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Abstract. Elliptic curves over Q are equipped with a systematic collection of Heegner
points arising from the theory of complex multiplication and defined over abelian exten-
sions of imaginary quadratic fields. These points are the key to the most decisive progress
in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete
proof for elliptic curves over Q of analytic rank ≤ 1, arising from the work of Gross-Zagier
and Kolyvagin. In [Da2], it is suggested that Heegner points admit a host of conjectural
generalisations, referred to as Stark-Heegner points because they occupy relative to their
classical counterparts a position somewhat analogous to Stark units relative to elliptic or
circular units. A better understanding of Stark-Heegner points would lead to progress
on two related arithmetic questions: the explicit construction of global points on elliptic
curves (a key issue arising in the Birch and Swinnerton-Dyer conjecture) and the analytic
construction of class fields sought for in Kronecker’s Jugendtraum and Hilbert’s twelfth
problem. The goal of this article is to survey Heegner points, Stark-Heegner points, their
arithmetic applications and their relations (both proved, and conjectured) with special
values of L-series attached to modular forms.
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1. Introduction

Elliptic curves are distinguished among projective algebraic curves by the fact that
they alone are endowed with the structure of a (commutative) algebraic group. The
affine curves with this property are the additive group Ga and the multiplicative
group Gm. The integral points on Ga (taken, say, over an algebraic number field F )
is a finitely generated Z-module. The same is true for the integral points on Gm:
these are the units of F , whose structure is well understood thanks to Dirichlet’s
unit theorem. The close parallel between units and rational points on elliptic
curves is frequently illuminating. In both cases, it is the natural group law on the
underlying curve which lends the associated Diophantine theory its structure and
richness.
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Mathématiques in Montreal for their support during the writing of this paper.
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An elliptic curve E over F can be described concretely as a Weierstrass equation
in projective space

y2z = x3 + axz2 + bz3, a, b ∈ F, where ∆ := 4a3 − 27b2 6= 0.

The group E(F ) of F -rational (or equivalently: integral) solutions to this equation
is in bijection with the F -rational solutions of the corresponding affine equation

y2 = x3 + ax + b,

together with an extra “point at infinity” corresponding to (x, y, z) = (0, 1, 0).
The most basic result on the structure of E(F ) is the Mordell-Weil Theorem

which asserts that E(F ) is a finitely generated abelian group, so that there is an
isomorphism of abstract groups

E(F ) ' T ⊕ Zr,

where T is the finite torsion subgroup of E(F ). The integer r ≥ 0 is called the
rank of E over F . Many questions about T are well-understood, for example:

1. There is an efficient algorithm for computing T , given E and F ;

2. A deep result of Mazur [Ma] describes the possible structure of T when F = Q

and E is allowed to vary over all elliptic curves. The size of T is bounded
uniformly, by 14. Mazur’s result has been generalised by Kamienny and
Merel [Mer], yielding a uniform bound on the size of T when F is fixed—a
bound which depends only on the degree of F over Q.

In contrast, much about the rank remains mysterious. For example, can r become
arbitrarily large, when F is fixed but E is allowed to vary? The answer is believed
to be yes, but no proof is known for F = Q or for any other number field F .

An even more fundamental problem resides in the absence of effectivity in
the proof of the Mordell-Weil theorem. Specifically, the answer to the following
question is not known.

Question 1.1. Is there an algorithm which, given E, calculates the rank r of
E(F ), and a system P1, . . . , Pr of generators for this group modulo torsion?

A candidate for such an algorithm is Fermat’s method of infinite descent, but
this method is not guaranteed to terminate in a finite amount of time—it would,
if the so-called Shafarevich-Tate group LLI(E/Q) of E is finite, as is predicted to
be the case.

Question 1.1 is also connected with the Birch and Swinnerton-Dyer conjecture.
This conjecture relates Diophantine invariants attached to E, such as r, to the
Hasse-Weil L-series L(E, s) of E, a function of the complex variable s which is
defined in terms of an Euler product taken over the non-archimedean places v of
F . To describe this Euler product precisely, let Fv = OF /v denote the residue
field of F at v, and write |v| := #Fv for the norm of v. The elliptic curve E is said
to have good reduction at v if it can be described by an equation which continues
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to describe a smooth curve over Fv after reducing its coefficients modulo v. Set
δv = 1 if E has good reduction at v, and δv = 0 otherwise. Finally, define integers
av indexed by the places v of good reduction for E by setting

av := |v| + 1 − #E(Fv).

This definition is extended to the finite set of places of bad reduction for E, ac-
cording to a recipe in which av ∈ {0, 1,−1}, the precise value depending on the
type of bad reduction of E in an explicit way.

The L-series of E is given in terms of these invariants by

L(E, s) =
∏

v

(1 − av |v|−s + δv|v|1−2s)−1 =
∑

n

aE(n)|n|−s,

where the product is taken over all the non-archimedean places v of F , and the
sum over the integral ideals n of F . The Euler product converges absolutely for
Re(s) > 3/2, but L(E, s) is expected to admit an analytic continuation to the
entire complex plane. Some reasons for this expectation, and a statement of the
Birch and Swinnerton-Dyer conjecture, are given in Section 2.6.

2. Elliptic curves over Q

It is useful to first discuss elliptic curves over Q, a setting in which a number of
results currently admit more definitive formulations.

Given an elliptic curve E/Q, let N denote its conductor. This positive integer,
which measures the arithmetic complexity of E, is divisible by exactly the same
primes as those dividing the minimal discriminant of E (the minimum being taken
over all possible plane cubic equations describing E). Denote by an the coefficient
of n−s in the Hasse-Weil L-series of E:

L(E, s) =
∏

p

(1 − app
−s + δpp

1−2s)−1 =

∞
∑

n=1

ann−s.

2.1. Modular parametrisations. Little can be asserted about the effec-
tive determination of E(Q), or about the analytic behaviour of L(E, s), without
the knowledge that E is modular. Wiles’s far-reaching program for proving the
modularity of elliptic curves (and more general Galois representations) has been
completely carried out in [BCDT] when F = Q. One way of formulating the
modularity of E is to state that the generating series

fE(z) :=

∞
∑

n=1

ane2πinz (1)

is a modular form of weight 2 for the Hecke congruence group

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z), such that N |c
}

.
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This means that f(z) is a holomorphic function on the Poincaré upper half-plane

H := {z = x + iy, y > 0} ⊂ C,

satisfying

f

(

az + b

cz + d

)

= (cz + d)2f(z) for all

(

a b
c d

)

∈ Γ0(N), (2)

together with suitable growth properties around the fixed points of parabolic ele-
ments of Γ0(N). These fixed points belong to P1(Q), and it is useful to replace H
by the completed upper half-plane H∗ := H ∪ P1(Q). After suitably defining the
topology and complex structure on the quotient Γ0(N)\H∗, thus making it into
a compact Riemann surface, the differential form ωf := 2πif(z)dz is required to
extend to a holomorphic differential on this surface.

The quotient Γ0(N)\H∗ can even be identified with the set of complex points
of an algebraic curve defined over Q, denoted by X0(N). This algebraic curve
structure arises from the interpretation of Γ0(N)\H as classifying isomorphism
classes of elliptic curves with a distinguished cyclic subgroup of order N , in which
the orbit Γ0(N)τ ∈ Γ0(N)\H is identified with the pair (C/〈1, τ〉, 〈 1

N 〉). A (highly
singular, in general) equation for X0(N) as a plane curve over Q is given by the
polynomial GN (x, y) of bidegree #P1(Z/NZ), where

GN (x, y) ∈ Q[x, y] satisfies GN (j(τ), j(Nτ)) = 0, (3)

and j is the classical modular function of level 1.
An equivalent formulation of the modularity property is that there exists a

non-constant map of algebraic curves defined over Q,

ΦE : X0(N)−→E, (4)

referred to as the modular parametrisation attached to E. One of the attractive
features of this modular parametrisation is that it can be computed by analytic
means, without the explicit knowledge of an equation for X0(N) as an algebraic
curve over Q. (Such an equation, as in (3), tends to be complicated and difficult
to work with numerically for all but very small values of N .)

To describe ΦE analytically, i.e., as a map

Φ∞
E : X0(N)(C) = Γ0(N)\H−→E(C), (5)

let Λf ⊂ C be the set of complex numbers of the form

∫ γτ

τ

ωf , for γ ∈ Γ.

It can be shown that Λf is a lattice, and that the quotient C/Λf is isomorphic
to an elliptic curve Ef which is defined over Q and is Q-isogenous to E. (The
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curve Ef is sometimes called the strong Weil curve attached to f .) The modular
parametrisation to Ef , denoted by Φf , is defined analytically by the rule

Φf (τ) =

∫ τ

i∞
2πif(z)dz =

∞
∑

n=1

an

n
e2πinτ (mod Λf ), (6)

for all τ ∈ Γ0(N)\H ⊂ X0(N)(C). The resulting value is viewed as an element of
Ef (C) via the identification C/Λf = Ef (C).

After choosing an isogeny α : Ef−→E defined over Q, the parametrisation ΦE

is defined by setting Φ∞
E = αΦf . In practice it is preferable to start with E = Ef ,

at the cost of replacing E by a curve which is isogenous to it, so that α can be
chosen to be the identity. The map Φ∞

E is then given directly by (6).

