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Abstract 

This article describes a conjectural p-adic analytic construction of global 
points on (modular) elliptic curves, points which are defined over the ring 
class fields of real quadratic fields. The resulting conjectures suggest that the 
classical Heegner point construction, and the theory of complex multiplication 
on which it is based, should extend to a variety of contexts in which the 

underlying field is not a CM field. 
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HENRI DARMON 

Introduction 

Let E be an elliptic curve over Q of conductor N. It is now known 

(cf. [Wi], [TW], [BCDT]) that E is modular, so that E(C) is equipped with a 
nonconstant analytic uniformisation 

(1) co: H*/ro(N) - E(C), 

where 7-* := U U Q U{ioo} is the extended Poincare upper half-plane, and 

Fo(N) C PSL2(Z) is the usual Hecke congruence group, acting on A7* by 
Mobius transformations. The compact Riemann surface 7H*/ro(N) para- 
metrizes pairs (A, C) where A is a (generalized) elliptic curve over C and 
C C A(C) is a cyclic subgroup of order N. In this way 7H*/Fo(N) is identified 
with the complex points of an algebraic curve Xo(N) defined over Q. The map 
(p of equation (1) is defined over Q, in the sense that it arises, after extending 
scalars from Q to C, from a morphism of algebraic curves defined over the 
rational numbers. 

An important application of (1) arises from the theory of complex mul- 

tiplication. More precisely, let K C C be an imaginary quadratic field and 
let r be any point in ~ n K. The set 0 of matrices in T c M2(Z) which are 

upper-triangular modulo N and satisfy 

(2) T = 0 or Tr= T 

is isomorphic to an order in K (of conductor f, say) which can be identified 
with the endomorphism ring of the pair (Ar, CT) attached to T. The theory of 

complex multiplication asserts that this pair is defined over the ring class field 
H of K of conductor f. Hence the so-called Heegner point P, := o(r) E E(C) 
is defined over H as well. This remark enables the construction of a plentiful 
supply of algebraic points on E, points which are defined over suitable ring 
class fields of imaginary quadratic fields. 

The Heegner point construction is consistent with the Birch and Swin- 

nerton-Dyer conjecture, in the following sense. The complex L-function 

L(E/H, s) factors as a product 

(3) L(E/H, s) = IL(E/K , s), 
x 

where X ranges over the complex characters Gal(H/K) - CX. The definition 
of L(E/K, X, s) as an Euler product implies that 

(4) L(E/K, X, s) = L(E/K, X, s). 

At the same time, Rankin's method yields the analytic continuation and func- 
tional equation of the L-function L(E/K, X, s) for each X, relating the ex- 

pressions L(E/K, X, s) and L(E/K, X, 2 - s). Assume for simplicity that the 
discriminant of K and the conductor f are prime to N, which implies that all 
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INTEGRATION ON 1Hp xH 

the primes dividing N are split in K/Q. In this case the sign appearing in the 
functional equation is -1, so that, by parity considerations, 

(5) L(E/K, X, 1) = 0 for each X: Gal(H/K) - Cx. 

It follows from (3) and (5) that 

(6) ord=iL(E/H, s) > [H: K]. 

The Birch and Swinnerton-Dyer conjecture leads to the expectation that 

(7) rank(E(H)) > [H: K]. 

It is believed that Heegner points account for the bulk of the growth of 

rank(E(H)) as H varies over all ring class fields of K of discriminant prime 
to N. For example, calculations of the kind carried out by Gross and Zagier 
in [GZ] should prove that an equality in (6) implies that the Heegner points in 

E(H) generate a subgroup of rank at least [H: K]. Under this hypothesis the 
work of Kolyvagin establishes an equality in (7), so that the Heegner points 
generate a finite index subgroup of E(H). 

