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1. Introduction

Let E be an elliptic curve over a number field F and let L(E/F, s) denote its Hasse-Weil L-series.
It is widely believed that the Shafarevich-Tate group LLI(E/F ) is finite and that L(E/F, s) extends to
an entire function of the complex variable s. The order of vanishing of this function at s = 1, denoted
by ran(E/F ), is commonly referred to as the analytic rank of E over F , a terminology justified by the
Birch and Swinnerton-Dyer conjecture which asserts that

(1) rank(E(F ))
?
= ran(E/F ).

The most convincing evidence for the Birch and Swinnerton-Dyer conjecture is the fact that it is proved
when F = Q and L(E, s) := L(E/Q, s) has at most a simple zero at s = 1:

Theorem 1.1 (Gross-Zagier, Kolyvagin). If ran(E/Q) ≤ 1, then (1) holds for E/Q, and LLI(E/Q) is
finite.

The proof of Theorem 1.1, which is briefly recalled in Section 2.1, rests on two key ingredients. The
first is the modularity of E, in the strong geometric form which asserts that E is a quotient of the
Jacobian of a modular curve over Q. The second is the collection of Heegner points on this modular
curve, which satisfies the axioms of an “Euler system” and provides a valuable bridge between the
arithmetic of E and the analytic behaviour of its L-series.

Both these ingredients are available in greater generality, most notably when F is a totally real field.
In this setting, a modular elliptic curve E over F is said to satisfy the Jacquet-Langlands hypothesis
(JL) if either [F : Q] is odd, or there is at least one prime of F at which the automorphic form on
GL2(AF ) attached to E is not in the principal series. Here, AF stands for the ring of adèles of F . The
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meaning of condition (JL), which only fail to hold for certain elliptic curves of square conductor, is
described more concretely in Section 2.1.

Most importantly for the proof of (1), the Jacquet-Langlands hypothesis implies that E is the
quotient of the Jacobian of a suitable Shimura curve over F . Shimura curves are equipped with a
plentiful supply of CM points, which have been parlayed into the proof of the following number field
generalisation of Theorem 1.1.

Theorem 1.2 (Zhang). Let E be a modular elliptic curve over a totally real field F satisfying (JL).
If ran(E/F ) ≤ 1, then LLI(E/F ) is finite and (1) holds for E/F .

Denote by N the conductor of E/F . If either [F : Q] is odd or there exists a prime p of F for which
ordp(N) = 1, this is Theorem A of [Zh]. The full result in which E is only assumed to satisfy (JL)
follows from the subsequent strengthening of the Gross-Zagier formula proven in [YZZ]. Both results
are discussed further in Section 2.1.

In analytic rank zero, the Jacquet-Langlands hypothesis can be dispensed with:

Theorem 1.3 (Longo). Let E be a modular elliptic curve over a totally real field F . If L(E/F, 1) 6= 0,
then E(F ) and LLI(E/F ) are finite.

Longo’s proof [Lo], building on the approach of [BD], exploits the theory of congruences between
modular forms to realise the Galois representation E[pn] in the Jacobian of a Shimura curve Xn whose
level may (and indeed does) depend on n. The Euler system of CM points on Xn then gives rise to a
collection of pn-torsion cohomology classes which is used to bound the pn-Selmer group of E over F
independently of n, and thereby obtain the finiteness of E(F ) and LLI(E/F ).

The problem of removing the Jacquet-Langlands hypothesis from Theorem 1.2—or equivalently, of
extending Theorem 1.3 to the case where L(E/F, s) has a simple zero at s = 1—is still very much
open.

To better understand the difficulty which arises, it is instructive to examine the simplest setting
where the Jacquet-Langlands hypothesis fails to hold. Assume for the rest of the introduction that F
is a real quadratic field, and consider for now the case where E/F is an elliptic curve of conductor 1.

Assuming E is modular, the L-series L(E/F, s) is known to have a functional equation relating its
values at s and 2 − s, and the sign wE ∈ {−1, 1} in this functional equation is always equal to 1 in
this case.

Let M be any quadratic extension of F , let

χM : GF −→ ±1

be its associated Galois character, and denote by EM the twist of E over F by χM , so that the L-series
L(E/M, s) factors as

L(E/M, s) = L(E/F, s)L(E/F, χM , s) = L(E/F, s)L(EM/F, s).

Since E has conductor 1, the sign wEM of the twisted L-series is controlled by the local signs attached
to the archimedean places ∞1 and ∞2 of F , which are equal to χM (∞1) and χM (∞2) respectively. It
follows that wEM = 1 if M is either totally real or CM. In particular, the elliptic curve E is always of
even analytic rank over such M . Since an Euler system of Heegner points attached to a quadratic CM
extension M/F is only expected to be available when E has odd analytic rank over M , this suggests
that the mathematical objects so crucial in Kolyvagin’s descent method may be unavailable for elliptic
curves of conductor 1.

A similar expectation can be derived more generally for all elliptic curves which do not satisfy (JL).
Indeed, if E/F is an elliptic curve of square conductor N and M is a quadratic extension of F which
is unramified at the primes dividing N, then the same analysis as above reveals that

(2) ran(E/M) ≡
{

0 (mod 2), if M is CM or totally real;
1 (mod 2) otherwise.

A quadratic extension M of F which is neither CM nor totally real is called an ATR extension of F .
An ATR extension of F thus has two real places and one complex place. (The acronym “ATR” stands
for “Almost Totally Real”, and is used more generally in [DL] to designate quadratic extensions of a
totally real field having exactly one complex place.)
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The present article is motivated by the following specific instance of the Birch and Swinnerton-Dyer
conjecture which emerges naturally from the discussion above.

Conjecture 1.4. Let E be a (modular) elliptic curve over a real quadratic field F of square conductor
N for which wE = 1, and let M/F be an ATR extension of F of discriminant prime to N. If
L′(EM/F, 1) 6= 0, then EM (F ) has rank one and LLI(EM/F ) is finite.

Although it seems tantalisingly close to the setting of Theorem 1.2, Conjecture 1.4 presents a
real mystery and appears to lie beyond the reach of known methods. The difficulty is that, in the
absence of the Jacquet-Langlands hypothesis, no natural “modular” method presents itself in general
for constructing the point of infinite order on EM (F ) whose existence is predicted by the Birch and
Swinnerton–Dyer conjecture.

One of the original motivations for singling out Conjecture 1.4 for special study lies in the conjectural
construction of a so-called Stark-Heegner point P ?

M ∈ E(M) described in [DL]. This construction, which
is recalled briefly in Section 2.2, involves the images under a complex Abel-Jacobi map attached to the
Hilbert modular form associated to E/F of certain “ATR cycles” indexed by ideals of M . The ATR
cycles are null-homologous cycles of real dimension one on the corresponding Hilbert modular surface.
It is conjectured in [DL] that the point P ?

M is of infinite order precisely when L′(E/M, 1) 6= 0, and
that P ?

M is part of a norm-coherent collection of points defined over abelian extensions of M satisfying
Euler-System-like properties. However, progress on Conjecture 1.4 through the theory of ATR cycles
is thwarted by our inability to provide much theoretical evidence for the conjectures of [DL] at present.

The first aim of this note is to study Conjecture 1.4 for the class of elliptic curves E/F which are
isogenous over F to their Galois conjugate. Following a terminology that was first introduced by Ribet
in [Ri], these elliptic curves are called Q-curves. Their basic properties are reviewed in Section 3.
As explained in that section, the case of Q-curves is ultimately made tractable by the existence of a
classical elliptic cusp form f (with non-trivial nebentypus character in general) satisfying

L(E/F, s) = L(f, s)L(f̄ , s),

leading to a modular parametrisation of E by a classical modular curve X1(N) for a suitable N ≥ 1.
The main theorem of Section 3 is a proof of Conjecture 1.4 for Q-curves:

Theorem 1.5. Let E/F be a Q-curve of square conductor N, and let M/F be an ATR extension of F
of discriminant prime to N. If L′(EM/F, 1) 6= 0, then EM (F ) has rank one and LLI(EM/F ) is finite.

The key ingredients in the proof of Theorem 1.5 are a strikingly general recent extension of the theorem
of Gross-Zagier obtained by Xinyi Yuan, Shouwu Zhang and Wei Zhang [YZZ] covering cusp forms
with possibly non-trivial nebentypus characters, and a strengthening of Kolyvagin’s descent method
to cover abelian variety quotients of J1(N), as worked out in the forthcoming book of Ye Tian and
Shouwu Zhang [TZ]. Section 3 explains how Theorem 1.5 follows from these results and the Artin
formalism for certain Rankin L-series.

The second part of the article focuses on the special case where the Q-curve E is of conductor 1. Such
elliptic curves, which were first systematically studied by Shimura [Shim], are essentially in bijection
with newforms f in S2(Γ0(N), εN ) with quadratic Fourier coefficients, where N is the discriminant of
the real quadratic field F , and

εN : (Z/NZ)× −→ ±1

is the corresponding even Dirichlet character.
Section 4 describes the explicit construction, for all quadratic ATR extensionsM of F , of a canonical

point PM ∈ E(M) arising from suitable CM divisors on X1(N). The trace to E(F ) of PM is shown to
vanish, so that PM can also be viewed as an F -rational point on the twisted curve EM .

After explaining how the points PM can be computed complex analytically by integrating the elliptic
modular form f , we tabulate these points for a few ATR extensions M of small discriminant. One
expects that the height of the point PM is related in a simple way to L′(EM/F, 1).

Finally, Conjecture 4.7 spells out a precise conjectural relationship between the classical Heegner
point PM and the Stark-Heegner point P ?

M arising from ATR cycles on the Hilbert modular variety.
This conjecture, which relates certain complex analytic invariants attached to an elliptic modular form
f and its Doi-Naganuma lift, can be viewed as an analogue for Abel-Jacobi maps of Oda’s period
relations which are formulated in [Oda]. It is therefore a pleasure to dedicate this article to Takayuki
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Oda whose work on periods of Hilbert modular surfaces was a major source of inspiration for the
conjectures of [DL].