2.2. Heegner points. Let K ⊂ C be a quadratic imaginary field, and denote
by Kab its maximal abelian extension, equipped with an embedding into C com-
patible with the complex embedding of K. The following theorem, a consequence
of the theory of complex multiplication, is one of the important applications of the
modular parametrisation ΦE of (5):

Theorem 2.1. If τ belongs to K ∩H, then Φ∞
E (τ) belongs to E(Kab).

Theorem 2.1 also admits a more precise formulation which describes the field
of definition of Φ∞

E (τ). Let M0(N) ⊂ M2(Z) denote the ring of 2 × 2 matrices
with integer entries which are upper triangular modulo N . Given τ ∈ H, the
associated order of τ is the set of matrices in M0(N) which preserve τ under
Möbius trandsformations, together with the zero matrix, i.e.,

Oτ :=

{

γ ∈ M0(N) such that γ

(

τ
1

)

= λγ

(

τ
1

)

, for some λγ ∈ C

}

.

The assignment γ 7→ λγ identifies Oτ with a discrete subring of C. Such rings are
isomorphic either to Z, or to an order in a quadratic imaginary field, the latter
case occuring precisely when τ generates a quadratic (imaginary) extension of Q.
In that case Oτ is an order in the quadratic field K = Q(τ).

Orders in quadratic fields have the peculiarity that they are completely deter-
mined by their discriminants. Write D for the discriminant of the order O = Oτ ,
and let GD := Pic(O) denote the class group of this order, consisting of isomor-
phism classes of projective modules of rank one over O equipped with the group
law arising from the tensor product. A standard description identifies GD with a
quotient of the idèle class group of K:

GD = A×
K/(K×C×A×

Q

∏

`

O×
` ). (7)

Here A×
K denotes the group of idèles of K, the product is taken over the rational

primes `, and O` := O⊗Z`. The group GD also admits a more classical description
which is well adapted to explicit computations, as the set of equivalence classes
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of primitive binary quadratic forms of discriminant D equipped with the classical
Gaussian composition law. (For more details on this classical point of view, see
Bhargava’s lecture in these proceedings.)

If D and N are relatively prime, and Oτ = OD , there is a primitive integral
binary quadratic form Fτ (x, y) = Aτx2 + Bτxy + Cτy2 satisfying

Fτ (τ, 1) = 0, B2
τ − 4AτCτ = D, N divides Aτ .

In particular,
all the primes `|N are split in K/Q, (8)

and therefore the equation
x2 = D (mod N)

has a solution (namely, Bτ ). Fix a square root δ of D modulo N , and define

HD := {τ ∈ H such that Oτ = OD and Bτ ≡ δ (mod N)}.

The function which to τ ∈ Γ0(N)\HD associates the SL2(Z)-equivalence class
of the binary quadratic form Fτ is a bijection. (Cf., for example, Section I.1 of
[GKZ].) Through this bijection, Γ0(N)\HD inherits a natural action of GD via
the Gaussian composition law. Denote this action by (σ, τ) 7→ τσ , for σ ∈ GD and
τ ∈ Γ0(N)\HD.

Class field theory identifies GD with the Galois group of an abelian extension of
K, as is most readily apparent, to modern eyes, from (7). This abelian extension,
denoted by HD, is called the ring class field attached to O, or to the discriminant
D. When D is a fundamental discriminant, HD is Hilbert class field of K, i.e., the
maximal unramified abelian extension of K. Let

rec : GD−→Gal(HD/K) (9)

denote the reciprocity law map of global class field theory.
A more precise form of Theorem 2.1 is given by

Theorem 2.2. If τ belongs to Γ0(N)\HD, then Φ∞
E (τ) belongs to E(HD), and

Φ∞
E (τσ) = rec(σ)−1Φ∞

E (τ), for all σ ∈ GD .

The fact that Φ∞
E intertwines the explicit action of GD on Γ0(N)\HD arising

from Gaussian composition with the natural action of Gal(HD/K) on E(HD) gives
a concrete realisation of the reciprocity map (9) of class field theory. It is a special
case of the Shimura reciprocity law.

The points Φ∞
E (τ), as τ ranges over H ∩ K are called Heegner points attached

to K. (Sometimes, this appellation is confined to the case where the discriminant
of Oτ is relatively prime to N .) Theorems 2.1 and 2.2 are of interest for the
following reasons, which are discussed at greater length in Sections 2.3, 2.4, and
2.5 respectively.

1. They provide a simple, computationally efficient construction of rational and
algebraic points on E.
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2. They are a manifestation of the fact that we dispose of an explicit class field
theory for imaginary quadratic fields, allowing the construction of abelian ex-
tensions of such fields from values of modular functions evaluated at quadratic
imaginary arguments of the upper half-plane.

3. There are deep connections between the points Φ∞
E (τ), for τ ∈ HD, and

the first derivative at s = 1 of the Hasse-Weil L-series L(E/K, s) and of
related partial L-series associated to ideal classes of K. These connections
lead to new insights into the behaviour of these L-series and the Birch and
Swinnerton-Dyer conjecture.

2.3. The efficient calculation of global points. The fact that the
theory of complex multiplication, combined with modularity, can be used to con-
struct rational and algebraic points on E is of interest in its own right. This was
noticed and exploited by Heegner, and taken up systematically by Birch in the late
60’s and early 70’s [BS], [Bi].

Given any (not necessarily fundamental) discriminant D for which HD 6= ∅, let
K = Q(

√
D) and set

PD := traceHD/Q(Φ∞
E (τ)), for any τ ∈ HD,

PK := traceH/K(Φ∞
E (τ)), for any τ ∈ HD, D = Disc(K).

When are the points PD and PK of infinite order (in E(Q) and E(K) respectively)?
This question is part of the larger problem of efficiently constructing rational or
algebraic points of infinite order on elliptic curves. It is instructive to consider this
problem from the point of view of its computational complexity.

From the outset, one is stymied by the fact that an answer to Question 1.1
is not known. Complexity issues are therefore better dealt with by focussing on
the following more special problem, which depends on the curve E and a positive
real parameter h. To state this problem precisely, define the height of a rational
number r = a/b (represented, of course, in lowest terms) to be

height(r) = log(|ab| + 1).

Thus, the height of r is roughly proportional to the number of digits needed to write
r down. The height of an equation is the sum of the heights of its coefficients. The
height of a solution (x1, . . . , xn) to such an equation is taken to be the sum of the
height of the xj . (In the case of an elliptic curve, one might prefer a coordinate-free
definition by taking the height of E to be the height of the minimal discriminant
of E.)

It is expected that, for infinitely many E, the smallest height of a point of
infinite order in E(Q) can be at least as large as an exponential function of the
height of E. In this respect, the behaviour of elliptic curves is not unlike that of
Pell’s equation, where a fundamental solution to x2 −Dy2 = 1 has height roughly
O(

√
D) if Q(

√
D) has class number one. Of greatest relevance for complexity

questions are the “worst-case” elliptic curves E for which the point of infinite
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order Pmin of smallest height in E(Q) has height which is large relative to the
height of E, i.e., for which

height(Pmin) >> exp(height(E)).

In order to focus on these curves, and avoid technical side-issues associated with
elliptic curves having non-torsion points of small height, we formulate the following
problem:

Problem 2.3. Given an elliptic curve E, and a real number

h > exp(height(E)), (10)

find a point P of infinite order on E with height(P ) < h, if it exists, or assert that
no such point exists, otherwise.

Denote by P (E, h) the instance of this problem associated to E and the pa-
rameter h. In light of (10), this parameter can be chosen as a natural measure of
the size of the problem.

Note that P (E, h) continues to make sense for any Diophantine equation. Even
in such great generality, problem P (E, h) has the virtue of possessing an algorith-
mic solution: a brute force search over all possible points (in the projective space
in which E is embedded) of height less than h, say. Such an exhaustive search
requires O(exp(h)) operations to solve an instance of P (E, h). The exponential
complexity of the brute force approach provides a crude benchmark against which
to measure other approaches, and leads naturally to the following definition.

Definition 2.4. A class C of Diophantine equations is said to be solvable in poly-
nomial time if there exists n ∈ N and an algorithm that solves P (E, h), with E ∈ C,
in at most O(hn) operations.

The property that C is solvable in polynomial time can be expressed informally
by stating that the time required to find a large solution to any E ∈ C is not
much worse than the time is takes to write that solution down. Thus, an (infinite)
class C of equations being solvable in polynomial time indicates that there is a
method for “zeroing in” on a solution (x0, y0) to any equation in C in a way that is
qualitatively more efficient than running though all candidates of smaller height.

The prototype for a class of equations that possess a polynomial time solution
in the sense of Definition 2.4 is Pell’s equation. A polynomial time algorithm
for finding a fundamental solution to x2 − Dy2 = 1 is given by the continued
fraction method that was known to the Indian mathematicians of the 10th century
(although Fermat seems to be the first to have shown its effectivity.) See [Le]
for a more thorough discussion of Pell’s equation from the point of view of its
computational complexity.

The strong analogy that exists between Pell’s equation and elliptic curves
suggests that the class ELL of all elliptic curves over Q might also be solv-
able in polynomial time. Indeed, Fermat’s method of infinite descent (applied,
say, to a rational 2-isogeny η, if it exists) reduces P (E, h) to dE instances of
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P (C1, h/2), . . . , P (CdE
, h/2) where the Cj are principal homogeneous spaces for

E, and the number dE is related to the cardinality of the Selmer group attached
to η. Applying this remark iteratively suggests that the complexity for solving
P (E, h) might be a polynomial of degree related to dE . The analysis required to
make this discussion precise does not appear in the literature, and it would be
interesting to determine whether the method of infinite descent can be used to de-
termine to what extent ELL is solvable in polynomial time (assuming, eventually,
the finiteness of the Shafarevich-Tate group of an elliptic curve).