Replacing K by a real quadratic field, one is confronted with many sit- 
uations in which inequality (6) continues to hold. For example, suppose that 
N = pM, where p is a prime which does not divide M. Let K be a real 
quadratic field in which p is inert and all primes / dividing M are split. If 
H is any ring class field of K of conductor prime to N, then an argument 
identical to the one sketched above carries over to establish inequality (6). 
This is tantalising insofar as the theory of complex multiplication provides no 
handle on the problem of understanding inequality (7). In fact, no extension 
of the theory of complex multiplication to the context of real quadratic fields 
is known. The problem of supplying such a theory is intimately connected to 
Hilbert's 12th problem of constructing the class fields of real quadratic fields 
(or of more general number fields) by analytic means. 

The main goal of this work is to formulate a conjectural (p-adic) analytic 
construction of global points in the Mordell-Weil groups of E over certain ring 
class fields of real quadratic fields, generalising the theory of complex multi- 
plication presented above. For the convenience of the reader, the main steps 
in this construction, and the main theorems of this article, are summarised in 
the remainder of the introduction. 

1. Integration on -tp x 7H 

Suppose now that N = pM, where M is a positive integer, and p is a 
prime not dividing M. Choose an Eichler Z[l/p]-order R of level M in M2(Q). 
(These are all conjugate to each other.) To fix ideas, take from now on 

(8) R= (c )= E M2(Z[1/p]) with c 0 (mod M)}. 
[^c d J 
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HENRI DARMON 

Denote by F C PSL2(Z[1/p]) the image of the group of elements of determinant 
1 in Rx. It acts by Mobius transformations both on the p-adic upper half-plane 

(9) -p: (Cp) - I (Qp) 

and on the extended Poincare upper half-plane 1t*. The induced diagonal ac- 
tion of r on ~p x - is discrete and discontinuous. The quotient (~ip x H)/r 
is investigated in a series of works of Ihara (cf. for example [Ihl] and [Ih2]) 
where it is related to the special fiber of Xo(M) in characteristic p. Stark [St] 
remarked that this quotient is formally analogous to a Hilbert modular surface. 

Section 1 develops Stark's analogy by formulating a theory of integra- 
tion of "differential two-forms" on the quotient (Hp x 7t)/r, and deriving a 
notion of p-adic periods associated to such forms. More precisely, it is ex- 

plained how a newform fo of weight 2 on Fo(N) can be viewed as encoding the 

p-adic residues of a form w of weight (2, 2) on (7-p x -t-)/F. If fo has rational 
Fourier coefficients (i.e., it arises from an elliptic curve E of conductor N) a 
so-called double multiplicative integral is defined, depending on a choice of a 

homomorphism from the Neron lattice of E to Z: 

(10) CL Ep 1 T2 -72HHp, 
X y,CPi(Q). 

JT71 j X 

As stated in Lemma 1.11 of Section 1, this function of the variables T1, T2, x, y 
behaves formally "as if" w were a Hilbert modular form of weight (2,2) on 

('tp x T7)/r, even though the object w is not defined independently of its 

periods. 

2. Periods attached to split tori 

Since E has conductor N and p divides N exactly, the curve E has mul- 

tiplicative reduction at p. Let 

(11) (ITate : Cp 3 E(Cp) 

be Tate's p-adic uniformisation attached to E over Cp, and let q E pZp denote 
the p-adic period attached to this uniformisation. 

Let K - Q x Q be the split quadratic algebra, and let T : K - M2(Q) 
be a Q-algebra embedding. Write 1 : KX ) PGL2(Q) for the natural 

homomorphism induced by I. The torus T(KX) acting on the extended 

upper half plane 17* has exactly two fixed points xT, yp E Il (Q). The group 

T(KX) n r is free of rank one, generated by an element 7y. A p-adic period 
I E Cp is associated to P by choice of a point z C ~Ip with 

razz pYT 

(12) := w. 
Jz Jxq' 

It is shown in Lemma 2.3 of Section 2 that I does not depend on the choice 
of z that was made to define it, and that it belongs to Qp. VI C/CIICL, CID LICUCllVUCIIC I$ IIL CIIC~I I, ~Ill~O V p 
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INTEGRATION ON Hp7 xH 

