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Introduction

Let E be an elliptic curve over Q of conductor N and let p be a prime which divides N
exactly. Since E is modular, it corresponds to a cusp form f of weight two on Hecke’s
congruence group Γ0(N). The pth Fourier coefficient of this modular form, denoted ap,
is equal to 1 (resp. −1) if E has split (resp. non-split) multiplicative reduction at p. Let
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Hp := P1(Cp)− P1(Qp) denote the p-adic upper half plane, and fix a real quadratic field K
in which the prime p is inert, together with an embedding of K̄ into Q̄p ⊂ Cp.

Using certain periods attached to f , the article [Dar1] associates to any τ ∈ Hp ∩ K a
so-called Stark-Heegner point Pτ ∈ E(Kp) and conjectures that this point is defined over a
specific abelian extension—more precisely, a ring class field—of K. Stark-Heegner points
appear to behave like classical Heegner points in many ways, except that the imaginary
quadratic base field is replaced by a real quadratic field. An algorithm for computing them,
in the case of elliptic curves of prime conductor, is described in [DG], where it is used to test
the conjecture of [Dar1] numerically.

The calculations in [DG] raise the question of whether Stark-Heegner points lead to an
efficient method (conditional on the conjectures of [Dar1]) for finding global points on elliptic
curves comparable to the approach based on classical Heegner points, as it is described in
[El] for example. The major obstacle to putting Stark-Heegner points to such a “practical”
use is that the definition of Pτ rests on certain p-adic integrals whose direct evaluation as
a limit of Riemann sums has exponential running time—namely, the number of arithmetic
operations required to perform this evaluation with an accuracy of M significant digits is
proportional to pM . Since each extra digit of desired accuracy multiplies the running time
of the algorithm roughly by p, the evaluation of Pτ following the approach of [DG] becomes
intractable for even moderate values of M . This explains why [DG] was only able to verify
the conjectures of [Dar1] to at most 8 or 9 digits of p-adic accuracy. In particular, the
calculation of Pτ could almost never be used to independently discover a global point on
E(K), except in some instances where this point is of small height, when it could have been
found just as easily by inspection. So while [DG] did produce convincing numerical evidence
for the conjecture of [Dar1], by no means could the algorithms that it used be touted as a
practical method for constructing global points on elliptic curves.

The main purpose of this note is to present a significant improvement to the algorithm
of [DG] which runs in polynomial time, where the size of the problem is measured by the
number M of desired p-adic digits of accuracy, the prime p being treated as a constant. This
answers in the affirmative the question raised before Remark 1.7 in Section 1.2 of [DG].

The key to this new approach lies in the theory of overconvergent modular symbols devel-
oped by Glenn Stevens [St] (see also [PS1]) together with the explicit algorithms to compute
with these symbols given in [PS2]. These modular symbols generalise the classical modular
symbol If : P1(Q)× P1(Q)−→Z defined in terms of f by the rule

If{r → s} :=
1

Ω+
Re

(∫ s

r

2πif(τ)dτ

)
, r, s ∈ P1(Q),

where Ω+ is a suitable real period which can be chosen so that If becomes Z-valued. This
modular symbol defines the Mazur–Swinnerton-Dyer measure µf on Z×

p by the rule

µf (a + prZp) := a−r
p · If{−a/pr →∞}, a ∈ Z. (1)

Let [x] denote the floor function of the real number x, and set

M ′ := sup{n such that ordp(p
n/n) < M}; (2)

M ′′ := M + [log(M ′)/ log(p)]. (3)

2



A by-product of the theory of [PS1] and [PS2] is a method for computing the first M ′

moments of the measure µf ,

ω(a, k) :=

∫
a+pZp

(t− a)kdµf (t), 0 ≤ a ≤ p− 1, k = 0, 1, . . . ,M ′, (4)

to an accuracy of p−M ′′
in time which is polynomial in M . Section 1.3 explains how this

data is enough to efficiently compute the Stark-Heegner points attached to E to an accuracy
of p−M—in fact, after the moments (4) have been precomputed and stored, the number of
arithmetic operations required to evaluate one of the p-adic integrals involved in the definition
of Pτ is O(pM), a complexity which appears to be best possible.

The main contribution of the present paper resides in bringing together the ideas of
[PS1], [PS2] and of [DG], and in the detailed glimpse into the phenomenology of Stark-
Heegner points and Mordell-Weil groups over ring class fields of real quadratic fields made
possible by the computational tools that emerge from this combination of ideas.

Section 1 recalls the definition of Stark-Heegner points and describes the new polynomial-
time algorithm for computing them, while Section 3 describes the implementation of this
algorithm as a Magma package called shp that can be downloaded from the world-wide web.
Section 4 revisits the calculations of [DG], verifying them to hundreds instead of just 8 p-adic
digits, filling in most of the mising data which the authors of [DG] were unable to supply due
to the severely limited accuracy of their computations, and extending the range of positive
discriminants for which the calculations are successfully performed.

We remark that the original motivation for the theory of overconvergent modular symbols
arose from Coleman’s generalisation of Hida’s theory of p-adic families of ordinary eigenforms
to the non-ordinary case. Since Dasgupta’s thesis (cf. [Das], [DD]) it has become clear that
Hida families are intimately connected to the theory of Stark-Heegner points. (That such
families can be used to shed light on the theoretical, and not just computational, aspects of
the Stark-Heegner point construction is a theme of the series of articles [BD1] and [BD2].)

1 Computing Stark-Heegner points

As in [DG], we confine our attention to the simplest case where the elliptic curve E has prime
conductor p, so that K is any real quadratic field in which p is inert. As in the introduction,
denote by f the weight two eigenform on Γ0(p) that is associated to E by Wiles’ theorem,
and write

ωf := 2πif(τ)dτ

for the corresponding Γ0(p)-invariant differential on the Poincaré upper half-plane H. Let
Γ := PSL2(Z[1/p]), which acts on both H and Hp on the left by Möbius transformations,
according to the rule

γτ =
aτ + b

cτ + d
, where γ =

(
a b
c d

)
. (5)

The Stark-Heegner point construction

Γ\(Hp ∩K)−→E(Kp), τ 7→ Pτ ,
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can be described in several stages.

1.1 Modular symbols

The group Γ̃ := PGL2(Z[1/p]) ⊃ Γ is equipped with a homomorphism arising from the
determinant

det : Γ̃−→Z[1/p]×/(Z[1/p]×)2.

The target of this homomorphism is isomorphic to Z/2Z×Z/2Z, and given γ ∈ Γ̃ we define
|γ|p, |γ|∞ ∈ {0, 1} by the rules

|γ|p :=

{
0 if ordp(det(γ)) is even;
1 if ordp(det(γ)) is odd,

|γ|∞ :=

{
0 if det(γ) > 0;
1 if det(γ) < 0,

so that γ ∈ Γ̃ belongs to Γ if and only if |γ|p = |γ|∞ = 0.
In addition to the left action by Möbius transformations given by equation (5), it will

occasionally be useful to consider the right action of the group PGL+
2 (Q) of matrices with

positive determinant on either Hp or H given by the rule

τγ = −γ−1(−τ) =
b + dτ

a + cτ
, where γ =

(
a b
c d

)
.

Let Σ0(p) ⊂ M2(Qp) denote the semi-group of matrices defined by

Σ0(p) =
{(

a b
c d

)
∈ M2(Zp) | a ∈ Z×

p , c ∈ pZp, ad− bc 6= 0
}

,

and let V be any Z-module equipped with a right action by Σ0(p).

Definition 1.1. A V -valued modular symbol is a map ϕ : P1(Q)× P1(Q)−→V , denoted by
(r, s) 7→ ϕ{r → s}, satisfying

ϕ{r → s}+ ϕ{s → t} = ϕ{r → t} for all r, s, t ∈ P1(Q).

The space of all V -valued modular symbols, denoted by Symb(V ), has the structure of a
right Σ0(p)-module by the rule

(ϕ
∣∣γ)(r → s) := ϕ(γr → γs)

∣∣γ,

where ϕ ∈ Symb V and γ ∈ Σ0(p). If G is any subgroup of Σ0(p)×, a V -valued modular
symbol is said to be G-equivariant, or to be on G, if G fixes it under this action. The space
of all such modular symbols is denoted SymbG(V ).