It should be stressed that the method of descent is often complicated in practice
because of the mounting compexity of the principal homogeneous spaces that arise
in the procedure. On the other hand, the Heegner point construction, when it
produces a point of infinite order in E(Q), can be used to solve P (E, h) by a
method that is also extremely efficient in practice. See [El2] for a discussion of this
application of the Heegner point construction.

For example, let

E : y2 + y = x3 − x2 − 10x − 20

be the strong Weil curve of conductor 11. (This is the elliptic curve over Q of
smallest conductor.) The following table lists a few values of the x-coordinate of
PK for some more or less randomly chosen K. It takes a desktop computer a
fraction of a second to find these x-cordinates, far less than would be required to
find points of comparable height on the corresponding quadratic twist of E by a
naive search.

Disc(K) x(PK)

−139 −208838
√−139−3182352
1957201

−211 −11055756376
√−211−36342577392

29444844025

−259 64238721198
√−259−2458030017103

992886694969

−1003 −24209041615561516569638
√−1003−1053181310754386354274847

219167070502034515453609

2.4. Explicit Class Field Theory. The Heegner point construction is
a manifestation of an explicit class field theory for imaginary quadratic fields.
Normally, this is stated in terms of the elliptic modular function j. The field

K? :=
⋃

α∈Q,τ∈K∩H
K(e2πiα, j(τ))

obtained by adjoining to the imaginary quadratic field K all the roots of unity,
as well as the values j(τ) for τ ∈ K ∩ H, is almost equal to the maximal abelian
extension Kab of K. More precisely, Kab/K? is an extension whose Galois group,
although infinite, has exponent two. (See [Se].)

Given a negative (not necessarily fundamental) discriminant D, let τ1, . . . , τh

be representatives for HD (with N = 1) modulo the action of SL2(Z). Then the
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so-called modular polynomial

ZD(z) :=
h

∏

i=1

(z − j(τi)) (11)

has rational coefficients and its splitting field is the ring class field attached to the
discriminant D. One might also fix an elliptic curve E and consider the function
jE(τ) of τ ∈ Γ0(N)\HD defined as the x-coordinate of the point Φ∞

E (τ), where the
x coordinate refers, say, to a minimal Weierstrass equation for E. Let ZE

D denote
the polynomial defined as in (11) with j replaced by jE .

For example, consider the discriminants D = −83, −47, and −71 of class
number 3, 5 and 7 respectively. The polynomials ZD attached to the first two of
these discriminants are given by:

x3 + 2691907584000x2 − 41490055168000000x+ 549755813888000000000

x5 + 2257834125x4 − 9987963828125x3 + 5115161850595703125x2

− 14982472850828613281250x+ 16042929600623870849609375.

(The degree seven polynomial Z−71 has been omitted to save space, its coefficients
being integers of roughly 30 digits.) The following table gives the values of the
polynomials ZE

D(z) for a few elliptic curves (labelled according to the widely used
conventions of the tables of Cremona [Cr2]) whose conductor is a prime that splits
in Q(

√
D), for these three discriminants.

E ZE
−83(x) ZE

−47(x)
37A x3 + 5x2 + 10x + 4 x5 − x4 + x3 + x2 − 2x + 1
61A x3 − 2x2 + 2x + 1 x5 − x3 + 2x2 − 2x + 1
79A x5 + 4x4 + 3x3 − 3x2 − x + 1

E ZE
−71(x)

37A x7 − 2x6 + 9x5 − 10x4 − x3 + 8x2 − 5x + 1
43A x7 + 2x6 + 2x5 + x3 + 3x2 + x + 1
79A x7 + 4x6 + 5x5 + x4 − 3x3 − 2x2 + 1

This data illustrates the well-known fact that in computing class fields one is often
better off working with modular functions other than j (such as modular units for
instance). The above data suggests (at least anecdotally) that the functions jE

can be excellent choices in certain cases. For a systematic discussion of the heights
of Heegner points and of the polynomials ZE

D(x) as D varies, see [RV].

2.5. Relation with L-series. The following result of Gross and Zagier
[GZ] provides a connection between Heegner points and the L-series of E over K.

Theorem 2.5. The height of PK is equal to an explicit non-zero multiple of
L′(E/K, 1).

In particular, the point PK is of infinite order if and only if L′(E/K, 1) 6= 0.
This result can be exploited in two ways.
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Firstly, since Heegner points are so readily computable, specific instances where
the point PK is of finite order yield non-trivial examples where L′(E/K, 1) = 0.
The vanishing of the leading term in an L-series is notoriously difficult to prove
numerically. The Gross-Zagier theorem makes it possible to produce elliptic curves
for which, provably, L(E, 1) = L′(E, 1) = 0. Considerations involving the sign in
the functional equation for L(E, s) may even force this function to vanish to odd
order, and therefore to order at least 3, at s = 1. (The smallest elliptic curve of
prime conductor with this property has conductor 5077.) The existence of elliptic
curves and modular forms whose L-series has a triple zero at s = 1 was exploited
to great effect by Goldfeld [Go] in his effective solution of the analytic class number
problem of Gauss.

Secondly, and more germane to the theme of this survey, the Gross-Zagier
theorem gives a criterion for the “Heegner point method” to produce a point of
infinite order on E(K) or on E(Q). This provides a neat characterization of the
elliptic curves for which Heegner points lead to an efficient solution of problem
P (E, h).

When ords=1(L(E, s)) ≥ 2, constructing the Mordell-Weil group E(Q) is more
elusive. It is an apparent paradox of the subject that we are the least well-equipped
to produce global points on elliptic curves in precisely those cases when these points
are expected to be more plentiful! (On the other hand, this reflects a common
occurence in mathematics, where an object that is uniquely defined is easier to
produce explicitly.)

2.6. The Birch and Swinnerton-Dyer conjecture. The Birch and
Swinnerton-Dyer conjecture relates the behaviour of L(E, s) at s = 1 to arithmetic
invariants of E over Q, such as its rank. To facilitate the subsequent exposition,
we state it in a form that involves an integer parameter r ≥ 0.

Conjecture 2.6 (BSDr). If ords=1 L(E, s) = r, then the rank of E(Q) is equal to
r, and the Shafarevich-Tate group LLI(E/Q) of E is finite.

The Birch and Swinnerton-Dyer conjecture predicts that E(Q) should be infi-
nite precisely when L(E, 1) = 0. (The latter condition can be easily ascertained
computationally in examples, because L(E, 1) is known a priori to belong to a
specific sublattice of R.)

Remark 2.7. The Birch and Swinnerton-Dyer conjecture (suitaby generalised) is
consistent with the presence of a systematic supply of algebraic points defined over
certain ring class fields of imaginary quadratic fields. To elucidate this remark,
we begin by noting that the Birch and Swinnerton-Dyer conjecture generalises
to elliptic curves over number fields, where it predicts that the rank of E(F )
is equal to the order of vanishing of L(E/F, s) at s = 1. This L-series (and
its twists L(E/F, χ, s) by abelian characters of Gal(F̄ /F )) admits a functional
equation relating L(E/F, χ, s) to L(E/F, χ̄, 2− s). Suppose that E is defined over
Q, that F = K is a quadratic extension of Q, and that χ : Gal(H/K)−→C×

factors through the Galois group of a ring class field H of K. Then the definition
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of L(E/K, χ, s) as an Euler product shows that

L(E/K, χ, s) = L(E/K, χ̄, s).

The sign that appears in the functional equation of the L-series L(E/K, χ, s),
denoted by sign(E/K, χ) ∈ {−1, 1}, therefore determines the parity of its order of
vanishing ords=1(L(E/K, χ, s)).

When (E, K) satisfies the Heegner hypothesis of equation (8), it can be shown
that sign(E, K) = −1 so that L(E/K, 1) = 0. Moreover, the same is true of
sign(E/K, χ) when χ is any ring class character of conductor prime to NE , so that
L(E/K, χ, 1) = 0 for such ring class characters. In particular, if H is a ring class
field of K of discriminant prime to NE , we find

ords=1 L(E/H, s) = ords=1







∏

χ∈ ̂Gal(H/K)

L(E/K, χ, s)






≥ [H : K], (12)

so that the Birch and Swinnerton-Dyer conjecture predicts the inequality:

rank(E(H))
?
≥ [H : K]. (13)

The Gross-Zagier formula (Theorem 2.5), suitably generalised to the L-series
L(E/K, χ, s) with character, as in the work of Zhang discussed in Section 3.4,
makes it possible to bound the rank of E(H) from below by establishing the non-
triviality of certain Heegner points, and yields

Corollary 2.8. If the inequality in (12) is an equality, then the inequality (13)
holds.

A short time after the proof of the Gross-Zagier formula, Kolyvagin discovered
a general method for using Heegner points to bound the ranks of Mordell-Weil
groups from above.

Theorem 2.9 (Kolyvagin). If PK is of infinite order, then E(K) has rank one
and LLI(E/K) is finite.

