of £y

over C°.)
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Proof
For0<j Sr,seth —FJ",—

GY(E.t.w) = (F"(E.1),0/n" 7).

Fy|(VU=UYV). Then

Equation (3.8.5) amounts to the statement that

0Gy=f",  0G%=jG"_ |, forl<j<r. (3.8.6)

We verify that this holds on g-expansions, working with the basis (wcan, Ecan) for the
de Rham cohomology of the Tate curve which is described in equation (1.1.6) of
Section 1.1. To check (3.8.6), note that

VG (Tate(q). tw)
= V(GO(Tate(q) ;N wcan) can)
= V({F*(Tate(q). ¢n). Eun)0lin)

= (a)fb (Tate(Q)v é‘N)’ cran)w:an + r(Fb(Tate(Q)v é‘N)’ :an) Wean Scan

dq (

_f (Tate(q) (N,a)Cdn)wcan7 +r Fb(Tate(q),EN),gcran) ®lan ECdn ,

where the last equality follows from (1.1.10).
After applying the inverse of the Kodaira—Spencer isomorphism and using
(1.1.10) again, we find that

VG (Tate(q).¢n)
= fb(Tate(q), IN. Ocan) 0Lt + r(F (Tate(q), EN) Elan)0lat Ecan.
Applying the unit root splitting Wg,p to this identity then gives
Oron G (Tate(q), {n) = £ (Tate(q), ¢w).-

This proves (3.8. 6) for j =0, in light of Lemma 1.7. For the case j > 1, we note that,
because (w s, a)can&an )y =0,

VG']’- (Tate(g).ln) =V (G? (Tate(q), ¢n, a)can)wcragz-i)
= V((F"(Tate(q). tn ). 0hbln’ Jlin™)

.d
= j{F(Tate(q). tn ). 0l 67T T ol =2 f

+ (r - 2])( (Tate(Q) EN) Lan cran]) :anzj létdn
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dq

= lej)'fl (Tate(q)9 é-N s wcan)a)cra;zj q

) i d
+ (r —2J)G" (Tate(q), { , Wean) 0> lscan?".

Applying o~! followed by the unit root splitting to this identity gives
‘IJFrob@G? (Tate(q), tn) = jG-t;_1 (Tate(q), N, wcan)wcra-rll-z—zj .

Therefore,

®FrobG?' (Tate(Q)s gN» a)can) = ij}—l (Tate(Q)’ §N9 a)can)v

and (3.8.6) follows from Lemma 1.7 for all 1 < j < r. This completes the proof of
Proposition 3.24 (see also [C3, Lemma 9.2], where a similar result is proved). O

4. Period integrals and central values of Rankin-Selberg L-functions

4.1. Rankin L-series and their special values
Let f = a,e?"? € Sy (I'o(N), ¢ ) be a normalized newform. Write

L(fis)=Y ann™ =]l —aqqg™) ' (1= Bgq™*)""
q

n>1

for its Hecke L-series, where the product on the right-hand side, taken over all the
rational primes, should be taken as the definition of the parameters {cg., 84}. In par-
ticular, g 84 = qk_lef (9) if ¢ does not divide N, and oy 5 = O otherwise. Let N, ,
denote the conductor of € 1.

In this section, it will also be convenient to view f as a function on pairs (L, 1),
where L is a lattice in C and ¢ is an element of exact order N in C/L. The lattice
function f is determined by the rules

F((1,t),1/N) = f(r), forallTe X, 4.1.1)
FAL A =A% f(L,t), forall A eC*, (4.1.2)
f(L,at)=c¢¢(a)f(L,t), forallae (Z/NZ)*. (4.1.3)

Let w s € C* be the scalar of norm 1 defined by the rule

wn (f)=wg fp, (4.1.4)

where f, € Sg(I'o(N), & ) is the modular form obtained by applying complex conju-
gation to the coefficients of f and where wy is the Atkin—Lehner involution (which
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is described precisely in Lemma 5.2 and the discussion preceding it). We note that the
Hecke L-series L( f,s) satisfies the functional equation

A(fos) = wrA(fp. k=),

where A(f,s) = 2n) T (s)N*/2L(f.s).

Let K be an imaginary quadratic field with discriminant —dg, equipped with
a fixed complex embedding. Recall that for any pair of integers (£1,£5), a Hecke
character of K of infinity type ({1, £5) is a continuous homomorphism

y:Ax —C*
satisfying
_ —L15—4> X X
X x-zoo) = x(x) -2 51252, foralla e K™, zo0 € K.

For each prime q of K, let yq : Kg —> C* denote the local character associated to
X The conductor of x is the largest integral ideal f, of K such that y,(x) = 1 for all
u € (1 +§40k,q)* <> K. In the usual way, we can identify y with a character on
O k-ideals prime to f, by defining

2@ =] [ xalr)?s™. (4.1.5)

qla

where 7 is any uniformizer at q, this assignment being independent of the choice of
7q. As a function on ideals, y satisfies y((a)) = at1@*2 for all principal ideals (o)
withae =1 mod §,.

The focus of this section is on the special values of the Rankin—Selberg L-
function L(f x 8,,s), where 0, denotes the theta function associated to y. For
simplicity, we will denote this L-function by L(f, x,s). If we set a,; := a;; and
Bpi = ﬂlj;, then it can be defined as an Euler product of terms L, ( f, x, s), where for
good p, (i.e., for p{f, N)

Lo(f, 205) = (1= x(®)any (Np) ™) ™ (1= x(p) By (Np) ™) 7

The local factors at ramified places are described in [J, Section 15]. Indeed, up to
a shift L(f, x,s) is identified with the Rankin—Selberg L-function L (s X my,s),
where 7 ¢ and 7, are the automorphic representations of GL2(Aq) associated to f
and 6, respectively. More precisely, after normalizing 7 ¢ and , to be unitary, we
have

k—1+€1—|—22>‘

L(f,)(,S):L(anJTX,s— 7
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Set £ :=|€; — {5| and £y := min({y,{5). Define
Loo(f. x.8) =Tc(s —€o)Tc(s —min(k —1,£) — £o),

where I'c(s) =2 - (27)*T'(s), and set

ACSX8) i= Loo(fo X58) - LU X5

The function A(f; x,s) (defined a priori in some right half-plane) extends to a
meromorphic function on C and satisfies a functional equation of the form

AL x08) = e(f XA (fo. ok + L+ €2 =),

where f, is as in (4.1.4) and where €(f, x,s) is an epsilon factor again described in
[J, Section 15]. In the case of interest to us below, 7 s x 7, will be self-dual and the
value of €(f, y,s) at the center of the critical strip, denoted €( f, y), is equal to £1.
If ek is the quadratic character associated to K and if ¢, is the Dirichlet character
attached to y by

ey = Xlng N+,

then the function A(f, x,s) is known to be holomorphic when ¢ re, ek is nontrivial
(for more details on the above, see [J, Section 19]).

An integer n is said to be critical (in the sense of Deligne) for L( f, x, s) if none of
the Gamma factors that occur on either side of the functional equation for L(f; x,s)
have a pole at s = n. The corresponding values of L(f, x,s) are called critical val-
ues. Deligne made precise conjectures (proved by Shimura in [Sh2]) that predict
the rationality of these critical L-values over specific number fields, after dividing
them by appropriate (ostensibly transcendental) periods. It turns out that the nature
of the period depends qualitatively on the infinity type of y. Indeed, assuming for the
moment that y is of type (0, £) with £ > 0, the form of the gamma factor Lo (f, x, )
shows that the following two cases arise naturally.

Case 1: £ <k — 2. In this case, the critical integers j for L(f, x,s) are those in
the closed segment [£ + 1,k — 1]. The transcendental part of L( f, y, j) depends only
on f and not on y, and is expressible in terms of the Petersson inner product { f, f').

Case 2: { > k. In this case, the critical integers j for L(f, x,s) are those in the
closed segment [k, £]. The transcendental part of L(f, y, j) depends only on K and
not on f, and is expressible as a power of a CM period attached to K. (This period
will be defined precisely in Section 5.1.)

We now return to considering characters y of more general infinity type ({1, £>).
It will be convenient in what follows to work with the L-function L( f, !, s). Note
that the critical values of L(f, x~',s) (as x and s both vary) are completely captured
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by the critical values of L(f, x~!,0) (as only y is made to vary). This motivates the
following definition.

Definition 4.1
A Hecke character y of infinity type (£1,£>) is said to be critical if s = 0 is a critical
point for L( f, y~1,s).

Let us define yo by yo := y~! - Nf! so that the infinity type of yq is (0,£1 — £2).
Then

L(f 71 s) = L(f, xoN"4,5) = L(f, xo.5 + £1).

By the previous discussion applied to y¢ (and to )(g—see Remark 4.2), the character
x of weight (£1, £,) is then critical if one of the following hypotheses is satisfied:

Case 1: 1 <{€y,£, <k — 1—this implies that £ <k — 2;

Case 2: £1 >k and £, <0, and Case 2': £; <0 and £, > k—in both these cases,
£>k.

Let 2, @ and £@) denote the set of Hecke characters satisfying the con-
ditions in Case 1, Case 2, and Case 2/, respectively, so that the set X of all critical
characters is the disjoint union

»y=3xO 3@ 5@,

Remark 4.2

The weights of characters in ©(!) are the integer lattice points in the lightly shaded
square in Figure 1, and those attached to characters in X® are the lattice points
in the darker lower right-hand side quadrant of this figure. The region £ is the
reflection of ¥® around the principal diagonal, and the map y — y? (where x”
is the composition of y with complex conjugation on A%) interchanges these two
regions.

A character y € X is said to be central critical if
b+, =k, Ex=E¢€f.

The terminology is justified by the fact that in this case 7 s X 7,1 is self-dual and 0
is the central (critical) point for L( f, !, s). Let I denote the set of central critical
characters, and write (fori = 1,2,2')

2D =5, nzO.

The weights of central critical characters are the lattice points on the central critical
line which is depicted in Figure 1.
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k—1¢

Central
critical line

Figure 1. Critical and central critical weights for y — L(f, y~1,0).

Remark 4.3

This article is concerned with the p-adic L-function obtained by interpolating the
L-values L(f, y=1,0) for y in ©® or £@)_ Since this L-value is unchanged if y is
replaced by x”, we may assume that £; > 0 and work simply with the region £,
The main result of this paper (Theorem 5.13) relates the special values of this p-
adic L-function at characters y in 28) (which is outside the range of interpolation)
to the p-adic Abel-Jacobi images of generalized Heegner cycles. It would also be
very interesting to study the values of this p-adic L-function at y in 23”. We do not
address this issue here. However, one could speculate that a study of the triple product
L-function analogous to the one for the Rankin—Selberg L-function in this article may
shed light on this issue. This intuition is suggested by the way in which the results
of the present article are used in [BDP2] to yield information about the Katz p-adic
L-function at critical characters that are outside the range of p-adic interpolation.
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We assume henceforth that K satisfies the Heegner hypothesis for f—that is,
that all the primes ¢ | N are either split or ramified in K and, furthermore, that if
g? | N, then q is split in K. This implies that there exists a cyclic Og-ideal 91 of
norm N. We fix once and for all such a choice of 1. We also fix an integer ¢ prime
to Ndg, and we set (as in Section 1.4) 91, := 91N O.. Thus N, is a proper O.-ideal
and O, /N, ~ Og /N ~Z/NZ. Let U, = (§C’f denote the corresponding compact
open subgroup of A;(,f’ so that Ue =[], Uc,g with Ue 4 := (O, ® Z4)*. For & any
character of conductor N | N, we define 91 to be the unique ideal in O g that divides
91 and has norm equal to N,. Let 1/, be the composite homomorphism

DX X X X [Ts X
Ue=0F 0% > [[ Oka/MOk.0)* =~ [] (Zg/NeZy) —> C*. (4.1.6)
q|Ne q|Ne

Equivalently, if we set 0. . := 9 N O, then VY, is the composite

A A ~ —1
Ue = OX = (/M c00) ~ (Ok /MOk)* ~ (Z/N.Z)* = C*.

The following definition will be key in what follows.

Definition 4.4
A Hecke character y of K is said to be of finite type (c,N, ¢) if ¢ divides f, and if

XlUC = Ye.

Note that a character y of finite type (c, 91, ¢) is necessarily unramified outside
¢, Further, we may think of y as a character on proper (.-ideals prime to . .
Indeed, any such ideal a is locally principal (i.e., a = xO. for some x = (xq) €
A;(,ﬁn), and we set

()= 1_[ Xq(xq)- 4.1.7)

qfNe

This is independent of the choice of x since X|(95q = Ws|(9§q =1forqg{N,and y is
unramified at the primes of K dividing N but not dividing 91,. Viewed in this manner,
x satisfies

x((@) = a“1@*2e(a mod M;) (4.1.8)

for any o € K™ that is a unit at all the primes dividing 91,.

Let X..(M) denote the set of those characters in 225) U 25? that are of finite
type (c, N, ¢ ¢) and that satisfy the following auxiliary condition: the local sign &4( f,
2~ 1) = +1 for all finite primes g. In view of our other hypotheses, this condition is
automatic except possibly at those primes ¢ lying in the set
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S(f):={q:q| (N.dg).qt N }.
Fori = 1,2, we define = (1) by
D) =20 N Tee(),
so that X (D7) is the disjoint union:
Zee() = PO U =P M),

For y € X..(M), writing (k + j,— ) for the weight of y, we see that y € z? Q1)
or Egi)(‘ﬁ), according to whether j >0Oor j € [-(k —1),—1]. Let y € Eg)(‘ﬁ) be a
Hecke character of infinity type (k + j, —j). Recall the Shimura—Maass operator g
of equation (1.2.9), and let

8] = Sk2j—2+Skrabk

be the differential operator sending holomorphic modular forms of weight k to nearly
holomorphic modular forms of weight k 4+ 2. The modular form 5; f can also be
viewed as a function on pairs (L, t) consisting of a lattice L in C and an element ¢ of
order N in C/L, satisfying the homogeneity properties of (4.1.3) with k replaced by
k+2j.