It is also a pleasure to thank Xavier Guitart, Ariel Pacetti and David Rohrlich for their comments
on a previous version of this manuscript.

2. Background

2.1. The Birch and Swinnerton-Dyer conjecture in low analytic rank. We begin by recalling in
greater detail the main ideas behind the proofs of Theorems 1.1 and 1.2. We start with the assumption
that F is a number field and write OF for its ring of integers. Let N ⊂ OF denote the conductor of
the elliptic curve E/F .

The proofs of Theorems 1.1 and 1.2 can be broken up into five steps:

(i) Modularity: When F = Q, the main results of [Wi] and [TW] (as completed in [BCDT]) imply
that there is a normalised newform f of weight 2 on Γ0(N) satisfying L(E, s) = L(f, s). In particular,
L(E, s) has an analytic continuation to the left of the half plane Re(s) > 3/2, and its order of vanishing
at s = 1 is therefore well defined. For general F , the modularity of E/F is just the assertion that
L(E/F, s) is the L-series attached to an automorphic representation of GL2(AF ). Such a property is
predicted to hold, as a (very special) case of the Langlands functoriality conjectures. In spite of the
powerful ideas introduced into the subject building on Wiles’ breakthrough, a proof in the general
number field setting still seems a long way off. When F is totally real, modularity can be phrased in
terms of modular forms much as in the case F = Q. Namely, E/F is modular whenever there is a
normalised Hilbert modular eigenform f of parallel weight 2 on the congruence group Γ0(N) ⊆ SL2(OF )
satisfying L(E/F, s) = L(f, s). The methods originating from Wiles’ work seem well suited to yield a
proof of modularity of all elliptic curves over totally real fields. (See for example the works of Skinner-
Wiles [SkWi], Fujiwara [Fu], Jarvis-Manoharmayum [JM] and the references therein for an overview
of the significant progress that has been achieved in this direction.) Currently, the case which offers
most difficulties arises when the residual Galois representation at 3 is reducible.

(ii) Geometric modularity: Thanks to the geometric construction of Eichler-Shimura and to Faltings’
proof of the Tate conjecture for abelian varieties over number fields, the modularity of E in the case
where F = Q can be recast as the statement that E is a quotient of the jacobian J0(N) of the modular
curve X0(N) over Q, where N = (N), N ≥ 1. A non-constant morphism

(3) πE : J0(N) −→ E

of abelian varieties over Q is called a modular parametrisation attached to E.
When F is a totally real field and E/F is known to be modular, the modular parametrisation arising

from Eichler-Shimura theory admits no counterpart in general. However, such a modular parametri-
sation can be obtained when the Jacquet-Langlands hypothesis formulated in the introduction holds.
More precisely, as it is explained in [Zh, §3], hypothesis (JL) implies that E is a quotient of the Jaco-
bian of a suitable Shimura curve X attached to an order in a quaternion algebra over F which splits
at exactly one archimedean place of F . That is, there is a non-constant map

(4) πE : J(X) −→ E

of abelian varieties over F generalising (3). The condition that the automorphic form π = ⊗πv attached
to E be a principal series representation at a place v of F is satisfied precisely when E acquires good
reduction over an abelian extension of Fv. For v - 2, the meanings of various conditions on the local
representations πv in terms of the behaviour of E over Fv are summarised in the table below.

(5)

πv E/Fv ordv(N)
Unramified principal series Good reduction over Fv 0

Principal series Good reduction over an abelian extension of Fv even
Steinberg Potentially multiplicative reduction over Fv 1 or 2

Supercuspidal Otherwise ≥ 2

We refer the reader to [Ge, p. 73], [Pa], [Ro, Prop. 2], [Ro2, Prop. 2 and 3] for proofs of these
statements. (Note that, although in the latter article the ground field is assumed to be F = Q,
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the results remain valid for arbitrary F as the questions at issue are purely local). See [Pa] for the
behaviour at places v above 2.

In particular, an elliptic curve which fails to satisfy hypothesis (JL) is necessarily of square conduc-
tor. The converse is not true, but note that it also follows from the table that all elliptic curves of
conductor 1 over a totally real number field of even degree fail to satisfy (JL). We will often restrict
our attention to elliptic curves of square conductor, thus encompassing all elliptic curves that do not
satisfy hypothesis (JL).

(iii) Heegner points and L-series: Suppose first that F = Q and let K be an imaginary quadratic field
of discriminant relatively prime to N and satisfying the

Heegner hypothesis: OK has an ideal N of norm N satisfying OK/N ' Z/NZ.

An ideal N of K with this property is sometimes called a cyclic ideal of norm N . When the Heegner
hypothesis is satisfied, it can be shown that the L-function L(E/K, s) has sign −1 in its functional
equation, and therefore vanishes at s = 1. The CM points on X0(N) attached to the moduli of elliptic
curves with complex multiplication by OK , and their images under πE , can be used to construct a
canonical point PK ∈ E(K): the so-called Heegner point on E attached to K. The main result of [GZ]
expresses L′(E/K, 1) as a multiple by a simple non-zero scalar of the Néron-Tate height of PK . In
particular, the point PK is of infinite order if and only if L′(E/K, 1) 6= 0.

In the setting where F is a totally real field, the Shimura curve X is equipped with an infinite supply
of CM points enjoying properties similar to their counterparts on modular curves. The auxiliary field
K is now a totally complex quadratic extension of F satisfying a suitable Heegner hypothesis relative
to X . The CM points attached to K can be used to construct a canonical point PK ∈ E(K) as in
the case F = Q. A general extension of the Gross-Zagier theorem ([Zh, Theorem C]) to this context
relates the height of PK to the derivative L′(E/K, 1). In particular, the point PK is of infinite order
precisely when L(E/K, s) has a simple zero at s = 1. We emphasise that this more general Heegner
point construction relies crucially on E/F satisfying hypothesis (JL).

(iv) The Euler system argument: The Heegner point PK does not come alone, but can be related to
the norms of algebraic points on E defined over abelian extensions of K. Using this fact, it is shown in
[Ko] in the case F = Q that the point PK , when it is of infinite order, necessarily generates E(K)⊗Q.
Koyvagin’s argument extends without essential difficulties to the context of Shimura curves over totally
real fields (cf. [KL2], [Zh, §7.2], or the forthcoming book [TZ]).

(v) Descending from K to F : Assume first that F = Q. If ords=1(L(E, s)) ≤ 1, the analytic non-
vanishing results of [BFH] or [MM] produce an imaginary quadratic field K satisfying the Heegner
hypothesis, and for which L(E/K, s) has a simple zero at s = 1. By the Gross-Zagier theorem, the
Heegner point PK generates E(K), and its trace therefore generates E(Q). The known properties of
the Heegner point PK imply in particular that its trace to Q vanishes when L(E, 1) 6= 0, and is of
infinite order when L(E, 1) = 0. Theorem 1.1 for E/Q follows from this. The proof of Theorem 1.2
is deduced similarly, by noting that the analytic non-vanishing results of [BFH] or [Wa] generalize to
any number field and again produce a totally complex imaginary quadratic extension K/F satisfying
the Heegner hypothesis for which ords=1(L(E/K, s)) = 1.

2.2. Oda’s period relations and ATR points. . This section briefly recalls the main construction
of [DL] which to any ATR extension M of F (satisfying a suitable Heegner condition) associates a
point PM ∈ E(C) belonging conjecturally to E(M). The points PM arise by considering the images of
certain non-algebraic cycles on Hilbert modular varieties under a map which is formally analogous to
the Griffiths-Weil Abel-Jacobi maps on null-homologous algebraic cycles.

The general setting. We begin by treating a more general context where F is a totally real field of
degree r + 1. (This extra generality does not unduly complicate the notations, and may even clarify
some of the key features of the construction.) Fix an ordering v0, v1, . . . , vr of the r+1 distinct real
embeddings of F . Let E be an elliptic curve over F , and let

Ej := E ⊗vj R (0 ≤ j ≤ r)

be the r+1 elliptic curves over R obtained by taking the base change of E to R via the embedding vj .
To ease the exposition, we will make the following inessential assumptions:
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(1) The field F has narrow class number one;
(2) the conductor of E/F is equal to 1 (i.e., E has everywhere good reduction).

(For a more general treatment where these assumptions are significantly relaxed, see for instance the
forthcoming PhD thesis [Gar].)

The Hilbert modular form G on SL2(OF ) attached to E is a holomorphic function on the product
H0×H1×· · ·×Hr of r+1 copies of the complex upper half plane, which is of parallel weight (2, 2, . . . , 2)
under the action of the Hilbert modular group SL2(OF ). The latter group acts discretely on H0 ×
· · · × Hr by Möbius transformations via the embedding

(v0, . . . , vr) : SL2(OF ) −→ SL2(R)r+1.

Because of this transformation property, the Hilbert modular form G can be interpreted geometrically
as a holomorphic differential (r+1)-form on the complex analytic quotient

(6) X(C) := SL2(OF )\(H0 ×H1 × · · · × Hr),

by setting

ωhol
G := (2πi)r+1G(τ0, . . . , τr)dτ0 · · · dτr.

It is important to replace ωhol
G by a closed, but non-holomorphic differential (r+1)-form ωG on X(C).

When r = 1, the differential ωG is defined by choosing a unit ε ∈ O×
F of norm −1 satisfying

ε0 := v0(ε) > 0, ε1 := v1(ε) < 0,

and setting

ωG = (2πi)2 (G(τ0, τ1)dτ0dτ1 −G(ε0τ0, ε1τ̄1)dτ0dτ̄1) .

For general r, one defines ωG similarly, but this time summing over the subgroup of O×
F /(O+

F )× of
cardinality 2r consisting of units ε with v0(ε) > 0. Note that the closed (r+1)-form ωG is holomorphic
in τ0, but only harmonic in the remaining variables τ1, . . . , τr. The justification for working with ωG
rather than ωhol

G lies in the following statement which is a reformulation of a conjecture of Oda [Oda]
in the special case of modular forms with rational fourier coefficients:

Conjecture 2.1 (Oda). Let

ΛG :=

{
∫

γ

ωG, γ ∈ Hr+1(X(C),Z)

}

.