Crucial to Kolyvagin’s proof is the fact that the Heegner point PK does not
come alone, but is part of an infinite collection of algebraic points

{Φ∞
E (τ)}τ∈HD

as D ranges over all discriminants of orders in K. These points are defined over
abelian extensions of K and obey precise compatibility relations under the norm
maps. They are used to construct a supply of cohomology classes that can be
used, under the non-triviality assumption on PK , to bound E(K) and LLI(E/K),
showing that the former has rank one and the latter is finite. See [Ko] (or the
expositions given in [Gr3] or Chapter X of [Da2]) for the details of the argument.

In relation with Corollary 2.8 we note the following consequence of Theorem
2.9 (suitably adapted to the problem of bounding Mordell-Weil groups over ring
class fields in terms of Heegner points, as in [BD1] for example)
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Corollary 2.10. If the inequality in (12) is an equality, then the inequality pre-
dicted in (13) is an equality.

Theorem 2.9 completes Theorem 2.5 by relating the system of Heegner points
attached to E/K to the arithmetic of E over K. When combined with Theorem
2.5, it yields the following striking evidence for the Birch and Swinnerton-Dyer
conjecture.

Theorem 2.11. Conjectures BSD0 and BSD1 are true for all elliptic curves over
Q.

Sketch of proof. If ords=1 L(E, s) ≤ 1, one can choose an auxiliary quadratic imag-
inary field K in which all the primes dividing N are split, and for which

ords=1 L(E/K, s) = 1.

The existence of such a K is a consequence of non-vanishing results for special
values and derivatives of twisted L-series. (See the book [MM], for example, for
an attractive exposition of these results.) After choosing such a K, Theorem 2.5
implies that PK is of infinite order, since L′(E/K, 1) 6= 0. Theorem 2.9 then implies
that PK generates a finite index subgroup of E(K), and that LLI(E/K) is finite.
Explicit complementary information on the action of Gal(K/Q) on the point PK

implies that the rank of E(Q) is at most one, with equality occuring precisely when
L(E, 1) = 0. The finiteness of LLI(E/K) directly implies the finiteness of LLI(E/Q)
since the restriction map LLI(E/Q)−→LLI(E/K) has finite kernel.

Theorem 2.11 is the best evidence at present for Conjecture 2.6. We remark
that almost nothing is known about this conjecture when r > 1.

3. Elliptic curves over totally real fields

Summarising the discussion of the previous chapter, the Heegner point construc-
tion (attached to an elliptic curve over Q, and a quadratic imaginary field K) is
appealing because it provides an elegant and efficient method for calculating global
points on elliptic curves as well as class fields of imaginary quadratic fields. It also
leads to a proof of Conjecture BSDr for r = 0 and 1.

It is therefore worthwhile to investigate whether elliptic curves defined over a
number field F other than Q are equipped with a similar collection of algebraic
points. The modularity property so crucial in defining Heegner points does have
an analogue for elliptic curves defined over F , which is most conveniently couched
in the language of automorphic representations: an elliptic curve E/F should
correspond to an automorphic representation π of GL2(AF ), the correspondence
being expressed in terms of an equality of associated L-series:

L(E, s) = L(π, s).

(For an explanation of these concepts, see for example [Ge] or [BCdeSGKK].)
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When F = Q, the automorphic form attached to E corresponds to a differ-
ential on a modular curve, and leads to the modular parametrisation Φ∞

E of (4).
Unfortunately, such a geometric formulation of modularity is not always available;
therefore the Heegner point construction does not carry over to other number fields
without further ideas.

The number fields for which Heegner points are best understood are the totally
real fields. Let F be such a field, of degree ν, and fix an ordering v1, . . . , vν on the
real embeddings of F . For x ∈ F , write xj := vj(x) (1 ≤ j ≤ ν). The vj determine
an embedding of F into Rν and an embedding of SL2(OF ) as a discrete subgroup
of SL2(R)ν with finite covolume. Given any ideal N of OF , denote by Γ0(N ) the
subgroup of SL2(OF ) consisting of matrices which are upper-triangular modulo
N .

Assume now for simplicity that F has narrow class number one. (The def-
initions to be made below need to be modified in the general case, by adopt-
ing adèlic notation which is better suited to working in greater generality but
might also obscure the analogy with the classical case that we wish to draw.) A
Hilbert modular form of parallel weight 2 and level N is a holomorphic function
f(z1, . . . , zν) on Hν satisfying the transformation rule analogous to (2), for all

matrices

(

a b
c d

)

∈ Γ0(N ):

f

(

a1z1 + b1

c1z1 + d1
, . . . ,

aνzν + bν

cνzν + dν

)

= (c1z1 + d1)
2 · · · (cνzν + dν)2f(z1, . . . , zν), (14)

together with suitable growth properties around the fixed points of parabolic el-
ements of Γ0(N ), which imply in particular that f admits a Fourier expansion
“near infinity”

f(z1, . . . , zν) := a(0) +
∑

n>>0

a(n)e(δ−1
n · z),

in which the sum is taken over all totally positive n ∈ OF , δ is a totally positive
generator of the different ideal of F , and

e(n · z) := exp(2πi(n1z1 + · · · + nνzν)).

Let N ∈ F be a totally positive generator of the conductor ideal of E over F ,
and let aE(n) denote the coefficients in the Hasse-Weil L-series of this elliptic
curve. The following conjecture is a generalisation of the Shimura-Taniyama-Weil
conjecture for totally real fields (of narrow class number one)

Conjecture 3.1. The generating series analogous to (1)

fE(z1, . . . , zν) :=
∑

n>>0

aE(n)e(δ−1
n · z)

is a modular form of parallel weight 2 and level N .

The methods of Wiles have successfully been extended to prove many instances
of Conjecture 3.1, under a number of technical hypotheses. (See [SW] [Fu] for
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example.) In the sequel, it will always be assumed that any elliptic curve E/F sat-
isfies the conclusion of Conjecture 3.1, to avoid having to worry about the precise
technical conditions under which this is known unconditionally. (These conditions
are fluid and ever-changing, and one might hope that they will eventually be com-
pletely dispensed with. This hope is bolstered by the wealth of new ideas—which
the reader can appreciate, for instance, by consulting [BCDT], [SW], or [Ki], to cite
just three in a roster that is too long and rapidly evolving to give anything like a
complete list—emerging from the branch of number theory devoted to generalising
and extending the scope of Wiles’s methods.)

The differential form ωf := f(z1, . . . , zν)dz1 · · · dzν defines a Γ0(N )-invariant
holomorphic differential on Γ0(N )\Hν , but these objects do not give rise to a
modular parametrisation. (Indeed, the natural generalisation of modular curves
are Hilbert modular varieties, which are of dimension [F : Q] and probably do not
admit any non-constant maps to E when F 6= Q.) To define Heegner points on
E(F ), it becomes crucial to consider Shimura curve parametrisations arising from
automorphic forms on certain quaternion algebras.

3.1. Shimura curve parametrisations. Let S be a set of places of odd
cardinality, containing all the archimedean places of F . Associated to S there is a
Shimura curve denoted by XS . This curve has a canonical model over F arising
from a connection between it and the solution to a moduli problem classifying
abelian varieties with “quaternionic endomorphisms”. (Cf. Section 1.1 of [Zh1],
for example, where it is called MK .)

For each place v ∈ S, the curve XS also admits an explicit v-adic analytic
description. Since this description is useful for doing concrete calculations with
XS, we now describe it in some detail, following a presentation that the author
learned from Gross. (Cf. [Gr4].)

If v ∈ S is an archimedean (and hence, real) place, denote by Hv the Poincaré
upper half-plane. If v is non-archimedean, let Cv denote the completion of the
algebraic closure of Fv , and let Hv := P1(Cv) − P1(Fv) denote the v-adic upper
half-plane. It is equipped with a natural structure as a v-adic analytic space which
plays the role of the complex structure on H in the non-archimedean case. (See
for instance Chapter IV of [Da2] for a description of this structure.)

Let B denote the quaternion algebra over F which is ramified precisely at the
places of S −{v}. (Since this set of places has even cardinality, such a quaternion
algebra exists; it is unique up to isomorphism.) Identifying v with the corre-
sponding embedding F−→Fv of F into its completion at v, there is an Fv-algebra
isomorphism

ιv : B ⊗v Fv−→M2(Fv).

Let R denote a maximal OF -order of B if v is archimedean, and a maximal OF [1/v]-
order of B if v is non-archimedean, and write R×

1 for the group of elements of R
of reduced norm 1. Then Γv := ιv(R×

1 ) is a discrete and finite covolume (and co-
compact, if (F, S) 6= (Q,∞)) subgroup of SL2(Fv). The quotient Γ\Hv is naturally
equipped with the structure of a complex curve (if v is real) or of a rigid analytic
curve over Cv (if v is non-archimedean).
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Theorem 3.2. The quotient Γ\Hv is analytically isomorphic to XS(Cv).

The complex uniformisation of XS(C) at the real places of F follows directly
from the description of XS in terms of the solution to a moduli problem. The
non-archimedean uniformisation follows from the theory of Cerednik and Drinfeld.
For more details on Drinfeld’s proof of Theorem 3.2 for v non-archimedean see
[BC].

If N+ is any ideal (or totally positive element) of F prime to the places of S,
one can also define a Shimura curve XS(N+) by adding “auxiliarly level structure”
of level N+.