In what follows, we also fix a generator ¢ of ‘ﬂ;l /O, ~1Z/NZ.Let abe a proper
O.-ideal prime to ., and choose & € K™ such that b := ¢a C @, and @ = 1 mod M.
Then the image of ¢ under the composite map

N /O >N o S nsta ot

is independent of the choice of «, and it will be denoted ¢,. Thus the choice of  gives
rise to a generator 7, of M a™!/a~! for every proper O.-ideal a prime to N,.

LEMMA 4.5
Let a be any proper O.-ideal prime to N, and suppose that y is a Hecke character
in 28) (M) of infinity type (k + j,—j). With t fixed, the expression

x H@Na™/ -8 fal 1) (4.1.9)

depends only on the class of a in Pic(O,).

Proof

Note that since a is prime to 1., it is certainly prime to 9., as well and so the
expression y~1(a) is well defined. The lemma then follows immediately from the
equations (4.1.2) (with f replaced by 8,£ (f) and k replaced by k + 2j), (4.1.3), and
(4.1.8). O
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THEOREM 4.6

Let f be a normalized eigenform in Si(I'o(N), e ¢), and let x € 2&? (M) be a Hecke
character of K of infinity type (k + j,—j). Suppose also that ¢ and dx are odd, and
let wk denote the number of roots of unity in K. Then

ChroLifi 0= ¥ 7 @Ne 6 el

[alePic(O,)

where the representatives a of the ideal classes in Pic(O.) are chosen to be prime to
M. and where the constant C(f, x,c) is given by

1 i1y .
C(fiae)= gm0 + DTk + jywkldi|'?

-cvol(9.) ™t 27 1_[ 4= ¢xk(@) :
q-—1
gle
Remark 4.7
The restriction that ¢ and dx are odd is made for convenience to simplify the local
calculations in Section 4.6 at primes dividing cdk.

The rest of this section is devoted to proving Theorem 4.6 using Waldspurger’s
results relating period integrals to L-values. The reader whose main interest is in
p-adic methods can take this result on faith and continue reading from Section 5.1
onwards.

4.2. Differential operators

We recall some general facts about the Shimura—Maass operators that were introduced
in Section 1.2 and appear in the statement of the theorem above. Let " be a congru-
ence subgroup of SL>(Z), and denote by C2°(T") the space of C **~-modular forms of
weight k on I". We also denote by C°(I") the space of C*°-functions on # such that

fyz)=('z+d|c'z+d'[* f(z)

forall y = (Z; Zl,) € I' (for the moment, we will use the symbol f for an arbitrary

modular form in CZ°(T") or C 2°(I')). Recall that the weight k Shimura—Maass raising

operator 8 : C°(I") — €29, (T) is defined by

Sk(f)=i.(8 + k_)f. “2.1)

2ri\dz | z—7

Via the isomorphism

CEM) =CEM), f@) f2):=f)y*?, (4.2.2)
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we see that 8y is identified with —(1/47) Ry, where

- ~ _d Kk
Re: R = G2, Ri(f) = (=25 + )/ (4.2.3)
z 2
Let us define (following the discussion in [Bp, Section 2.1])
~ oo = o .0 k
Li: G — C,(0), L) =—((z - 2+ 3) (4.2.4)
and
~ - 02 02 a
. [r00 00 — _v2 (2 _ 1 —
A CRM) = CRM).  A(f)=—y (8x2 + 3y2) ikyo—.  (425)
These operators satisfy
k k k k
Ap = —LpiaRi — 5(1 + E) — —RioLi + E(l - 5). (4.2.6)

Note that via the isomorphism (4.2.2), the lowering operator L corresponds to f
2i %f on CZ°(T"). Thus if f is holomorphic, then L (f) = 0.

Definition 4.8
Let j be a nonnegative integer, and let f € C 2°(T"). Then R/ f is defined by

R’ f = (Rit2j-2© Ris2j—4 00 Rit2 0 Ry) /.

LEMMA 4.9

Suppose that [ € C2°(I) is holomorphic. Then for j > 0, the form ij is an eigen-
Sfunction of Agyo; with eigenvalue ; + A;, where pj := j(k + j — 1) and where
Aji=(k+2j/2)A—(k+2j/2)).

Proof

Since f is holomorphic, we have Li(f) = 0. Hence Ay f = (k/2)(1 — k/2) by
(4.2.6), and the result holds for j = 0. We now work inductively, assuming that the
result holds for j — 1. By (4.2.6) again, we have

Ak+2jR) [ = (~RisajaLisaj + AR’ f
= —Riy2j2Liy2jRiyaj 2R f+ A, R f

k—|—22j—2(1+k+22j—2))

= Rk+2_i—2(Ak+2_i—2 +

xRITVf + AR f
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k+22j—2<1+k+2j—2))

= Rk+2j—2(//~j—1 +Aj-1 2

xRITVf + AR f
= Resoja(tjo1 +k+2j =R\ f + AR f
= (Ujm1 +k+2j =2+ ANR f = (u; + AR/ T O

Definition 4.10
Let f, g € CZ°(T'), and suppose that at least one of f or g is a cusp form. Then set

(f.8)=

[SL, (Z) T Jr

Likewise, for f,g € C (') with at least one being cuspidal, we set

—dxd
(f.8) = (2)g(0) =

1
SL>(Z) T /mf 4

Clearly, for f,g € CZ°(T"), we have (f, g) = (f.8).

LEMMA 4.11
Suppose that f, g € CZ°(T') are holomorphic. Then

rgj+npr&+j)

(R f.RIg)= R0 (f.& (4.2.7)
and
1 TG+D0(k+))
(SJfSJ )y = ey N3 (f.g). (4.2.8)
Proof

Clearly, (4.2.7) and (4.2.8) are equivalent. We will prove (4.2.7) inductively. Invoking
[Bp, Proposition 2.1.3], equation (4.2.6), and Lemma 4.9 in turn, we find that

(RIf.RIg)= (R, —Lg12j Rk+2j_2Rj_1§>

<Rj—1f’ (Aksaja+ £ +22j _2(1 4K +22j _2))Rf‘1§>
=<Rf—1f, (/Ljfl + A1+ k+22j _2(1 + k+22j _2))Rf"1£’>
1 (RN LRI ).
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Hence

_TUHDOE+)) 7 o

P F Rigy\—=(f &).
(R RIG)=(f.8) [] m O . _

1<t<j

4.3. Period integrals and values at CM points

Let Ag :=C/0,, and let ¢y be the D1-torsion point on Ay corresponding to our choice
of t € M;1/0O,. The pair (Ag,fp) determines a point P4, on the modular curve
X1(N). Let T € # be any point lying over P4,. Thus there is a unique isomorphism

Ay :=C/Zr+ 7~ C)O,

sending [1/N] to o, which on tangent spaces is given by multiplication by a scalar
A; € K*.Hence O, = A;(Zt + Z) and

A
Wt =t mod O,.
Thus

Ar eNe, and (A0 =1. 4.3.1)

Let & : K — M>(Q) be the embedding that describes the action of K on H;(A.(C),
Q) with respect to the basis (z, 1), that is, given by

“[i]=s[i)

£(a+b1) = (a + bbTr(t) —baNr) ‘

Explicitly, for a,b € Q,
(4.3.2)

Let Mo (/) be the order defined by

Mo(N) := {(Z: 2/,) eEMy(Z):c'=0 modN} .
Then, via the embedding &,
K NMy(N) =End(A4;,([1/N])) =End(C/0,. (t)) = O,

so that & is a Heegner embedding of conductor c. A different choice of 7 will give an
embedding &’ that is conjugate to & by an element of I'g(N). Note that & gives rise to
a map of algebraic groups
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E . RCSK/QGm — GLz’Q

and hence a map on adelic points & , : A% < GL2(Aq). We consider A% as a sub-
group of GL,(Aq) via this embedding.

As in the previous section, let 81{ f denote the nearly holomorphic modular form
of weight £ := k 4+ 2 obtained by applying the Shimura—Maass differential operator
j timesto f. We use the embedding & to associate to the classical modular form (‘)’i f
an automorphic form F/ on GL;(Ag), as follows. First, let

— X
Uyi=(Mo(N)®Z,)".  U':=Mo(N) =[]U; CGLa(Ay)
q
and define a character w s = [[, w4 of U’ by setting

a b
W f.q ( d/) =efq(d")

c/
for (?; 2/,) € U,. Now, for g € GL2(Aq), write

g=7 Wys), Wwithy €GL2(Q),u € U’y € GL2(R)*.
Then set

FI(g) = 8] (/) (1oo(1)) j (Yoo, T) b s (w),
where we define

J( ., z)i=cz+d and j(y' z) i=det(y)"V2(c'z + d)),

a/

for any y’ = (c/ 3//) € GL;(R). One checks easily that this definition is independent

of the choice of decomposition of g. Further, for any « € K%,
F(ga) = F/(g)j(@.0) " = Ng(@) > F/(g).

Here Nx = N o Ng/q is the usual norm character on K, N being the norm character

on Q.

LEMMA 4.12
The restriction of the character ¢ of U’ to U, (via the embedding & , ) is Ve /-

Proof
For g { N, the restrictions of w r to Uq/ and of ¥ , to Uc 4 are both trivial. Suppose
therefore that g divides N.Leta +bt € O.NU, 4. By (4.3.2), wehavea € Zand b €
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NZ. Since N/A; lies in N, ® Z,; and since A, 7 € O, the element Nt = (N/A;) -
A7 also lies in M, ® Z, so that

Ve, q(a+b1) =¢r4(a) = wrq(€,(a+br)).

Since Oc N U4 is dense in U 4, it follows that Y, , (u) = wy(§,(u)) for all u €
Uc,q c Uc- O

PROPOSITION 4.13
Suppose that y € 25? (M) is of infinity type (k + j,— ). Let n and 0’ be grossenchar-
acters defined by

- ¢
n:=x'N¢. 0 = N2,

so that 0 is unitary. Then

LS @Na 6 )

¢ [a)ePic(O.)

—Cri)act FI (£,(0) -7/ (1)d*x.

KXKS\AY

where h. := #Pic(O.) and the measure d*x on K* K\ A% is chosen to have total
volume 1.

Proof
Let us pick elements y; € O, such that A% = |_|lh=1 K*-U.-K% -yi. We may assume
that we have picked y; to satisfy

YViq=1 mod NOk 4 forql|I (4.3.3)
Let a; := y; O, be the associated proper O.-ideal so that
(i) =n(ar) = " (@)Na; 7. (4.3.4)

Let U” :=[], U, be the subgroup of U’ defined by U, := U, if ¢ { N, and let

/ /
Ul = {(‘C‘/ 2/) eUj:d =1 modN}.

By strong approximation for GL;, we may write

En(yi) = gi(gu,i-yi) withgi € GLag,gui €U”,y; e GLy(R)T.
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Since g;y; = 1, we have y;” ! = g; € GL,(Q)™. Further, since £ is a Heegner embed-
ding, we have g;gu,i € Mo(N), and consequently y;” e My(N) N GL,(Q)™, that
is,

1= (Zl Z") € My(Z)NGLy(Q)t, ¢ € NZ. (4.3.5)
i i

In fact, on account of (4.3.3) and the fact that Nt € N, ® Z, for g | N (see the proof
of Lemma 4.12 above), we also have d; = 1 mod N . Now, for u € U,,

FI(&,(xu)) = F/(§,(0))wr(E4w) = F/ (£4(x))e s ).

Hence

. VI R o :
Joer P ) = D000 s 00

he
= Y NI G 0,
¢i=1

since w r(gy,;) = 1. Taking into account (4.3.4), it will suffice to show that
@r) AT (00T (i)™ = BN kg,

From the choice of y;, we see that the class of y;7 in X1(/V) corresponds to the pair
(c/ ai_1 ,ta;), and there is a unique isomorphism

A _
C/(Zyit+Z) =~ C/a;",

sending [1/N] to t,, with a scalar A; € K*. Note that
Jyio) " =Ji ) = (o) +d
The scalar A; may then be identified from the fact that there is a commutative diagram

. —1
C/Zr+7) "L ) (Zyit + 2)

I |

Cc/0, ——— CJa;

1

Thus A; = A, - J(yi, T), and
8L ta,) = 8L()(C/(Zyit + Z), A7 dz,[1/N])
= A7 Q) S (H i I (ri,0)" m
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In the next few sections, we will study the period integral

Ly (F) = /KXKX e T E) (43.6)

using the method of Waldspurger.

4.4. Explicit theta lifts
Let ¥ denote the additive character of A/Q given by ¥ ((xy)y) =[], Yv(xy), where

Voo(x) = 27I%, Yg(x) =e 2™ forx € Z[é] CcQq.

Let (V,(, )) be an even-dimensional orthogonal space over Q, and denote by O(V)
(resp., GO(V)) its isometry group (resp., orthogonal similitude group). Recall the
Weil representation ry = [, 7y, of the group SL>(A) x O(V)(A) on the Schwartz
space 8 (V(A)). On the orthogonal group, ry, is given by

ryw(@)e(x) = (g™ -x) for g € O(V)(Qy).¢ € 8(V(Qv)).