Let ordp: Cp > Q be the valuation at p normalised so that ordp(p) = 1, 
and let log: Cp -> Cp be any choice of p-adic logarithm. In Section 2 the 
following identity is proved: 

THEOREM 1. 

log log(tq) ordp(Iv) 
ordp(q) 

The proof of this theorem proceeds by evaluating the expressions ordp(lI) 
and log(I) independently. The quantity ordp(I() is related to special values 
of certain partial L-functions attached to E/Q, while log(I) is expressed in 
terms of the first derivative of the corresponding p-adic L-function. Viewed in 
this way Theorem 1 becomes a reformulation of a conjecture of Mazur, Tate 
and Teitelbaum [MTT] that was proved by Greenberg and Stevens [GS]. 

To allow for a cleaner statement of the conjectures and results, the follow- 

ing assumption on E is made from now on throughout the article: 

ASSUMPTION 2. The elliptic curve E is unique in its Q-isogeny class. 

The following conjecture, a multiplicative refinement of Theorem 1, relates 
the period IT directly to q: 

CONJECTURE 3. The period Iq belongs to qZ. 

Remarks. 1. Theorem 1 implies that the group 4I C Q( is either finite 
or is a lattice commensurable with qZ. More precisely, it follows from this 
theorem that 

(13) Iordp(q) = qordP(Iq) (mod (Q()tors). 

To prove conjecture 3 in its entirety, it remains to: 

* Show that ordp(q) divides ordp(I(), so that 

(14) 1 = qn (mod (Qp)tors), with n = ordp(Il)/ordp(q). 

Some theoretical evidence for this divisibility is given in [BD7], using 
multiplicity-one results of Mazur, the level-lowering result of Ribet, and 
the theory of Wiles yielding an isomorphism between certain Hecke rings 
and deformation rings. Alternately, as explained in Section 2, much of 
the divisibility of ordp(Ih) by ordp(q) can be derived as a consequence of 
the Birch and Swinnerton-Dyer conjecture. 

* Remove the (Qp)tors-indeterminacy in formula (14). In the case where 
M = 1, de Shalit's multiplicative refinement [dS] of the result of Green- 
berg and Stevens can be used to remove a large part of this indeterminacy. 
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HENRI DARMON 

There is every reason to expect that the assumption M = 1 in [dS] is not 
essential, so that a full proof of Conjecture 3, while not present in the 
literature, should lie within the scope of the methods developed in [GS] 
and [dS]. 

2. Note the analogy of Conjecture 3 with the results of Oda [O] concerning 
periods on the Hilbert modular surface attached to a real quadratic field. 

3. The Cohomology of F 

An M-symbol with values in an abelian group C is a function m : P1 (Q) x 

Pi(Q) - C, denoted (x, y) i-) m{x--y} and satisfying 

(15) m{x--y} + m{y--z} = m{x--z}, m{x--y} = -m{y--x}, 

for all x, y, z E IPi(Q). Denote by M the group of Cp-valued M-symbols, and 

by M(C) the group of C-valued M-symbols. The group PSL2(Q) (and hence, 
r) acts on M(C) by the rule 

(16) (ym){x-y} := m{-y-1x-l y}. 

Choose T C Hp and x E IP1((Q). The double multiplicative integral of equation 
(10) gives rise to a one-cocycle cf,, E Z1(F, M(Cp )) by the rule 

(17) f ){x = WjJ . 
JT J x0 

The natural image Cf of Cf,r in Hl(rF, M((C)) is independent of the choice of 
T that was made to define it. 