Denote by JS and JS(N+) the jacobian varieties of XS and XS(N+) respec-
tively. The relevance of these jacobians is that they are expected to parametrise
certain elliptic curves over F in the same way that jacobians of modular curves
uniformise elliptic curves over Q.

More precisely, a (modular, in the sense of Conjecture 3.1) elliptic curve E over
F is said to be arithmetically uniformisable if there exists a Shimura curve XS(M)
and a non-constant map of abelian varieties over F , generalising (4)

ΦS,E : JS(M)−→E. (15)

Conjecture 3.1 leads one to expect that many (but not all, in general!) elliptic
curves over F are arithmetically uniformisable. More precisely,

Theorem 3.3. A modular elliptic curve E over F is arithmetically uniformisable
if and only if at least one of the following conditions holds.

1. The degree of F over Q is odd;

2. There is a place v of F for which ordv(N ) is odd.

When condition 1 is satisfied, a Shimura curve uniformising E can be taken to
be of the form XS(NE), where S = S∞ is the set of archimedean places of F . If
condition 1 is not satisfied, but 2 is, one can consider a Shimura curve associated
to S = {v}∪S∞ with a suitable choice of level structure. See [Zh1] for more details
on Shimura curves and their associated modular parametrisations.

3.2. Heegner points. From now on we assume that E/F is semistable, and
that there is a factorisation N = N+N− of the conductor into a product of ideals
with the property that the set of places of F

S := {v divides ∞ or N−}

has odd cardinality. (Placing oneself in this special situation facilitates the expo-
sition, and does not obscure any of the essential features we wish to discuss.) This
assumption implies that E is arithmetically uniformisable and occurs as a quotient
of the Jacobian JS(N+) of the Shimura curve XS(N+) of the previous section.
Let

ΦN+

S,E : Div0(XS(N+))−→E (16)
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denote the Shimura curve parametrisation attached to this data.
Just like classical modular curves, the curve XS(N+) is also equipped with a

collection of CM points attached to certain CM extensions of F . More precisely,
let K be a quadratic extension of F satisfying:

1. For all places v ∈ S, the Fv-algebra K ⊗v Fv is a field.

2. For all places v|N+, the Fv-algebra K ⊗v Fv is isomorphic to Fv ⊕ Fv .

Note that condition 1 implies in particular that K is a CM extension of F , since
S contains all the archimedean places of F .

Fix an OF -order O of K, and let H denote the associated ring class field of K.
There is a canonical collection CM(O) ⊂ XS(N+)(H) associated, in essence, to
solutions to the moduli problem related to XS(N+) which have “extra endomor-
phisms by O.” This fact allows an extension of the theory of Heegner points to the
context of totally real fields.

3.3. The efficient calculation of global points. Assume for nota-
tional simplicity that N+ = 1. From a computational perspective, it would be
useful to have efficient numerical recipes for computing the points of CM(O) and
their images in E(H) under the parametrisation ΦS,E of (16). Difficulties arise in
calculating Heegner points arising from Shimura curve parametrisations, largely
because the absence of Fourier expansions for modular forms on Γ\Hv prevents
one from writing down an explicit analytic formula for ΦS,E analogous to (6).

The article [El1] proposes to work with Shimura curves by computing algebraic
equations for them. This approach can be carried out when the group Γ arising in
an archimedean uniformisation of XS(C) following Theorem 3.2 is contained with
small index in a Hecke triangle group. Adapting the ideas of [KM] to the context
of Shimura curves might also yield a more systematic approach to these types of
questions. Nonetheless, it appears that an approach relying on an explicit global
equation for the Shimura curve may become cumbersome, since such an algebraic
equation is expected to be quite complicated for even modest values of F and S.

Alternately, one may try to exploit the non-archimedean uniformisations of
XS(Cv) given by Theorem 3.2. Given a non-archimedean place v ∈ S, let B and
R be the quaternion algebra and Eichler order associated to S and v as in the
statement of this theorem. An F -algebra embedding

Ψ : K−→B

is said to be optimal relative to O if Ψ(K) ∩ R = Ψ(O). It can be shown that
the number of distinct optimal embeddings of K into B, up to conjugation by the
normaliser of R× in B×, is equal to the class number of O. Let h denote this class
number and let Ψ1, . . . , Ψh be representatives for the distinct conjugacy classes
of optimal embeddings of O into R. Let τj and τ̄j denote the fixed points for
Ψj(K

×) acting on Hv . Then the points in CM(O) are identified with the points
τj , τ̄j under the identification of Theorem 3.2.

In his thesis [Gre], Matthew Greenberg exploits this explicit v-adic description
of the points in CM(O) and computes their images in E(Cv) analytically. The
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absence of cusps on XS and of the attendant Fourier expansion of modular forms is
remedied in part by an alternate combinatorial structure on XS(Cv) which allows
explicit v-adic analytic calculations with cusp forms on XS . This combinatorial
structure arises from the reduction map

r : Hv−→T

on Hv , where T is the Bruhat Tits tree of PGL2(Fv), a homogeneous tree with
valency |v|+1. Thanks to this structure, rigid analytic modular forms of weight two
on Γ\Hv admit a simple description as functions on the edges of the quotient graph
Γ\T satisfying a suitable harmonicity property. (For a more detailed discussion of
the description of rigid analytic modular forms on Γ\Hv in terms of an associated
Hecke eigenfunction on the edges of the Bruhat-Tits tree, see Chapters 5 and 6 of
[Da2] for example.)

Greenberg explains how the knowledge of the eigenfunction on Γ\T associated
to E can be parlayed into an efficient algorithm for computing the Shimura curve
parametrisation ΦS,E of (16), viewed as a v-adic analytic map

Φv
S,E : Div0(Γ\Hv)−→E(Cv).

The main ingredient in Greenberg’s approach is the theory of “overconvergent
modular symbols” developped in [PS], adapted to the context of automorphic
forms on definite quaternion algebras.

For example, setting ω = 1+
√

5
2 , Greenberg considers the elliptic curve

E : y2 + xy + ωy = x3 + (−ω − 1)x2 + (−30ω − 45)x + (−111ω − 117)

defined over F = Q(
√

5). This curve has conductor N = v = (3 − 5ω), a prime
ideal above 31. Consider the CM extension K = F (

√
−ω − 5) of F . It has class

number two, and its Hilbert class field is equal to H = K(i) (where i =
√
−1) by

genus theory. Letting τ ∈ Hv be an element of CM(OK), and τ ′ its translate by
the element of order 2 in the class group of K, Greenberg computes the image of
Φv

S,E((τ) − (τ ′)) in E(Kv) to a v-adic accuracy of 31−30, obtaining a point that
agrees with the global point

P =

(

578ω − 1

90
,−27178ω + 9701

2700
i − 668ω − 1

180

)

to that degree of accuracy.
The calculations of [Gre] convincingly demonstrate that Heegner points arising

from Shimura curve parametrisations can be computed fairly systematically in
significant examples using the Cerednik-Drinfeld theory. It would be interesting
to understand whether the archimedean uniformisations described in Theorem 3.2
can be similarly exploited.

3.4. Relation with L-series. Retaining the notations of the previous sec-
tion, let P be any point of CM(O) ⊂ XS(H), and let χ be a character of
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G = Gal(H/K). Suppose for simplicity that this character is non-trivial, so that

Dχ :=
∑

σ∈G

χ(σ)P σ belongs to Div0(Xs(H)) ⊗ C.

Let Pχ denote the image of Dχ,

Pχ := ΦS,E(Dχ).

The Heegner point Pχ enjoys the following property analogous to the formula of
Gross and Zagier.

Theorem 3.4 (Zhang). The height of Pχ is equal to an explicit non-zero multiple
of L′(E/K, χ, 1).

The proof of Theorem 3.4, which is explained in [Zh1], [Zh2], and [Zh3], pro-
ceeds along general lines that are similar to those of [GZ] needed to handle the
case F = Q, although significant new difficulties have to be overcome in handling
Shimura curve parametrisations. Note that, even when F = Q, Zhang’s theorem
asserts something new since an elliptic curve over Q may possess, along with the
usual modular curve parametrisation, a number of Shimura curve parametrisations.

3.5. The Birch and Swinnerton-Dyer conjecture. Zhang’s for-
mula has applications to the arithmetic of elliptic curves defined over totally real
fields that are analogous to those of the original Gross-Zagier formula.

Theorem 3.5. Suppose that E is arithmetically uniformisable. Then conjectures
BSD0 and BSD1 are true for E.

Sketch of proof. Since E is arithmetically uniformisable, there is a Shimura curve
XS(M) parametrising E, for an appropriate M|NE . If ords=1 L(E, s) ≤ 1, one
can choose as in the proof of Theorem 2.11 an auxiliary quadratic CM extension
K of F in which all the primes of S are inert, those dividing M are split, and for
which

ords=1 L(E/K, s) = 1.

After choosing such a K, the Heegner point PK attached to K and the parametri-
sation (15) is of infinite order by Theorem 3.4. A natural extension of Kolyvagin’s
Theorem 2.9 to the context of totally real fields has been proved by Kolyvagin
and Logachev [KL]. Their result implies that PK generates a subgroup of E(K)
of finite index, and that LLI(E/K) is finite. Theorem 3.5 now follows much as in
the proof of Theorem 2.11.

