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This note presents a connection between Ulmer’s construction [Ulm02] of
non-isotrivial elliptic curves over Fp(t) with arbitrarily large rank, and the
theory of Heegner points (attached to parametrisations by Drinfeld modular
curves, as sketched in section 3 of the article [Ulm03] appearing in this
volume). This ties in the topics in section 4 of [Ulm03] more closely to the
main theme of this proceedings.

A review of the number field setting: Let K be a quadratic imaginary
extension of F = Q, and let E/Q be an elliptic curve of conductor N . When
all the prime divisors of N are split in K/F , the Heegner point construction
(in the most classical form that is considered in [GZ], relying on the mod-
ular parametrisation X0(N) −→ E) produces not only a canonical point
on E(K), but also a norm-coherent system of such points over all abelian
extensions of K which are of “dihedral type”. (An abelian extension H of
K is said to be of dihedral type if it is Galois over Q and the generator of
Gal(K/Q) acts by −1 on the abelian normal subgroup Gal(H/K).) The ex-
istence of this construction is consistent with the Birch and Swinnerton-Dyer
conjecture, in the following sense: an analysis of the sign in the functional
equation for L(E/K, χ, s) = L(E/K, χ̄, s) shows that this sign is always
equal to −1, for all complex characters χ of G := Gal(H/K). Hence

L(E/K, χ, 1) = 0 for all χ : G −→ C×.

The product factorisation

L(E/H, s) =
∏
χ

L(E/K, χ, s)
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implies that

ords=1L(E/H, s) ≥ [H : K], (1)

so that the Birch and Swinnerton-Dyer conjecture predicts that

rank(E(H))
?
≥ [H : K]. (2)

In fact, the G-equivariant refinement of the Birch and Swinnerton-Dyer con-
jecture leads one to expect that the rational vector space E(H)⊗Q contains
a copy of the regular representation of G.

It is expected in this situation that Heegner points account for the bulk
of the growth of E(H), as H varies over the abelian extensions of K of
dihedral type. For example we have:

Lemma 1. If ords=1L(E/H, s) ≤ [H : K], then the vector space E(H)⊗Q
has dimension [H : K] and is generated by Heegner points.

Proof: For V any complex representation of G, let

V χ := {v ∈ V such that σv = χ(σ)v, for all σ ∈ G}.

Since equality is attained in (1), it follows that each L(E/K, χ, s) vanishes to
order exactly one at s = 1. Zhang’s extension of the Gross-Zagier formula to
L-functions L(E/K, s) twisted by (possibly ramified) characters of G [Zh01]
shows that

dimC(HPχ) = 1, (3)

where HP denotes the subspace of E(H)⊗C generated by Heegner points.
Theorem 2.2 of [BD90], whose proof is based on Kolyvagin’s method, then
shows that

dimC((E(H)⊗ C)χ) ≤ 1. (4)

The result follows directly from (3) and (4).

The case F = Fq(u). As explained in section 3 of [Ulm03], the Heegner
point construction can be adapted to the case where Q is replaced by the
rational function field Fq(u).

The basic idea of our construction is to start with an elliptic curve E0

defined over Fp(u), and produce a Galois extension H of Fq(u) (for some
power q of p) such that
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1. the Galois group of H over Fq(u) is isomorphic to a dihedral group of
order 2d;

2. H satisfies a suitable Heegner hypothesis relative to E0 over Fq(u) so
that the Birch and Swinnerton-Dyer conjecture implies an inequality
like (2);

3. H is the function field of a curve of genus 0, say H = Fq(t), so that E0

yields a curve E over Fp(t) which acquires rank at least d over Fq(t).

A further argument is then made to show that the rank of E remains large
over Fp(t), provided suitable choices of d and q have been made.

To illustrate the method, let p be an odd prime and let F0 be the field
Fp(u), with u an indeterminate. Let K0 = Fp(v) be the quadratic extension
of F0 defined by v + v−1 = u. Choose an element u∞ ∈ P1(Fp) such that
the place (u − u∞) is inert in K0. (Such a u∞ always exists when p > 2.)
The chosen place u∞ will play the role in our setting of the archimedean
place of Q in the previous discussion. Note that K0/F0 becomes a quadratic
“imaginary” extension with this choice of place at infinity, and that this
continues to hold when Fp is replaced by Fq with q = pm, provided that m
is odd.