On SL»(Qy), the representation 7, is described by its action on the matrices

Ua) := ((1) ‘1’) D(a) := (g 091), W= (_01 (1))

by the equations

1
Py (U@)p(x) = Y5 ax.2) o ().
re(D(@)p(x) = yxv,e(@)|al™V 2 (ax),
ryo(W)e(x) = yypd(x),

where yv,, is a quadratic character and yy,, is an eighth root of unity, that can be read
off from [JL, Section 1]. In the cases of interest to us, they can also be found listed in
the table in [P, Section 3.4]. The Fourier transform ¢ is defined by

p(x) = [ oW ((y.)) .
V(Qu)

the measure dy on V(Q,) being chosen such that (,?)(x) = @(—x).
We will need to extend the Weil representation to similitude groups, following
Harris—Kudla in [HK2]. Let R be the group defined by

R:={(g.h) € GLy x GO(V) : det(g) = v(h)},



GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES 1103

where v denotes the similitude character of GO(V'). Then ry can be extended to
R(A) by

e =r (£ (o gergr) ) L0

where

Lg(x) = )| o1 x).

Let GO(V)? denote the algebraic connected component of GO(V). If F is an
automorphic form on GL3(A) and if ¢ € 8§(V(A)), we define, for h € GO(V)(A),

BP0 = | S ry(eg s o0 F(ggd Vg,

SL>(Q)\SL2(4) xeV(Q)

where g’ is chosen such that det(g’) = v(h). Likewise, in the opposite direction, if
F’ is an automorphic form on GO(V)%(A) and if g € GL,(A) is such that det(g) €
v(GO(V)(A)), then we set

O4(F)(@) = [ S vy (g b)) F/ (') dh,
0N@\0N®) Loy

where 4’ € GO(V)?(A) is chosen such that det(g) = v(h’) (we refer the reader to
[P, Section 1] for the choices of measures in the above and in what follows). If &
(resp., IT) is an automorphic representation of GLy(A) (resp., of GO(V)?(A)), then
we define

O(rr) :={0,(F): F em,9 € 8(V(A))},
0 (1) := {0, (F'): F' e 1,9 € 8(V(A))}.

Now set V := M>(Q), and consider V' as an orthogonal space over Q with bilin-

=gt (40 =(47).

The associated quadratic form is just x — xx‘ = det(x). The group GO(V)? is
identified with the quotient Q™ \ GL, x GL, via the map («, §) > §(«, B), where
8(a, B)(x) = axB~!. Thus an automorphic representation of GO(V)°(A) is identi-
fied with a pair (71, m2) of representations of GL2(A), such that the product of the

ear form

central characters of m; and 5 is trivial. To ease notation, we will often just write
(e, B) to denote the element §(c, B).



1104 BERTOLINI, DARMON, and PRASANNA

Let 7 denote the (unitary) automorphic representation of GL,(A) associated
to f. The following theorem is the classical Jacquet-Langlands correspondence real-
ized using theta functions, and is essentially due to Shimizu [Sz, Theorem 1] (see also
[W, Section 3.2]).

THEOREM 4.14

We have

(1) O =axm wherer=n"=nQ¢e;;
2) O'(mx7)=m.

We will need a statement involving specific forms in 7 and 7 and explicit theta
functions (i.e., explicit choices of Schwartz functions). For any finite prime ¢, let g4
be the exact power of ¢ dividing N, and for any set A4, let I 4 denote the characteristic
function of A. For ¢ a prime dividing N, we set

A0 D) Ot O
a\¢ 4 & 1.q()lz, (@)z, (b)gnaz, ()zx(d) ifq | Ne,.

i b) = {%Izq (@1, ()17, Oz, (@) g iNer 44
9\c d é&‘f’q(d)lzq(a)IZq(b)Iq"q—lzq(C)IZ?;(d) 1fq|N€f

Let ¥ denote the set of primes dividing N . For now, we fix a subset & of X, and
we consider the Schwartz function ¢ & := &) 4 (p;‘, where
(i)  forgtN,¢F =Iu,wez, = Im@zy):
() forg|N, (p;‘ = (p‘} or (pg accordingasqg ¢ E orq € E;
(iii)  for ¢ = oo, we identify M»(R) = (K ® R) + (K ® R) = C + C*, and we
set (pf‘o = (oo, With

Yoo (U + V) =0 p; (47 (v, v))e 2 UwullHltvwD (4.4.3)

forue C,ve Ct, where p ; denotes the jth Laguerre polynomial

I\ (—x)$
Pj(X)ZZC)%-

s=0

LEMMA 4.15
Suppose that kg := (Zi’;g _Cglsnee) € SO, (R) and that k1, k> € (K @R)) € GL,(R).
Then

ko

r'(//(Kev(KviZ))(pOO =e 'Kf 'Kz_[%o-
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Proof
This is proved in [X, Proposition 2.2.5]. O

Forq | N, set Uq1 := Uy (recall that U, was defined to be (Mo(N) ® Z,)™), and
set

Uy = {(if Z) €GLy(Zy) a,d €7}, beqZy,c € q"q—lzq} .

We also set U, qE equal to Ué if ¢4 N and equal to Uq1 or qu according to whether
q¢tEorqeB,ifg|N.

LEMMA 4.16

Let q be a finite prime, and suppose thata, 8 € U/, y € UqE are such that

det(a) = det(B) - det(y) ",

so that («, (B,y)) may be viewed as an element of R(Qy).
(1) Suppose that q{ N¢ ,. Then

ry (e (B.7)es = F.

(2)  Suppose that q | N¢ ,. Then

ry (e, (B.1))es = e rq(a@)e g (A(B) " d(¥)) ey

where for any matrix o in GL,, we define a(«) and d(«) to be the upper left
and lower right entries of «, respectively.

Proof
Let us write ¢, instead of (pl;‘": for simplicity. Clearly, we may assume that

det(ar) = det(B) det(y) ! = 1.
Then

ry (. (B 7)) @g (x) = ry (@) L(B, y)pq(x) = ry(@)pg (B~ xy).

In case (1), we have @,(B87'xy) = ¢4(x), while in case (2), ¢,(f ' xy) =
& £4(d(B)1d(y))gpq(x). So it suffices to consider the action of ry () on ¢g4. Let us
first check case (1). If further ¢ 1 N, then « is in the subgroup generated by matrices
of the form D(a), U(y), and W witha € Z; and y € Z,. Thus we may assume that o
is in fact one of these three possibilities. Since ¢ = Ips,(z,,) in this case, one checks
easily that



1106 BERTOLINI, DARMON, and PRASANNA

ry (D(a))pqg(x) = gq(ax) = gq(x). (4.4.4)
ry(U(3))eq (x) = P (v det(x)) g (x) = ¢q (x), (4.4.5)
ry(W)gg(x) = ‘/A’q(x) = @q(x). (4.4.6)

Next let us suppose that we are still in case (1) but that ¢ | N and ¢” || N, so that
. (a b) _ {Izq @1z, Dz, (g, (d)  ifq¢E,
q = . -
c d élzq (@)Iz, (D) gn—17,()lz,(d) ifq€E.
Note that

P (a b)_ Ly, (@)yrz, D)z, (g, (d)  ifq¢E.
"\ d iz, (@L—a-7, D)z, )z, (d) ifqgeE,

Set

V(z):= (i (1)) .

Then « is in the subgroup generated by matrices of the form D(a), U(y), and V(z)
with a € Z;, y € Zy, and z € q"Z,. Now one checks immediately that the rela-
tions (4.4.4) and (4.4.5) continue to hold for such ¢. As for V(z), note that V(z) =
D(=1)WU(z)W. Further, for z € ¢"Z,,

VW(U(Z))@I =¢q.
Hence for such z,
re(V(2))pg = ry (D(=DWU@)W)pg =ry (D(-1)WU(2))d,
= ry(D=DW)gg = ry (D(=1))dg = 5.
Thus case (1) is entirely verified. We now deal with case (2). In this case,

(a b) _ Jera( @z, @)z, (b)Ignz, (c)lz; (d) ifq ¢ &,
P\ @) T esg @y @z, (Vg1 (Ol (d) ifq € E.

Thus
ry (D(@))gq(x) = gq(ax) = & £,4(a)pg (x)

fora € Z;, and ry (U(y))@q(x) = ¥4(y det(x))pq (x) = ¢q4(x) for y € Z,.

It remains to consider the action of ry (V(z)) on ¢, for z € g"Z,. For this, we
need as before to compute the Fourier transform of ¢,. Suppose that cond(s 74) =
q™Zg, so that m <n. Then
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’ (a b) _ {q,ﬁs};(q’"a)lrmz; (@)g=nzy (b)z, (c)lz, (d) ifg ¢ 8,
q - _ . -
c d €7 (0" D g-mzz (@)= 7 D)z, (O)lg, (d) if g € E.

Thus ry (V(2))¢4 = ¢4 in this case as well, and we see as above that ry (V(z))g,; =
¥q- =

We need the following lemma in order to study explicit theta lifts in both direc-
tions. For any ¢ € ¥ and for 8 € GL,(A), we define

,(B) = /S o BT e Ve,

LEMMA 4.17

Let X' denote the subset of X consisting of those primes q such that 7w 54 >~ w(jL1, [L2)
is a ramified principal series representation with 1 unramified and with [, ramified
of conductor exactly q"?, where q"¢ || N. Then for q € X, the function ®4(B) is
identically zero unless q € X'. If ¢ € X', then

®,(B) = q 211 (@) " F7 (Bya),

where g is the element of GL2(A), that is, (g (1)) at q and 1 at all other places.

Proof

Let us write n instead of n, for ease of notation. We suppose first that g € X \ X'.
In this case, 7z, is either supercuspidal or a ramified special representation or a
ramified principal series >~ w (@1, (t2), where p; and u, both have conductor dividing
g™~ !. In any case, the central character & f.q has conductor dividing g™ ! (see [Tul,
Proposition 3.4]). We claim then that

Dy (Bu) = ¢ 1,4(d) Py (B), (4.4.7)

foru = (‘c’ 2) € I'y(n — 1), where for any integer m > 1, we define

[y(m):= {(CCZ cbi) €GLy(Zy):c=0 modqm} .

It suffices to verify (4.4.7) for y a matrix in one of the three forms:
a 0 «
Daby:=\, | abeZy  UW). yely
and

V(z), zeq" 'Z,.
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This follows from the following set of computations. First, let a, b € Z,’;. Then
®4(B - D(a,b))

:/ 920y VI (B~ D(a.b)-aq - D(a.b)™" - D(a.b))d Ve,

SL2(Qq)

zgﬁq(b)/ Wﬁ(D(a,b) -(xq_l -D(a,b)_l)Ff('g 'Olq)d(l)aq
SL2(Qq)

L) / VI (B -ag)d Vg = & 1(B) B ().
SL>(Qq)

Next, let y € Z,. Then

@, (8-U0) = [

SL2 (Qq

=/ o U(y))F/ (Borg)dPay.
SLZ(Qq)

)@;(aq—l)Ff (,3 -U(y)- O‘q)d(l)aq

Suppose that ! = ('Z 3). Then

aq_l-U(y): (a ay +b).

c cy+d

If 97 (a; ") # 0, then a,b,d € Z; and ¢ € ¢"~'Z,. Hence ¢y + d = d modg" .
Since the conductor of ¢ s, divides ¢"~', it follows that ¢2 (e, ' U(y)) = @7 (e, ")
for all e, and consequently ®, (8 - U(y)) = ®4(B). Finally, let z € ¢"~'Z,. Then

@, (8-v) = |

SL>(Qq

)so;(aq—l)Ff (B-V(2)-aq)dWay,

= / gog(ozq_l . V(z))Fj(,Baq)d(l)aq.
SL>(Qq)

But

aq_lV(z) = (a +bz b) .

c+dz d

Since z € ¢"~'Z,, one finds that ¢ (o, 'V (2)) = ¢ (") for all . This proves
(4.4.7). But now by Casselman’s theorem, we see that ®, () must be identically zero
for such ¢.
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We now turn to g € X’. In this case, one cannot argue as above since ¢z, has
conductor ¢". However, the argument above shows that @, is right invariant by V(z)
for z € ¢""1Z, and by U(y) for y € gZ, and transforms by € £.4(b) under the right
action of D(a, b). We conclude that if u lies in the subgroup

{(‘c’ Z) €GLy(Zy):a.d €ZX.beqly.cc q"—lzq} :
then @, (B -u) =& 4(d(u))P4(B). By Casselman’s theorem, we see that
Dy (Byg')=¢-FI(B)

for some scalar ¢. We now compute the value of ¢. Letting Fél)(m) =Ty(m) N
SL>(Qyg), note that

1 _ .
Py () = Efry)(n_l) £1q(A(eg ) F/ (Bag)dVay.

Let us first suppose that n > 2. Then the collection

1 0 _
V(x):(x 1), xeq” IZq/q”Zq,

is a set of coset representatives for I’ ,51) (n—1)/T ,51) (n). Hence

5'Fj(,3)’q) = ®4(B)

- e £q(d(g V(X)) F7 (BV (x)ag)d Ve

2.

1
(1)
qxeq”_IZ /q”Z Fq (n)

= 1 Z / qu d(a_l))Fj (,BV(x))gfq (d(aq))d(l)

(1)( )
x€q""124/q"Zq

LN

= C_]vol(U;“)) > FI(BVW). (4.4.8)

xeq"=124/q"Zq

To find the value of ¢, we may substitute f = 1 and compute in a convenient model for
the local representation 7 r, >~ (i1, u2). We use the standard model of the induced
representation V (i, 12), and we denote by f; a new vector in this representation,
normalized so that f; (1) = 1. Then (see [S, Proposition 2.1.2]), we have

farg) = 11 (@) gl

while
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P (1 0) _Jra@™ ifvg(x) = n,
\x 1 0 if vg(x) <n.
It follows that

| T 1 _ _ 1
é=m@ gl V2 vol(U, ") = g7V pr (@)~ vol(U, ).