We will focus mainly on the case where G = Γ0(p) = Σ0(p)∩Γ. The space SymbΓ0(p)(V )
is equipped with a right action by the Hecke operators T` (` 6= p) and Up defined by the
formulae

ϕ
∣∣T` := ϕ

∣∣ ( ` 0
0 1 ) +

`−1∑
a=0

ϕ
∣∣ ( 1 a

0 ` ) , ϕ
∣∣Up :=

p−1∑
a=0

ϕ
∣∣ (

1 a
0 p

)
.
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The Γ0(p)-invariant differential form ωf gives rise to a C-valued modular symbol Ĩf on Γ0(p)
(where C is equipped with the trivial Σ0(p)-action) by viewing P1(Q) as the boundary of the
extended upper half plane H∗ := H ∪ P1(Q), and setting

Ĩf{r → s} :=

∫ s

r

ωf , r, s ∈ P1(Q).

Note that the integral in this formula does converge, because f is a cusp form. The following
theorem of Manin and Drinfeld makes it possible to convert Ĩf into a Z-valued modular
symbol.

Proposition 1.2. There exist unique periods Ω+ and Ω− in R>0 with the property that the
functions I+

f and I−f on P1(Q)× P1(Q) defined by

I+
f {r → s} :=

1

Ω+
Re(Ĩf{r → s}), I−f {r → s} :=

1

Ω− Im(Ĩf{r → s}),

take values in Z and in no proper ideal of Z.

The functions I+
f and I−f belong to SymbΓ0(p)(Z) ⊂ SymbΓ0(p)(Zp), and are called the even

and odd modular symbols attached to f respectively. The terminology of even and odd is
justified by the further transformation properties

I+
f {−r → −s} = I+

f {r → s}, I−f {−r → −s} = −I−f {r → s} (6)

satisfied by I+
f and I−f . Fix once and for all a choice of a “sign at infinity” w∞ ∈ {1,−1}

and set

If =

{
I+
f if w∞ = 1;

I−f if w∞ = −1.
(7)

The case where w∞ = 1 will be referred to as the even case, and that where w∞ = −1, as
the odd case.

1.2 p-adic measures

A p-adic measure on P1(Qp) is a continuous Cp-linear functional on the space of continuous
Cp-valued functions on P1(Qp) (equipped with the supremum norm). If µ is such a measure,
and h is a continuous function, we write∫

P1(Qp)

h(t)dµ(t) := µ(h).

The measure µ is completely determined by the values it takes on the characteristic functions
1U of the compact open subsets U ⊂ P1(Qp), and it is customary to write

µ(U) := µ(1U) =:

∫
U

dµ(t).
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In this way µ gives rise to a finitely additive Cp-valued function U 7→ µ(U) on the set of
compact open subsets of P1(Qp), which is p-adically bounded. The measure µ is said to be
integral if it satisfies the stronger (and somewhat artificial, from the point of view of p-adic
functional analysis, although this condition turns out to be useful in the Stark-Heegner point
construction) condition

µ(U) belongs to Z, for all compact open U ⊂ P1(Qp).

Write M(P1(Qp)) for the Z-module of integral measures on P1(Qp).

Proposition 1.3. There is a unique system µf{r → s} of integral measures on P1(Qp),
indexed by r, s ∈ P1(Q), and satisfying the rules

1. µf{r → s}+ µf{s → t} = µf{r → t}, for all r, s, t ∈ P1(Q);

2. µf{r → s}(P1(Qp)) = 0, for all r, s ∈ P1(Q);

3. µf{r → s}(Zp) = If{r → s}, for all r, s ∈ P1(Q);

as well as the following invariance property under γ ∈ Γ̃:

µf{γr → γs}(γU) = a|γ|pp w|γ|∞
∞ · µf{r → s}(U), (8)

for all compact open subsets U ⊂ P1(Qp).

Proof. The proof of this proposition is identical to that of Proposition 2.5 of [DD], which
treats the case where f is replaced by certain weight two Eisenstein series. Crucial to both
proofs is the fact that the eigenvalue of the Hecke operator Up acting on f is ap = ±1. Some
of the motivation for introducing the system of measures µf{r → s}, based on the theory of
p-adic integration and on an analogy with periods of Hilbert modular forms, is explained in
[Dar1], Sections 1.1 and 1.2.

Given the system µf{r → s}, write

µf := µf{0 →∞} ∈M(P1(Qp)). (9)

The following lemma shows that this notation is consistent with the definition given in (1)
of the Mazur–Swinnerton-Dyer measure attached to If .

Lemma 1.4. For all a ∈ Z,

µf (a + prZp) = a−r
p · If{−a/pr →∞},

so that the restriction of µf to Z×
p is the Mazur–Swinnerton-Dyer measure attached to If by

equation (1).

Proof. This follows by letting γ =
(

pr a
0 1

)
∈ Γ̃ and noting that

µf (a + prZp) = µf{0−→∞}(γZp) = a−r
p · µf{−a/pr →∞}(Zp) = a−r

p · If{−a/pr →∞},

where the second equality follows from equation (8) in Proposition 1.3, while the last follows
from the defining property 3 of µf{r → s} in that Proposition.
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1.3 Double integrals

The measures µf{r → s} can be used to define certain Cp-valued double integrals by choosing
a p-adic logarithm

log : C×
p −→Cp

and setting, for r, s ∈ P1(Q) and τ1, τ2 ∈ Hp:∫ τ2

τ1

∫ s

r

ωf :=

∫
P1(Qp)

log

(
t− τ2

t− τ1

)
dµf{r → s}(t) (10)

:= lim
C={Uα}

∑
α

log

(
tα − τ2

tα − τ1

)
µf{r → s}(Uα), (11)

where the limit of Riemann sums in (11) is taken over finer and finer coverings of P1(Qp)
by mutually disjoint compact open subsets Uα, and tα is a sample point in Uα. This p-adic
“double integral” satisfies the additivity properties that are suggested by the notation:∫ τ2

τ1

∫ s

r

ωf +

∫ τ2

τ1

∫ t

s

ωf =

∫ τ2

τ1

∫ t

r

ωf , (12)∫ τ2

τ1

∫ s

r

ωf +

∫ τ3

τ2

∫ s

r

ωf =

∫ τ3

τ1

∫ s

r

ωf , (13)

as well as being invariant under translation by Γ:∫ γτ2

γτ1

∫ γs

γr

ωf = w|γ|∞
∞ a|γ|pp ·

∫ τ2

τ1

∫ s

r

ωf for all γ ∈ Γ̃. (14)

Because the measures µf{r → s} are integral, a multiplicative refinement of (10) can be
defined as in [Dar1] by formally exponentiating (11):

×
∫ s

r

∫ τ2

τ1

ωf = ×
∫

P1(Qp)

(
t− τ2

t− τ1

)
dµf{r → s}(t) := lim

C={Uα}

∏
α

(
tα − τ2

tα − τ1

)µf{r→s}(Uα)

, (15)

so that the expression appearing on the right of (15) is a limit of “Riemann products” instead
of Riemann sums. Note that the multiplicative integral is a more precise invariant, since the
additive integral can be recovered from it by the rule∫ τ2

τ1

∫ s

r

ωf = log

(
×
∫ τ2

τ1

∫ s

r

ωf

)
,

while the p-adic logarithm is never injective on C×
p , even modulo torsion.

If n is any integer, we also define the integrals∫ τ2

τ1

∫ s

r

nωf , ×
∫ τ2

τ1

∫ s

r

nωf

in the natural way by replacing the measures µf{r → s} by n · µf{r → s}.
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Since the p-adic “double integral” attached to f plays a key role in the definition of
Stark-Heegner points, it becomes important to evaluate this integral to high accuracy in an
efficient way.

The calculation of the double integrals. Let Qp2 denote the quadratic unramified extension
of Qp, let O denote its ring of integers, and let

red : P1(Qp2)−→P1(Fp2)

denote the natural reduction map. Consider the subsets of Hp defined by

Hp(Qp2) := P1(Qp2)− P1(Qp); (16)

H0
p := {τ ∈ P1(Qp2) such that red(τ) /∈ P1(Fp)} ⊂ Hp(Qp2). (17)

We will content ourselves with explaining how to calculate the double integral and its multi-
plicative counterpart when the p-adic endpoints of integration τ1 and τ2 belong to H0

p, which
turns out to be sufficient for our purposes.

Lemma 1.5. If τ1 and τ2 belong to H0
p, then

×
∫ τ2

τ1

∫ s

r

ωf belongs to O×.

In particular, to compute it to an accuracy of p−M , it is enough to compute

×
∫ τ2

τ1

∫ s

r

ωf (mod p), (18)

and ∫ τ2

τ1

∫ s

r

ωf (mod pM−1). (19)

The proof of this lemma is a direct consequence of the definitions. It is the main reason
why it is convenient to work under the assumption that τ1 and τ2 belong to H0

p.
The calculation of (18) can be carried out in O(p) operations using the formula

×
∫ τ2

τ1

∫ s

r

ωf =

p−1∏
t=0

(
t− τ2

t− τ1

)µf{r→s}(t+pZp)

(mod p). (20)

This running time is quite good when p is of reasonable size, and there is reason to believe
that its efficiency cannot be improved upon in practice. We now turn to the more serious
issue of calculating (19).