Then ΛG is a lattice in C and the elliptic curve C/ΛG is isogenous to E0.

In [Oda], this conjecture is shown to hold for Hilbert modular forms which are base change lifts of
classical elliptic modular forms, which corresponds to the case where the associated elliptic curve E is
a Q-curve. But it should be emphasised that no Q-curve hypothesis on E is necessary in Conjecture
2.1.

Let

Zr(X(C)) :=







Null-homologous cycles
of real dimension r

on X(C)







.

Conjecture 2.1 makes it possible to define an “Abel-Jacobi map”

(7) AJG : Zr(X(C)) −→ E0(C),

by choosing an isogeny ι : C/ΛG −→ E0(C), and setting

(8) AJG(∆) := ι

(
∫

∆̃

ωG

)

, (for any ∆̃ with ∂∆̃ = ∆).

Note that the domain Zr(X(C)) of AJG has no natural algebraic structure, and that the map AJG
bears no simple relation (beyond an analogy in its definition) with the Griffiths-Weil Abel-Jacobi map
on the Hilbert modular variety X .

ATR Cycles. Generalising slightly the definitions given in the Introduction to the case r > 1, a
quadratic extension M of F is called an ATR extension if

M ⊗F,v0 R ' C, M ⊗F,vj R ' R ⊕ R, (1 ≤ j ≤ r).
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The acronym ATR stands for “Almost Totally Real”, since an ATR extension of F is “as far as possible”
from being a CM extension, without being totally real.

Fix an ATR extension M of F , and let Ψ : M −→M2(F ) be an F -algebra embedding. Then

(1) Since M ⊗F,v0 R ' C, the torus Ψ(M×) has a unique fixed point τ0 ∈ H0.
(2) For each 1 ≤ j ≤ r, the fact that M ⊗F,vj R ' R ⊕ R shows that Ψ(M×) has two fixed points

τj and τ ′j on the boundary of Hj . Let Υj ⊂ Hj be the hyperbolic geodesic joining τj to τ ′j .

An embedding Ψ : M −→M2(F ) has a conductor, which is defined to be the OF -ideal cΨ for which

Ψ(M) ∩M2(OF ) = Ψ(OF + cΨOM ).

The OF -order OΨ := OF + cΨOM is called the order associated to Ψ. It can be shown that there
are finitely many distinct SL2(OF )-conjugacy classes of embeddings of M into M2(F ) associated to a
fixed order O ⊂ OM , and that the Picard group (in a narrow sense) of O acts simply transitively on
the set of such conjugacy classes of embeddings.

By the Dirichlet unit theorem, the group

ΓΨ := Ψ((O+
Ψ)×) ⊂ SL2(OF )

is of rank r and preserves the region

RΨ := {τ0} × Υ1 × · · · × Υr.

The ATR cycle associated to the embedding Ψ is defined to be the quotient

∆Ψ := ΓΨ\RΨ.

It is a closed cycle on X(C) which is topologically isomorphic to an r-dimensional real torus. In many
cases, one can show that ∆Ψ is null-homologous, at least after tensoring with Q to avoid the delicate
issues arising from the possible presence of torsion in integral homology. (The homological triviality
of ∆Ψ always holds, for instance, when r = 1, and follows from the fact that the group cohomology
H1(SL2(OF ),C) is trivial.) Assume from now on that ∆Ψ is homologically trivial, and therefore that
it belongs to Zr(X(C)).

The following conjecture lends arithmetic meaning to the Abel-Jacobi map AJG and to the ATR
cycles ∆Ψ.

Conjecture 2.2. Let Ψ : M −→ M2(F ) be an F -algebra embedding of an ATR extension M of F .
Then the complex point AJG(∆Ψ) ∈ E0(C) is algebraic. More precisely, the isogeny ι in the definition
(8) of AJG can be chosen so that, for all Ψ,

AJG(∆Ψ) belongs to E(HcΨ),

where HcΨ is the ring class field of M of conductor cΨ. Furthermore, if Ψ1, . . . ,Ψh is a complete system
of representatives for the SL2(OF )-conjugacy classes of embeddings of M in M2(OF ) of a given con-
ductor c, then the Galois group Gal(Hc/M) acts (transitively) on the set {AJG(∆Ψ1

), . . . ,AJG(∆ψh
)}.

Conjecture 2.2 is poorly understood at present. For instance, it is not clear whether the Tate
conjecture sheds any light on it. On the positive side, the ATR points that are produced by Conjecture
2.2 are “genuinely new” and go beyond what can be obtained using only CM points on Shimura curves.
Indeed, the former are defined over abelian extensions of ATR extensions of totally real fields, while
the latter are defined over abelian extensions of CM fields.

Most germane to the concerns of this paper, Conjecture 2.2 can be used as a basis for the construction

of a point P ?
M

?∈ E(M), by letting Ψ1, . . . ,Ψh be a complete system of representatives for the SL2(OF )-
conjugacy classes of embeddings of M in M2(OF ) of conductor 1 and setting

(9) P ?
M := AJG(∆Ψ1

) + · · · + AJG(∆Ψh
).

3. The Birch and Swinnerton-Dyer conjecture for Q-curves

3.1. Review of Q-curves. The first goal of the present work is to study Conjecture 2.2 for Q-curves,
which are defined as follows:

Definition 3.1. Let F be a number field and fix an algebraic closure Q̄ of Q containing F . We say
that an elliptic curve E/F is a Q-curve if it is isogenous over F to all its Galois conjugates over Q.
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In the literature, these curves are sometimes referred as Q-curves completely defined over F , reserving
the term Q-curve for the wider class of elliptic curves over F which are isogenous over Q̄ to all their
Galois conjugates over Q.

Q-curves are known to be modular, thanks to the work of Ellenberg and Skinner [ES] (who proved
(geometric) modularity of Q-curves under local conditions at 3), now vastly superseded by [KW], which
implies modularity of all Q-curves as a very particular case. Combining this with the older work of
Ribet (cf. [Ri] for a survey), it follows that Q-curves E/F are arithmetically uniformisable over Q̄ by
the classical modular curves X1(N). By this, we mean that there exists a non-constant morphism of
curves

(10) πE : X1(N)Q̄ −→ EQ̄

over Q̄, for some N ≥ 1.
For simplicity, in this article we shall restrict our attention to Q-curves over a quadratic field F ,

which represents the simplest non-trivial scenario. However, we believe that the ideas present in this
note should allow, with some more effort, to treat more general cases; see the forthcoming Ph.D thesis
[Zhao] of the third author.

Let F be a quadratic field with ring of integers OF and write Gal (F/Q) = {1, τ}. Let E be a
Q-curve over F of conductor N ⊂ OF .

Given a Dirichlet character ε of conductor N , let

Γε(N) = {
(

a b
c d

)
∣

∣N |c, ε(a) = 1} ⊆ SL2(Z)

and let Xε(N) be the modular curve associated to this congruence subgroup. The curve Xε(N) admits
a canonical model over Q, and coarsely represents the moduli problem of parametrizing triples (A,C, t)
where A is a generalised elliptic curve, C is a cyclic subgroup of order N of A(Q̄) and t is an orbit in
C \ {O} for the action of ker(ε) ⊂ (Z/NZ)×. Note that the group (Z/NZ)× acts on Xε(N) via the
diamond operators, and that the subgroup ker(ε) fixes it.

As discussed for example in [GQ] or [Ri], the modular parametrisation (10) is particularly well-
behaved when F is quadratic. More precisely, there exists a positive integer N ≥ 1, an even Dirichlet
character ε : (Z/NZ)× → {±1} ⊂ C×, and a pair fE , f

′
E ∈ S2(Γε(N)) ⊆ S2(Γ0(N), ε) of normalised

newforms of weight 2, level N and nebentypus ε, such that

(11) L(E/F, s) = L(fE, s) · L(f ′
E , s).

In this case, the uniformisation in (10) factors through a modular parametrisation

(12) πE : Xε(N)F −→ EF

defined over F .
Let Kf denote the field generated by the Fourier coefficients of fE . It is either Q or a quadratic

field. When Kf = Q, the elliptic curve E is in fact isogenous to the base change of an elliptic curve
defined over Q and question (1) can rather be tackled with the classical techniques reviewed in §2;
we assume throughout that this is not the case. Hence [Kf : Q] = 2 and, letting σ denote the single
nontrivial automorphism of Kf , we have

f ′
E = σfE.

Weil’s restriction of scalars A := ResF/Q(E) is an abelian surface of GL2-type over Q such that

(13) EndQ(A) ⊗ Q ' Kf (and thus is simple over Q),

(14) A/F ' E × τE, and

(15) L(A/Q, s) = L(E/F, s) = L(fE, s) · L(f ′
E , s).

Moreover, for any field extension L/Q, there is a canonical isomorphism

(16) A(L) ' E(F ⊗Q L)

and in particular A(Q) ' E(F ). As shown by Carayol, the conductor of A over Q is N 2, and it follows
from [Mi, Prop. 1] (see also [GG, Remark 9] for a more detailed discussion) that the conductor of E/F
is N = N0 · OF , where N0 ∈ Z satisfies

(17) N = N0 · |disc(F )|.
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As we shall now explain, when F is imaginary the problem can be reduced to the classical setting
considered by Gross-Zagier and Kolyvagin-Logachev, and presents no mysteries. It is the case of F
real that deserves more attention, and to which the main bulk of this note will be devoted.

If ε is trivial, then Kf is real and F can be either real or imaginary (and indeed both cases occur in
examples). As a direct consequence of (11), (16) and the generalization [KL] of the work of Kolyvagin
to higher dimensional quotients of J0(N) over Q, (1) also holds for E/F provided ords=1L(fE, s) ≤ 1.

Assume ε 6= 1 for the rest of this article. Now Kf is an imaginary quadratic field. Besides, it follows
from an observation of Serre (cf. [Ri, Proposition 7.2]) that F is necessarily real. In fact, F can be
computed explicitly from fE as F = Q̄ker(ε). In particular it follows that ε is the quadratic Dirichlet
character associated with F .