If on the other hand n = 1, then the matrices V(x) with x € Z;/gZ, along with
W form a set of coset representatives for Fél) / F,;l)(l). Again, we can use the stan-
dard model of the induced representation to compute the value of ¢. However, since
Jq(W) =0 (see [S, Proposition 2.1.2]), the expression for ¢ remains the same in this
case too. U

Definition 4.18 '
For E C X, weset Fl(g)=F/(g- [, vq), where y, is as in Lemma 4.17 above.

PROPOSITION 4.19

We have
6o (F/ x F§)=CF - FO4,
where
CE .= {0 A : o FEZE,
(4m) U= DD ol V) - (FI, FI) - T]ex(@™ 2 11(g)) #E ST,

(4.4.9)

and F%* is the unique form in 7w characterized by the following.
(i)  IfqtN, then FO*(gu) = FO*(g) for u € GLy(Z,).

Gi)  Ifq| N, then FO*(gu) = e 14 (a) FO*(g) for u = (;’ 3) e Ty (ny).
(i) Let a € R%, aeo := d(a) € GLa(R), kg = (9 ‘Sm") € SO,(R). Let (1,

sin@  cosf

aosokg) denote the element of GL, (A) which is 1 at all finite places and aookg
at the infinite place. Then

WFO,n’w(l, Aooky) = ak/ze_Z”“eikGIR+ (a).

Here W.y, denotes as usual the v -Whittaker coefficient and (F/, F/) denotes
the Petersson inner product:

o 1
< F/ , F/ ) = _

F/(B)F7(B)d*B.
2-/PGL2(Q)\PGL2(A) DEIEP
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Proof L
Let F':= GLE(Fj x F1). We first show that F’ = CE - FO# for some constant CZ.
Note that for u € U’ and for kg € SO»(R), by Lemmas 4.15 and 4.16, we have

F'(guxe)

/ ry(guke, - (u, 1)) = (x)(F’ xF_é)(h-(u,l))dh
0@\ Sy

= %0 TT erq(aue)eq(dug)™) - £1q(d0ug)) F'(g)
‘I|N£f

= k0 1_[ efq(alug))F'(g). (4.4.10)
‘I|N€,f

Since 0], (m ® ) = n, it follows by Casselman’s theorem that F' = CE - F%* for
some scalar CE. Clearly, CE is just the first Fourier coefficient of F'. To evaluate
C IE, we compute the Whittaker coefficients of F’. As in [W, Section 3.2.1],

1 —_—
W@ =3 [ (g, HFL(P) P,
PGL>(Q)\PGL> (A)
where
W(g.B) = / ro (8. (0. 1)g® () F/ (Bar) dVar.
GL5 (A)det(8)
Note that

(1, B) =/ ro (1, (e, 1)) (1) F/ (Ba) d Va
SL>(A)
=/ B (@ HYF/ (Ba)dVa.
SL>(A)

This integral can be computed one place at a time since both F/ and ¢Z are pure
tensors. We first consider finite primes g such that ¢ ¢ 2. In this case, if ¢ (a;l) #£0,
then a,' € Uy- Hence ag € Uy as well. If further g { N ,, then @q(a;") =1 and
FJ(Bag) = F/(B). On the other hand, if ¢ | N ,, then ¢, (") = € 14(d(cg)™")
and F/ (Bay) = € fq (d(etg)) F7(B), so that in any case, for ¢ ¢ E, we have

/ 0Z (g F7 (Bag)d Doy = vol(U, ) - F7 (B).
SL2(Qq)

For g € &, it follows from Lemma 4.17 that
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= —1 j 1
/ 02 (@) FI (Bag)d Ve
SL>(Qq)

B {o ifg ¢y,
vol(U, ™) -~ 2 () F7 (Byy) ifqe X

Finally, the computation of the local integral at the infinite place can be found in [X,
Proposition 4.3.4]. Accounting for our different choice of measures, this contribution
equals e 27 (47)~U DI (k + j)/ (k). Putting together the local computations, we
find

0 ifE¢Y,
W(LB) = e - (4m) U D IEED vol(U'™Y)  [Tyea (@™ 217 (@) - FL(B)
ifE8 CX.

Thus C IE = O unless E C ¥/, and in that case,

CE =™ Wrry(1)

i Tk + ) o o
= (47-[) (-1 VOI(UI(I))W . 1_[ (q I/ZM1 l(q))(Fé, Fé)
&)
_i_n T+ 7)) ; ; _ _
= ()T ol () T 720 @)
geE
PROPOSITION 4.20
We have
B,(FO%) = CE . (Fi x FJ),
where
- |0 fEZY,
CE= 1 - 4.4.11)
{—&:‘?}LD 3@ VIU N [yex (@217 (@) FECST.

(Recall that ¥’ was defined in Lemma 4.17.)

Proof

By a calculation as in (4.4.10) and another application of Casselman’s theorem, we
have 6, (F#) = CZE . (ﬁ x F é) for some constant CZE. To compute CZ, one stud-
ies the theta lift in the opposite direction and uses the seesaw principle. Indeed, the
seesaw principle and Proposition 4.19 imply that
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CE(F/ F/)2 = (6,(FO%), F7 x FL) = (FO%, 61 (FJ x F1))= CE(FOF, FO%),
thatis, CF = CE(FO* FO¥#)/(F/, F7)2. But (see Lemma 4.11),
(F7, F)J(FOF, FO%) = S(0)~"@4m) "/ T(j + DT (k + )/ T (k).

(The term J(7)~* appears since F° and F%# are normalized differently: the former
is the adelic form associated to f and the base point 7, while the latter uses the base
point i. To translate from one to other involves picking an element y € SL,(R) such
that yi = 7, and one checks that (F©, FO)/(FOF FO#) = j(y,i)?* = 3(r)7*.) The
proposition now follows by using the value of C IE from Proposition 4.19. O

We now make the following key definition, namely that of the Schwartz function
in the explicit theta correspondence.

Definition 4.21

The explicit Schwartz function ¢ is defined by ¢ := ®,¢,, where ¢ is as in (4.4.3)

and for finite primes ¢, the ¢, are as below.

(i)  IfgtN,then gy =Ivyvez, = Iz,

(i) Ifg|N,then g, = ¢, for g ¢ 3" and ¢, := ¢; — @7 for ¢ € X', Recall that
(p(} and 903 were defined previously in (4.4.1) and (4.4.2), respectively, and that
3’ was defined in Lemma 4.17.

The following lemma which will be used in the next section is an easy conse-
quence of the fact that 7 is of type (c, 91, 8}1).

LEMMA 4.22
For g € ¥, fix an isomorphism K, ~ Qg x Qg such that via this identification the
embedding &; : K4 — M»(Qq) is conjugate by an element of Ué to the embedding

a 0
(a,b) — (0 b)'

Let % = (n1,12) via this identification. Then
(1) n1 is unramified and n, is ramified,
(i) mopy ! is unramified.

4.5. Seesaw duality and the Siegel-Weil formula
Let V; = K (viewed as a subspace of V via &), and let V, = V;-. Then
GO(11)° ~ GO(V,)? ~ K*,
H:=G(0(V)) x O(V3))” = G(K* x K*),
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and via this identification the map § : K* x K* — H is
—1 —1
8(a,B) = (ap™",a(B”)7H).

Since 1/(c)n’(B) = ' (@B™"), the character (17, 1') of K* x K* is the pullback via §
of the character 7 := (', 1) on H. Suppose that

va= D o ey eS(V1®Q) ®5(V2®Qy).

ig€ly

Then by an application of seesaw duality for the seesaw pair,

GL2 X GL2 GO(V)

GL, G(0(11) x O(12)),
we have (as in [HK1, (14.5)])

[ e F Bl )
H(Q)\H(4)

=/ FO¥(g) - 0,(n)lcr, () (8) dg

GL2(Q)AX\GL2 (4)

= Fo,ﬁ( . 9[ ; 7 9[ ) 1 de.
[GLz(Q)AX\GLz(A) &) 2 ®qg¢' ")(&)b, ‘pzq( )(g)dg

i=(ig)el=[],Iq
(4.5.1)

Here 67 (1) and 67 (1) are defined as follows. Set
GL,(A)% := {g € GL»(A) : det(g) € Nk (A})}.

For g € GL,(A)X, ¢ € 8(V1(A)),and h € A% such that det(g) = Nk (h),

e = [ o 2 P RIDSCOT () d O,

A xeV

One then extends the definition to the index 2 subgroup GL,(Q) - GLy(A)X of
GL,(A) by requiring it to be left invariant by GL;(Q). Finally, one extends it by
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zero outside this index 2 subgroup. The theta lift 67 (1) is defined similarly with 1’
replaced by the trivial character and with V; replaced by V5. Here the measure d (D
is chosen such that it lifts to a Haar measure on Kg) and vol(K (M \ Kg)) =1.

Now, by the Siegel-Weil formula, the theta lift 67 (1) is an Eisenstein series.
Unfolding this Eisenstein series by the standard Rankin—Selberg method, one finds
that the integral in (4.5.1) above is equal to the expression /(¢, &), where (defining
®* as in [P, Proposition 3.1]) we have

I(g.8)
— (1 (Tod
=) /A a /K Wy (PR k)

<D WOl L (D) (d@k)

(4
i=Gig)el=Tl, I o

(d(@)k)(1)|a] " d*a dk.

iq
A%

Here Ko = [[, GL2(Z,) x SO2(R)), the measure dk is a product of local Haar mea-
sures such that vol(GL2(Z,)) = 1 and vol(SO»(R)) = 27, and the factor {(2)~!
accounts for the change in measure normalization. We now state two propositions
that will be useful in computing the integral above.

We note first that W, (FO#) = Wy, (FO#) and that Wy, (FO#) = [, Wy, (FO%),
where Wy, (F 0.#) is normalized to take value 1 on the identity matrix in GL, (z,) for
finite ¢ and where Wy, oo (F%#)(d(a)) = e 2"%a*/?Ix (a). The proposition below
(which is simply copied from [S, Section 2.4], taking into account the fact that F°#
transforms by the central character of the upper left entry at ramified places as opposed
to the lower right entry as in [S, Section 2.4]) lists the values of Wy, 4 (F 0-#) on matri-

ces of the form d(a) := (g (1))

PROPOSITION 4.23

Leta € Qy. Then Wy 4 (FO%)(d(a)) is equal to

@) a2, vy @ 1@ 12z, (@), if T pg > 7 (1, 1) is an unrami-
fied principal series representation;

(ii) la|w(a)lz, (a), if 7 £,q >~ St() is a special representation with | unramified;

(i)  Izx (@), if w £,qg > St(u) is a special representation with p ramified;

(iv) |a|1/2,u2(a)lzq (a), if wfq =~ (1, n2) is a ramified principal series repre-
sentation with (L1 unramified and [y ramified;

(v) Efq (a)IZ; (@), if g >~ w1, n2) is a ramified principal series representa-
tion with both (11 and i ramified, or if 7 1,4 is supercuspidal.

For simplicity, in our local calculations below, we simply write Wr for
Wi .q (FO-#). The following proposition follows from the discussion in [P, Section 3.3].
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PROPOSITION 4.24
The Whittaker function Wy, (Gf@q . (")) factors as

— 1
t ) —
W‘// (9®z119q (T] )) - hK |q| W®=1961’
where for any prime q, either finite or infinite, we have

We s, (d(a)) = /K o, PalaCuhy ™Y (') d

= la|}/? /K 1 9q ((hh')P)m, (h1) dh (4.5.2)

q

for any h' such that N(h') = a. (Here the Haar measure dh on Kl(,l) is chosen such
that vol(K$Y) = 1 and for finite primes q, vol(Ox ® Z,)™ = 1.) Also,

Oy (d(@) =lal* [ [sq(0).
q

More generally, suppose that j, : K; — V is an embedding of quadratic spaces,
where K; = K ® Qg and V, = V(Q). For ¢ € 8(V,) = 8(K,)) ® 8(K), write
§ =251, ®&2,, and define

1, jg) =Z/QX fK Wi (d(@)k)We ¢, (d(@)k)®L, (d(@)k)la| "' d*adk.
(4.5.3)

Since We ¢, ; - <I>§’i (+) is bilinear in (¢1,i, 62,i), the expression on the right-hand side
in (4.5.3) is independent of the decomposition ¢ =), ¢1,; ® ¢2,;. In this notation,
we have

¢!
h

I(p.&) = [ 1(0q-£0)  I(poo. £ o) (45.4)

q<oo

Thus to compute (¢, §) it suffices to compute (¢4, §,) for all g. However, for
finite primes ¢, it is easier to compute (¢, S;) for a modified embedding SZI which
is defined by

£, (x) = u;léq (x)ugq

for some suitable choice of u, € U,;. If <p,’1 is the Schwartz function defined by

0, (X) = g (ug ' xuy),
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then it is immediate that
/ /
I((qu Sq) = I(‘/’qv Eq)
Define ¢ by ¢' = (&), ¥5) ® ¢oo-

PROPOSITION 4.25
Suppose that the ugq € U, have been chosen such that for all q € X', &, is given on

K, =Qu xQ, by
, _fa O
sq<a,b)—(0 b).