Let E = Eu be an elliptic curve over F0 having split multiplicative
reduction at u∞. Let E denote the Néron model of E over the subring
O = Fp[ 1

u−u∞
] and let N denote its arithmetic conductor, viewed as a divisor

of P1 − {u∞}. Suppose that

all prime divisors of N are split in K0/F0, (5)

which is the analogue of the classical Heegner hypothesis in our function
field setting.

Finally, given any integer d, let od be the order of p in (Z/dZ)×. Assume
that

the integer od is odd. (6)

We then set q = pod and consider the extensions

F = Fq(u); K = Fq(v); H = Fq(t), with v = td.

Note that H/K is an abelian extension with Galois group G = Gal(H/K)
isomorphic to µd(Fq) ' Z/dZ, and that this extension is of dihedral type,
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relative to the ground field F . Therefore the analysis of signs in functional
equations that was carried out to conclude (1) carries over, mutatis mutan-
dis, to prove the following.

Proposition 2. Assume the Birch and Swinnerton-Dyer conjecture over
function fields. Then the rank of E(H) is at least d. More precisely,

dimC ((E(H)⊗ C)χ) ≥ 1, for all χ : G −→ C×.

One also wants to estimate the rank of E over the field H0 := Fp(t). Let
G̃ = Gal(H/K0); then G̃ is the semi-direct product G × 〈f〉, where 〈f〉 ⊂
(Z/dZ)× is the cyclic group of order od generated by the Frobenius element
f ∈ Gal(H/H0) = Gal(Fq/Fp), which acts by conjugation on the abelian
normal subgroup G = µd(Fq) in the natural way. Since E is defined over K0

(and even over F0), the space V := E(H)⊗C is a complex representation of
G̃, and one may exploit basic facts about the irreducible representations of
such a semi-direct product to obtain lower bounds for E(H)f=1 = E(Fp(t)).
More precisely, suppose that the character χ of G is one of the φ(d) faithful
characters of G. Proposition 2 asserts that the space V χ contains a non-zero
vector vχ. Note that V χ is not preserved by the action of f , which sends
V χ to V χp

. Because of this, the vectors vχ, fvχ, . . . , fod−1vχ are linearly
independent since they belong to different eigenspaces for the action of G.
Hence the vector

v[χ] = vχ + fvχ + · · · fod−1vχ

is non-zero and belongs to V f=1 = E(H0) ⊗ C. Futhermore the v[χ] are
linearly independent, as χ ranges over the f -orbits of faithful characters of
G. Hence

rank(E(Fp(t)) ≥ φ(d)/od.

By taking into account the contributions coming from all the characters (and
not just the faithful ones) one can obtain the following stronger estimate.

Proposition 3. Assume the Birch and Swinnerton-Dyer conjecture over
function fields. Then

rank(E(Fp(t)) ≥
∑
e|d

φ(e)
oe

≥ d

od
. (7)
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Proof: A complex character χ of G is said to be of level e if its image
is contained in the group µe of eth roots of unity in C and in no smaller
subgroup. Clearly the level e of χ is a divisor of d, the order oe of p in
(Z/eZ)× divides od, and there are exactly φ(e) distinct characters of G of
level e. Note also that if χ is of level e, then foe maps V χ to itself. The
same reasoning used to prove proposition 2, but with d replaced by e, and
q by poe , shows that (under the Birch and Swinnerton-Dyer assumption)

V χ contains a non-zero vector fixed by foe .

If vχ is such a vector, then just as before the vectors

v[χ] = vχ + fvχ + · · · foe−1vχ

form a linearly independent collection of φ(e)/oe vectors in E(Fp(t)) ⊗ C,
as χ ranges over the f -orbits of characters of G of level e. Summing over
all e dividing d proves the first inequality in (7). The second is obtained by
noting that ∑

e|d

φ(e)
oe

≥ 1
od

∑
e|d

φ(e) =
d

od
.

Remarks:

1. It is instructive to compare the bound (7) with the formula for the rank
of Ulmer’s elliptic curves which is given in theorem 4.2.1 of [Ulm03].