Let ωN denote the Fricke involution of Xε(N)F defined on the underlying Riemann surface by the
rule τ 7→ − 1

Nτ . It induces an involution on the jacobian Jε(N)F of Xε(N)F which leaves AF stable.
We have

(18) AF ∼ (1 + ωN)AF × (1 − ωN )AF ,

where both factors on the right have dimension 1, are isogenous over F and conjugate one each other
over Q (cf. [Cr, §5]). By replacing E by its conjugate if necessary, we shall assume throughout that
E = (1 + ωN)AF .

It then follows that (12) factors through the following commutative diagram:

(19)

Xε(N)F −→ Jε(N)F −→ AF
↓ πN ↓ ↓
X+
ε (N) −→ J+

ε (N)
ϕE−→ E,

where we set X+
ε (N) := Xε(N)F /〈ωN〉 and J+

ε (N) := (1 + ωN )Jε(N)F . The reader should keep in
mind that both are varieties over F , not over Q.

3.2. The main result. The goal of this section is to prove Theorem 1.5 of the Introduction. Let M be
a quadratic ATR extension of F . Since M has two real places and one complex place, it is not Galois
over Q. Let M ′ denote its Galois conjugate over Q, and let M be the Galois closure of M over Q. It is
not hard to see that M is the compositum over F of M and M ′ and that Gal(M/Q) is isomorphic to
the dihedral group of order 8. The subgroup VF := Gal(M/F ) is isomorphic to a Klein 4-group. The
dihedral group of order 8 contains two distinct, non-conjugate subgroups which are isomorphic to the
Klein 4-group. This is most easily seen by viewing D8 as the symmetry group of a square, as in the
figure below, in which VF is identified with the subgroup generated by the reflections about the two
diagonals. These two reflections can be labeled as τM and τ ′M , in such a way that

MVF = F, MτM = M, Mτ ′
M = M ′.

The second Klein four-group, which shall be denoted VK , is generated by the reflections about the
vertical and horizontal axes of symmetry of the square. We label these reflections as τL and τ ′L, as
shown in the figure below.

(20)
τ ′

M

�

τL

�

τM

	

• ◦ •

τ ′
L	◦ ◦

• ◦ •

Now let

K := MVK , L := MτL , L′ = Mτ ′
L .
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These fields fit into the following diagram of field extensions, where each unbroken line indicates an
extension of degree 2:

(21) M

M

mmmmmmmmmmmmmmm
M ′

{{{{{{{{

L′

BBBBBBBB

L

PPPPPPPPPPPPPPP

F

CCCCCCCC

K

~~~~~~~~

Q

CCCCCCCC

}}}}}}}}

Let

χM , χ
′
M : GF −→ {±1}

denote the Galois characters of the real quadratic field F which cut out the extensions M and M ′, and
let

χL, χ
′
L : GK −→ {±1}

be the quadratic characters of the imaginary quadratic field K which cut out the extensions L and L′.
We will often view these characters as idèle class characters defined on A×

F and on A×
K respectively.

Finally, let εF and εK denote the quadratic Dirichlet characters attached to F and K, and let NF
Q :

A×
F −→ A×

Q and NK
Q : A×

K −→ A×
Q denote the norms on adèles.

Proposition 3.2. (1) The field K is a quadratic imaginary field.
(2) The characters χM , χ′

M , χL and χ′
L, viewed as idèle class characters of F and K respectively,

satisfy

χMχ
′
M = εK ◦NF

Q ; χLχ
′
L = εF ◦NK

Q .

(3) The central character of χM and χ′
M is εK , and the central character of χL and χ′

L is εF .
(4) The following two-dimensional representations of GQ are isomorphic:

IndQ
FχM = IndQ

Fχ
′
M = IndQ

KχL = IndQ
Kχ

′
L.

Proof. The quadratic field K is of the form Q(
√
−d), where −d is defined (modulo squares in Q×) by

−d = NF/Q(α), with M = F (
√
α).

The fact that M is ATR implies that −d is a negative rational number, and therefore that K is an
imaginary quadratic field. The second part follows directly from the field diagram (21) above. To prove
the third part, note that part (2) implies that the central character of L restricted to the group of
norms from K is equal to εF . (This is because χL(x) = χ′

L(x̄), where x 7→ x̄ is complex conjugation).
Class field theory implies that this central character differs from εF by a power of εK . But the central
character of χL cannot be εF εK since this is an odd Dirichlet character and the central character of a
finite order Hecke character of an imaginary quadratic field is necessarily even, because the map from
the group of components of R× to the group of components of C× is trivial. Finally, the proof of part
(4) is a simple exercise in representation theory: the four representations that are listed in (4) are all
isomorphic to the unique irreducible two-dimensional representation of Gal(M/Q). �

As at the end of the previous section §3.1, let E be a Q-curve over a real quadratic field F and
A = ResF/Q(E), let f = fE ∈ S2(Γε(N)) denote the modular form associated to it and let Kf denote
the imaginary quadratic field generated over Q by the Fourier coefficients of f .

Theorem 3.3 (Tian, Yuan, Zhang and Zhang). Let K be a quadratic imaginary field satisfying the
Heegner hypothesis, and let χ : A×

K −→ C× be a finite order Hecke character of K satisfying

(22) χ|A×

Q

= ε−1
f .

Then

(i) The L-function L(f/K, χ, s) vanishes to odd order at s = 1;
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(ii) If L′(f/K, χ, 1) 6= 0, then (A(Kab) ⊗ C)χ has rank one over Kf ⊗Q C, and LLI(A/Kab)χ is
finite.

Proof. The modular form f gives rise to a cuspidal automorphic representation π of GL2(AQ) whose
central character is ωπ = εf , the nebentypus of f . Condition (22) ensures that the tensor product of
the motives attached to π and χ is self-dual, and therefore the L-function

L(f/K, χ, s) = L(π, χ, s− 1

2
)

satisfies a functional equation whose central critical point is s = 1; since the discriminant of K is
relatively prime to N , the sign of this functional equation is (−1)]Σ, where

Σ = {primes ` inert in K such that ord`(N) is odd} ∪ {∞}.
The Heegner hypothesis satisfied by K says that Σ = {∞} and thus the sign is −1; this implies (i).

As a consequence of (13), the complex vector space (A(Kab)⊗C)χ is naturally a Kf ⊗Q C-module.
Part (ii) is a theorem of Tian-Zhang [TZ] which follows as a corollary of [YZZ, Theorem 1.3.1] by
applying Kolyvagin’s method. Since [TZ] is not currently available, the reader may consult [YZZ,
Theorem 1.4.1] and, for the precise statement quoted here, [Zh2, Theorem 4.3.1]. �

We are now ready to prove Theorem 1.5 of the introduction.

Theorem 3.4. Let E be a Q-curve over F of square conductor N, and let M/F be an ATR extension
of F of discriminant prime to N. If L′(EM/F, 1) 6= 0, then EM (F ) has rank one and LLI(EM/F ) is
finite.

Proof. By (11) and the Artin formalism for L-series,

(23) L(EM/F, s) = L(E,χM , s) = L(f ⊗ χM/F, s) = L(f ⊗ IndQ
FχM , s).

By part 4 of Proposition 3.2,

(24) L(f ⊗ IndQ
FχM , s) = L(f ⊗ IndQ

KχL, s) = L(f ⊗ χL/K, s).

It follows from (23) and (24) that

(25) L′(EM/F, 1) = L′(f ⊗ χL/K, 1) = L′(fσ ⊗ χL/K, 1).

Therefore the two rightmost expressions in (25) are non-zero by assumption, so that the product

L(f ⊗ χL/K, s)L(fσ ⊗ χL/K, s) = L(A/K,χL, s)

vanishes to order exactly 2 = [Kf : Q] at s = 1. By Theorem 3.3, it follows that A(L)− is of rank
two, where A(L)− denotes the subgroup of the Mordell-Weil group of A(L) of points whose trace to

K is trivial. In particular, the Galois representation IndQ
KχL occurs in A(Q) ⊗ C with multiplicity 2.

Hence, invoking once again part 4 of Proposition 3.2, we find that

rank(A(M)−) = 2.

But since M contains F and since A is isogenous over F to E ×E, it follows that

rank(E(M)−) = rank(EM (F )) = 1.

The result about the ranks follows. The result about the finiteness of LLI(EM/F ) follows in the same
way from part (ii) of Theorem 3.3. �

4. Heegner points on Shimura’s elliptic curves

Implicit in the proof of Theorem 3.4 (via the use that is made of it in the proof of Theorem 3.3) is
the construction of a Heegner point PM ∈ EM (F ) arising from the image of certain CM divisors on
Xε(M) via the modular parametrisation (10). We now wish to make this construction explicit in the
case where the Q-curve E has everywhere good reduction over the real quadratic field F . The Q-curves
with this property are sometimes called Shimura elliptic curves because they were first systematically
considered by Shimura. More precisely, in [Shim] it is shown how to associate a Shimura elliptic curve

over F = Q(
√
N) to any classical elliptic modular form f ∈ S2(Γ0(N), εN ) with quadratic fourier

coefficients. (Cf. also (17).)
It will be assumed throughout this chapter that E/F is a Shimura elliptic curve, and that f is the

corresponding elliptic modular form. We also assume for simplicity that N is odd, and thus square-free.
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Remark 4.1. According to calculations performed by the third author using PARI [PA] (extending the
data gathered in [Cr, §6], [Pi] in the range N ≤ 1000), there exists an eigenform f ∈ S2(Γ0(N), εN ) of
prime level 1 < N < 5000, with fourier coefficients in a quadratic imaginary extension Kf = Q(

√
−d)

for precisely the values of N and d listed in the following table.

N 29 37 41 109 157 229 257 337 349 373 397 421
d 5 1 2 3 1 5 2 2 5 1 1 7
N 461 509 877 881 997 1069 1709 1861 2657 4481 4597
d 5 5 1 2 3 1 5 5 2 11 1

Associated to each such eigenform there is a Shimura elliptic curve over F = Q(
√
N). Furthermore,

according to computations due to Cremona, Dembelé, Elkies and Pinch, there are only four primes
N in the range [1, 1000] for which there exists an elliptic curve with good reduction everywhere over

F = Q(
√
N) which is not a Q-curve, namely, N = 509, 853, 929 and 997. It is hard to predict whether

the preponderance of Shimura elliptic curves among elliptic curves of conductor one will persist or is
merely an artefact of the relatively low ranges in which numerical data has been gathered. Note that
it is not even known whether there exist infinitely many Shimura elliptic curves over real quadratic
fields, while it is a theorem of S. Comalada [Co] that there are infinitely many elliptic curves over real
quadratic fields with good reduction everywhere.

4.1. An explicit Heegner point construction. Let us recall the diagram of field extensions intro-
duced in (21):

(26) M

M

kkkkkkkkkkkkkkkkkkkk
M ′

rrrrrrrrrrrr
Q(

√
N,

√
−d) L′

KKKKKKKKKKKK

L

SSSSSSSSSSSSSSSSSSS

F

?????????

sssssssssss
Q(

√
−Nd) K

JJJJJJJJJJJ

��������

Q

LLLLLLLLLLLLL

ssssssssssss

The following lemma is crucial in constructing the point PM ∈ E(M)− = EM (F ) explicitly.

Lemma 4.2. Let M be an ATR extension of F and let K be the quadratic imaginary field attached
to M as in the diagram (26). Then K has a (canonical) ideal N of K of norm N . In particular, all
the prime divisors of N are either split or ramified in K.

Proof. The conductor-discriminant formula combined with part 4 of Proposition 3.2 show that

disc(F )NmF/Q(disc(M/F )) = disc(K)NmK/Q(disc(L/K)).

Therefore, after setting

Nram = gcd(N, disc(K)), Nsplit = N/Nram,

Nram = (Nram,
√

disc(K)), Nsplit = (Nsplit, disc(L/K)),

we find that N := NramNsplit gives the desired ideal of norm N . �

Let AK denote the ring of adèles of K, and let

Ô×
K :=

∏

v

O×
v

denote the maximal compact subgroup of the group A×
K,fin of finite idèles of K. Given a rational integer

c ≥ 1, (c,N) = 1, we define

Uc = Ẑ×(1 + cÔK)C× ⊂ A×
K .
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By class field theory, the quotient Gc := A×
K/(K

×Uc) is identified with Gal(Hc/K), where Hc is the
ring class field of K of conductor c.

As a piece of notation, we shall write Hc for the ring class field attached to the order in K of
conductor c ≥ 1 and write Ka for the ray class field of conductor a.

Define

U+
c = {β ∈ Uc such that (β)N ∈ ker(ε) ⊂ (Z/NZ)×},

U−
c = {β ∈ Uc such that (β)N ∈ ker(ε) ⊂ (Z/NZ)×},

and Ũc = U+
c ∩U−