Then

[ By (FO) [z (W) () d <
H(Q)\H(A)

_ (4m) (@)

rGan OO T @n@a ) Ly (F)?).

gex’

Proof
Let u € GL2(As) be the element whose coordinate at g is u4. Observe here that

¢ =ry(1, (u,u))p. Hence O, (FO#)(h) = 0,(FO#)(h - (u,u)) and

/ 6 (FOF) oy () m () d
H(Q)\H(A)

= 0 (FO) gy (- u.w)) () d
= Y (=D®6,5 (FO®) e (h - (w.u) (k) d*h

ECY
=> (—1)‘Elcf/ (F7 x FL)(au, Bu)
Eoy K*xK*\A% xA%

(7 x ') (e, pyd™ad™p
= Z (—1)‘E|CzE Loy g (Fj (-u)) Ly g (FF{('“))'

BECY

But setting ag := (¢, 1) € K, @z := [[,eg @ and yz := [ cg vq> We have
£,(ag) -uygu~! =1and

Ly g (Fé ('”)) = / F/ (gA(X)”VE)’?/(X)dXX

KX\A%
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= [ Fl(eaziura)y (raz) 7
KX\A%
=1/ (e=) Ly g (F/0) = ([T m@) - L (F7 0).
g€

Since F/(.u) = F/ ()w #(u), the proposition follows by using the value of C2E from
(4.4.11). O

We record the following corollary, which follows from Proposition 4.25 and the
preceding discussion.

COROLLARY 4.26
We have

4) 13 (1) :
16,8 = S0 vl [T (0= @ @) Ly (77
qgex’

Applying (4.5.4) (with ¢ replaced by ¢’), we see that to compute | L, ¢ (F7)|?, it
suffices to compute /(g,,§,) = I(¢4,&,) for convenient choices of & satisfying the
hypotheses of the lemma above. This is the content of the next section.

4.6. Local zeta integrals
To handle the local computations, it will be useful to set up the following notation.
Define

J(c.?) :=/X Wr (d(a))We ¢ (d(a)) @5 (d(a))|al " d*a,

Qg

and, for o € GL»(Qy), define
J(c, V)= / Wg (d(a)a) We ¢ (d(a))CDf, (d(a)) la|' d*a.
Q;
We first dispose the simple case ¢ = co

PROPOSITION 4.27
For g = oo, we have

I(¢o0s Eo0) = 27) - (A7)~ *+ DD (k + j).

Proof
One sees easily that /(¢eo, joo) = J (g, V), where
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g(ll) — ﬁle—Zn(u,u)

and
9 (V) = p,(4m (v, v))e 2Tl

Thus @ (d(a)) = |a|*®(0). Taking h’ = a'/? in (4.5.2), we find that

Wos(d(@) =Tar@lal'” [ (@2~
= a(e+1)/2e—27mIR+ (a) = a(€+1)/2e—2naIR+ ().

Thus 1 (@eo, £0o) = 27 'fo ak/2e=2ma | ,(t+1)/2,27a |a|* g+ (a) d*a and
S .
1(¢m,§w)|s=1/2 =27 / ak+0/2,—4ma gx Qr)- (4n)_(k+1)F(k + /).
0
O

Next let g be a finite prime, and denote by o, and t, the maximal orders in K
and Q, respectively. We split the calculations into several cases:
M gfcNdk,
a qle,
) g" | N, withng > 2,
(IV) ¢l N.qtdk,
V) qlN.qldk,
(VD qldg.qtN.
For the rest of this section, we simply write  for 1(¢’,§,) = I(¢,§,).

4.6.1. Casel: q1cNdg
In this case, all the data is unramified and we have by a standard computation:

I = Lq(y_rf,n,-,,s)Lq(Zs,eK)_l.

4.6.2. Casell: q|c
Write 0, = Z,; + Z, @, where tr(w) = 0. Let w? = u. We may assume that E(’I (w) =

(ug, l/gr), where ¢" | ¢. Setj, := (5 _01). For0<i,j<gq" —1,set
Si,j =lzg4@rzg+i+ianw  Vij =lag+@ ze+i+ila)m)ig-

Then
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Pq = Zgi,;’ ® Wi,

i,J

Since Wr and ¢, are invariant under GL2(Z,), it follows that

I'=Y"J(si; %)= J (500 D0.0)-

i,J

Now,

We .0 (d(@)) =/X§0,0(f,al_l)ﬂl(m_l)ﬁz(l)dxf

q

- / (@t d*e.
0<vy(t)<vy(a)

vg(t—at—1)>r

Suppose that vy (a) > 2r — 1. Then either v, (1) > r or vg(at~') > r. In this case,
vg(t —at™')>r <= both vy(¢) > r and v, (at™") > r. For such a then, the region
of integration in the last integral above is unchanged if a is replaced by ua for any
u € Z;. Thus We ¢, (d(au)) = ni(u)We ¢, ,(a). Since Wr(d(au)) = Wr(d(a)),
by picking u such that n; (1) # 1, we see that

[ W (d(@))We ¢ (d(@))lal*™" d*a = 0.
vg(a)>=2r—1

So we may restrict attention to a such that 0 < vg(a) <2r — 2, and let ¢ be in the
region of integration above. Since either v, (1) <r — 1 or vg(at™!) <r — 1, we see
that vy (¢t —at™') > r is only possible if v, (¢) = v4(az~!). This implies that v, (a)
must be even. Suppose that v, (a) = 2m < 2r — 2 so that m < r — 1, and suppose that
vg (1) =m. Write a = ¢*™u,t = ¢ v withu, v € Z. The condition v, (t —ar ") > r
then translates to v, (v2 —u) > r —m, and n1(at~Hna2(t) = n1(g™uv)n2(g"v) =
€ £.4(q@)™n1(uv=?) since 172 = € £, is unramified. Then for m fixed,

[ Wrld@) o, d@)iat " da

= constant - // m@v=2)d*vd*u.
u,veZy

u=v2 modgq”—m

Suppose that m > 0. Since the conductor of 7y is ¢”, there exists « € Z;, a=1
mod ¢" ™ such that n; () # 1. Then for v fixed the integral over u is seen to be zero
by making a change of variables u — ou. Thus we are reduced to considering only
the case m = 0, and
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I =vol((u,v) € Z} x Z . u =v> modq")
1 1 - -
= m = q—ré'K,q(l) : Lq(ﬂfJT,;uS)Lq(ZS,SK) 1|s=1/2-

Here {x 4(1) = (1 — (1/¢))"2 if ¢ is split in K and equal to (1 — (1/¢?))"!if ¢
is inertin K.

4.6.3. Caselll: ¢" | N withn >?2

In this case, ¢ is split in K, thatis, ¢ = qq and K ® Q; ~ Q4 x Q, corresponding
to the completions at q and g, respectively. We suppose that q and q are chosen such
that M ® Z,; = q"*. We may assume that

, 0
G@n=(5 )

Then E = (91, 12), where 11 and nzs}’; are both unramified. Set j, := ((1) (1)) Then

1
19((0, b))q) = IZq (a)(lq"Zq - glqn_lzt/)(b)

and
c@.b) = {Izq @)1z, (b) ifqtNe,,
Iz, (@)lzx(D)esq(b) ifq|Ne,.
Now
qg—1
GLy(Zy) =T, (D|_|| ] U)wTy (1)
z=0
and
L= || VO)rm,
v€4Zq/q"Zq
so that

GLZ)= || voram| ]| L[] vewomrm.
Y€qZq/q"Zq Y€qZq/q"Zq
2€Zq/q9Zq

Now V(y) = —wU(—y)w and wV(y) = U(—y)w. Thus
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. A . 1
ry(w, )9 ((a,b)ig) = 9 ((a,b)ig) = q—nlq—nzg (a)lz, (b),

A 1
ry (U(=).1)¥((a. b)iq) = q—n‘ﬁq (yab)ly-nzx (a)lz, (D).

Py (WV(1),1)8(0) = ry (U(=y)w, 1)9(0) = ry (U(=y), 1) (0) = #(0) =0,

and
ry (V(3). 1)9(0) = ry (—wU(—y)w, 1)9(0)
1
_ / Ve Gab ) -az; @y, (b) da db
1
= q—n/IZq(ya)Iq—nzg(a)da
_Jo ity ¢q"Zg;
11 ifyeqz,
Thus

1 -
I = (1 - 5) vol(T4(n)) [ Wr (d(a))We ¢ (d())lal*~" d*a.
Now suppose first that g 1 N ,. Then 1y and 7, are both unramified and

_ g2 @9 ~ m2(aq)

Wo.c(d(a)) n1(q) —n2(q)

IZq (a)

In this case, 7 7, is either a supercuspidal or a ramified principal series isomorphic to
(w1, u2) with both @1 and pu, ramified. In any case, Wr(d(a)) = Iz (a) and

1 _ _
I = (1 - ;) vol(Ty (n)) = Ly 5. 5)Lq(25.68) ls=1/2-

" g+1)
Next suppose that g | Ne . Then
Wo.c(d(a)) = la|'*n2(a)ly, (a).
As for Wg, we have
Sj_r,lq (@)lzx(a)
ifg ¢ "

15" (@)|a] 1y, (a)
ifge X and 7 sy >~ m(@y, n2) with 1, ramified.

Wi (d(a)) =
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From this we find that

(1= HVol(Ty (1) = o Ly (o7 ) Ly 5.65) ot 2
ifge X\ Y,
1= =volTg(m)(1 = u3' 12(q)q ™)
_ 1 ) Lq(ﬁf,nnf,,s)Lq(s,sK)*l |
q"~1(g+1) 1—py ' ni(@q™ s=1/2
ifgey.

4.64. CaselV:q| N, qtdg

In this case, ¢ is split in K, that is, ¢ = qq and K ® Q; >~ Qg x Q, corresponding
to the completions at q and g, respectively. We suppose that q and q are chosen such
that 91 ® Z,; = q. We may assume that

) 0
@n=(5 )

The character '721 is identified with (11, 72). Setjq := ((1) (1)) Then

1
ﬁ((a’ b)]q) = IZq (a)(lqzq — alzq)(b)y
and

IZq(a)IZq(b) iquNé‘f’

(a,b) =
o {Izq (@1 (D)eq(b) ifq|Ne,.

1 A
I = —— + C .
7+ (J(s. ) +qJ(w,5.,9))

But 9(0) = 1 — (1/¢) and #(0) = 0. Hence

1

1 1 —1 7%
1= =060 = - (1= 2) - [ We (@) Wo s (@) lap "%,

where
Wo.s (@) =la" [ ste.ar™ma (0.
Q;
Suppose that g  N¢ .. Then 7y and 7, are unramified and

Wos(d@)=1al">( Y m@ 1))z, (@,

r+s=vgq(a)
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In this case, 7, is a special representation St(u) with p unramified and Wr (d(a)) =
la|p™" (a)lg, (a). Hence

1 1-1/q
I =
@+ 1D (1=g2u Y @Dm@g*) (1 —q 2= @)n2g)g~)
1 — p—
= 1 L T $)Lg (25, Hs=1/2:

Next suppose that g | N ,, so that n; is unramified and 75 is ramified but nzs}z
is unramified. Then

Wo.c(d(@)) = la|"*n2(a).

In this case, 7 7, is a ramified principal series representation 7 (i1, 2) with, say, iy
unramified and 1, ramified. Since Wr (d(a)) = |a|'/?p5' (a)lz, (@), we get

1 1-1/q o
(@+D1=p (@Dn(g)g™ q+1

Lq(ﬁfa ﬂ,;/»s)Lq(st SK)_1|S=1/2‘

4.6.5. Case V:q | N, and q | dg
Then n = 1. Recall that we have assumed ¢ odd in this case. Let w,; € K; := K ® Q
be such that T1, := w2 is a uniformizer in Z,. We may assume that

q
fm=(n o)
Setjg = (é _01 ) First we suppose that we are in
Subcase Va: g { N¢ ,, thatis, ¢ € S(f). Then ¢; = ¢ ® ¥, where
sla+bwy) =1z,(a)lz, (b), H(c + dwy)ig) =1z, (c)z, (d),
so that
Sla+bwg) =g~ Iz, (@y/gz, (b).
D ((c + dwgig) = 4~ ?Iz, (My/qz, (),

1 .
I = ——(J(c.®) +qJ(w.2.D)).
qul((g )+ qJ(w. 8. 1))

Let B, denote the matrix ( (1) Hgl ) Then

1/2 2

ry(Bg. @y Dsla +bwy) =z, (@/gz,(b) = ¢'/*¢ (a + bwy)
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and likewise ry (B4, w, )9 = ¢'/2%. Thus

1 R
I = m(J(g,ﬁ) + (@) (B w. . 9)).

But 7, is special, say, isomorphic to St(u), hence Wr (g,Bq_lw) = pn(IIy)) Wr(g).
Hence
7 — (1- M(Hq)ﬂ(wq))
q+1

2
J(c.®) = ——J(c, D),
(c. %) o (s, ?)

on account of our assumption that g4 (f, x~ 1) = +1 and [Tu2, Proposition 1.7]. Since
1g 1s unramified in this case, we can write 77;1 =n10Ng,/Q, = 12°Nk,/q,. Where n;
is an unramified character of Q; and 72 = n1 - €k4. Then Wo (d(a)) =
|a|'2(n1(a) + n2(a))]z, (a). Since W (d(a)) = |a|n™ (a)lz, (a), we have
7= 2 ‘ 1
g+1 (1—q'2p=Ygm(q)g™)

2 _ _
= m : Lq(ﬂf,ﬂ,;/,S)LqQS,SK) 1|s=1/2-

Subcase Vb: ¢ | N¢ .. Then

va= Y epgli—j)si®Y,

i,j€2q/qZq
i#j
where
sila+bwy) =z, +i(a)lz, (b), B ((c + dwy)ig) =gzy+j(©)z, (d),
1 . A A
o) =——- Y. e7g(i—)(J(i.9)) +qJ(Gi.9)).
qg+1
i,j€Lq/qZq
i#j

Note that & ;j is independent of j. Thus, for any fixed i, the sum ) i €fa (-
j)J(§i,z§j) = 0. Also, ©#;(0) = 6. Consequently,

1 1
_— J ',?9 = - J 51-9 )
q+1§oeﬁq(z) (51.90) = ——77(5.90)

where ¢ 1= Z#O erq(i)si. Now We o(d(a)) =crq(a)(1 + ek q (a))IZ;; (a). Since
7 5,4 is a ramified principal series of the form m (1, 2) with p; unramified and po
ramified, we have W (d(a)) = |a|'?u5' (a)lz, (a) and
11
g+1 g+1

I(pq) =

' Lq(ﬁf’ n,;/,s)Lq(zsa EK)_1|S=1/2'
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4.6.6. Case VI: q |dg, gt N
Again we may assume that

, 0 1
Gm=(1 o)

Setjg = (é _°1>. Then

q—1

‘quzgi@)ﬁi,

i=0

where
gi(a+ bwq) = IZq (a)I(’l;+Zq (0), F ((a + bwq)]q) = IZq (a)IZ,—--i-Zq (b).