The proof of Theorem 3.5 sketched above breaks down for elliptic curves that
are not arithmetically uniformisable in the sense of Theorem 3.3. This is the case
for the elliptic curve

E : y2 + xy + ε2y = x3, ε =
5 +

√
29

2
∈ O×

F . (17)

defined over the real quadratic field F = Q(
√

29) and having everywhere good
reduction over F .
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Remark 3.6. It should be noted however that the curve E of (17) is isogenous
to a quotient of the modular Jacobian J1(29), this circumstance arising from the
fact that E is a Q-curve, i.e., is isogenous to its Galois conjugate. Hence a variant
of the Heegner point construction exploiting CM points on X1(29) might provide
some information on the arithmetic of E.

In light of this remark, an even more puzzling example is given by the following
elliptic curve discovered by R. Pinch,

y2 −xy−ωy = x3 +(2+2ω)x2 +(162+3ω)x+(71+34ω), ω =
1 +

√
509

2
, (18)

which has everywhere good reduction over F = Q(
√

509), and is not isogenous
to its Galois conjugate. The curve given by (18), and any of its quadratic twists
over F , are elliptic curves for which no variant of the Heegner point construction
relying on CM points is known. For such elliptic curves, the strategy of proof of
Theorem 3.5 runs across a fundamental barrier.

In spite of this the following theorem has been proved independently in [Lo1],
[Lo2] and [TZ].

Theorem 3.7 (Longo, Tian-Zhang). Suppose that E is any (modular) elliptic
curve over a totally real field F . Then conjecture BSD0 is true for E.

Sketch of proof. We indicate the idea of the proof in the simplest case where E
has everwhere good reduction over a real quadratic field F . Let K be any CM
extension of F , and fix a rational prime p. The key fact is that, even though
E is not arithmetically uniformisable, it is still possible to produce a sequence
X1, . . . , Xn, . . . of Shimura curves in such a way that the Galois module given by the
pn-torsion E[pn] of E appears as a Jordan-Holder constituent of Jn[pn], where Jn

denotes the Jacobian of Xn. The Shimura curve Xn is associated to the set Sn :=
{`n,∞1,∞2} of places of F , for a judiciously chosen (non-archimedean) place `n of
F . The existence of Xn follows from the theory of congruences between modular
forms and the Jacquet-Langlands correspondence. The Heegner point attached to
K and Xn can then be used to produce, following a variant of Kolyvagin’s original
recipe, a global cohomology class in H1(K, Jn[pn]), and, from this, a class κn ∈
H1(K, E[pn]). A key formula, whose proof exploits the Cerednik-Drinfeld theory of
`n-adic uniformisation of Xn, relates the restriction of κn in the local cohomology
group H1(K`n

, E[pn]) to the special value of L(E/K, 1). (More precisely, to a
suitable algebraic part, taken modulo pn.) In particular, if this special value is
non-zero, then the class κn is non-trivial for n sufficiently large. (In fact, this
is even so locally at `n.) This local control of the classes κn is enough to prove
(following the lines of Kolyvagin’s original argument) that the pn-Selmer group of
E over K has cardinality bounded independently of n, and therefore that E(K)
and the p-primary component of LLI(E/K) are both finite. The same finiteness
results hold a fortiori with K replaced by F . It is in ensuring the existence of
a suitable auxiliary CM field K for which L(E/K, 1) 6= 0 that the non-vanishing
hypothesis on L(E/F, 1) made in the statement of Conjecture BSD0 is used in a
crucial way.
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A similar approach to bounding the Selmer group of E relying on congruences
between modular forms was first exploited in [BD3] where it was used to prove part
of the “main conjecture” of Iwasawa Theory attached to an elliptic curve E/Q and
the anticyclotomic Zp-extension of an imaginary quadratic field K.

Theorem 3.7 notwithstanding, the following question retains an alluring aura
of mystery.

Question 3.8. Prove Conjecture BSD1 for elliptic curves over totally real fields
that are not arithmetically uniformisable.

For example, let E0 be an elliptic curve with everywhere good reduction over
a real quadratic field F such as the curve given in equations (17) and (18). Let
K be a quadratic extension of F which is neither totally real nor complex, i.e.,
an extension with one complex and two real places. Let E denote the twist of
E0 by K. It can be shown that sign(E, F ) = −1, so that L(E/F, s) vanishes to
odd order. Can one show that E(F ) is infinite, if L′(E/F, 1) 6= 0? This would
follow from a suitable variant of Theorem 2.5 or 3.4, but it is unclear how such a
variant could be proved—or even formulated precisely!—in the absence of a known
Heegner point construction for E.

4. Stark-Heegner points

Question 3.8 points out one among many instances where Heegner points are not
sufficient to produce algebraic points on elliptic curves, even when the presence of
such points is predicted by the Birch and Swinnerton-Dyer conjecture.

The notion of Stark-Heegner point is meant to provide a conjectural remedy
by proposing constructions in a number of situations lying ostensibly outside the
scope of the theory of complex multiplication.

4.1. ATR extensions of totally real fields. Let F be a totally real
field of narrow class number 1, as in Section 3. A quadratic extension K of F is
said to be almost totally real (or “ATR” for short) if it has exactly one complex
place, so that the remaining real places split in K/F . The field K can be viewed
as a subfield of C via its unique complex embedding. A point in the complex
upper half-plane is called an ATR point if it generates an ATR extension of F .
Let H′ denote the set of all ATR points on H, relative to a fixed real place v of
F . Note that H′ is preserved under the action of the Hecke congruence group
Γ0(N ) ⊂ SL2(OF ), although, because the action of this group is not discrete, the
quotient Γ0(N )\H′ inherits no obvious topology (other than the discrete one). Let
fE denote the Hilbert modular form of level N associated to E in Conjecture 3.1,
and write

ωf := fE(z1, . . . , zν)dz1 · · · dzν

for the corresponding Γ0(N )-invariant differential form on Hν . The article [DL]
describes a kind of natural substitute of the modular parametrisation attached to
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E, denoted
Φv

E : Γ0(N )\H′−→E(C). (19)

A precise description of this map is given in Chapter VIII of [Da2] as well as in
[DL]. We will not recount the details of this construction here, mentioning only
that Φv

E is defined in terms of the periods of ωf . It is in that sense that it can be
viewed as purely analytic, even though Φv

E does not extend to a holomorphic or
even continuous map on H (as is apparent from the fact that Γ0(N ) acts on H with
dense orbits). We note that the definition of Φv

E is quite concrete and lends itself
well to computer calculations. In fact, working with the Hilbert modular form
attached to E has the added computational advantage that the fourier expansion
of ωf is available as an aid to computing its periods numerically.

The main conjecture that is spelled out precisely in [DL] is that the points
{Φv

E(τ)}τ∈H′∩K belong to ring class fields of the ATR extension K of F , and
that they enjoy all the properties (Shimura reciprocity law, norm compatibility
relations) of classical Heegner points. This conjecture is also tested numerically
and used to produce global points on the elliptic curve of equation (17) in terms
of periods of the associated Hilbert modular form over Q(

√
29). A proof of the

conjectures of [DL] (an admittedly tall order, at present) would presumably lead
to a solution to Question 3.8 proceeding along much the same lines as the proof of
Theorems 2.11 and 3.5.

4.2. Ring class fields of real quadratic fields. We return now to
the setting where E is an elliptic curve over Q. Little changes in the analysis of
Remark 2.7 when the imaginary quadratic field is replaced by a real quadratic field.
Hence, if K is such a field and sign(E, K) = −1, one expects the presence of a
systematic collection of points defined over various ring class fields of K. This is
intriguing, since the theory of complex multiplication gives no means of producing
these points.

Suppose now that the conductor of E is the form N = pM , where p is a prime
that does not divide M , so that E has multiplicative reduction at p. Let K be a
real quadratic field satisfying the following “modified” Heegner hypothesis:

1. All the primes dividing M are split in K;

2. The prime p is inert in K.

These conditions are analogous to the ones that are imposed in the setting of
classical Heegner points, with the prime p now playing the role of ∞. It can be
shown that sign(E, K) = −1, and the same holds for all twists of L(E/K, s) by
ring class characters of conductor prime to N . The analysis carried out in Remark
2.7 therefore shows that if H is any ring class field of K of discriminant prime to
N , one has the same inequality as in (12):

ords=1(L(E/H, s) ≥ [H : K]. (20)

The article [Da1] decribes a conjectural recipe for constructing certain canonical
points in E(H), which is expected to yield a subgroup of finite index in E(H)
whenever (20) is an equality.
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The idea behind the construction of [Da1] is to attach p-adic periods to f
in a way which formally suggests viewing f as a “mock Hilbert modular form”
on Γ\(Hp × H), where Γ ⊂ SL2(Z[1/p]) is the subgroup of matrices which are
upper triangular modulo M . The construction of these p-adic periods, which is
described in [Da1], is essentially elementary. The main ingredient that enters in
their definition is the theory of modular symbols associated to f , which states that
the period integral

If{r→s} :=
1

Ω+
Re

(∫ s

r

2πif(z)dz

)

, r, s ∈ P1(Q) (21)

takes integer values for a suitable choice of “real period” Ω+ ∈ R, which is, up to
a non-zero rational multiple, the real period in the Néron lattice of E.