c . Here (β)N denotes the image of the local term of the idèle β at N in the quotient
O×

N /(1 + N · ON ) ' (Z/NZ)×. Similarly for N . This way we can regard the character ε as having

source either O×
N or O×

N .
Set

G̃c := A×
K/(K

×Ũc) = Gal(H̃c/K),

where H̃c is a biquadratic extension of the ring class field Hc. It can be written as H̃c = LcL
′
c, where

Lc (resp. L′
c) is the class field attached to U+

c (resp. U−
c ).

Proposition 4.3. The relative discriminant of L/K factors as d(L/K) = c · N , where c is a positive

integer such that L ⊂ Lc and L′ ⊂ L′
c and thus M ⊂ H̃c.

More precisely, we have c = 2t · c0 where 0 ≤ t ≤ 3 and c0 is odd and square-free. The proof of
this proposition is an exercise in class field theory, which we relegate to §4.4 for the convenience of the
reader.

We now explain how to construct a degree zero divisor on Xε(N) defined over H̃c. To do this, let
Ac be an elliptic curve satisfying

End(Ac) = Oc,

where Oc := Z + cOK is the order in K of conductor c. Such a curve, along with its endomorphisms,
may be defined over the ring class field Hc. The module Ac[N ] of N -torsion points is therefore defined
over Hc, yielding a point Pc := [Ac, Ac[N ]] ∈ X0(N)(Hc).

The action of GHc := Gal(Q/Hc) on the points of this group scheme gives a Galois representation

ρN : GHc −→ (Z/NZ)×.

The composition of ρN with the nebentypus character ε is a quadratic character of GHc , which cuts
out the quadratic extension Lc of Hc. The point Pc lifts to two points P+

c and P−
c in Xε(N)(Lc) which

are interchanged by the action of Gal(Lc/Hc); we do not specify the order in which these points are
to be taken. Similarly, we can replace the module Ac[N ] by Ac[N ], mimic the above construction and
obtain points P ′+

c and P ′−
c defined over L′

c.

Definition 4.4. Let

CM(c) =
⋃

{P+
c , P

−
c , P

′+
c , P ′−

c } ⊂ Xε(N)(H̃c)

be the set of Heegner points on Xε(N) obtained by letting Ac run over all isomorphism classes of
elliptic curves with CM by Oc.

If we let h(Oc) denote the cardinality of the group Pic(Oc) of classes of locally free ideals of Oc,
the cardinality of CM(c) is 4h(Oc). In fact, CM(c) is naturally the disjoint union of the two subsets
CM(c) ∩Xε(N)(Lc) and CM(c) ∩Xε(N)(L′

c), each of cardinality 2h(Oc).

A Heegner point P ∈ CM(c) of conductor c may be described by a triple ([a], n, t), where

• [a] ∈ Pic(Oc) is the class of an invertible Oc-module of K,
• n is an integral ideal of Oc such that the quotient Oc/n is cyclic of order N ,
• t is an orbit for the action of ker(ε) of an element of order N in an−1/a ∼= Z/NZ.

Let C̃ be the quotient of the ray class group of K of conductor cN for which Artin’s reciprocity
map of global class field theory furnishes a canonical isomorphism

rec : C̃
∼−→ Gal(H̃c/K).
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Let O = Oc denote the order of conductor c in K. There are natural exact sequences, sitting in the
commutative diagram

1 // Gal(H̃c/Hc) //

rec

��

Gal(H̃c/K)

rec

��

resH̃c/Hc
// Gal(Hc/K) //

rec

��

1

1 // 〈[β0], [β
′
0]〉 // C̃ // Pic(O) // 1,

where the vertical arrows are isomorphisms. Here, β0 ∈ O×
N and β′

0 ∈ O×
N are elements such that

ε(β0) = −1 and ε(β′
0) = −1. Artin’s reciprocity map induces an isomorphism

Gal(H̃c/Hc) ' O×
N / ker(ε) ×O×

N / ker(ε) ' Z/2Z × Z/2Z.

We thus can formally write elements of C̃ as classes of enhanced ideals, which are defined as elements of
the form b := βNβN

∏

℘-N ℘
n℘ , taken up to principal ideals (b) with b ∈ K×. Here βN and βN belong

to K×
N / ker(ε) and K×

N / ker(ε) respectively, ℘ runs over all prime invertible ideals of O not dividing

N , and the exponents n℘ are integers which are almost all zero. We say an enhanced ideal is integral
if βN and βN have representatives in O×

N and O×
N respectively, and n℘ ≥ 0 for all ℘. The image of the

class b in Pic(O) is simply the class of the ideal b = N ordN (βN )N ord
N

(β
N

) ∏

℘-N ℘
n℘ generated by it.

By Shimura’s reciprocity law,

(27) rec(b)(D) = b−1 ? D

for all b ∈ C̃ and all divisors D ∈ Jε(N)(H̃c) supported on CM(c).

On the left hand side we make use of the natural Galois action of Gal(H̃c/K) on Jε(N)(H̃c), via

Artin’s reciprocity isomorphism. On the right hand side, a class [b] ∈ C̃ acts on CM(c) by the rule

(28) b ? P = ([ab−1], n, ϕb(βN t)),

where P = ([a], n, t) ∈ CM(c), b = βNβN
∏

℘-N ℘
n℘ is an integral representative of its class and

ϕb : C/a → C/ab−1 is the natural projection map. Writing P = [τ ] ∈ Xε(N)(C) for some τ ∈ H, let
γb ∈ GL+

2 (Q) be such that b ? P = [γbτ ].
Besides this action, there is also the diamond involution Wε, acting on P = [τ ] ∈ Xε(N)(C) as

Wε([τ ]) = [γετ ] and on P = ([a], n, t) ∈ CM(c) as

(29) Wε(P ) = ([a], n, dt), for γε =
(

a b
Nc d

)

∈ Γ0(N) \ Γε(N).

The cardinality of CM(c) is 4h(O) and it is acted on freely and transitively by the group 〈WN ,Wε〉 ×
C̃M, where we let C̃M := rec−1(Gal(H̃c/M)) ⊂ C̃K . Note that the restriction map resH̃c/Hc

induces

an isomorphism C̃M ∼= Pic(O) ∼= Gal(Hc/K).
It is our aim now to define a point PM ∈ E(M) (and thus also, by conjugation over F , a point

PM ′ ∈ E(M ′)) on the elliptic curve E, rational over the ATR extension M/F . We shall construct PM
as a suitable linear combination of certain points PL ∈ A(L) and PL′ ∈ A(L′) on the abelian surface
A = ResF/Q(E). These points are defined as the trace to L of the projection of P+

c ∈ Xε(N)(Lc)

(respectively of P
′+
c ∈ Xε(N)(L′

c)) on A.
Before doing so, we first observe that choosing P−

c = Wε(P
+
c ) instead of P+

c (and similarly P ′−
c

instead of P ′+
c ) is unimportant for our construction, as the next lemma shows that both lead to the

same point on A up to sign and torsion. Recall the canonical projection πf : Jε(N) → A defined over
Q and reviewed in (19), which can be composed with the natural embedding of Xε(N) into its jacobian
Jε(N) given by the map P 7→ P − i∞. By an abuse of notation, we continue to denote by πf this
composition.

Lemma 4.5. For any P ∈ Xε(N)(Q), the point πf (P ) + πf (Wε(P )) belongs to A(F )tors.

Proof. There is a natural decomposition S2(Γε(N)) = S2(Γ0(N))⊕S2(Γ0(N), ε) corresponding to the
eigenspaces of eigenvalue ±1 with respect to the action of the involution Wε. The rule f(z) 7→ f(z)dz
yields an identification of S2(Γε(N)) with the space of holomorphic differentials on Xε(N)C. Via this
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isomorphism, π∗
fH

0(Ω1
A) is contained in S2(Γ0(N), ε). Consequently, πf (P − i∞) = −πf (Wε(P − i∞))

and

πf (P ) + πf (Wε(P )) = πf (P − i∞) + πf (Wε(P ) − i∞)

= πf (P − i∞) + πf (Wε(P ) −Wε(i∞)) + πf (Wε(i∞) − i∞) = πf (Wε(i∞) − i∞).

This last expression is a torsion point on A(F ) by the Manin-Drinfeld theorem which asserts that
degree zero cuspidal divisors on a modular curve give rise to torsion elements in its Jacobian. �

We now set

PL = TrLc/L(πf (P
+
c )) ∈ A(L).

Note that τM (P+
L ) is either equal to TrL′

c/L
′(πf (P

′
c
+
)) or to TrL′

c/L
′(πf (P

′
c
−

)). Without loss of gener-

ality, assume that τM (P+
L ) = TrL′

c/L
′(πf (P

′
c
+

)) and denote it by P ′
L.

Set

u =







2 if K = Q(
√
−1) and c = 1;

3 if K = Q(
√
−3) and c = 1;

1 otherwise,

and define

PA,M :=
1

u
(PL + P ′

L), PA,M ′ :=
1

u
(PL − P ′

L).

The construction of the point PA,M is illustrated in the figure below.

τ ′
M

�

τL

�

τM

	

•
PA,M′ PA,M

PL

◦ •

−P ′
L

τ ′
L	

P ′
L

◦ ◦

•
−PA,M −PL −PA,M′

◦ •

This figure suggests–and it is indeed easy to check–that

PA,M ∈ A(M), PA,M ′ ∈ A(M ′).

Recall that the morphism ϕF : AF −→ E introduced in (19) is defined over F ⊂ M , and therefore
that the point

PM := ϕF (PA,M )

belongs to E(M). As a by-product of our explicit construction we obtain the following analytic formula
for calculating the point PM .

Theorem 4.6. Let τc, τ
′
c ∈ H be elements representing the Heegner points P+

c , P
′+
c ∈ Xε(N)(H̃c). Set

(30) zM =
∑

b∈C̃M

[

∫ γbτc

i∞
(fE(τ) + fE

∣

∣

WN
(τ)) dτ +

∫ γbτ
′
c

i∞
(fE(τ) + fE

∣

∣

WN
(τ)) dτ

]

.

Then PM = η(zM ) where η is the Weierstrass parametrization

(31) η : C/ΛE −→ E(C), η(z) = (℘(z), ℘′(z)).

Here, ℘ is the Weierstrass function associated with the lattice of periods

ΛE :=

{
∫

δ

(fE + fE
∣

∣

WN
)dτ

}

where δ ∈ H1(Xε(C),Z) runs over the cycles of Xε(C) such that
∫

δ(fE − fE
∣

∣

WN
)dτ = 0.
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4.2. Heegner points and ATR cycles. The main conjecture that will be formulated in this section
relates the Heegner point PM with the Stark Heegner point P ?

M arising from ATR cycles. Recall that
Gal(F/Q) = {1, τ} and DF = disc(F ). Let also cE/F (resp. cEτ/F ) denote either the real period or
twice the real period of E/R (resp. of Eτ/R) depending on whether E(R) (resp. Eτ (R)) is connected
or not.

Conjecture 4.7. The ATR point P ?
M is of infinite order if and only if PM is of infinite order and

L(E/F, 1) 6= 0. More precisely,

(32) P ?
M = 2s` · PM

where ` ∈ Q×, which depends only on (E,F ) and not on M , satisfies

`2 =
L(E/F, 1)

ΩE/F
, with ΩE/F =

cE/F · cEτ/F

D
1/2
F · |Etor(F )|2

,

and s ∈ Z depends on M .

Below we collect some numerical data in support of conjecture 4.7. Besides the numerical evidence,
Conjecture 4.7 is also motivated by the equality

L′(E/M, 1) = L(E/F, 1)L′(E/F, χM , 1)

as recalled in the proof of Theorem 3.4, and by the facts that

(1) the Néron-Tate height of the Stark-Heegner point P ?
M is expected (cf. [DL]) to be related in a

simple way to L′(E/M, 1).