Since g t N, we have I =), J(si. %) = J(go. Vo). Since % is unramified in this
case, we can write n; =nm oNg,/q, = n12°Nk,/q,» Where 1y is an unramified char-
acter of Qg and 72 = 11 - ek ,4- Then Wo ¢, (d(a)) = la|"2 (1 (a) + n2(a))lg, (a).

~ — |g|/2 L @a)—n7 @a)
If 7Tf,q — n(l"(’l ) M2)7 then WF (d(a)) |a| MTI(Q)—I/«EI(Q) IZq (a) and

1
I = f—
(1= p 7" @Dm@g=)A = p3 (@) (@)g™)

Ly(myp g, 8)Lq(2s, ex)” L

4.7. The explicit form of Waldspurger’s formula

We can now state the main result on the absolute value squared of the period inte-
gral Ly ¢ (F/) defined in equation (4.3.6). We will need the class number formula
L(l,ex) =2mhg/wg+/|dk| and the volume of U,

1

VO](U/(I)) =" 1_[ g+ 1)

q"7||N

Combining these with Corollary 4.26, equation (4.5.4) (with ¢ replaced by ¢’), and
the computations of the previous section, we obtain the following.

THEOREM 4.28

Suppose that cdk is odd and that 1 is a character of K of infinity type (—£,0) (£ =
k + 2j ) and finite type (¢, N, 8}1). Then

|L,7/,§(Fj)|2 =C ‘L(%,ff Xﬂﬁ,) =C -L(%,ﬂf XJT,,/),

with
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: : x(+)—4
¢ = LU+ DI+ Dwk vIde3() 2 T ekq ). 4.7.1)

4 k+2j+1 .h2 .C
(4m) X alc

Since L(1/2,7ty x 7y) = L(f, x71,0), |A:|*3(x) = vol(O,), and he/hg =
cl] q4lc(1—¢k(q)/q), we obtain Theorem 4.6 by combining Theorem 4.28 and Propo-
sition 4.13.

5. Anticyclotomic p-adic L-functions

5.1. Periods and algebraicity

We will now use Theorem 4.6 of Section 4.1 to deduce algebraicity properties of the
central critical values L( f, y~!,0) attached to characters y € Zg) (D). In order to do
this, recall the dictionary between pairs (L,?) as in Section 4.1 and triples (E,?, ®)
consisting of an elliptic curve over C, a point ¢t on E of order N, and a differen-
tial w € Q}s Jc Under this correspondence, the pair (L,¢) corresponds to the triple
(C/L,t,2mi dw), where the differential 27ri dw arises from the standard coordinate
w on C; in the other direction, the triple (E, ¢, ®) corresponds to the pair (Ay,?),
where 27wi A, is the period lattice attached to the differential w. Viewing a nearly
holomorphic modular form of weight k + 2 as a function on triples, we can rewrite
the expression 8‘,§ f(a™',¢t) that appears in Theorem 4.6 as

8 f@™l 1) =8 £(C/a™ 1, 27i dw) = 8] f (a % (Ao, 1,27i dw)),

where Ay := C/0,., and we recall that the action of O.-ideals of norm prime to N
on marked elliptic curves with I'-level structure of the form (Ag, 7o, wg) is the one
described in equation (1.4.8).

Recall the triple (A,%4,w4) with Endr (4) = Ok that was fixed until now. The
curve Ay is the image of A by an isogeny ¢g : A —> Ag of degree c. Let (A, t9, wo)
be the marked elliptic curve induced from (4,74, w4) via ¢q, that is, the unique triple
for which

@o: (A 14,w4) —> (Ao, o, wo) (5.1.1)

is an isogeny of marked elliptic curves with I'-level structure in the sense of Defini-
tion 1.10.

Given a Hecke character y € Z((;f) (DY) of infinity type (kK + j,—j), it will be
convenient to set

xj= N

for the associated Hecke character of infinity type (k + 2j,0). Following the usual
conventions, we will view y; as a multiplicative function on the fractional ¢.-ideals
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that are prime to 9ic. This character satisfies
xj(xa) =xk+2j8f(x mod )y ; (a) (5.1.2)

for all x € K* that are prime to 9lc. After fixing the triple (A, ?,27i dw), with ¢ an
(arbitrarily chosen, but fixed from now on) generator of A¢[91], the expression

X}l(a)%f(a * (Ag.1,2mi dw))

depends only on the class of a in Pic(O.) (see Lemma 4.5.) We can now restate
Theorem 4.6 of Section 4.1 as follows.

THEOREM 5.1
Let [ be a normalized eigenform in Sx(I'o(N),er), and let y € Eg) (M) be a Hecke
character of K of infinity type (k + j,—j). Then

ChroLfr 0= 3 1@ 8 f(ax (Aot 2ni dw))
[alePic(O,)

2
BRGE)
where the sum is taken over a system of representatives of the elements of Pic(O.)
that are prime to Nc, and the constant C(f, x,c) is given in Theorem 4.6.

Note that the sum appearing in the right-hand side of (5.1.3) does depend on the
choice of generator ¢ of Ay[J1], but only up to multiplication by an N th root of unity;
in particular, its absolute value is independent of the choice of ¢ that was made.

For the purposes of algebraicity statements, p-adic interpolation, and the appli-
cations that are given in [BDP1] and [BDP2], it will be useful to have a formula in
which the absolute value signs that occur in Theorem 5.1 are replaced by squares. In
order to do this, we will need to examine the behavior of

J(f0= Y x5 @)-8 f(ax(Ao.t.2mi dw)) (5.1.4)
[alePic(O,)

under complex conjugation.
The choice of a primitive N th root of unity ¢ and of a square root of —N deter-
mines an Atkin—Lehner involution wy acting on triples (E, ¢, ) by the rule

wy(E.t.w)=(E/{t).,l',V-No'),
where ¢’ is the image in E/(t) of any element t” € E[N] satisfying
(r.1")=¢

for the Weil pairing (, ), and w’ is the differential on £’ = E/{t) which pulls back to
o under the natural projection. It is straightforward to verify that the function wy is
an involution on triples and that it satisfies the commutation relation
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ax wy (Ao, 1.2mi dw) = wya* (Ag, Na™'¢,27i dw). (5.1.5)

Recall the decomposition N = 991 of N as a product of two cyclic ideals of O of
norm N. Choose an integral @.-ideal b and a nonzero element by € O, satisfying

(b,Ne)=1, b0 =(by). (5.1.6)

The multiplication by by map identifies the quotient Ag[N]/Ao[N] with the submod-
ule Ag[91] of Ap[N]. Furthermore, the elliptic curve Ao and its differential dw are
defined over R. Hence complex conjugation preserves them, but interchanges Ag[91]

and Ao[M]. The pair (b, by ) therefore determines an element t” of Ag[N] satisfying
Ao[N]=(Z/NZ)t + (Z/NZ)t", byt" =1. (5.1.7)

This element is uniquely determined by by up to addition of a multiple of ¢. There-
fore, the primitive N th root of unity

to=(t,1") (5.1.8)

depends only on by and not on the choice of ¢” satisfying (5.1.7). Let wy denote
the Atkin—Lehner involution associated to the root of unity ¢. If f is a modular form
in Sg(T'o(N), &), recall that f, is the form in Si(I'o(N), & r) whose Fourier coeffi-
cients are the complex conjugates of those of f. If f is a normalized eigenform and
a, denotes the eigenvalue of the Hecke operator 7, acting on f, then we have the
relation

an =5 (n)an (5.1.9)

for all n which are relatively prime to N. In particular, the form f, is also a normal-
ized eigenform and corresponds to the twist of f by the character 8}1. The following
lemma is well known.

LEMMA 5.2
Suppose that f € Sx(T'o(N),er) is a newform. Then there exists a complex scalar
w s of norm 1 satisfying (for all triples (E,t,w))

fp(wN(E,l,a))) =wy f(E,1,0).

Proof
The operator wy satisfies the following commutation relation relative to the Hecke
operators:

Tawy = (n)wnT,, (mwy = wN(n_l). (5.1.10)
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Equations (5.1.9) and (5.1.10) imply that the eigenvalue of T, acting on wy f, is
equal to a,. By multiplicity 1, it follows that wy f, is a nonzero scalar multiple
of f, thatis, wy f, = wy f for some wy € C*. The fact that wy is defined over
R and hence commutes with the action of complex conjugation, implies also that
wy f =Wy f,, and therefore that |w #|*> = 1 since w%, = 1. O

It should be noted that the scalar w ¢ is not entirely intrinsic to f', but depends on
the choice of N th root of unity ¢ that was made in (5.1.8) prior to defining the Atkin—
Lehner involution wy . Over C, it is customary to take { = %" but our choice of 4
may differ.

After these preliminaries, we define a complex scalar of norm 1 by the rule:

w(f, x)i=wy - &, (Nb) Ly (0)(=N)K/2HT p =2 (5.1.11)

Ostensibly, this scalar depends on the choice of (b, by) satisfying (5.1.6), but in fact
we have the following.

LEMMA 5.3

The scalar w( f, y) satisfies the following properties:

(1 it depends only on [ and y and not on the choice of pair (b,by) satisfying
(5.1.6);

2) it belongs to the finite extension L of K generated by K ¢, K, and V—N;

(3)  forallo € Gal(L/K),

w(f% x7) =w(f 0)°.

Proof

Properties (2) and (3) follow directly from the definition of w( f; y). The truth of (1)
follows from Theorem 5.4 below (since none of the terms other than w( f, y) that
appear in (5.1.12) depend on (b, b)) but it may be helpful to supply an independent,
self-contained argument. If the pair (b, by ) is replaced by the pair (b', b, then

o' =b(a). by =bya.

where a is an element of K> which is prime to 9ic. The conditions (5.1.7) and (5.1.8)
that are required to be satisfied by by and b}, imply that a = 1 (mod91). The con-
stants w( f, x) attached to the choices (b, by) and (b’, b} ) therefore differ by a factor
of

8f(ad)71)(j (a)aik*Zj = &¢(a mod ‘)?)71)(]- (a)aik*Zj.

But this factor is equal to 1, by (5.1.2). O
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THEOREM 5.4
Let f be a normalized eigenform in Si(I'o(N), e ¢), and let x € 2&? (M) be a Hecke
character of K of infinity type (k + j,—j). Then
. 2
chrorfrto=wtn( Y 0 @-8 f(ax (Aot 2mi dw))) .

[a]€Pic(O¢)
(5.1.12)

where the constants C(f, y,c) and w( f, ) are described in Theorem 4.6 and in equa-
tion (5.1.11), respectively.

Proof

Theorem 5.4 is proved by computing the effect of complex conjugation on the quan-

tity J( f, x) of equation (5.1.4). Observe the following.

(1) Since (Ag,27wi dw) = (Ag,27i dw) and since by satisfies (5.1.7) and (5.1.8),
the action of complex conjugation on (Ay, ?,2wi dw) is given by

(Ao.1. 271 dw) = (Ao.7.27i dw) = b x wy (Ao.1.by V=N 2i dw).
2) The action of complex conjugation on )(]_-1 (a) is given by
271 (@) =&y (Na) ;' 8).
Hence we have
1 @8] f (a % (Ao.1.2ni dw))

=& (Na)x; @8] f,(a* (Ao.7,27i dw)) (5.1.13)

= &7 (Na) 17 @8] £,(@b * wn (Ao, 1, by V=N 27i dw)) (5.1.14)
= (~N)*/2+IpF 2 ¢ (Na) x 71 @) - 8] £, (@b % w (Ao, 1,271 dw)).
But now, by (5.1.5), we have
87 f,(@b x wy (Ao, 1,27i dw)) = 8] f,(wnab * (Ao, (Nab) 12,277 dw))
=wyep(Nab)~ - 8] £ (ab * (Ao, t,27i dw)).
(5.1.15)

Combining equations (5.1.14) and (5.1.15), we obtain

X]_-l(a)51{f(a * (Ao, t,2mi dw))

= wy - (=NY2TTpET i (b)e p (NO) ™!y (@b) 18] £ (ab * (Ao, 1, 27i dw)).