Continued fractions. Two elements [a/b] and [c/d] of P1(Q), represented by fractions in lowest
terms, are said to be adjacent if ad − bc = ±1. The convergents in the continued fraction
expansion of t ∈ Q yield a sequence of adjacent rational numbers joining t to ∞; hence any
two elements of P1(Q) can be joined by such a sequence. (The usefulness of this elementary
fact for calculations with modular symbols was already observed in [Man].) The additivity
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property (12) reduces the problem of evaluating (19) to the special case where r and s are
adjacent elements. But any pair of adjacent elements of P1(Q) is PSL2(Z)-equivalent to the
pair (0,∞):

γr = 0, γs = ∞, for some γ ∈ PSL2(Z).

Therefore by (14), we have ∫ τ2

τ1

∫ s

r

ωf =

∫ γτ2

γτ1

∫ ∞

0

ωf .

Since the subset H0
p is preserved under the action of PSL2(Z), the problem of evaluating

(19) has been reduced to that of efficiently evaluating to high accuracy, for any τ1, τ2 ∈ H0
p,

the double integral

J(τ1, τ2) :=

∫ τ2

τ1

∫ ∞

0

ωf =

∫
P1(Qp)

log

(
t− τ2

t− τ1

)
dµf (t), (21)

where µf is defined by (9).
The main departure from the algorithm of [DG] lies in the approach that is followed to

compute J(τ1, τ2). In [DG], the region P1(Qp) was broken up into (p + 1)pM−1 residue discs
modulo pM , and it was shown that the corresponding Riemann sum yields the integral of
(21) to an accuracy of M significant p-adic digits. Since there are exponentially many discs
on which the integrand needs to be evaluated, this approach quickly becomes intractable
when M is even moderately large.

For any integers k ≥ 0 and 0 ≤ a ≤ p− 1, define the kth moment of µf around a by the
rule

ω(a, k) :=

∫
a+pZp

(t− a)kdµf (t).

Our polynomial-time algorithm starts with the observation that J(τ1, τ2) can be expressed
succintly in terms of these moments. To see this, first break up J(τ1, τ2) as a sum of p + 1
contributions arising from the p + 1 residue discs on P1(Qp):

J(τ1, τ2) = J∞(τ1, τ2) +

p−1∑
a=0

Ja(τ1, τ2),

where

J∞(τ1, τ2) :=

∫
P1(Qp)−Zp

log

(
t− τ2

t− τ1

)
dµf (t), Ja(τ1, τ2) :=

∫
a+pZp

log

(
t− τ2

t− τ1

)
dµf (t).

To evaluate the term J∞(τ1, τ2), observe that

dµf (−1/t) = dµf{0 →∞}(−1/t) = dµf{∞ → 0}(t) = −dµf (t).

Hence we can make the change of variables t 7→ −1/t to obtain:

J∞(τ1, τ2) = −
∫

pZp

log

(
1 + tτ2

1 + tτ1

)
dµf (t) = J∞(τ2)− J∞(τ1),

9



where

J∞(τ) = −
∫

pZp

log(1 + tτ)dµf (t) = −
∫

pZp

∞∑
n=1

(−1)n+1 (tτ)n

n
dµf (t) =

∞∑
n=1

(−1)n ω(0, n)

n
τn.

Recall the integers M ′ and M ′′ defined in equations (2) and (3). Since ω(0, n) ≡ 0 (mod pn)
and since τ belongs to O×, it follows that

J∞(τ) =
M ′∑
n=1

(−1)n ω(0, n)

n
τn (mod pM). (22)

Formula (22) makes it possible to evaluate J∞(τ) in time which is polynomial in M , provided
the values of the first M ′ moments ω(0, n) are known in advance to M ′′ significant p-adic
digits.

The evaluation of the term Ja(τ1, τ2) is similar. More precisely, we may write:

Ja(τ1, τ2) = Ja(τ2)− Ja(τ1),

where

Ja(τ) =

∫
a+pZp

log(t− τ)dµf (t)

= ω(a, 0) log(τ − a) +

∫
a+pZp

log

(
1− t− a

τ − a

)
dµf (t)

= ω(a, 0) log(τ − a)−
∞∑

n=1

ω(a, n)

n

(
1

τ − a

)n

.

As before, since ω(a, n) ≡ 0 (mod pn) and since 1/(τ − a) belongs to O×,

Ja(τ) = ω(a, 0) log(τ − a)−
M ′∑
n=1

ω(a, n)

n

(
1

τ − a

)n

(mod pM).

Just as for J∞(τ), the evaluation of Ja(τ) can therefore be carried out in time which is
polynomial in M , given the data of

ω(a, j) =

∫
a+pZp

(t− a)jdµf (t) (mod pM ′′
), 0 ≤ a ≤ p− 1, j = 0, 1, . . . ,M ′. (23)

A procedure to calculate this (finite amount of) data in polynomial time via the theory of
overconvergent modular symbols is explained in Section 2.

1.4 Indefinite integrals

Assume that E is the strong Weil curve in its Q-isogeny class. Let q be Tate’s p-adic period
attached to E, and let n = #E(Q)tors. As is explained in [Dar1], the following conjecture
can be viewed as a refinement of a conjecture of Mazur, Tate and Teitelbaum [MTT] which
was proved by Greenberg and Stevens in [GS].
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Conjecture 1.6. There exists a unique Q×
p2/q

Z-valued function on Hp(Qp2)×P1(Q)×P1(Q),
denoted

(τ, r, s) 7→ ×
∫ τ∫ s

r

nωf , (24)

and satisfying

1.

×
∫ τ∫ s

r

nωf ××
∫ τ∫ t

s

nωf = ×
∫ τ∫ t

r

nωf , for all r, s, t ∈ P1(Q);

2.

×
∫ τ2

∫ s

r

nωf ÷×
∫ τ1

∫ s

r

nωf = ×
∫ τ2

τ1

∫ s

r

nωf , for all τ1, τ2 ∈ Hp(Qp2).

3.

×
∫ γτ∫ γs

γr

nωf = ×
∫ τ∫ s

r

nωf , for all γ ∈ Γ.

This function is called the indefinite integral attached to f . Its uniqueness is not hard to
establish. It is the existence which is more subtle: it implies the “exceptional zero conjecture”
of [MTT] and the tame refinement of this conjecture that is explored in [Ds], but is in fact
a bit stronger than these conjectures.

Following [DG], we now explain how (24) can be calculated in practice, assuming that
it exists, in the special case where the p-adic endpoints τ1 and τ2 belong to H0

p. Firstly, the
continued fraction trick discussed in Section 1.3, using the additivity property 1 of Conjecture
1.6, reduces the evaluation of (24) to the case where r and s are adjacent elements of P1(Q).
By property 3 of Conjecture 1.6, it is enough to evaluate expressions of the form

×
∫ τ∫ ∞

0

nωf , with τ ∈ H0
p.

The following manipulation reduces these expressions to the the double integral whose cal-
culation was already discussed in Section 1.3.

×
∫ τ∫ ∞

0

nωf = ×
∫ τ∫ 1

0

nωf ××
∫ τ∫ ∞

1

nωf

= ×
∫ −1/τ∫ −1

∞
nωf ××

∫ τ−1∫ ∞

0

nωf = ×
∫ τ−1

1−1/τ

∫ ∞

0

nωf .

1.5 Definition of Pτ

Let Γ̃+ denote the group of matrices in PGL2(Z[1/p]) with positive determinant. We are
now ready to define the map

τ 7→ Pτ , Γ\(Hp ∩K)−→E(Kp)

underlying the Stark-Heegner point construction. The following lemma shows that in defining
this map, one can restrict one’s attention to the τ ∈ H0

p.

11



Lemma 1.7. The inclusion H0
p ⊂ Hp induces a bijection

PSL2(Z)\(H0
p ∩K)−→Γ̃+\(Hp ∩K). (25)

Proof. The injectivity of the map (25) follows from the fact that the subgroup of Γ̃+ which
preserves H0

p is PSL2(Z), while the surjectivity is a consequence of the fact that any element

of Hp(Qp2) is Γ̃+-equivalent to an element in H0
p. Both of these facts are elementary.