(2) the extension of the Gross-Zagier formula proved in [YZZ] should in principle lead to an

analogous relationship between the Heegner point PM and the derivative L′(f/K, χL, 1) =
L′(f/F, χM , 1) = L′(E/F, χM , 1).

It would be interesting to formulate a precise recipe predicting the power of 2 that arises as a fudge
factor in (32). The authors have not made a serious attempt to do this.

4.3. Numerical examples. For N = 29, 37, 41 it is known (cf. [Shio] and [Cr, § 6]) that there is a

unique Shimura elliptic curve defined over F = Q(
√
N) up to isogeny over F .

The aim of this section is to provide numerical evidence for conjecture 4.7, which we have gathered
by explicitly computing the points PM and P ?

M for several ATR extensions M/F on each of these three
elliptic curves. The computation of the Heegner point PM was performed with the software package
PARI [PA] by exploiting formula (30) and the material in [Shio] and [Cr, § 6] to produce a complex
invariant zM ∈ C/ΛE mapping to PM under the Weierstrass uniformisation. Similarly, the ATR point
P ?
M was computed by following the method explained in [DL].
In fact, for our experiments it was sufficient to compute the element z?

M ∈ C/ΛE mapping to
P ?
M under the Weierstrass uniformisation. For several values of M , the invariants zM and z?

M were
calculated to roughly 50 digits of decimal accuracy, and the constants s and ` in (32) could then
be obtained by picking a basis (e1, e2) for ΛE and searching for a linear dependence relation with
small integer coefficients between the four complex numbers zM , z?

M , e1 and e2, using Pari’s lindep
command.

This approach represents a dramatic improvement over the one that had to be followed in [DL],
in which only the point P ?

M was computed. In practice, recognizing P ?
M as an algebraic point using

standard rational recognition programs is difficult once the height of P ?
M becomes large. The authors of

[DL] were forced instead to perform an independent search for a generator of E(M)–a computationally
difficult and time-consuming task–in order to check that P ?

M indeed agreed with a point of small height
on E(M) to within the calculated decimal accuracy. The new approach based on the Heegner point
PM makes the experimental verifications of [DL] much more systematic and efficient, and allows them
to be carried out for much further ranges.

In the tables below, we have followed almost the same notations as in [DL, §3]. In particular,
we have written M = F (β) with β2 ∈ F , and denoted by DM = NmF/Q(disc(M/F )) the absolute
discriminant. (Note that K is used in [DL] to denote the field that we call M in the present work.) As
before, L/K denotes the quadratic extension sitting in the Galois closure of M as in the field diagram
(26), and we denote DK = disc(K/Q) and DL = NmK/Q(disc(L/K)) and `2 ∈ Q× is the value we
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found numerically for the constant alluded to in Conjecture 4.7. Finally note that ` and s uniquely
determine PM up to sign and E(M)tor.

The case N = 29. Let δ = 2 + ω = (5 +
√

29)/2. Shiota’s Weierstrass equation for EN is given by

E29 : y2 + xy + δ2y = x3,

whose discriminant is ∆29 = −δ10. Our calculations convincingly suggest that

`2 =
L(E29/F, 1)

ΩE29/F
= 1

and that the point P ?
M and s are given in the following table. The table suggests that s = −2 in all

cases that have been calculated for this particular curve.

DM = DK · c2 β2 DL |Pic(Oc)| P ?
M s

−7 = −7 · 1 −1 + ω 29 1 (β2 + 3, − 5
2

β3 − 3β2 − 8β − 19
2

) −2

−16 = −4 · 22 2 + ω 22 · 29 1 ( β2

2
, − 5

4
β3 − 11

4
β2 − β

4
− 1

2
) −2

−23 = −23 · 1 17 + 8ω 29 3 ( 1
8
(11β2 + 5), − 13

8
β3 − β2 − 7

8
β − 1

2
) −2

−351 = −35 · 1 19 + 9ω 29 2 ( 1
5
(2β2 + 1), − 59

225
β3 − 43

90
β2 − 89

450
β − 29

90
) −2

−352 = −35 · 1 4 + 3ω 29 2 (− 1
15

(4β2 + 11), − 1
150

(17β3 + 105β2 + 43β + 270)) −2

−59 = −59 · 1 61 + 28ω 29 3 (− 1
9

, − 11
1512

β3 − 5
56

β2 − 1
1512

β + 1
504

) −2

−63 = −7 · 32 3ω 32 · 29 4 ( 7
9

β2 + 5, 26
27

β3 − 11
9

β2 + 57
9

β − 8) −2

−64 = −4 · 42 4 + 2ω 24 · 29 2 (− 1
4

, − 3
8

β3 − 5
4

β2 − β
4

− 3
8
) −2

−80 = −20 · 22 1 + ω 22 · 29 4 ( 1
10

(43β2 + 51), − 517
50

β3 − 93
20

β2 − 1233
100

β − 111
20

) −2

−91 = −91 · 1 7 + 5ω 29 2 ( 1
13

(98β2 + 387), − 18939
845

β3 − 111
26

β2 − 150109
1690

β − 439
26

) −2

−175 = −7 · 52 −5 + 5ω 52 · 29 6 (− 6
50

β2 − 2, 1
10

β3 − 11
25

β2 + 98
100

β − 45
10

) −2

Table 2: ATR extensions of Q(
√

29) and ATR points on E29

The case N = 37. Letting ω = 1+
√

37
2 , Shiota’s Weierstrass equation for E37 is given by

E37 : y2 + y = x3 + 2x2 − (19 + 8ω)x+ (28 + 11ω),

and its discriminant is ∆37 = (5+2ω)6. Note that 5+2ω is a fundamental unit of F . Our calculations
are consistent with the fact that

`2 =
L(E37/F, 1)

ΩE37/F
= 1.

More precisely, the Stark-Heegner point P ?
M and s are given in the tables below.

DM = DK · c2 β2 DL |Pic(Oc)| P ?
M s

−3 = −3 · 1 −3 + ω 37 1 (− 2
3

β − 13
3

, − 61
18

β3 − 169
9

β − 1
2
) −1

−7 = −7 · 1 1 + ω 37 1 ( 2
7

β − 3
7

, − 57
98

β3 − 44
49

β − 1
2
) −1

−11 = −11 · 1 38 + 15ω 37 1 (− 2
165

β2 − 104
165

, − 17
1210

β3 − 2
605

β − 1
2
) −1

−16 = −4 · 22 5 + 2ω 22 · 37 1 ( β2

8
− 5

8
, β3

8
− 1

2
) −2

−48 = −3 · 42 2 + ω 42 · 37 3 ( 115
588

β2 − 80
147

, − 11225
24696

β3 − 1529
6174

β − 1
2
) −1

−64 = −4 · 42 10 + 4ω 42 · 37 2 (− β2

8
− 3

4
, − β3

8
− 1

2
) −2

−67 = −67 · 1 193 + 76ω 67 1 (−1, − 1
2

+ 1
2

β) −2

−75 = −3 · 52 −15 + 5ω 52 · 37 3 ( 196
775

β2 + 136
27

,− 1559
12150

β3 − 25732
6075

β − 1/2) −1

−192 = −3 · 82 18 + 8ω 82 · 37 6 ( 7
3

+ 7
6

ω,− 1
2

+ 1
36

( 85
3

+ 14
3

√
37)β) −2

−275 = −11 · 52 445 + 180ω 52 · 37 4 ( 2
11

+ 4
11

ω,− 1
2

+ 1
242

( 62
7

+ 9
7

√
37)β) −2

−448 = −7 · 82 2 + 2ω 82 · 37 4 ( 45
7

+ 39
14

ω, − 1
2

+ 1
196

( 689
2

√
37 + 4191

2
)β) −2

Table 3: ATR extensions of Q(
√

37) and ATR points on E37

The case N = 41. Shiota’s Weierstrass equation for E41 is

E41 : y2 = x3 − 17

48
x+

(

− 5

32
+

1

27

√
41

)

In their computations, Darmon and Logan used instead curve E ′
41 : y2 + xy = x3 − (32 + 5

√
41)x.

This Weierstrass equation was first found by Oort, and there is an explicit isogeny ψ : E ′
41 → E41 of

degree 2. Following Darmon-Logan’s approach, points P ?
M listed below are points on E ′

41. Since the
isogeny ψ is explicit, it is an easy task to transfer them to points on E41, and this is what we did in
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order to compare the Heegner points PM ∈ E41(M) with the Stark-Heegner points ψ(P ?
M ) ∈ E41(C).

In this case, calculations suggest once again that

`2 =
L(E41/F, 1)

ΩE41/F
= 1,

while the values of the exponent s also appear in the table below.

DM = DK · c2 β2 DL |Pic(Oc)| P ?
M s

−4 = −4 · 1 27 + 10ω 41 1 (− 1
4

, − β
2

+ 1
8
) 1

−8 = −8 · 1 −248 + 67ω 41 1
`

− 1
268

(3β2 + 1481), 1
536

(−254β3 + 3β2 − 108954β + 1481)
´

0

−20 = −20 · 1 697 + 258ω 41 2 ( 1
43

(β2 − 9), 1
258

(−β3 − 3β2 + 181β + 27)) 0

−23 = −23 · 1 398 + 144ω 41 3
` −71027β2−1271153

9884736
, −1095348β3+9304537β2+16459332β+166521043

2589800832

´

0

−32 = −8 · 22 1 + ω 22 · 41 2
` 29β2+49

4
, 1

16
(−359β3 − 58β2 − 611β − 98)

´

0

−36 = −4 · 32 6 + 3ω 32 · 41 4
`

−8 + 2ω, ( 7
2

− 1
2

√
41)(1 + 5β)

´

−1

−40 = −40 · 1 35 + 13ω 41 2
`

9 + 27
8

ω,− 171
32

− 27
32

√
41 + 3

32
( 109

2
+ 17

2

√
41)β

´

−1

−100 = −4 · 52 10 + 5ω 52 · 41 2
`

9
2

+ 7
4

ω,− 43
16

− 7
16

√
41 + ( 3

8

√
41 + 19

8
)β

´

−2

−115 = −115 · 1 177 + 68ω 41 2 (− 31
9

− 11
9

ω, 73
36

+ 11
36

√
41 + 1

108
( 59

5
+ 9

5

√
41)β) −1

−160 = −40 · 22 4ω 22 · 41 4 (32 + 12ω, −19 − 3
√

41 + ( 173
2

+ 27
2

√
41)β) −2

−368 = −23 · 42 43 + 16ω 42 · 41 6 ( 29
4

+ 11
4

ω,− 69
16

− 11
16

√
41 + ( 13

4
+ 1

2

√
41)β) −2

Table 4: ATR extensions of Q(
√

41) and ATR points on E′
41

4.4. Proof of Proposition 4.3. The aim of this section is proving Proposition 4.3, which was left
unproved in §4.1 and asserts that the relative discriminant of L/K factors as d(L/K) = c · N , where
c is a positive integer such that L ⊂ Lc (and similarly L′ ⊂ L′

c).
Recall our assumption on N = disc(F ) to be odd, and thus square-free. Here we shall assume for

notational simplicity that K 6= Q(
√
−1) and Q(

√
−3), so that O×

K = {±1}; we leave to the reader the
task of filling the details for the two excluded fields.

Let us recall first the following classical lemma on Kummer extensions of local fields, which applies
in particular to our quadratic extension L/K.

Lemma 4.8. [Hec, §38-39], [Dab] Let k be a local field containing all p-th roots of unity for some
prime p and let vk : k× → Z denote the valuation map of k, normalized so that vk(k

×) = Z. Let K/k

be a Kummer extension of degree p with discriminant dK/k. Then K = k( p
√
ϑ) for some ϑ ∈ k such

that vk(ϑ) ∈ {0, 1}. Moreover,

(i) If vk(ϑ) = 1, vk(dK/k) = pvk(p) + (p− 1).
(ii) Assume vk(ϑ) = 0. If vk(p) = 0, then vk(dK/k) = 0. Otherwise, write pk for the unique

maximal ideal in k. We have:
(a) If equation xp ≡ ϑ(mod p

pvk(p)/(p−1)
k ) can be solved in k, then vk(dK/k) = 0.

(b) If not, vk(dK/k) = pvk(p) + (p− 1)(1 − η), where η = max
`

{0 ≤ ` < pvk(p)/(p− 1)
∣

∣ xp ≡
ϑ(mod p`k) can be solved in Ok}.

We use the above result in order to deduce several lemmas which shall allow us to reduce the proof
of Proposition 4.3 to the case in which L/K is unramified at dyadic primes.

Lemma 4.9. Let p - disc(K) be a prime and put p∗ = 8 if p = 2, p∗ = p if p ≡ 1(mod 4) and p∗ = −p