Basic facts about the structure of Hl(r,M) as a module over the Hecke 

algebra show that the classes 

(18) ordp(cf) E Hl(r,M()) C Hl(r,M) 

and 

(19) log(cf) C H1(r, M) 

belong to the same one-dimensional Cp-vector subspace of Hl(r, M). Theo- 
rem 1 is used to conclude: 

THEOREM 4. 

log(cf) = ordp(cf). 
ordp(q) 

Conjecture 3 suggests the following multiplicative refinement of Theo- 
rem 4. 
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INTEGRATION ON Hp xH 

CONJECTURE 5. Let L = Qp(r) be the field generated over Qp by T. 

There exists a one-cocycle ef,, E Zi(r, M(Z)) and an M-symbol rf,r E M(LX) 
satisfying the relation 

(20) cf,r(7){X+y} = qf(Y){x} x 
(f,T{- X~-'y } f r{xif }) 

for all 7y r and x, y E Pi(Q). 

Remark. 1. Note that the image ef of ef,, in H1(r, M(Q)) is determined 
by the property 

(21) ordp(cf) = ordp(q)ef. 

2. The proofs of Theorems 1 and 4 make no use of assumption 2, so 
that these results hold without this assumption. On the other hand, computer 
calculations carried out by Peter Green [DG] indicate that Conjecture 5 is false 
in general in the absence of assumption 2. 

Let r/f,- be the natural image of r-f, in M(LX/q). Reducing equation 
(20) of conjecture 5 modulo qZ yields 

n^' ry 

(22) w / = 7If,{Y- Xfly y} - r/f,{X y} (mod q). 
Jr JX x 

Note that this relation makes r1f, well-defined up to multiplication by elements 
in HO(r,M(LX/qZ)). 

To avoid certain technical complications that will receive due treatment in 
subsection 3.3, assume for the rest of the introduction that M = 1; in this case 
the group H°(r, M(LX/q)) vanishes, so that Trf, E M(LX/qz) is uniquely 
determined by (22). Thus Conjecture 5 makes it possible to define, for all 
x, y E I1( (Q), the indefinite multiplicative integral 

(23) /Jw := f,r{x-z } E LX/q. 

This indefinite integral satisfies the basic multiplicativity and F-equivariance 
properties stated in Lemma 3.7 of Section 3 (with Q = qz). 

The last two sections (§§4 and 5) are devoted to studying certain p-adic 
periods in Cp associated to an embedding 

(24) : K M2(Q) 
of a quadratic etale algebra K into M2((Q), the case K = Q x Q corresponding 
to the situation already studied in Section 2. An analogous setting in which 
K is an imaginary quadratic field, falling somewhat outside the scope of the 
machinery developed above, has been explored implicitly in [BD2], using the 
theory of complex multiplication and some facts about the bad reduction of 
modular curves. Sections 4 and 5 concentrate on the case where K is a real 
quadratic field. 
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4. Periods attached to real quadratic fields 
Suppose that the prime p splits in the real quadratic field K. Choose 

T E 1tp and x E IPi(Q). Given a, /3 cE (Kx) n , the quantity 
ra-17 OX -17 ax 

(25) Ka,1/3) := 1 ua 
J x JT Jx 

is proven in Section 4 to be independent of the choice of r E 'Hp and x C IP (Q) 
that is made to define it. Moreover, ( , )r defines a Cp-valued alternating 
bilinear pairing on (K x) n F. 

The group qI(KX) n F is a free Z-module of rank two. Let yl and 72 E F 
be Z-module generators for this group. The period I c( Cp attached to I is 
defined by setting 

(26) PI := (T1,Y2)>. 

Note that {I, Ij,1} is independent of the choice of basis (1, 72). Theorem 6 
below expresses IT in terms of the Tate period for E. More precisely, Theorem 
4 is shown to imply the analogue of Theorem 1 for the real quadratic field K: 

THEOREM 6. If If is the period attached to T as in (26), then 

log(IT) = o(q) ordp (I) 
ordp(q) 

Furthermore, if Conjecture 5 holds, then Ip belongs to q~. 

This identity should be viewed as the counterpart of the Greenberg- 
Stevens formula for real quadratic fields. See [BD6], where the connection 
of Ip with special values of L-functions attached to E/K is briefly discussed. 