Since it is more convenient from a computational point of view to work with τ ∈ H0
p,

given any τ ∈ Hp ∩ K, we will assume, after replacing it by an appropriate Γ̃+-translate,
that τ belongs to this subset of Hp.

Let Fτ be the unique primitive integral binary quadratic form Fτ (x, y) = Ax2+Bxy+Cy2

satisfying
Fτ (τ, 1) = 0, A > 0.

The discriminant of this quadratic form is called the discriminant of τ . If D is a fixed
(not necessarily fundamental) positive discriminant and K = Q(

√
D) is the associated real

quadratic field, then the set HD
p of τ ∈ H0

p of discriminant D is stable under the action of
PSL2(Z), and

H0
p ∩K =

⋃
D

HD
p ,

where the union is taken over all discriminants of orders in K of conductor prime to p. Let
OD denote the order of K of discriminant D, defined by

OD :=

{
Z[

√
D
2

] if D ≡ 0 (mod 4);

Z[1+
√

D
2

] if D ≡ 1 (mod 4).

The group O×
D and its subgroup (OD)×1 of elements of norm one are free of rank one modulo

torsion. Let uD be a generator for O×
D in the even case, and a generator for (OD)×1 in the

odd case, and write
uD = u + v

√
D, with u, v ∈ Q.

The matrix

γτ :=

(
u + vB −2vC

2vA u− vB

)
∈ PGL2(Z)

fixes τ under Möbius transformations, and the properties of the indefinite integral spelled
out in Conjecture 1.6 imply that the period

P̃τ := ×
∫ τ∫ γτ r

r

nωf ∈ K×
p /qZ

does not depend on the choice of the base point r ∈ P1(Q).

Definition 1.8. The Stark-Heegner point Pτ attached to τ is the image of P̃τ in E(Kp) by
the Tate uniformization attached to E.

12



We now make a precise conjecture about the fields of definition of the Stark-Heegner
points. Let Pic(OD) denote the Picard group of rank one projective modules over OD, and
let Pic+(OD) denote the group of oriented modules over OD. Class field theory identifies
these groups with the Galois groups of certain abelian extensions of K, via the Artin map:

rec : Pic(OD)−→Gal(HD/K), Pic+(OD)−→Gal(H+
D/K).

The extensions HD and H+
D are called the ring class field and narrow ring class field attached

to D respectively. The extension HD is totally real, while H+
D is an extension of HD whose

Galois group is generated by complex conjugation. (Therefore it is of degree either 1 or 2,
the latter case occuring if and only if the fundamental unit uD of O×

D has norm 1.)
Let h = [HD : K] be the class number of D, i.e., the number of SL2(Z)-equivalence classes

of primitive binary quadratic forms of discriminant D. Let F1, . . . , Fh denote representatives
for these quadratic forms, let τ1, . . . , τh denote the corresponding elements of HD

p /PSL2(Z),
and let Pj := Pτj

be the associated Stark-Heegner points. The following conjecture is a
slightly more concrete reformulation of Conjecture 5.3 of [Dar1].

Conjecture 1.9. 1. In the even case, the h points P1, . . . , Ph belong to E(HD) and the
natural action of Gal(HD/K) preserves this collection of points.

2. In the odd case, the 2h points ±P1, . . . ,±Ph belong to E(H+
D) and the action of

Gal(H+
D/HD) preserves this collection of points. Furthermore, if τ∞ denotes complex

conjugation,
τ∞Pj = −Pj. (26)

(In particular the Pj are of order 1 or 2 when H+
D = HD.)

Conjecture 1.9 is the statement which we have attempted to verify numerically.

1.6 Recognizing p-adic numbers as rational numbers

The ideas developed in the previous sections allow us to compute the points

Pj = (xj, yj), j = 1, . . . , h,

of Conjecture 1.9 to a p-adic accuracy of p−M in time which is polynomial in M .
In testing Conjecture 1.9, two types of experiment are typically performed, for a given E

and D.

1. Trace computations. In the even case, attempt to recognize the local point

P (D) := P1 + · · ·+ Ph (27)

as a global point in E(K).
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2. Class field computations. In this type of experiment, which is most interesting when
HD is not abelian over Q, the polynomial

hD(t) :=
h∏

j=1

(t− xj) (28)

with coefficients in Kp is tentatively identified as a polynomial with coefficients in K.
It can then be checked whether the resulting polynomial in K[t] has HD as splitting
field, and whether the roots of this polynomial are the x-coordinates of global points
belonging to E(HD) in the even case, and to E(H+

D) in the odd case.

In both types of experiment, it is crucial to be able to efficiently recognize a rational number
a given a p-adic approximation α of it satisfying

|a/α− 1| ≤ p−M

for some M . In the archimedean setting where α is a real instead of a p-adic number, this can
be dealt with using the continued fraction expansion of α (cf. [Co], Sec. 1.3.4 for example).
While “p-adic continued fractions” have been proposed in the literature and used to recognize
rational numbers of small height (cf. Section 3.2 of [Ru], for example), such methods do not
appear to work in general and their range of applicability is not well understod.

The process for recognizing a number modulo pM as a rational number is known as
rational reconstruction, and is described in [Kn, pg.656–657]. This approach is based on
lattice reduction in the p-adic setting.

To explain it, write
a := peβ,

where β is an element of Z×
p which is known to an accuracy of p−M . (I.e., only the image β̄

of β in (Z/pMZ)× is given.) The problem of recognizing β as a rational number b = r/s is
tackled by letting (r, s) be a shortest vector in the lattice Lβ,M ⊂ Z2 defined by

Lβ,M := {(x, y) such that pM divides x− βy.}

spanned by the vectors (β̃, 1) and (pM , 0), where β̃ ∈ Z is any representative of the congruence
class β̄. Note that Lβ,M contains at most one primitive vector (r, s) (up to sign) satisfying

|r|, |s| < 1√
2
pM/2.

If the coordinates of a shortest vector v0 = (r, s) in Lβ,M are smaller than this bound by at
least a few orders of magnitude, then one can be reasonably confident that β = r/s, although
of course the program can never actually prove such an equality, β being only given with
finite accuracy.

Finding the shortest vector in a rank two lattice of discriminant pM is a task which can
be handled efficiently via the LLL algorithm (cf. [Co], Sec. 2.6 and 2.7.3), which in our
context where the lattice has rank two amounts essentially to the Euclidean algorithm. This
procedure is so efficient that recognizing p-adic numbers as rational numbers takes up a
negligible part of the Stark-Heegner point calculations.
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2 Computing the moments of Mazur’s measure

Thanks to the previous section, the problem of efficiently computing Stark-Heegner points
has been reduced to that of calculating the data

ω(a, j) =

∫
a+pZp

(t− a)jdµf (t) (mod pM ′′
), 0 ≤ a ≤ p− 1, j = 0, 1, . . . ,M ′, (29)

attached to the measure µf , in polynomial time. An algorithm for doing this has been
discovered by Pollack and Stevens, and is described in [PS2]. This algorithm is based on
the notion of overconvergent modular symbols due to Stevens. The scope of [PS2] is more
ambitious than the present paper in that it applies to higher slope modular forms. For
the convenience of the reader, the present section briefly describes the main ideas of [PS2],
specialising them to the ordinary setting which is technically simpler than the more general
case treated in [PS2]. The reader is still advised to consult [PS1] and [PS2] for a fuller
discussion of the definitions and main properties of overconvergent modular symbols, which
are stated here mostly without proof.

2.1 Overconvergent modular symbols

The measures on Zp that were considered in the previous chapter can be embedded in the
larger space of locally analytic distributions on Zp, whose definition we now recall. For any
r > 0, let B[Zp, r] denote the affinoid region defined over Qp whose Cp-points are given by

B[Zp, r] := {z ∈ Cp such that there exists x ∈ Zp with |z − x| ≤ r}.

The Tate algebra A(r) Aover Qp attached to B[Zp, r] is a Banach-space under the sup norm.
The space of locally analytic functions on Zp, denoted A(Zp), is the direct limit of the A(r)
as r → 0, where the direct limit is taken relative to the natural restriction maps. This space
inherits a topology (the direct limit topology) from the topology on each of the A(r).

The continuous Qp-dual of A(Zp), denoted D(Zp), is called the space of locally analytic
Qp-valued distributions on Zp. It is equipped with the structure of a right Σ0(p)-module via
the rule

(µ
∣∣γ)(h(t)) = µ(h(tγ)).

Definition 2.1. An overconvergent modular symbol of level p is a D(Zp)-valued modular
symbol on Γ0(p).