Further pursuing the analogy with the setting of Section 4.1, the counterpart
of the set H′ of ATR points in H (associated to the real quadratic base field F and
a choice of real embedding) is the collection H′

p of elements of Hp which generate
a real quadratic extension of Q. In particular, after fixing a p-adic embedding
K ⊂ Cp, the set H′

p ∩ K is non-empty. Mimicking the formal aspects of the
definition of the map (19) of Section 4.1, with the complex periods attached to a
Hilbert modular form replaced by the (p-adic) periods on Hp ×H attached to f ,
leads to the definition of a “modular parametrisation” analogous to (19)

Φp
E : Γ\H′

p−→E(Cp). (22)

Let D be the discriminant of K, and choose a δ ∈ Z[1/p] satisfying

δ2 ≡ D (mod M).

Let FD be the set of primitive binary quadratic forms Ax2 + Bxy + Cy2 with
coefficients in Z[1/p], satisfying

B2 − 4AC = D, M |A, B ≡ δ (mod M).

(A quadratic form is said to be primitive in this context if the ideal of Z[1/p]
generated by (A, B, C) is equal to Z[1/p].) The group Γ acts naturally on FD by
“change of variables”, and the quotient Γ\FD is equipped with a natural simply
transitive action of the class group GD of K arising from the Gaussian composition
law. (Or rather, the Picard group of OK [1/p], but these coincide since p is inert in
K.) This action is completely analogous to the action of GD on Γ0(N0\HD (for
D a negative discriminant) that is described in Section 2.2. Choose an embedding
of K into Cp, and for each quadratic form F = [A, B, C] ∈ FD , let

τ =
−B +

√
D

2A
∈ Hp (23)

be the corresponding element of Hp satisfying F (τ, 1) = 0. The set HD
p of all τ that

arise in this way is preserved under the action of Γ, and the natural assignment
given by (23) induces a bijection

Γ\FD−→Γ\HD
p .
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Hence the target of this bijection inherits a simply transitive action of GD. Denote
this action by (σ, τ) 7→ τσ , for all σ ∈ GD and τ ∈ HD

p . Conjectures 5.9 and 5.15
of [Da1] predict that

Conjecture 4.1. 1. For all τ ∈ HD
p , the point Φp

E(τ) is defined over H.

2. If χ : GD−→C× is a complex character, then the expression
∑

σ∈GD

χ(σ)Φp
E(τσ) ∈ E(H) ⊗ C

is non-zero if and only if L′(E/K, χ, 1) 6= 0. In particular, the subgroup of
E(H) generated by the Stark-Heegner points Φp

E(τ), as τ ∈ Γ\HD
p , has rank

h = [H : K] if and only if ords=1 L(E/H, s) = h.

A proof of Conjecture 4.1 would not yield any new information about Conjec-
ture BSDr for r ≤ 1, since this conjecture is already known for elliptic curves over
Q. It would, however, give a proof of some new cases of the Birch and Swinnerton-
Dyer conjecture for Mordell-Weil groups over ring class fields of real quadratic
fields, following a simple extension of Kolyvagin’s arguments which is explained
in [BD1] and in Chapter X of [Da2]. See also [BDD] for other ways in which a
strengthening of Conjecture 4.1 to modular forms with non-rational Fourier coeffi-
cients would imply new cases of Conjecture BSD0, by adapting the ideas that are
used in the proof of Theorem 3.7.

Conjecture 4.1 has been extensively tested numerically in [DG]. A significant
improvement of the algorithms of [DG], based on ideas of Pollack and Stevens
which grew out of their theory of overconvergent modular symbols, as mentionned
in Section 3.3, is described in [DP1]. These improvements make it possible to find
global points of large height on E rather efficiently. For example, the Stark-Heegner
point on the elliptic curve E of conductor 11 given by the equation

y2 + y = x3 − x2 − 10x − 20

attached to the field K = Q(
√

101) can be computed to an 11-adic accuracy of
11−100 in a few seconds on a standard computer. It can then be “recognized” as
the global point in E(Q(

√
101)) with x-coordinate equal to

x =
1081624136644692539667084685116849

246846541822770321447579971520100
.

Of course, the calculation of Stark-Heegner points also has applications to explicit
class field theory for real quadratic fields analogous to those described in Section
2.4 for imaginary quadratic fields. For example, let E be the unique elliptic curve
over Q of conductor p = 79, defined by the Weierstrass equation

y2 + xy + y = x3 + x2 − 2x.

The prime p is inert in the real quadratic field K = Q(
√

401), which has class
number five. The 5 distinct representatives in H401

79 can be chosen to be

τ =
−19 +

√
401

2
,

19 −
√

401

4
,

−15 +
√

401

8
,

17−
√

401

8
,

−17 +
√

401

4
.
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The x-coordinates of the corresponding Stark-Heegner points Φ79
E (τ) (computed

modulo 7920) appear to satisfy the polynomial

x5 − 20x4 + 47x3 − 31x2 + x + 3

whose splitting field is indeed the Hilbert class field H of K. In fact this calculation
leads to the discovery of points in E(H). The analogous polynomial, for the real
quadratic field Q(

√
577) of class number seven, is

x7 − 22x6 + 74x5 − 51x4 − 40x3 + 32x2 + 2x − 1.

These examples are chosen at random among the hundreds of calculations that
were performed in [DP1] to test the conjectures of [Da1] numerically. (More such
calculations could be performed by the interested reader using the publicly avail-
able software [DP2] for calculating Stark-Heegner points, written in Magma, which
is documented in [DP1].)

4.3. Beyond totally real fields?. The assumption that E is defined over
a totally real field F , although it arises naturally in considering automorphic forms
and their associated Shimura varieties, is not a natural one from the point of view of
the Diophantine study of elliptic curves. It would be just as desirable to understand
elliptic curves defined over general number fields, and to have the means of tackling
conjectures BSD0 and BSD1 for such curves.

The simplest case arises when E is an elliptic curve defined over an imaginary
quadratic field, denoted by F (and not K as in Section 2, since now it plays the
role of the “ground field” over which E is defined). Assume for simplicity that F
has class number one, and let N denote the conductor of E.

As in Section 3, the Shimura-Taniyama conjecture predicts that E corresponds
to an automorphic form f on GL2(F ), which gives rise, following the description
given in [Cr1], to a differential form ωf on the hyperbolic upper half space

H(3) := C × R>0.

This three-dimensional real manifold is equipped with a hyperbolic metric and
an action of SL2(C) by isometries, and the differential ωf is invariant under the
resulting action of the subgroup Γ0(N ) ⊂ SL2(OF ) consisting of matrices which
are upper triangular modulo N . Congruence subgroups of SL2(OF ) are examples
of so-called Bianchi groups; for information about their structure and properties
and further references, see [EGM] for example.

The modular form ωf does not give rise to a modular parametrisation of E
analogous to (4). In fact, the symmetric space H(3) is not even endowed with a
natural complex structure (since it has real dimension 3); therefore the quotient
Γ0(N )\H(3) cannot be viewed as the points of a complex analytic variety, much
less an algebraic one. The absence of a Shimura variety attached to f implies that
one has less control on the arithmetic of this modular form. For certain f , Taylor
[Ta] has been able to construct the Galois representations which the Langlands
conjectures attach to f by exploiting congruences with modular forms on GSp(4)
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whose associated Galois representations can be found in the cohomology of the
appropriate Shimura varieties. Unfortunately, global points on elliptic curves or
abelian varieties, unlike p-adic Galois representations (as in the work of Taylor) or
Galois cohomology classes attached to rational points (as in the proof of Theorem
3.7), do not readily lend themselves to constructions based on congruences between
modular forms.

Nonetheless, the differential form ωf comes with an attendant notion of mod-
ular symbol which enjoys the same integrality properties as in the classical case.
(For a discussion of modular symbols attached to forms on GL2(F ), and their
computational applications, see [Cr1], [CW].) Trifkovic [Tr] exploits this modular
symbol to transpose to f the definition of the p-adic periods on Hp ×H alluded to
in Section 4.2. In this way he associates to ωf a “modular form on Γ\(Hp×H(3))”,
where

1. p is a prime of K dividing N = Mp exactly;

2. Hp = P1(Cp) − P1(Fp) is the p-adic upper half plane (defined after choosing
an embedding Fp ⊂ Cp);

3. Γ ⊂ SL2(OF [1/p]) is the subgroup consisting of matrices which are upper
triangular modulo M.

The set H′
p is simply the set of τ ∈ Hp which generate a quadratic extension

of F ⊂ Fp. Trifkovic uses his p-adic periods to define an explicit, numerically
computable map

Φp

E : Γ\H′
p−→E(Cp),

and formulates an analogue of Conjecture 4.1 for this map, predicting that Φp

E(τ)
is defined over a specific ring class field of K = F (τ) for all τ ∈ H′

p.
Trifkovic has been able to gather extensive numerical evidence for his “Stark-

Heegner conjectures” in this setting. Here is just one example taken among the
many calculations that are reported on in [Tr]. Let E be the elliptic curve over
F = Q(

√
−11) given by the Weierstrass equation

y2 + y = x3 +

(

1 −
√
−11

2

)

x2 − x.

Its conductor is the prime p = 6 +
√
−11 of F of norm 47. Note that E is not

isogenous to its Galois conjugate, since p 6= p̄. The quadratic extension K =
F (

√
29) has class number 5. Trifkovic computes the five distinct Stark-Heegner

points attached to the maximal order of K, as elements of E(Q47) (using the
isomorphism Kp = Q47) with an accuracy of 20 significant 47-adic digits. This
allows him to “guess” that the x coordinates of these Stark-Heegner points satisfy
the degree 5 polynomial

x
5 −

„

80299 + 139763
√
−11

149058

«

x
4 +

„

−558203 + 71567
√
−11

149058

«

x
3

+

„

141709 + 45575
√
−11

74529

«

x
2 +

„

8372 − 7727
√
−11

24843

«

x +

„

−473 + 35
√
−11

2366

«
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whose splitting field can then be checked to be the Hilbert class field of K.
For many more calculations of this type, and a precise statement of the con-

jecture on which they rest, the reader is invited to consult [Tr].