if p ≡ −1(mod 4). Then K(

√
p∗) is contained in the ring class field Hc of K associated to the order

Oc of conductor c = |p∗|.

Proof. Suppose first that p is split in K and fix a prime p|p in K. Let

U = K×
p

⋂

K× ∏

v

O×
c,v,

where the intersection is computed by regarding K×
p as a subgroup of

∏

vK
×
v by means of the usual

embedding xp 7→ (1, ..., 1, xp, 1, ..., 1).
Since the map K×

p /U → IK/
(

K× ∏

v O×
c,v

)

is injective by [Mi2, p. 173, Prop. 5.2], it follows that

U ⊂ K×
p ' Q×

p corresponds to Hc,P/Kp by local class field theory for any prime P of Hc above p.
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Write c = pr with r = 3 if p = 2, r = 1 if p is odd. Since 1 + prZp ⊆ U , 1 + pr−1Zp 6⊂ U by [Cox,
p. 197], an easy calculation shows that

U = {α
α

∣

∣α ∈ V } · (1 + pr),

where V = {α ∈ K× ∣

∣ordv(α) = 0 ∀v 6= p}. Note that V = {±αn0 , n ∈ Z} for some α0 ∈ K× such that
ordv(α0) = 0 for all v 6= p and ordp(α0) = n0 ≥ 1 is minimal. With this notation we have

(33) U = {
(α0

α0

)n
, n ∈ Z} · (1 + pr).

Suppose now that p remains inert in OK . Arguing similarly as before we obtain that the open
subgroup U ⊂ K×

p corresponding to Hpr,P/Kp by local class field theory is U = K×
p ∩

(

K× ∏

v O×
pr ,v

)

,
i.e.

(34) U = {α
∣

∣α ∈ K×, ordv(α) = 0, ∀v 6= p} · (1 + prOKp) = {(±α0)
n

∣

∣n ∈ Z} · (1 + prOKp),

where α0 ∈ K× is chosen such that ordv(α0) = 0 for all v 6= p and ordp(α0) ≥ 1 is minimal. We can
thus take α0 = pn0 for some n0 ≥ 1.

Put K ′ = K(
√
p∗). Any prime p in K above p ramifies in K ′. Fix one such prime p and put p = ℘2

in K ′ so that K ′
℘ = Kp(

√
p∗). By class field theory, in order to prove that K ′ ⊂ Hc it is enough to

show that U ⊂ NmK′
p/Kp

(K
′×
p ). Since d(K ′/K) = p∗ by Lemma 4.8, K ′ is contained in the ray class

field Kc of conductor c of K and it thus suffices to verify that α0α0 (resp. ±α0) lies in NmK′
p/Kp

(K
′×
p )

if p splits (resp. remains inert) in K.

Assume p = 2. Then ±1,±2 ∈ NmK′
℘/Kp

(K
′×
℘ ) because −1 = Nm(1 +

√
2) and −2 = Nm(

√
2).

The lemma thus follows automatically if 2 is inert in K, while if 2 splits, it follows because α0α0 is a

power of 2, hence α0α0 lies in either ±Q×2

2 or ±2Q×2

2 .

Assume p is odd. Then −p∗ = Nm(
√
p∗) ∈ NmK′

p/Kp
(K

′×
p ). Suppose first p splits in K: as before,

it is enough to show that p ∈ NmK′
p/Kp

(K
′×), which we already did if p∗ = −p. That the same holds

when p∗ = p follows because p ≡ 1(mod 4) implies that −1 ∈ NmK′
p/Kp

(K
′×
p ). Suppose now p remains

inert in K; we must show that ±p ∈ NmK′
p/Kp

(K
′×
p ). If p∗ = p this follows by the same reason as

above; if p∗ = −p, then p ≡ 3 (mod 4), Kp = Qp(
√
−1) and thus −1 ∈ K×2

p , which allows us to
conclude. �

Note that a direct consequence of the previous lemma is that for any odd square free integer m
relatively coprime with disc(K) either K(

√
m) or K(

√−m) is contained in Hm.

Lemma 4.10. d(L/K) = 2tc0N for some integer 0 ≤ t ≤ 3 and some positive integer c0 ≥ 1 relatively
coprime to 2 and N . If further 2 is ramified in K, 0 ≤ t ≤ 2.

Proof. Write K = Q(
√
−d0) for some square free integer d0 > 0 and L = K(

√
β) for some β ∈

Z + Z
√
−d0 and square free in K. Without loss of generality, N can be written as NN where N

divides the square free part B of (β) in K and N is relatively coprime to B.
Write B2 for the largest ideal which divides B and is relatively coprime to any prime of K above 2.

Since vKp′ (2) = 0 and vKp′ (B2) = 1 for any prime p′ | B2, Lemma 4.8 shows that vKp′ (dLP′/Kp′
) = 1,

where P′ is the prime in L above p′, thus the prime-to-2 part of d(L/K) is B2. Besides, B2 = N · C
with (C,N ) = 1. Since NmK/Q(β)/N is a perfect square in Z, C is principal and can be written as

C = (c0) for some integer c0 > 0. Hence N c0 | d(L/K) | 2tN c0 for some integer t ≥ 0.
If 2 is unramified in K we have vKp

(2) = 1 for any prime p | 2 in K and it follows from Lemma 4.8
that d(L/K) = N c02

t with 0 ≤ t ≤ 3.
Suppose now that 2 ramifies in K with (2) = p2 in K. Then, since vKp

(2) = 2 and NmK/Q(β)/N
is a perfect square in Z, we fall into case (ii) of Lemma 4.8: for any prime P in L above p, LP can be

written as Kp(
√
ϑ) for some ϑ ∈ K×

p such that vkp
(ϑ) = 0. Suppose vKp

(dLP/Kp
) 6= 0. Then Lemma

4.8 (b) asserts that

vKp
(dLP/Kp

) = 5 − η,

where

η = max{0 ≤ ` < 4
∣

∣ ∃ι ∈ OKp
, ι2 ≡ ϑ(mod p`)}.
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A classical result of Hilbert (cf. [HSW], [Hil]) implies that vKp
(dLP/Kp

) is even. Hence d(L/K) = N2tc0
with 0 ≤ t ≤ 2. �

Lemma 4.11. It is enough to prove Proposition 4.3 when d(L/K) = 2tN and 0 ≤ t ≤ 2.

Proof. Lemma 4.10 shows in general d(L/K) = 2tc0N , where 0 ≤ t ≤ 3 and c0 ≥ 1. Suppose first
that t = 3, then 2 is unramified in K by the same lemma. Let P and p be prime ideals in L and K
respectively such that P|p|2. Then LP can be written asKp(

√
ϑ) for some ϑ ∈ K with vKp

(ϑ) ∈ {0, 1}.
Define L′ = K(

√
ϑ′), where ϑ′ is defined as

ϑ′ =

{

ϑ/2 if vKp
(ϑ) = 1;

ϑ if vKp
(ϑ) = 0.

Hence vKp
(ϑ′) = 0. Let P′ be a prime in L′ above p. Then either case (a) or (b) of Lemma 4.8

applies. In case (a), vKp
(dL′

P′/Kp
) = 0. In case (b), vKp

(dL′

P′/Kp
) = 3−η, where 0 ≤ η ≤ 2, hence p is

ramified in L′, so residue field of L′
P′ is equal to that of Kp and consequently η ≥ 1. We conclude that

vKp
(dL′

P′/Kp
) ≤ 2. By Lemma 4.9, L ⊂ K(

√
2)L′ ⊂ H8L

′ with d(L′/K) = 2t
′

c0N for some integer

0 ≤ t′ ≤ 2.
Suppose now c0 > 1. Setting L′′ = K(

√

δϑ′/c0) we have d(L′′/K) = 2t
′N , where δ ∈ {±1} such

that K(
√
δc0) ⊂ Hc0 as described in Lemma 4.9. By the same lemma, L′ ⊂ K(

√
δc0)L

′′ ⊂ Hc0L
′′.

So L ⊂ H8L
′ ⊂ H8Hc0L

′′ = H8c0L
′′ such that L′′/K is a quadratic extension and d(L′′/K) = 2t

′N
for some integer 0 ≤ t′ ≤ 2. This justifies we only need to prove proposition 4.3 when 0 ≤ t ≤ 2 and
d(L/K) = 2tN . �

Thanks to Lemma 4.11 we can assume in what follows that c0 = 1 and 0 ≤ t ≤ 2.

Lemma 4.12. There is a unique quadratic extension L2t/K2t contained in K2tN such that the set of
primes in K2t which ramify in L2t is the set of primes above N . We have L ⊂ L2t .

Proof. Assume first t = 0 or 1. Then Gal(K2tN /K2t) ∼= (
∏

p|N (OK/p)×)/{±1} ∼= (Z/NZ)×/{±1}.
This is obvious for t = 0, and holds for t = 1 because K2KN = K2N . Extension L2t/K2t corresponds
by Galois theory to the unique primitive even quadratic Dirichlet character ε of conductor N .

Suppose now t = 2. Then

Gal(K2tN /K2t) ∼= G :=
(

{±1}× (Z/NZ)×
)

/{± � },

where
�

= (1,1) is the identity element of {±1}× (Z/NZ)× . Again, any extension L2t/K2t as in the
statement corresponds to a non-trivial character ε′ : G → {±1} which is trivial on {±1} × {1} and is
even and primitive on {1} × (Z/NZ)×. As above, the only such character is ε′ = 1 × ε.

Finally, note that LK2t/K2t is a quadratic extension contained in K2tN . Since disc(LK2t/K2t) = N
it follows that L2t = LK2t and thus L ⊂ L2t . �

Recall the quadratic extension Lc of the ring class field Hc introduced in §4.1, over which the
Heegner points P+

c and P−
c ∈ CM(c) are rational. Lemma 4.12 reduces the proof of Proposition 4.3 to

showing that Lc = Lc. Since Lc was defined as the quadratic extension of Hc cut out by the kernel of
the single even primitive character ε of conductor N , it suffices to show that H2t = K2t for 0 ≤ t ≤ 2.
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When t = 0 and we obviously have H1 = K1. If t = 1 or 2, the ratio of the ray class number h2t by
the ring class number h(O2t) is (cf. [Mi2, p.154] for this and the remaining notations):

(35)

h2t

h(O2t)
=

[U : U2t,1]
−1Nm(2t)

∏

p|2t(1 − 1
Nm(p) )

2t

[O×

K :O×

2t ]

∏

p|2t(1 −
(

dK

p

)

1
p )

=































[O×

K :O×

2t ]

[U :U2t,1] ·
22t

(

1− 1
4

)

2t
(

1−
(

dK
2

)

1
2

) if 2 is inert in K,

[O×

K :O×

2t ]

[U :U2t,1] ·
22t

(

1− 1
2

)2

2t
(

1−
(

dK
2

)

1
2

) if 2 is split in K,

[O×

K :O×

2t ]

[U :U2t,1] ·
22t

(

1− 1
2

)

2t if 2 is ramified in K.

=
[O×

K : O×
2t ]

[U : U2t,1]
· 2t−1.

Since K 6= Q(
√
−1) and Q(

√
−3), [O×

K : O×
2t ] = 1. If t = 1, then U = U2t,1, so K2 = H2. If t = 2, then

[U : U2t,1] = 2, and therefore K22 = H22 .
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lications of the Mathematical Society of Japan, 11. Kanô Memorial Lectures, 1. Princeton Univ. Press, Princeton,
NJ (1994).

[Shio] K. Shiota. On the explicit models of Shimura’s elliptic curves. J. Math. Soc. Japan 38 (1986), no. 4, 649–659.
[SkWi] C. Skinner and A. Wiles. Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci.

Toulouse Math. (6) 10 (2001), 185–215.
[TW] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3,

553–572.
[TZ] Y. Tian and S. Zhang. Book, in progress.
[Wa] J.-L. Waldspurger. Sur les valeurs de certaines fonctions L automorphes en leur centre de symmétrie. Compositio

Math. 54 (1985), 173–242.
[Wi] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no. 3, 443–551.
[YZZ] X. Yuan, W. Zhang, and S. Zhang. Heights of CM points I: Gross–Zagier formula. Preprint.
[Zh] S. Zhang. Heights of Heegner points on Shimura curves. Ann. of Math. (2) 153 (2001), no. 1, 27–147.
[Zh2] S. Zhang. Arithmetic of Shimura curves. Science China Mathematics 53 (2010), 573–592.
[Zhao] Y. Zhao. McGill Univ. Ph. D Thesis. In progress.

H. D.: Department of Mathematics and Statistics, McGill University, 805 Sherbooke Street West, H3A-

2K6 Montreal, Canada

E-mail address: darmon@math.mcgill.ca
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