The space SymbΓ0(p)(D(Zp)) of overconvergent modular symbols is an (infinite-dimensional)
p-adic Frechet space equipped with a Hecke-equivariant map

ρ : SymbΓ0(p)(D(Zp))−→ SymbΓ0(p)(Qp)

to the space of Qp-valued modular symbols by taking “total measure”, i.e., by setting for
Φ ∈ SymbΓ0(p)(D(Zp)),

ρ(Φ){r → s} := Φ{r → s}(Zp) =

∫
Zp

dΦ{r → s}(t).
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The map ρ will be referred to as the specialization map.
If X is any Cp-vector space equipped with an action of a linear operator Up, let X(<h)

denote the subspace of X on which Up acts with slope less than h, i.e., the direct sum of all
pseudo-eigenspaces for Up whose associated eigenvalue λ satisfies ordp(λ) < h. The following
proposition gives control on the subspace of overconvergent symbols of slope strictly less
than 1.

Theorem 2.2 (Stevens). The Hecke-equivariant map

ρ : SymbΓ0(p)(D(Zp))
(<1)−→ SymbΓ0(p)(Qp)

(<1)

is an isomorphism.

Proof. See [St, Theorem 7.1].

The modular symbol If defined in Proposition 1.2 and equation (7) after it can be viewed
as an element of SymbΓ0(p)(Qp), where Qp is endowed with the trivial Σ0(p)-action. Since f
is an eigenform, If is a Hecke-eigensymbol with the same eigenvalues as f ; that is,

If

∣∣T` = a`If , for all ` 6= p, and If

∣∣Up = apIf .

In particular, since ap = ±1, If is an eigensymbol of slope zero. One obtains the following
corollary of Theorem 2.2.

Corollary 2.3. The symbol If ∈ SymbΓ0(p)(Qp) lifts uniquely to a Up-eigensymbol Φf ∈
SymbΓ0(p)(D(Zp)), satisfying

ρ(Φf ) = If , Φf

∣∣Up = apΦf .

The following proposition relates the locally analytic distributions Φf{r → s} on Zp to
the measures µf{r → s} on P1(Qp) defined in Proposition 1.3.

Proposition 2.4. For all r, s ∈ P1(Q) and all locally analytic g on Zp,∫
Zp

g(t)dΦf{r → s}(t) =

∫
Zp

g(−t)dµf{r → s}(t).

Proof. Let µ#
f {r → s} : P1(Q)× P1(Q)−→D(Zp) be defined by the rule

µ#
f {r → s}(g(t)) :=

∫
Zp

g(−t)dµf{r → s}(t).

A direct calculation shows that µ#
f belongs to SymbΓ0(p)(D(Zp)), and that

ρ(µ#
f ) = If , µ#

f

∣∣Up = apµ
#
f .

It follows from Corollary 2.3 that µ#
f = Φf , as was to be shown.
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Corollary 2.5. µf = w∞Φf{0 →∞}.

Proof. This follows from the transformation property for If under the matrix ( −1 0
0 1 ) given

in equation (6).

Thanks to this corollary, the data (29) is equivalent to the corresponding data for the
distribution Φf{0 →∞}. In order to lighten the notations, let us ignore the sign discrepancy
between µf and Φf{0 →∞} that arises in the odd case and simply write

µf := Φf{0 →∞}

from now on.
Computing (29) is clearly equivalent to computing∫

a+pZp

tj dµf (t) (mod pM ′′
), 0 ≤ a ≤ p− 1, j = 0, 1, . . . ,M ′.

To extract this data from Φf , note that

Φf =
1

ap

Φf

∣∣Up,

and therefore

µf = Φf{0 →∞} =
1

ap

p−1∑
a=0

Φf{a/p →∞}
∣∣ (

1 a
0 p

)
.

The matrix
(

1 a
0 p

)
sends D(Zp) to the space of distributions supported on a + pZp, so that∫

a+pZp

tjdµf (t) =
1

ap

(Φf{a/p →∞}
∣∣ (

1 a
0 p

)
)(tj) (30)

=
1

ap

Φf{a/p →∞}((a + pt)j) (31)

=
1

ap

j∑
r=0

(
j

r

)
aj−rprΦf{a/p →∞}(tr). (32)

Note the factor of pr occuring in the above formula, which implies that to compute (29), it
suffices to compute

Φf{a/p →∞}(tr) (mod pM ′′−r), r = 0, 1, . . . ,M ′.

In what follows, we will explain how to compute this data, with {a/p →∞} replaced by an
arbitrary path {r → s}.
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2.2 Iterating Up

The symbol Φf is efficiently computed by realizing it as the limit of a sequence of symbols
obtained by repeatedly applying Up to an initial approximate solution Φ.

Let D0(Zp) be the subspace of D(Zp) consisting of distributions all of whose moments
are integral; that is,

D0(Zp) = {µ ∈ D(Zp)
∣∣ µ(tj) ∈ Zp for all j ≥ 0}.

Proposition 2.6. Let Φ be any element of SymbΓ0(p)(D0(Zp)) satisfying ρ(Φ) = If . Then

a−n
p Φ

∣∣Un
p − Φf belongs to pn SymbΓ0(p)(D0(Zp)).

In particular, the sequence {a−n
p Φ

∣∣Un
p } converges p-adically to Φf .

Proof. A direct calculation (see [PS2]) reveals that if Ψ ∈ SymbΓ0(p)(D0(Zp)) is in the kernel
of the specialization map ρ, then

Ψ
∣∣Up belongs to p SymbΓ0(p)(D0(Zp)).

Since the symbol Φ − Φf lies in the kernel of specialization and since a−1
p Φf

∣∣Up = Φf , it
follows that

a−n
p Φ

∣∣Un
p − Φf = a−n

p (Φ− Φf )
∣∣Un

p belongs to pn SymbΓ0(p)(D0(Zp)),

as was to be shown.

Proposition 2.6 forms the basis of the following polynomial time algorithm to compute
the data (29).

Step 1 Find any symbol Φ in SymbΓ0(p)(D(Zp)) lifting If .

Step 2 Apply the operator a−1
p Up to Φ repeatedly. Each application produces an improved lift

of If that is p-adically closer to Φf . In fact, each iteration introduces at least one extra
digit of p-adic accuracy.

Step 3 Evaluate such a lift at the paths from a/p to∞ to yield approximations to the moments
of the original measure µf .

We discuss each step in turn.

2.3 Lifting modular symbols

The first step of the algorithm is to find some symbol Φ of SymbΓ0(p)(D(Zp)) lifting If . This
is achieved by means of the following explicit presentation of the space of V -valued modular
symbols on Γ0(p).
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Theorem 2.7. Assume that the image of Γ0(p) in PSL2(Z) is torsion-free. Then for some
m ≥ 1, there exist

ri, si ∈ P1(Q), γi ∈ SL2(Z), i = 1, . . . ,m,

such that:

1. Any modular symbol ϕ ∈ SymbΓ0(p)(V ) satisfies the relation

ϕ{0 →∞}
∣∣ (( 1 1

0 1 )− 1) =
m∑

j=1

ϕ{ri → si}
∣∣(γi − 1).

2. Conversely, given elements v1, . . . , vm, v∞ ∈ V satisfying

v∞
∣∣ (( 1 1

0 1 )− 1) =
m∑

j=1

vi

∣∣(γi − 1),

there is a unique modular symbol ϕ ∈ SymbΓ0(p)(V ) such that

ϕ{ri → si} = vi and ϕ{0 →∞} = v∞.

Proof. This is proven in [St, Theorem 7.1]. See also [PS2].

Remark 2.8. The proof of Theorem 2.7 is constructive, and gives an efficient way of pro-
ducing the ri, si and γi. There is also a more general version that does not assume that the
image of Γ0(p) in PSL2(Z) is torsion-free. Instead of having a list of paths satisfying one
relation, two or three additional relations may appear depending on the order of the torsion
subgroup of Γ0(p). For the remainder of this section, it will be assumed for simplicity that
we are in the torsion-free case. However, all of the constructions of this section can be made
to work in the presence of torsion (see [PS2] for details), and it is this more general version
that has been implemented in the shp package.

To produce a D(Zp)-valued modular symbol from Theorem 2.7, it is necessary to solve
the “difference equation”

µ
∣∣∆ = ν, (33)

where ∆ = ( 1 1
0 1 ) − 1 and µ, ν ∈ D(Zp). Since ρ(µ

∣∣∆) = 0 for any µ ∈ D(Zp), a necessary
condition to solve this equation is for ν to have total measure zero. Unfortunately, in D(Zp)
this condition is not also sufficient. To fix this problem, we will pass to a larger space of
distributions where this condition does in fact become sufficient.