5. Heegner points attached to real quadratic fields 
The most intriguing application of the formalism of p-adic period integrals 

arises when the prime p is inert in the real quadratic field K, so that the p-adic 
completion Kp of K is isomorphic to the quadratic unramified extension of Qp. 
In that case certain periods Jc E Kp /q" attached to P (whose definition relies 
on the validity of conjecture 5) are predicted to give rise to global points on E 
defined over the ring class fields of K, in a manner analogous to the classical 

Heegner point construction when K is imaginary quadratic. 
To describe JV precisely, note first that the torus T(KX) acting on ~-p has 

precisely two fixed points zV and zp, which belong to Pi (Kp) - PI (Qp) C Hp 
and are interchanged by the action of Gal(Kp/Qp). The group (KX )nr is free 
of rank one, with a generator 7y of the form (u), where u is an appropriate 
power of the fundamental unit attached to K. 

We define the period J, E Kp /qZ by choosing a base point x CE I1 (Q) 
and using the indefinite integral of (23) to set 

(27) J J:= JX Kp/q. 
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INTEGRATION ON Hp x7- 

Section 5 shows that Ji does not depend on the choice of x E PI (Q) that was 
made to define it, and that it depends in fact only on the F-conjugacy class 
of T. 

The algebra @(K) nR is isomorphic to a Z[1/p]-order in K. Let fw be the 
conductor of this order, and denote by H+ the narrow ring class field of K of 
conductor f'q, defined as in subsection 5.2. Since p is inert in K/Q and does 
not divide fv, it splits completely in H+/K. Choose an embedding of H+ into 

Kp. The main conjecture of Section 5 (and, indeed, of the entire paper) is 

CONJECTURE 7. The local point 

P := eTate(Jk) c E(Kp) 

is a global point in E(H+). 

Conjecture 7 extends the repertoire of modular constructions of rational 
points on elliptic curves beyond the currently known methods, which are all 
based on the theory of complex multiplication. The possibility of this construc- 
tion, foreshadowed in [Da2], is directly inspired by the main theorem of [BD3]. 
But a proof would appear to fall beyond the scope of the methods used in that 
article, where the theory of complex multiplication and the Cerednik-Drinfeld 
theory of p-adic uniformisation of Shimura curves play a central role. 

Section 5 refines Conjecture 7 by formulating a conjectural generalized 
Shimura reciprocity law describing the action of Gal(H+/K) on Pi. After a 
brief discussion of the expected relation between the points Pw and derivatives 
of L-series, in the spirit of the formula of Gross and Zagier, the article concludes 
by presenting some numerical evidence for Conjecture 7 and its refinements. 
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1. Integration on ('tp x t)/r 

1.1. Forms on T x NH. Let T be the Bruhat-Tits tree of PGL2(Qp). Its set 

V(T) of vertices is identified with the set of QpX-homothety classes of rank two 
Zp-modules in Q2, two vertices being joined by an edge if the corresponding 
homothety classes have representatives which are contained in each other with 
index p. Write £(T) for the set of ordered edges of T, and denote by s(e) and 

t(e) respectively the source and target vertex of e E £(T). 
The group PGL2(Qp) acts naturally on T by isometries. The stabiliser of 

a vertex is conjugate to PGL2(Zp) while the stabiliser of an edge is conjugate 
to the group 

(28) o(pp) ( c d PGL2(Zp) such that pc . 

Let v, be the distinguished vertex corresponding to the homothety class of 
Ep C Q2, whose stabiliser is equal to PGL2(Ep). Let e, be the edge whose 
source is v, and whose stabiliser is equal to Fr(pZp). Note that the stabiliser 
of v, in r is equal to Fo(M), while the stabiliser of e, in F is equal to Fo(N). 