4.4. Theoretical evidence. In spite of the convincing numerical evidence
that has been gathered in their support, the conjectures on Stark-Heegner points
suffer from the same paucity of theoretical evidence as in the setting of Stark’s
original conjectures on units. What little evidence there is at present can be
grouped roughly under the following two rubrics:

4.4.1. Stark-Heegner points and Stark units. Many of the basic theorems
and applications of elliptic curves have counterparts for units of number fields.
(For instance, the Mordell-Weil theorem is analogous to Dirichlet’s Unit Theorem;
Lenstra’s factorisation algorithm based on elliptic curves, to the Pollard p − 1
method; to name just two examples.) The very terminology “Stark-Heegner point”
is intended to convey the idea that these points are analogous to Stark units
constructed from special values of L-series.

To make this sentiment precise, one can replace the cusp forms that enter
into the constructions of Section 4.2 by modular units, or rather, their logarithmic
derivatives which are Eisenstein series of weight two. Pursuing this idea, the
article [DD] associates to any modular unit α on Γ0(N)\H and to τ ∈ H′

p ∩ K
where K is a real quadratic field in which p is inert, an element u(α, τ) ∈ K×

p ,
which is predicted to behave like an elliptic unit defined over a ring class field of
an imaginary quadratic field. More precisely, if O is the order associated to τ , and
H denotes the corresponding ring class field of K, it is conjectured that u(α, τ)
belongs to OH [1/p]× and obeys a Shimura reciprocity law formulated exactly as
in Conjecture 4.1.

Section 3.1 [DD] attaches to α and to τ a ζ-function ζ(α, τ, s) which is essentially
(up to a finite collection of Euler factors depending on α) the partial zeta-function
attached to K and the narrow ideal class corresponding to τ . In particular, this
zeta-function has a meromorphic continuation to C with at worst a simple pole
at s = 1. Sections 4.1-4.3 of [DD] explain how a p-adic zeta function ζp(α, τ, s)
can be defined by p-adically interpolating the special values of ζ(α, τ, k) at certain
negative integers.

The main result of [DD], which is contained in Theorems 3.1 and 4.1 of [DD],
is then

Theorem 4.2. For all τ ∈ H′
p,

ζ(α, τ, 0) =
1

12
ordp(u(α, τ)); (24)

ζ ′p(α, τ, 0) = − 1

12
logp NormKp/Qp

(u(α, τ)). (25)

This theorem is consistent with Gross’s p-adic analogue of the Stark conjectures
[Gr1], [Gr2], which expresses the left hand side of (25) in terms of p-adic logarithms
of the norm to Qp certain global p-units in abelian extensions of K. We note that
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the conjecture of [DD] represents a genuine refinement of Gross’s conjecture in
the special case of ring class fields of real quadratic fields, since it gives a formula
for the Gross-Stark units as elements of K×

p , and not just for their norms to Q×
p .

Remark 4.3. A purely archimedean analogue of the setting of Theorem 4.2 is
considered in [CD], leading to the conjectural construction of units in abelian ex-
tensions of an ATR extension K of a totally real field F in terms of periods of
weight two Eisenstein series on the Hilbert modular group attached to F . This
construction can be viewed either as the archimedean analogue of the main con-
struction of [DD], or as the analogue of the main construction of [DL] in which
cusp forms on the Hilbert modular group are replaced by Eisenstein series. This
construction (in the setting of abelian extensions of K) goes further than the orig-
inal Stark conjectures by proposing a formula for the Stark units as elements of
C×, and not just for their lengths which are expressed in terms of values of L-series
at s = 0. In other words, the formulae of [CD] capture the arguments as well as
the absolute values of these Stark units (relative to a complex embedding of the
ring class field H of K extending the unique complex embedding of K.)

Remark 4.4. The proof of Theorem 4.2 brings to light the role of the Eisenstein
series of weight k and their associated periods (with k a weight which can be taken
to vary p-adically) in relating the invariants u(α, τ) to special values of L-functions.
This suggests that the Stark-Heegner points of Section 4.2 should be related to the
periods of a Hida family interpolating the cuspidal eigenform f in weight two.

4.4.2. The rationality of Stark-Heegner points over genus fields. Return-
ing to the setting of Section 4.2, let K be a real quadratic field of discriminant D
satisfying the auxiliary hypotheses relative to N that were mentionned in Section
4.2, and let H be its Hilbert class field. Write GD = Gal(H/K) as before.

To each factorisation D = D1D2 of D as a product of two fundamental discrim-
inants is associated the unramified quadratic extension L = Q(

√
D1,

√
D2) ⊂ H of

K. This field corresponds to a quadratic character

χ : GD−→± 1,

called the genus character associated to the factorisation (D1, D2). Let χ1 and
χ2 denote the quadratic Dirichlet characters attached to Q(

√
D1) and Q(

√
D2)

respectively. Then χ, viewed as a character of the ideals of K, is characterised on
ideals prime to D by the rule

χ(n) = χ1(Normn) = χ2(Norm n).

The field L is also called the genus field of K attached to (D1, D2). Let E(L)χ

denote the submodule of the Mordell-Weil group E(L) on which GD acts via the
character χ.

Recall the action of GD on Γ\HD
p arising from its identification with the class

group of K. Define the point

Pχ =
∑

σ∈GD

χ(σ)Φp
E(τσ) ∈ E(Kp).
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Conjecture 4.1 predicts that this local point belongs to E(L)χ (after fixing an
embedding L ⊂ Kp), and that it is of infinite order if and only if

L(E/K, χ, s) = L(E, χ1, s)L(E, χ2, s)

has a simple zero at s = 1.
For each m|N with gcd(m, N/m) = 1, let wm denote the sign of the Fricke

involution at m acting on f . Note that the modified Heegner hypothesis implies
that χ1(−M) = χ2(−M). The main result of [BD5] is

Theorem 4.5. Suppose that E has at least two primes of multiplicative reduction,
and that χ1(−M) = −wM .

1. There is a global point Pχ ∈ E(L)χ and t ∈ Q× such that

Pχ = tPχ in E(Kp) ⊗ Q. (26)

2. The point Pχ is of infinite order if and only if L′(E/K, χ, 1) 6= 0.

The proof of Theorem 4.5 relies on the connection beween Stark-Heegner points
and Shintani-type periods attached to Hida families alluded to in Remark 4.4,
which grew out of the calculations of [DD]. A second key ingredient is the relation,
made precise in [BD2] and [BD4], between classical Heegner points arising from cer-
tain Shimura curve parametrisations and the derivatives of associated two-variable
anticyclotomic p-adic L-functions attached to Hida families. In a nutshell, these
two ingredients are combined to express the Stark-Heegner point Pχ as a classical
Heegner point, following an idea whose origins (as is explained in the introduction
of [BD5]) can be traced back to Kronecker’s “solution of Pell’s equation” in terms
of special values of the Dedekind eta-function.

Remark 4.6. A result of Gross-Kohnen-Zagier [GKZ] suggests that the position
of the Stark-Heegner point Pχ in the Mordell-Weil group E(L)χ is controlled by
the Fourier coefficients of a modular form of weight 3/2 associated to f via the
Shimura lift. See [DT] where results of this type are discussed.
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in Mathematics, 157. Birkhäuser Verlag, Basel, 1997.

[PS] Pollack, R., Stevens, G., Explicit computations with overconvergent modular sym-
bols, in preparation.

[RV] Ricotta, G., Vidick, T., Hauteur asymptotique des points de Heegner, Canadian
Journal of Mathematics, to appear.

[Se] Serre, J.-P. Complex multiplication. In Algebraic Number Theory (Proc. Instructional
Conf., Brighton) Thompson, Washington, D.C. (1967), 292–296.

[SW] Skinner, C. M., Wiles, A. J., Residually reducible representations and modular
forms. Inst. Hautes Etudes Sci. Publ. Math. No. 89 (1999), 5–126 (2000).

[Ta] Taylor, R., l-adic representations associated to modular forms over imaginary
quadratic fields. II. Invent. Math. 116 (1994), no. 1-3, 619–643.

[Tr] Trifkovic, M., Stark-Heegner points on elliptic curves over imaginary quadratic fields,
Duke Math Journal, to appear.

[TZ] Tian, Y., Zhang, S., book project, in progress.

[Zh1] Zhang, S., Heights of Heegner points on Shimura curves. Ann. of Math. (2) 153
(2001), 27–147.

[Zh2] Zhang, S., Gross-Zagier formula for GL2. Asian J. Math. 5 (2001), no. 2, 183–290.

[Zh3] Zhang, S., Gross-Zagier formula for GL(2). II. In Heegner points and Rankin L-
series (ed., by H. Darmon and S. Zhang) 191–214, Math. Sci. Res. Inst. Publ., 49,
Cambridge Univ. Press, Cambridge, 2004.

McGill University
Department of Mathematics and Statistics
805 Sherbrooke Street West
Montreal, QC, Canada.

E-mail: darmon@math.mcgill.ca