For r a real number greater than 1, let A[Zp, r] denote the space of power series with
coefficients in Qp that are convergent on the disc of radius r in Cp around 0. Let D[Zp, r]
denote the (continuous) Qp-dual of this space. Finally, set D† := inj lim

r>1
D[Zp, r].

The span of the functions {tj}∞j=0 is dense in the space of locally analytic functions on Zp

and in A[Zp, r] for any r. Thus, a distribution µ in D(Zp) or in D† is uniquely determined
by its sequence of moments {µ(tj)}∞j=0. One advantage to working in D† is that there is a
simple criterion to test when a sequence of elements in Qp actually arises as the moments of
µ ∈ D†.
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Proposition 2.9. Let {θn} be a sequence of elements of Qp such that for every r > 1,∣∣θn

∣∣
p

is o(rn) as n →∞.

Then there exists a unique distribution µ ∈ D† such that µ(tn) = θn.

We are now in a position to present a solution to the difference equation in D†.

Proposition 2.10. If ν ∈ D† is a distribution of total measure zero, then there is a unique
solution µ ∈ D† of equation (33). Moreover,

µ(tn) =
n∑

j=0

ν(tj+1)
(

n
j

)
Bn−j

j + 1
,

where Bk is the k-th Bernoulli number.

Proof. See [PS2]

Remark 2.11. The presence of denominators in the formula of Proposition 2.10 is the reason
why (33) may fail to have solutions in D(Zp). This is because any µ ∈ D(Zp) has bounded
moments, while the distribution solving the difference equation need not share this property.

Theorem 2.7 and Proposition 2.10 allow a Qp-valued modular symbol to be explicitly
lifted to an overconvergent modular symbol. Namely, if ϕ belongs to SymbΓ0(p)(Qp), set

νi = ϕ{ri → si} · δ0 ∈ D†,

where δ0 is the Dirac distribution based at zero. Then set

ν =
m∑

i=0

νi

∣∣(γi − 1),

which has total measure zero. By Proposition 2.10, there exists a unique distribution ν∞ ∈ D†

such that
ν∞

∣∣∆ = ν,

and, by Theorem 2.7, there exists a unique symbol Φ′ ∈ SymbΓ0(p)(D†) satisfying

Φ′{ri → si} = νi and Φ′{0 →∞} = ν∞.

Unfortunately, it is not necessarily the case that ρ(Φ′) = ϕ, since the fact that

ρ(Φ′){ri → si} = ϕ(ri → si) for i = 1, . . . ,m

does not imply that
ρ(Φ′){0 →∞} = ϕ{0 →∞}.

To fix this problem, it is verified in [PS2] that ρ(Φ′) − ϕ is an Eisenstein modular symbol.
Thus, choosing any prime ` such that a` 6= ` + 1 (which is possible since f is a cusp form; in
fact, the choice ` = 2 would always do), the symbol

Φ := (a` − (` + 1))−1Φ′∣∣(T` − (` + 1))

produces the desired lift of ϕ.
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Remark 2.12. While our goal was to find a lift of If to a symbol in SymbΓ0(p)(D(Zp)), we

have only described how to lift it to an element of the larger space SymbΓ0(p)(D†). However,

it is easy to see that the proof of Proposition 2.6 remains valid if D(Zp) is replaced with D†.
Thus, no generality is lost by working in this larger space of modular symbols.

2.4 Finite approximation modules

Carrying out our algorithm in practice requires a method of approximating an overconvergent
modular symbol by a finite amount of data, so that it can be stored on a computer. Theorem
2.7 represents a V -valued modular symbol ϕ by a finite list of elements of V . What is needed
is a way to approximate µ ∈ D†.

Our current characterization of a distribution is by its sequence of moments. Of course,
such a description contains an infinite amount of data in two different ways: there are
infinitely many moments and each moment is a p-adic number which requires an infinite
amount of information to be given to full accuracy.

Consider the subspace D0 ⊆ D† of distributions all of whose moments are integral. A
natural attempt to approximate an element of D0 would be to fix an integer N and consider
the first N moments of the distribution mod pN . Unfortunately, the action of Σ0(p) does
not preserve these approximations; that is, for γ ∈ Σ0(p) and µ ∈ D0, the data

µ(tj) (mod pN), j = 0, 1, . . . , N − 1

does not determine the corresponding data for µ
∣∣γ.

The basic problem with this approach is that the subspace ofD0 consisting of distributions
whose first N moments vanish is not preserved by Σ0(p). However, in [PS1], the following
Σ0(p)-stable filtration of D0 is introduced:

Filr(D0) :=
{
µ ∈ D0

∣∣ µ(tj) ∈ pr−jZp

}
.

The stability of this filtration implies that

F(N) := D0/ FilN(D0) ∼=
(
Z/pNZ

)
×

(
Z/pN−1Z

)
× · · · × (Z/pZ)

is naturally a Σ0(p)-module. In other words, the data of

µ(tj) (mod pN−j), j = 0, 1, . . . , N − 1

determines the corresponding data for µ
∣∣γ for all γ ∈ Σ0(p). The module F(N) is referred

to as the N-th finite approximation module attached to D0.
Because of the denominators that appear in solving the difference equation, we will also

need to consider approximations of distributions whose moments are not all integral (or even
bounded!). To do this, let

K0 := {µ ∈ D† ∣∣ pjµ(tj) ∈ Zp}.

Note then that

F(N) := D0/ FilN(D0) ∼= D0/D0 ∩ pNK0
∼= (D0 + pNK0)/p

NK0.
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Thus, to represent a distribution µ ∈ D† on a computer “to accuracy N”, we find the
smallest integer r such that the first N moments of prµ are all integral. Since prµ belongs
to D0 + pNK0, it then makes sense to project this distribution to F(N).

The following proposition describes how to lift symbols with values in these finite ap-
proximation modules. Set r(N) = [log(N)/ log(p)].

Proposition 2.13. If ϕ belongs to pr(N) SymbΓ0(p)(Z/pNZ), then there exists a symbol Φ ∈
SymbΓ0(p)(F(N)) such that ρ(Φ) = ϕ. Moreover, this lift can be explicitly described by the
formulas of Proposition 2.10.

Proof. See [PS2].

2.5 Computing the moments

We now describe an algorithm that computes the data of (29) in polynomial time. The time
complexity of this algorithm will be analyzed in section 2.6.

Let N be the smallest integer such that

N − r(N) ≥ M ′′ ≥ M ′ + 1

and let If be the image of the symbol If in SymbΓ0(p)(Z/pNZ). By Proposition 2.13, we can
explicitly form some lift

Φ ∈ SymbΓ0(p)(F(N))w∞

of pr(N)If . Repeatedly applying the operator a−1
p Up to Φ produces a sequence of elements

of SymbΓ0(p)(F(N)) which stabilizes to some element Φf in no more than N + 1 iterations

(by Proposition 2.6 and Remark 2.12). The element Φf is precisely the image of pr(N)Φf in
SymbΓ0(p)(F(N)).

Next, we evaluate Φf at the paths {a/p →∞} for each a between 0 and p− 1. Because
of the way in which the distributions are stored, Φf{a/p →∞} is just the sequence of values

pr(N)Φf{a/p →∞}(tj) (mod pN−j), j = 0, . . . , N − 1.

Canceling the extra powers of p yields the values Φf{a/p → ∞}(tj) modulo pN−r(N)−j for
0 ≤ j ≤ N . Since N − r(N) ≥ M ′′ ≥ M ′ + 1, the moment Φf{a/p → ∞}(tj) has therefore
been computed modulo pM ′′−j, for 0 ≤ j ≤ M ′. Formula (32) can be used to relate this data
to the moments

∫
a+pZp

tj dµf mod pM ′′
, from which the data (29) is readily recovered.

2.6 Complexity analysis

We now analyze the running time complexity of computing (29) following the strategy de-
scribed in Section 2.5.

Proposition 2.14. The procedure described in Section 2.5 computes the moments

ω(a, j) (mod pM ′′
), 0 ≤ a ≤ p− 1, j = 0, 1, . . . ,M ′

in O(M3p3 log M log p) arithmetic operations on integers of size on the order of pM .
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Proof. The most time-consuming part in this computation lies in the iteration of the Up

operator; that is, the number of arithmetic operations required to iterate Up on a lift of If

(measured as a function of p and M) dominates the number of operations required to carry
out the other parts of the algorithm. Moreover, the most time intensive part of iterating
Up is accounted for by the right actions of elements in Σ0(p) on distributions. For this
reason, we will simply count the number of right actions performed and then analyze the
time complexity of a single right action.