1132 BERTOLINI, DARMON, and PRASANNA

Summing this relation over all classes a € Pic 0., we obtain

S0 =w(f 0I(0,

and Theorem 5.4 follows. O

We now turn to the algebraicity properties of L(f, x~!,0). We begin by defining
a complex period attached to K. For this, we observe that the complex elliptic curve
Ao has endomorphism ring equal to the order @, of conductor ¢, and therefore is
defined over a subfield H,. of C which is isomorphic to the ring class field of K of
conductor ¢. The choice of the differential wy € Q!(A4¢/H,) determined by (5.1.1)
determines a complex period €2, defined as the nonzero complex scalar satisfying

wo = Q- 2mi dw, (5.1.16)

where w is the standard complex coordinate on A¢(C) = C/0O..

Theorem 5.5 below asserts that the ratios w (£, x)C(f. x.c)L(f. x~'.0)/
Q2*&+27) are algebraic numbers. In order to make a more precise claim about the
fields of definition, we remark that the point ¢y belongs (by assumption) to the 91-
torsion subgroup of Ay, which is defined over H,. Let H/ be the abelian extension of
H_ over which the individual -torsion points of Ag are defined, so that in particular
the pair (Ao, 7o) is defined over H/. The Galois group of Gal(H//H.) is canonically
identified with a subgroup of (Z/N Z)* via its faithful action on A¢[MN]. Let A, C H!.
be the subfield which is fixed by ker(e y). Let ' C C be the finite extension of K gen-
erated by H.,, by the values of the Hecke character y on Ag Iz and by the Fourier
coefficients of f. We can now state Shimura’s algebraicity theorem on the special
values L(f, x~1,0) in a precise form.

THEOREM 5.5
Forall y € 253) (M) of infinity type (k + j,—j), the quantity

Lag(fox~".0):= w(fo )" C(f o) - L{fo ", 0)/ 2KF2D

belongs to F.

Proof
By Theorem 5.4,

w(f, ) Cfx. o) L(f. 1. 0)
-( X )cfl(a)-S,{f(a*(Ao,zo,zm’dw)))2

[alePic(O,)
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=( Z X;I(a).azf(a*(Ao,zo,sz—lwo)))2

[a]€Pic(O)

. . 2
_ QZ(k-f-ZJ)( Z X7 (@) -8 f (ax (A(),l(),a)o))) :
[a]€Pic(O,)

It follows from Lemma 1.5 that

. 2
Lus(£ 0= Y 17" @ Ofgee /(% (Ao.t0.00))) . (.117)
[a]€Pic(O¢)

Part 1 of Proposition 1.12 implies that the terms @ﬂodge f(a* (Ao,to,wo)) belong
to F'. Theorem 5.5 follows. O

Remark 5.6

The datum of @, determines the elliptic curve Ao/ H, together with the embedding of
H, into C. Both sides of (5.1.17) depend on the further choice of a regular differential
wp on Ag/H., which was determined by our choice of w 4. Note that a change in w4
(or wyp) affects both sides of (5.1.17) in the same way.

5.2. p-adic interpolation

Let p be a rational prime which splits in K/Q, and fix a prime p of K above p.
Extend the associated embedding of K into Q, to an embedding ¢, : F —> C,. The
special values Ly,(f, ', 0) can be viewed, through the embedding ¢p, as p-adic
numbers. The following theorem gives a p-adic formula for these special values, in
terms of the Atkin—Serre operator 6 on p-adic modular forms.

THEOREM 5.7
Forall y € z? (M) of infinity type (k + j,—J),
. 2
Lo £ 0= (2 47" @O )(ax (Ao 10.0)))

a€Pic(O.)

Proof
The fact that p is split in K implies that the elliptic curve ¢,(Ao) has good ordinary
reduction. By part 3 of Proposition 1.12, combined with (5.1.17), we have

. 2
Lalg(f? X_170) = ( Z Xj_l(u) '®]]:robf(a* (A(),[(),C()O))) . (521)
[al€Pic(O,)

Theorem 5.7 now follows from Lemma 1.7. O
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Although the set 2&2’ (M) is infinite, its elements take values in a finite extension
of K. By possibly enlarging the finite extension F of K that appears in the statement
of Theorem 5.5, we will assume that it contains the values y(a) as y ranges over all
characters in 2(2) (91) and a ranges over A% I

Let A/K, f denote the subgroup of Aéf of ideles which are prime to p, and
choose any prime pr of F above p. We observe that the values y(a) as a ranges
over A, p are integral at pr, that is, they belong to the ring of integers OF ;-

of the completion F, .. It follows that Egc)(‘)’t) is naturally embedded in the space

F (A £+OFpr) of OF,p-valued functions on Al £+ We equip =@ (M) with the
topology induced by the compact open topology on this function space, that is, the
topology of uniform convergence on A'K’ r relative to the p-adic topology on OF ;.

Let 2. (D) be the completion of »? (D) relative to this topology.

To p-adically interpolate the values L, (f, x~!,0) we need to modify them by
dropping a suitable Euler factor at p, and multiplying by a suitable p-adic period. We
begin by attaching to A¢ a p-adic period €2, as follows. Let +¢ be a good integral
model of Ag over Oc,,. The formal complet10n Ao of g along its identity section
is (noncanonically) isomorphic to G over Oc,,; fix such an isomorphism ¢ : AO —
Gm. (This amounts to fixing an isomorphism between the p-divisible groups u e
and #([p°°], which is determined up to a scalar in Z;.) Fixing the isomorphism ¢
once and for all, we define 2, € CIX, by the rule, analogous to (5.1.16),

Ldu
wo = Qp - Wcan, Where wean 1= c— 5.2.2)
u
and u denotes the standard coordinate on @m

Forall y € »? (M) of infinity type (k + j,—j), we set

p(ﬁ be,
QZ(k-‘rZ])( 1(p)ap + x 2(p)8f(p)pk 1)2La1g(f; X_l,()) (523)
=9§(k+2’)(1—apx_1(ﬁ)) (1= Box ' ®) Lag(f, x71.0), (5.2.4)

where o, 8, denote the parameters of f at p described at the beginning of Sec-
tion 4.1.

Remark 5.8

Note that both Lag(f, x) and €, depend on the choice of the differential w4 on
A, but that the ratio Lag(f. x)/ Qf,(kHj ) does not depend on this choice, once an
isomorphism ¢ between o&o and ém has been chosen. Replacing ¢ by a Z;—multiple
at has the effect of multiplying L ,(f, x) by a?®+27),

Recall the form f° = f |(vu—uv) that was introduced in equation (3.8.4).
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THEOREM 5.9
Assume that p is split in K/Q. Forall x € »? (M) of infinity type (k + j,—J) (with
j =>0), we have

Lto=( Y 1@ e ot.ow)

[alePic(O,)
Proof
Set
Sy = ZX]_.l(a) . ij(a * (Ao,fo,wo))
[a]
and

$h=" 27N @) - 67 £ (a* (Ao. 1. w0)).
[a]

Now pla,-67 f =607 f | T, =067 f | (U +es(p)p*™> V) and
07 F 1 V) (ax (Ao, to,w0)) = (07 £) (P~ e (Ao, to, o).
Thus
07 f"(a* (Ao.to,w0)) = {07 f | (VU —=UV)}(a* (Ao, to, o))
= {077 | (1 =T,V + &7 (PP ¥71V2)} (0 % (Ao, 10, 00))
=07 f(a* (Ao.to,w0)) — p’ap 07 f (P~ ax (Ao, to, o))
+er(p)P* 7107 f(p2a % (Ao, to, w0)).

Multiplying this equation by )(J_.l (a) and summing over all the classes [a] € Pic(O,.)
gives the identity

Sy ={1=ap ' ®) + e (PP T E) Sy
The result now follows from Theorem 5.7 combined with the homogeneity properties

of the p-adic modular form 67 f* of weight k + 2; . O

PROPOSITION 5.10
The function y — L, (f, x) extends to a continuous function on ().

Proof
Let x1,x2 € @ (M) be two elements (of infinity type (kK + ji,—j1) and (K +
J2,—J2), respectively) satisfying
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x1(a) = y2(a) (mod pM), forallae A’K’f.

By evaluating at idéles in A’  that are congruent to 1 modulo 9, we see that neces-
sarily

Jj1 = j2 (mod(p — I)PM_I)-

Now we observe that, since

07 f*(Tate(q). 1. wean) = Y n’ang",

(p,n)=1

the g-expansions of /! f and 672 f are congruent modulo p™ and therefore agree
modulo pM . If E is any ordinary elliptic curve over O Fp, and wcay is any canonical
differential on it as in (5.2.2), it follows that

071 fP(E t,wem) = 672 fP(E,t,0can) (mod p™)

(see, e.g., [Go, Section 1.3.5]). It follows from the formula for L,(f, ) given in
Theorem 5.9 that

Lp(fix1)=Ly(fix2) (mod p™).

The proposition follows. O

The function L ,(f,+) on e (M) is a type of anticyclotomic p-adic L-function
attached to f and K (and the triple (¢, 0, &7)).

Remark 5.11

The p-adic L-functions attached to Rankin convolutions of p-adic families of mod-
ular forms have been constructed in great generality by Hida [Hil]. In fact, our p-
adic L-function L ,(f,-) is the restriction of a more general two-variable p-adic L-
function defined over i(‘)’t), the existence of which can be deduced from the main
result of [Hil].

Note that one obtains from Hida’s work two different p-adic L-functions by
interpolating the L-values corresponding to critical characters in XM (91) and
Y@ (M), respectively. The p-adic L-function obtained by interpolating L( f, ', 0)
with y € E(l)(‘ﬂ) has received much attention in the literature; for instance, it is stud-
ied in the article [PR1] (for k = 2) and in [Ne2] (for k even and greater than or equal
to 2). Our focus in this article has been instead on the p-adic L-function obtained by
p-adic interpolation of the special values corresponding to (central critical characters)
re=@m.
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5.3. The main theorem

For the convenience of the reader, we collect the notation and the running assump-
tions that were made in the previous sections and are in force in the statement of
Theorem 5.13 below.

Assumption 5.12

(1)  Theform f is a normalized cuspidal eigenform in Sg (I'o(N), & r).

(2) Here ¢ is an odd rational integer prime to Ndg.

(3)  The quadratic imaginary field K has odd discriminant and satisfies the Heeg-
ner hypothesis stated in Assumption 1.9, so that the order @, of K of conduc-
tor ¢ admits a cyclic ideal 91 of norm N.

(4)  The sets Egi)(‘ﬂ) and 28) (1) consist of characters y of finite type (¢,M, &)
and satisfying &4 (f, x~') = +1 for all finite primes ¢, as described in Defini-
tion 4.4 and the subsequent paragraph.

(5)  The rational prime (p) = pp is split in K/Q and prime to Nc.

A character y € Eg?(‘)’l) can be approximated by elements of z? M) (rela-
tive to the topology on X..(91) discussed in the previous section) as follows. Let &
denote the class number of K, and let v/, be the Hecke character of K of infinity type
(th,—th) and trivial central character defined by

v (a) =a'/a’, where (a) = a”.

If ¢ is a sufficiently large positive integer, then the Hecke character yy; belongs to
»? (1), and it converges to y as ¢ converges to 0 in Z/(p — 1)Z x Z,. This fact
allows us to view Egé)(‘ﬁ) as a subset of f)cc o).

The following theorem, which relates the value of L,(f. x) at y € zﬁi)(m)
(which lies outside the range of interpolation for the p-adic L-function) to Abel-
Jacobi images of generalized Heegner cycles, is the main result of this paper.

THEOREM 5.13
Suppose that x € Zgé)(‘ﬁ) is a character of infinity type (k — 1 — j, 1+ ), with
0<j <r.Then

S = (=17 By + P ()’
D
—J . .
X (C]—' Z 1 H@N(@) - AT (Ap o) (@f /\a)flr];_]))z.

" [a]€Pic(O¢)
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Proof
The proof of Proposition 5.10 shows that the formula in Theorem 5.9 for L, ( f; x) at
XE 223) (M) extends to y € Egi)(‘ﬁ) in the obvious way, and gives

Lin=( X @07 (ax Aot o))

[a]€Pic(O¢)

Therefore, by (5.2.2) and the fact that 71~/ £* is a p-adic modular form of weight
r —2j, we have

Lp(f.X)
W= Z Xij@- 07 f (a*(Ao,lo,wo))>
)4 [a]l€Pic(O¢)
By Proposition 3.24,
Lp(fx) 1 -1 b 2
W = (7 Z )(_l_j(a) . Gj (a * (Ao,[(),a)o))) . (5.3.1)
p [a]€Pic(O¢)

In view of Proposition 3.24 and of the relation 67 f | T, = p’a, - 67 f, for j >0,
one sees by p-adic approximation that

T,G; = p_l_japGj.
Then, by Lemma 3.23,

G']’- (a* (Ag.to,w0)) = G (a* (Ag.to,wp)) — ]fr(p])ff Gj(pax (Ao, 0. o))

€r(p)

+ pr—2j+1

G(pza * (Ao, to, a)o))

Substituting this expression for G'j’. (a * (Ao, t9,wp)) into (5.3.1) and rewriting the
second and the third summands by substituting a for ap and ap?, respectively, we
obtain

Lp(f ) _ (1 X1 Papes (p) xil_j(p)af(p))z

o20—2j) — —j+1 —2j+1
Qpr J pr J pr j
1 1 2
(= Y aC@ Gilax(oto,0) . (532
7 [a]ePic(O,)
Using the fact that
X-1-i®) = x®p~ T =ep(p)T P a7,
the Euler factor that appears in (5.3.2) can be rewritten as

&p(f,20 == x " ®a, + 1 2®er(p)r*)".
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Now, applying Lemma 3.22 to the isogeny
©a@o : (A, t4,w4) —> a* (Ao, o, o)

of degree ¢N(a), and using the fact that y~{_;(a) = " (@)N(a)'*/, we find

Ly(f, 1) ¢/ _ SN2
W =&,(f. X)(.—! D> 1N @N(@) - ATE(Ag,p0)(@f AWy j)) :
)4 [a]€Pic(O¢)
as was to be shown. O

Appendix. Kuga-Sato schemes

BRIAN CONRAD

The aim of this appendix is to explain the relative version of Deligne’s method for
constructing a smooth projective compactification of the fiber powers E* of the uni-
versal elliptic curve E with enough level-N structure over an open modular curve
Y over Z[1/N] (for applications in this paper with ¥ = Y;(/N)). This was originally
developed in 1968 for applications over finite fields F of characteristic not dividing N
(see [Del, Lemme 5.5]), and later found uses for X(N) over Z[1/N] (see [Sch2, Sec-
tion 4.2.1]). For applications over such fields F' (e.g., Q or finite fields) one can com-
pactify Er — YF over the associated smooth complete modular curve X by using
the technique of minimal regular proper models of relative smooth proper curves over
a Dedekind base (such as Er — YF relative to the Dedekind base X r), together with
their relation to Néron models of elliptic curves, and then try to explicitly resolve sin-
gularities of fiber powers over X r of that minimal regular proper model. Thus, when
working over such a field F there is no need for the concept of a generalized ellip-
tic curve (which was introduced only in 1972 in the work of Deligne and Rapoport
[DeR], building on Artin’s theory of algebraic spaces).