2. Note that the expression which appears on the right of (7) can be made
arbitrarily large by setting d = pn − 1 with n odd, so that od = n.

Some examples: Elliptic curves satisfying the Heegner assumptions of the
previous section are not hard to exhibit explicitly. For example, suppose for
notational convenience that p is congruent to 3 modulo 4, and let E[u] be
a non-isotrivial elliptic curve over Fp(u) having good reduction everywhere
except at u = 0, 1 and ∞, and having split multiplicative reduction at
u∞ = 0. There are a number of such curves, for example:

1. An (appropriate twist of a) “universal” elliptic curve over the j-line in
characteristic p 6= 2, 3, with u = 1728/j;
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2. A “universal” curve over X0(2), or over X0(3);

3. The Legendre family y2 = x(x−1)(x−u) (corresponding to a universal
family over the modular curve X(2)).

4. The curve y2 + xy = x3 − u that is used in [Ulm03], in which the
parameter space has no interpretation as a modular curve.

Choosing any parameter λ in Fp−{0,±1}, we see that the curve E[ u
λ+λ−1 ]

over Fp(u) satisfies all the desired properties, since two of the places u = ∞
and λ + λ−1 dividing the conductor of E are split in K/F , while the third
place u = 0, which lies below v = ±i, is inert in K/F . (This is where the
assumption p ≡ 3 (mod 4) is used.) Hence proposition 3 implies

Corollary 4. Assume the Birch and Swinnerton-Dyer conjecture for func-
tion fields. Let E[u] be any of the curves over Fp(u) listed above, and let λ
be any element in Fp − {0,±1}. Then the curve

E

[
td + t−d

λ + λ−1

]
has rank at least d/od over Fp(t).

Dispensing with the Birch and Swinnerton-Dyer hypothesis. It
may be possible, at least for some specific choices of E[u] and of d, to
remove the Birch and Swinnerton-Dyer assumption that appears in corollary
4, since the notion of Heegner points which motivated proposition 2 also
suggests a possible construction of a (hopefully, sufficiently large) collection
of global points in E(H). To produce explicit examples where the module
HP generated by Heegner points in E(H) has large rank, it may not be
necessary to invoke the full strength of the theory described in section 3
of [Ulm03] since quite often the mere knowledge that the Heegner point on
E(K) is of infinite order is sufficient to gain strong control over the Heegner
points that appear in related towers. It appears worthwhile to produce
explicit examples where propositions 2 and 3 can be made unconditional
thanks to the Heegner point construction.

Remark: Crucial to the construction in this note is the fact that P1 has a
large automorphism group, containing dihedral groups of arbitrarily large
order. Needless to say, this fact breaks down when Fp(u) is replaced by Q,
which has no automorphisms. In this setting Heegner points are known to
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be a purely “rank one phenomenon”, and are unlikely to yield any insight
into the question of whether the rank of elliptic curves over Q is unbounded
or not.

Remarks on Ulmer’s construction. Let d be a divisor of q + 1, where
q = pn. The curve

Ed : y2 + xy = x3 − td,

studied in theorem 4.2.1 of [Ulm03] is a pullback of the curve

E0 : y2 + xy = x3 − u

by the covering P1 → P1 given by t 7→ u := td, a covering which becomes
Galois (abelian) over Fq2 . It is not hard on the other hand to see that
the curve Ed does not arise as a pullback via any geometrically connected
dihedral covering P1 → P1. However, one may set

F = Fq(u), K = Fq2(u), H = Fq2(t), with u = td.

The congruence q ≡ −1 (mod d) implies that Gal(H/F ) is a dihedral group
of order 2d. Hence is becomes apparent a posteriori that the curves of
[Ulm02] can be approached by a calculation of the signs in functional equa-
tions for the L-series of E0 over K twisted by characters of Gal(H/K). (See
the remarks in sec. 4.3 of [Ulm03] for further details on this calculation and
its close connection with the original strategy followed in [Ulm02].)

It should be noted that the elliptic curves produced in our corollary 4
have smaller rank-to-conductor ratios than the curves Ed in theorem 4.2.1
of [Ulm03], which are essentially optimal in this respect.
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