We first compute the number of right actions required to apply Up once to an F(N)-
valued modular symbol Φ. To do this, we must compute (Φ

∣∣Up){ri → si} for the paths
{ri → si} of Theorem 2.7. (Note that there are on the order of p such paths.) For each i,
we have

(Φ
∣∣Up){ri → si} =

p−1∑
a=0

Φ{γari → γasi}
∣∣γa,

where γa =
(

1 a
0 p

)
. To compute Φ{γari → γasi}, we use Manin’s continued fraction algorithm

to write
Φ{γari → γasi} =

∑
j

Φ{aij → bij},

where aij and bij are adjacent rational numbers. The number of terms in the above sum is
on the order of log(p). By the proof of Theorem 2.7 in [PS2], for arbitrary adjacent rational
numbers r and s, we have

Φ{r → s} =
∑

i

Φ{ri → si}
∣∣αi

for αi ∈ Z[Γ0(p)], where each αi is composed of a sum of no more than 2 basic elements in
Γ0(p). Thus to apply Up once to an F(N)-valued modular symbol requires on the order of
p3 log(p) right actions by elements γ ∈ Σ0(p).

The operator Up needs to be iterated at most N +1 times in order to form a F(N)-valued
Up-eigensymbol. To compute the moments with enough accuracy to obtain the associated
Stark-Heegner points to accuracy p−M , we can take N to be some integer with size on the
order of the size of M . Thus, to complete this part of the algorithm requires on the order of
Mp3 log(p) right actions on elements in F(N).

Finally, an efficient method for computing µ
∣∣γ for µ ∈ D† is given in [PS2]. The main idea

is that there is a Σ0(p)-equivariant isomorphism between D† and the space of log-differentials
on the complement of the unit disc in Cp. One has that a distribution µ ∈ D† corresponds
to

ω =
∞∑

j=0

ajz
−j dz

z

where aj = µ(tj). To act by γ on ω, one simply acts on the variable z and then expands out.
To do this in F(N) takes N2 log(N) arithmetic operations. Moreover, since we are working
in F(N), we never need to work with integers greater than pN .

Proposition 2.14 follows from this analysis.
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3 The shp package

The Stark-Heegner point package has been implemented in the language Magma and can be
downloaded from the address

http://www.math.mcgill.ca/darmon/programs/programs.html.

After following the instructions for downloading the shp package, the user will have a copy
of the necessary programs and data, stored in a directory called shp package.

A. To compute Stark-Heegner points on any elliptic curve of prime conductor p = N ≤ 100,
(and, in particular, to repeat any of the calculations that are reported on in Section 4) the
user simply needs to go into the shp subdirectory in shp package, invoke magma, and type

load shpN;

from the Magma command prompt. The script file shpN instructs magma to load certain
programs and data (such as a table of pre-computed moments) needed to carry out the
calculations of Stark-Heegner points on the strong Weil curve of conductor p = N . After
being prompted to enter some of the parameters for the computation, the user then has
access to a number of functions, such as those allowing the computation of p-adic double
integrals. All of these are described in the on-line documentation for the shp package. The
main command that can be used to test Conjecture 1.9 is

HP, P, hD := stark heegner points(E, D, Qp),

which takes as input the elliptic curve E of prime conductor p, a positive discriminant D

satisfying (D
p
) = −1, and a fixed precision p-adic field Qp, and returns the following data:

1. A vector HP of length h = h(D) containing the h distinct Stark-Heegner points
P1, . . . , Ph in E(Qp(

√
D)).

2. In the even case, the point P = P (D) of equation (27). The program attempts to recog-
nize the x and y coordinates of P (D) as elements of K, and tests whether the resulting
pair corresponds to a global point in E(K). If this identification is not successful, the
point P (D) is returned as an element of E(Qp2) and a warning message is printed.
Otherwise the global point in E(K) that was found (and which is, with overwhelming
likelihood, the point P (D), although the program of course cannot guarantee this!) is
returned. (In the odd case, the point P (D) is set to be the point at infinity, a definition
that is motivated by equation (26) in Conjecture 1.9.)

3. The variable hD is assigned the value of the degree h polynomial hD(t) of equation (28).
The program attempts to identify hD(t) as a polynomial in K[t], and returns such a
polynomial satisfied by the xj to the calculated degree of acuracy.

B. To work with elliptic curves of conductor > 100, or to increase the accuracy of the
calculations beyond 100 p-adic digits, the user will first need to compute the sequence of
moments attached to Mazur’s measure for the desired elliptic curve. This can be done by
going into the moments subdirectory in shp package, invoking magma, and typing
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load moments;

from the Magma command prompt. The user will then be prompted to supply the parameters
for the computation such as the prime p, an identifier for the elliptic curve following the
conventions of the tables of Cremona if there are several isogeny classes of elliptic curves of
conductor p, and the number M of digits of desired accuracy. The program produces the
data (29) and stores it in an array. Typically this array of moments will be stored in a file
where it can later be accessed repeatedly for different Stark-Heegner point calculations (on
the same curve, but with varying real quadratic discriminants.)

4 Numerical examples

This section summarises some of the new experimental evidence for Conjecture 1.9 that
was obtained with the help of the shp package, with special emphasis on discriminants of
class number > 2 for which points defined over the relevant class field would be difficult to
compute without the algorithms of this paper.

The curve X0(11). Let f be the unique normalised cusp of weight 2 on Γ0(11). The first
M = 100 moments of the corresponding 11-adic measure µf were computed to an 11-adic
accuracy of 11−101, taking around 2 minutes on a fast workstation. The curve X0(11), also
denoted by 11A1 in the tables of Cremona, is described by the Weierstrass equation

11A : y2 + y = x3 − x2 − 10x− 20,

and is the curve on which the Stark-Heegner points appear to be the best behaved (i.e., to
be of smallest height).

The shp package was used to verify the data in Tables 1 and 2 of [DG] to 100 digits.
It was also used to fill in many of the missing entries in Table 2 that the authors of [DG]
were previously unable to identify as global points. For example, for the first missing entry
of this table, corresponding to D = 101, the command stark heegner points(E,101,Qp)

produces, in a few seconds, the point P 1+
√

101
2

with an accuracy of 11−100 and recognizes it as

an 11-adic approximation to the global point (x/t2, y/t3), with t = 15711350731963510 and

x = 1081624136644692539667084685116849,

y = −1939146297774921836916098998070620047276215775500

−450348132717625197271325875616860240657045635493
√

101.

The large height of this point explains the difficulties encountered by [DG] in recognizing it as
a global point. Thanks to the shp package, the traces to K of the Stark-Heegner points were
efficiently identified as global points for all values of D ≤ 200, with the notable exception of
D = 173, which has narrow class number one. After increasing the 11-adic accuracy from
100 to 200 digits, (necessitating a moment pre-computation that took roughly 20 minutes)
the programs were also able to successfully identify the point P 1+

√
173

2

.
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The smallest positive discriminant of class number 3 in which 11 is inert is D = 316 =
2279. The x-coordinates of the three distinct Stark-Heegner points attached to this discrim-
inant appear to satisfy the polynomial with (relatively!) small coefficients

h316(x) = 72766453768745463520694728094967184x3

−71914415566181323559220215097240264940x2

+2653029535749035413574464896382331270516x

−15333781783601940675857202851550615143803,

whose splitting field is indeed the Hilbert class field of Q(
√

79). A number of calculations of
a similar sort were performed with larger discriminants, relying occasionally on an accuracy
of up to 400 significant 11-adic digits; the scope of these calculations is summarized in Tables
2 and 3 below.

The numerical investigations of Stark-Heegner points on X0(11) suggest that the loga-
rithmic height of these points grows quickly as D increases, in contrast to what happens
with some of the other curves that were considered, such as the curve X0(37)+ of conductor
37, as is illustrated by Table 1 below.