The viewpoint of minimal regular proper models is insufficient in the relative sit-
uation over Z[1/N] since now X is 2-dimensional rather than Dedekind. In such set-
tings we use the proper flat universal generalized elliptic curve E — X over Z[1/N]
(for a modular curve X classifying rigid fiberwise ample level- N structures on gener-
alized elliptic curves over Z[1/N]-schemes) as a compactification of E over Z[1/N].
Such E are smooth over Z[1/N] (see Lemma A.2) but not smooth over X, so for
k > 2 the compactification E* of EF is not smooth over Z[1/N] (as we will see
explicitly below). In Scholl’s work with X(N) over Z[1/N] in [Sch2, Section 4.2.1],
for each k > 2 he used Deligne’s method to construct a smooth projective Z[1/N]-

scheme equipped with a proper birational map onto the fiber power E over X



1140 BERTOLINI, DARMON, and PRASANNA

such that the map is an isomorphism over E¥ and can be described étale-locally
near the fibers over the cuspidal locus on X. The method is a series of succes-
sive blowups, organized in terms of the number of coordinates of a geometric point
E=(1,....&) € Fk for which &; is singular in its geometric fiber for E — X.

The hard part is to give an intrinsic description of what to blow up at each step;
once we have defined an intrinsic algorithm, we can carry out computations étale-
locally to see that we reach a smooth Z[1/ N ]-scheme. These étale-local computations
are sketched over Q in Scholl’s work (see [Sch2, Sections 2.0.1-2.1.1]) but the details
on how to carry it out over Z[1/N] are omitted there (and the intrinsic definition of

what the pieces correspond to in terms of E is not given). Thus, at the request of the
referee, in this appendix we explain the procedure in more detail over Z[1/N].

We axiomatize the calculation so that it applies to all modular curves (with enough
étale level structure). The intrinsic nature of the method also makes it applicable to
cases in which the modular curve only exists as a Deligne-Mumford stack (such as
Xo(N) over Z[1/N] forany N > 1), but we leave that generalization to the interested
reader. The étale nature of the level structure (i.e., using N -torsion-level structures
over Z[1/N]-schemes) is essential to the method because only in such cases can cer-
tain deformation-theoretic problems with generalized elliptic curves be reduced to the
case of a Tate curve with geometrically irreducible fibers; see [DeR, III, Section 1.4.2;
VII, Section 2.1].

Fix an integer N > 1, and let X be a modular curve over Z[1/N] classifying a
rigid fiberwise ample level-N structure on generalized elliptic curves over Z[1/N]-
schemes (e.g., I'1 (V)-structures with N > 5, or full level-N structures with N > 3).
Here, by rigid we mean that generalized elliptic curves equipped with such a level
structure admit no nontrivial automorphisms. The work of Deligne and Rapoport pro-
vides such modular curves X as smooth proper Z[1/N ]-schemes with fibers of pure
dimension 1, equipped with a universal generalized elliptic curve E — X. (Even
though such an X is initially built only as a separated algebraic space, it is a scheme.
This can be seen in a couple of ways, perhaps the most concrete being that the j-
map from X to P%[l /N is quasi-finite, and any algebraic space that is separated and
quasi-finite over a Noetherian scheme is a scheme [K, II, Section 6.16].)

Remark A.1

For the reader who is interested in schemes being projective rather than just proper,
we make some side remarks now (not to be used in what follows). The fiberwise
ample level structure on E over X defines a closed subgroup scheme G of the open
X -smooth locus E ' with G finite étale over X ,and so G is closed in E with ideal
sheaf in O that is a line bundle on E whose inverse is fiberwise ample over X. But
a fiberwise ample line bundle on a proper finitely presented scheme over a base S is
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relatively ample over S [EGA, IV3, Section 9.6.4], so the projectivity and flatness of
X over Z[1/N] implies that E is projective and flat over Z[1/N]. Likewise, the fiber

powers E over X are projective and flat over Z[1/N| for all k > 1. In particular, any
scheme obtained from Fk by a composition of successive blowups is projective over
Z[1/N]. This ensures that the Z[1/ N ]-smooth compactification of E built below is
projective over Z[1/N].

We now recall that for any generalized elliptic curve f : & — S over a scheme,
Deligne and Rapoport introduced canonical closed subscheme structures Soo C S and
&%n¢ C & respectively supported at the set of s € S such that &; is not k(s)-smooth
and at the set of £ € & at which the proper fppf map & — S is not smooth. Explicitly,
&°"¢ is defined by the annihilator ideal of Q2 /s (the first Fitting ideal of Q ;s)sand
Swo is defined to be the scheme-theoretic image of €% in S. The formation of both
of these commutes with any base change on S (though this has some hidden subtleties
for Soo; see [Cn, Sections 2.1.11, 2.1.12]). We call these closed subschemes the loci of
nonsmoothness in S and & for f. Their compatibility with base change on S enables
us to compute completions along these loci via deformation theory.

Let Xoo C X be the locus of nonsmoothness for the universal generalized ellip-
tic curve E — X. Computations with the deformation theory of generalized elliptic
curves equipped with ample level-N structure over Z[1/N] show that X is (finite)
étale over Z[1/N] (see [DeR, III, Section 1.2(iv); IV, Section 3.4(ii)]). The struc-
ture of E around E° " can also be understood via deformation theory, leading to the
following.

LEMMA A.2
The scheme E is smooth over Z[1/N].

Proof

The problem is to prove smoothness at nonsmooth points & in fibers over points
X € Xoo, and since E is fppf over Z[1/N] it suffices to work on geometric fibers
over Spec(Z[1/N1]). In other words, for an algebraically closed field F' of character-
istic not dividing N and the universal generalized elliptic curve E p — X, we want
to prove that the surface E g is smooth at points £ € E(F) that are nonsmooth in
the fiber over x € Xoo(F). It is equivalent to prove the formal smoothness of @2

EF¢
over F. But (9% ¢ coincides with the completed local ring at £ on the formal com-
F>

pletion of Ez — XF along x. This latter formal completion is the universal deforma-
tion of (E r), equipped with its ample level-N structure, and QJAKF,x is its universal
deformation ring. Since char(F){ N, by [DeR, III, Section 1.2(iv); VII, (1.1.1), Sec-
tions 1.11, 2.1] there is an F-isomorphism between the universal deformation ring
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OJ/K\’F,x and F[[¢]] such that the completed local ring at & is F[[g]]-isomorphic to

Fllg,u, v]]/(uv —gq) = F[[u,v]]. O

Now we prove a general resolution result for generalized elliptic curves over a
family of smooth curves.

THEOREM A.3

Let S be a scheme, let X — S be a smooth map with all fibers of pure dimension 1,

and let f 1 E — X be a generalized elliptic curve such that

(1) the locus of nonsmoothness X C X for f is étale over S,

2) the scheme E is S-smooth.

For each k > 1, let Fk denote the kth fiber power over X. Define E = E|x_x...
There exists a smooth S-scheme Zy and a proper birational map h : Zy — E

that is an isomorphism over EX. The map Zj — fk is a composition of finitely many

blowups, so h is birational.

We emphasize that although E is assumed to be S-smooth, in practice it is not
X -smooth, so the closed subscheme E (which encodes nonsmoothness over X) is
generally not empty. The proof of the theorem consists of giving an explicit definition
of the blow-up process. If k = 1, then we may take Z; = E by hypothesis (2), so we
now assume that k > 2.

By hypothesis (1), the pair (X, Xoo) looks étale-locally like (AL, 0). Thus, the
étale-local structure of relative semistable curves [FK, III, Section 2.7] and the homo-
geneity of E around EM (via translation by Fsm) implies that, Zariski-locally over
an affine open Spec R in S, the pair (E, fsmg) has a common étale neighborhood with

(Spec(RIg.u,v]/(uv —q)).{g = u = v =0})

(see the proof of [DeR, II, 1.16]). Up to permutation of coordinates, a geometric

point £ = (&1,...,&) € E" that is nonsmooth over S has £1,....& nonsmooth in E
over X and £,41,...,& smooth in E over X for some r > 2 (the case r = 1 being

ruled out by the hypothesis that E is S-smooth). Thus, (fk, &) has a common étale
neighborhood with the spectrum of

Rlg, X1, Y1,.... X Yp . o1, Ti) /(X1 Y1 = = X, Y = q)
~R[X1,.1,.... X Y Trgq,.... Ti) /(X1 Y1 =--- = X, Yr). (A03)
Of course, we have an analogous ring for any permutation of the &;.

—k = . .
Let F denote the k-fold fiber product of E over Xo,. We define a stratification
of F¥ < EF by closed subschemes
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F*=Ff2Ff, 2 2F2F5 =0,

where, for 0 <r <k, Frk - fk is the scheme-theoretic union of the closed sub-

schemes defined by requiring at least k — r factors to lie in E™" . For example, work-

ing étale-locally over E, we see that F ,f_z is supported at precisely the closed non-

smooth locus for the fppf map Ek — S.

Define Ek(O) = Fk and Fik(O) = Fl.k for0<i<k.Forl<r<k-—1, we
recursively define EX (r) = BlFr’Ll(r—l)(Ek(r — 1)), and we let Fik(r) be the proper
transform in EX (r) of Fik (r—1) forr <i <k—1.(Equivalently, Fik (r) is the blowup
of Fik(r — 1) along Frk_l(r 1))

We claim several properties:

(1) E*(r) and all Fl.k(r) are S-flat,

(i1) Frk (r) is contained in the closed locus where the S-flat EX (r) is nonsmooth
over S for all 0 <r <k —2 (so the map E¥(k — 1) — E¥(0) = EX is an
isomorphism over the S-smooth locus of E k , which contains Fk),

(i)  E*(k —1) is S-smooth,

(iv)  the formation of these blowups and strict transforms commutes with any base
change on S (via the evident base change morphisms).

To verify these claims we may work étale-locally over a nonsmooth point of Fk over

affine open Spec R C S, which amounts to replacing Fk with the R-flat

E™(0) = Spec R[X1, Y1+, Xpm Yo Tonts - Tl /(X1 Y1 =+ = XpuYo),

where 2 <m <k.

We define I’:":”’ (0) to be the R-flat closed subscheme in E™ (0) where at least
m — i pairs (X;,Y;) vanish. Using inductive definitions analogous to those above,
we define E™(r) and I?;’"(r) (withr <i <m—1)for 0 <r <m — 1. We can replace
the above claims with analogues in this new setting, so we aim to prove the following:

. I:":m (r) and E™(r) are R-flat and their formation commutes with base change
on R;
. F]™(r) is contained in the closed nonsmooth locus for £ (r) over R for all

0 <r <m—2 (so the blow-up steps are always isomorphisms over the smooth

locus of the previous stage);
. E™ (m — 1) is R-smooth.
This will clearly finish the proof. The T}, +1, ..., Tk just get carried along, so they can
(and will) now be dropped.

It is easy to see that Em(l) has an open cover by 2m-copies U, of Al x Em-1 (0)

such that U; N F™(1) = A' x F/"71(0) for 1 <i <m — 1. Here, we define E'(0) =
Spec R[X1, Y1]/(X1Y1) and F} = (0,0) = Spec(R) C E*(0).
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By induction on r for each m (with the case r = 0 always trivial and the case
r = 1 just settled for all m), we see that for 0 <r < m — 2 there exists an open cover
of E™(r) by copies V; of A” x E™"(0) with V; N F™(r) = A" x F*~"(0) for all
r <i <m—1. Thus, 1:";”1 (r) is contained in 170’”_’, which in turn is contained in the
closed locus of nonsmooth points in Em-T (0) over R since m —r > 2. These Zariski-
local descriptions yield the desired R-flatness and compatibility with base change
on R.

Taking r = m — 2 at the end of the induction, E™ (m — 2) is covered by open
subschemes R-isomorphic to A”2 x E2(0). Since

E2(0) = Spec R[X1. Y1, X2, 2]/ (X1Y1 — X2 Y>)

with 1,5,02 (0) equal to the origin over R, it remains to observe here that the R-scheme
Bl(g)(E?(0)) is covered by copies of A3.
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structive criticism which led to significant improvements in the organization and pre-
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