The curve X0(37)+. The modular curve X0(37) is of genus two, and its quotient X+
0 (37) by

the Atkin-Lehner involution is an elliptic curve, denoted by 37A in the tables of Cremona.
Given by the equation

E : y2 + y = x3 − x,

it is notable for being the elliptic curve of smallest conductor for which the sign in the
functional equation of L(E, s) is −1, and for being unique in its Q-isogeny class. (All the
elliptic curves of prime conductor less than 37 are equal to the Eisenstein quotients of the
corresponding modular curve, and in particular have non-trivial rational isogenies.) This last
fact may explain why the Stark-Heegner points, which this time were computed to only 50
significant 37-adic digits, are of small height, so that they can be recognized as global points
even for large discriminants with sizeable class numbers, as is illustrated in the following
table.
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D h The polynomial hD(x)
257 3 x3 − 66x2 − 24x + 8
316 3 x3 − 4x2 − 2x + 4
328 4 4x4 − 20x3 − 11x2 + 8x− 1
401 5 81x5 − 657x4 + 1195x3 − 173x2 − 976x + 527
473 3 169x3 − 120x2 − 180x + 136
505 4 128881x4 − 635475x3 − 580801x2 − 66795x− 1495
520 4 x4 − 2904x3 + 126x2 + 3456x + 1296
568 3 x3 − 7x2 + 10x− 2
577 7 x7 − 29x6 + 245x5 − 633x4 + 515x3 − 15x2 − 18x− 1
621 3 9x3 − 9x2 − 24x− 4
624 4 x4 − 30x3 + 120x2 − 126x + 9
672 4 9x4 − 6x3 − 14x2 − 2x + 1
680 4 81x4 − 340x3 + 328x2 − 9
689 4 49x4 − 1751x3 + 9925x2 − 8493x− 1017
697 6 1600x6 − 784x5 − 728x4 + 111x3 + 53x2 − 3x− 1
1093 5 256x5 − 10160x4 + 3569x3 + 163x2 − 122x + 4
1129 9 27889x9 − 10266200x8 + 71385938x7 + 201496372x6 + 77385436x5

−83339876x4 − 17366802x3 + 19161226x2 − 3925233x + 251669
1297 11 961x11 − 4035x10 − 3868x9 + 19376x8 + 13229x7 − 27966x6 − 21675x5

+11403x4 + 11859x3 + 1391x2 − 369x− 37
1761 7 x7 − 84x6 + 1294x5 − 2406x4 + 49x3 + 1020x2 + 102x− 27
1996 5 16x5 − 297x4 + 1956x3 − 5574x2 + 7076x− 3293
2029 7 256x7 − 2288x6 + 3409x5 + 5568x4 − 8444x3 − 5150x2 + 4515x + 1862
2308 7 2209x7 − 1247663x6 − 897885x5 + 3874015x4 + 3905023x3

−1589845x2 − 2559414x− 597415
3604 12 187333969x12 − 17948390102x11 + 33568503259x10 + 22354978168x9

−64830216081x8 + 11548363590x7 + 28537911009x6 − 14626940684x5

+1207770356x4 + 510260996x3 − 85472644x2 − 2324816x + 722036

Table 1: Some values of hD(x) for E = X0(37)+.

It is interesting to contrast these calculations with what occurs for the elliptic curve 37B
described by the Weierstrass equation

E : y2 + y = x3 + x2 − 23x− 50,

whose L-function has sign 1. For example, the polynomial h577(x) for this curve appears to
be given by

h577(x) = 2936231528590386481x7 − 4833937098015693239780x6

+218652732802796179999982x5 − 235968463684776250298028x4

−8023973384386324566210757x3 − 1193483980495390619139462x2

+88739970511784784264668460x + 136157854070067067382671979,
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with coefficients significantly larger than those appearing on the line D = 577 in Table 1.

Summary of calculations for other curves. In addition to the elliptic curves of con-
ductors 11 and 37 already discussed, our numerical experiments focussed on the following
strong Weil curves, designated following the conventions of the tables of Cremona:

17A : y2 + xy + y = x3 − x2 − x− 14,

19A : y2 + y = x3 + x2 − 9x− 15,

43A : y2 + y = x3 + x2,

53A : y2 + xy + y = x3 − x2,

61A : y2 + xy = x3 − 2x + 1,

67A : y2 + y = x3 − 12x− 21,

73A : y2 + xy = x3 − x2 + 4x− 3,

83A : y2 + xy + y = x3 + x2 + x,

389A : y2 + y = x3 + x2 − 2x.

Table 2 below summarises some of the calculations that were done to test Conjecture 1.9
numerically for each curve.

p E M s D h = 1 h = 2 h = 4
11 11A 400 1 ≤ 200 33 10 1
17 17A 100 1 ≤ 100 19 3 0
19 19A 100 1 ≤ 100 19 3 0
37 37A 100 −1 ≤ 200 37 8 0
37 37B 100 1 ≤ 50 9 0 0
43 43A 100 −1 ≤ 50 11 0 0
53 53A 100 −1 ≤ 50 10 0 0
61 61A 100 −1 ≤ 50 10 1 0
67 67A 100 1 ≤ 50 11 0 0
73 73A 100 1 ≤ 50 10 1 0
83 83A 100 −1 ≤ 50 7 0 0
389 389A 20 1 ≤ 50 8 1 0

Table 2: Range of numerical verifications for small D.

The fourth column of Table 2 lists the sign s in the functional equation for L(E/Q, s), and
the fifth gives the range of positive discriminants in which p is inert for which Conjecture
1.9 was tested. The last three columns indicate the number of values of D in the tested
ranges with class number 1, 2 and 4, these being the only class numbers that occured in
these ranges.

Table 3 below lists, next to each curve, the first few discriminants of class number three for
which p is inert, and for which Stark-Heegner point calculations, carried out to an accuracy
of p−M , led to a successful identification of the polynomial hD(t) and of the Stark-Heeegner
points themselves as points in E(HD). Tables 4 and 5 do the same for discriminant D of
class number 5 and ≥ 7 respectively.
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p E M D
11 11A 400 316, 321, 404
17 17A 100 148, 316
19 19A 100 148, 257, 316, 469
37 37A 100 See Table 1
37 37B 100 257, 316, 473
43 43A 100 148, 257, 321, 469
53 53A 100 257, 316, 321, 404, 469
61 61A 100 148, 316, 404, 592, 621
67 67A 100 229, 316, 321, 404
73 73A 100 229, 321, 404, 469
83 83A 100 257, 316, 321, 404, 469, 473
389 389 20 148

Table 3: Some numerical verifications with h(D) = 3

p E M D
37 37A 100 See Table 1
37 37B 100 401
43 43A 100 1093
53 53A 100 401, 817, 1093
61 61A 100 401, 817, 1393, 1429, 1604
67 67A 100 401, 817
73 73A 100 817
83 83A 100 1093, 1429
389 389A 20 401

Table 4: Some numerical verifications with h(D) = 5

p E M D
37 37A 100 See Table 1
37 37B 100 577
43 43A 100 577, 1009, 1297h=11

53 53A 100 1009
61 61A 100 577, 1009, 1761, 1129h=9

67 67A 100 577
73 73A 100 577, 1009
83 83A 100 577, 1009, 1129h=9, 1297h=11

389 389A 20 577

Table 5: Some numerical verifications with h(D) ≥ 7
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Remarks.
1. Generally speaking, the Stark-Heegner points seem to be of smaller height on the curves
with s = −1, than on those for which the sign s is equal to 1. But they are also notably
small on the curve 389A with s = 1, in spite of the larger size of this conductor.

2. The curve E = 398A was singled out because it is the elliptic curve of smallest conductor
whose rank over Q is equal to 2. For any value of D, the point P (D) is expected to be a
torsion point on E(K), by analogy with what happens with classical Heegner points (and as
should occur if, as conjectured in [Dar1] and [DG], Stark-Heegner points satisfy an analogue
of the Gross-Zagier formula). All our experimental results agree with this prediction, to the
calculated degree of 389-adic accuracy. Note that when h(D) > 1, the Stark-Heegner point
calculations, carried out to 20 significant 389-adic digits, always resulted in finding a point
of infinite order on E(HD), for the values of D listed in the last lines of Tables 3, 4 and 5.

3. It would have been too tedious to list the polynomial hD(x) corresponding to each entry in
the rightmost columns of Tables 3, 4 and 5. However, the reader can repeat these calculations
independently after downloading the shp package, using the script files that are included to
facilitate this task. For example, experimentally verifying Conjecture 1.9 for the second
entry in the penultimate line of Table 5 can be accomplished by typing the sequence of two
commands

load shp83;

HP, P, hD := stark heegner points(E,577,Qp);

from the magma command prompt. The calculation in this case, which is fairly typical, takes
about two minutes (with 20 significant 83-adic digits, a precision that apparently turns out
to be sufficient in this case for identifying both P and hD(t) as global objects).

4. In [DD] it is observed that when the cusp form f is replaced by the logarithmic derivative
of a modular unit—a weight two Eisenstein series—the Stark-Heegner point construction
leads to a refinement of the p-adic Gross-Stark units in ring class fields of real quadratic
fields. The last chapter of [Das] gives polynomial time algorithms for computing these p-
units. Because the periods of Eisenstein series can be written down explicitly, the approach
followed in [Das] does not rely on iteration of the Up operator and is even more efficient that
the method described in this paper.
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