Recall (cf. [GvdP]) the reduction map 

(29) red: -p >T 

from Hp to the Bruhat-Tits tree T of PGL2(Qp). The inverse image of each 

open edge e E £(T) is called a basic wide open annulus in 7-p, while the inverse 

image of a vertex is an example of an affinoid subdomain of HIp. If e is an edge 
of T, the orientation on it determines an orientation of the associated annulus 
Ve, i.e., an "interior" Bo and an "exterior" Bo. (The reversed edge e obtained 
from e by interchanging source and target gives rise to the same annulus Ve, 
but the interior and exterior p-adic discs attached to e and e are exchanged.) 
Choose a coordinate function Ze on Pi(Cp) which induces the identifications 

(30) Ve {z E 'p : l/p < Izlp < 1}, Bo {z E Cp : Izlp < 1/p}. 

This coordinate function is well-defined, up to multiplication by an element 
of Op . (For further background on T and its relation to 7-p, the reader is 
invited to consult [K1] or [GvdP] for example.) 
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INTEGRATION ON 7-Hp x-H 

Digression on p-adic modular forms. Replace F temporarily by a sub- 

group of PSL2(Qp) acting discretely on Hp. (Arithmetic groups of this type 
can be obtained from the unit groups of Z[l/p] orders of definite quaternion 
algebras B which are split at p, after choosing an identification of B ® Qp 
with M2(Qp); see for example [BD1] or [BDIS].) Following [Sch], we define a 

rigid-analytic modular form of weight 2 on H-p/r as a rigid-analytic function 
f on 'Hp satisfying 

az + b f ( a b 
(31) fcz+d)= (cz+d)2f(z), for all -y ) I F, z E Hp. CZ + d ad zd . 

The coefficient of dze/z, in the Mittag-Leffier expansion of f on the affinoid 

Bo is called the residue of f at e and is denoted rese(f(z)dz) (cf. [Sch, p. 224]). 

LEMMA 1.1. The function Kf : £(T) - Cp defined by Kf (e) = rese(f(z)dz) 
is harmonic, i.e., 

Kf (e) = -Kf(e) for all e E £(T), Kf If(e) = 0, for all v c V(T). 
s(e)=v 

This lemma follows from a rigid analytic analogue of the classical residue 
theorem of complex analysis, and is explained in [Sch, p. 225]. 

Returning to the case where F is the subgroup of SL2(Qp) of the intro- 
duction, we see that the objects of definition (31) become trivial, since F acts 
on 'Hp with dense orbits. Motivated by an analogy with the theory of Hilbert 
modular forms, we find it desirable to replace rigid analytic modular forms on 

'Hp/F by an appropriate notion of "form of weight (2,2) on (Hp x -)/r". Such 
an object should be a F-invariant expression of the form w = f(zp, z)dzpdz, 
where Zp is a p-adic and z a complex variable. The function f would be rigid 
analytic in the first variable and holomorphic in the second. While it is unclear 
from the outset how to supply a sensible definition of c, it is still possible to in- 
tuit a rigorous definition for its p-adic residues. More precisely, imagine taking 
the Mittag-Leffier expansion of w on affinoid subdomains of 7~p (leaving aside 
for the moment the problem that w has not been defined!). The coefficient of 

dze/Ze in such an expansion - the residue rese(w) - should be interpreted as 
a holomorphic differential form on ~. This informal discussion leads to the 

following precise definition, motivated by lemma 1.1 and tailored to capture 
the notion of the "p-adic residues of w". 

Definition 1.2. A cusp form of weight 2 on (T x ~)/F is a function 

f : (T) x H - C 

satisfying 
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1. f(ye, yz) = (cz + d)2f(e, z), for all -y - (a b ) F. 

2. The function f is harmonic; i.e., for each vertex v of T, 

E f(e, z) = 0, 
s(e)=v 

and for each edge e of T, f(e, z) = -f(e, z). 

3. For each edge e of T, the function fe(z) := f(e,z) is a cusp form of 

weight 2 (in the usual sense) on the group re := Stabr(e). 

Since F acts transitively on the unoriented edges of T, the group Fe is 

conjugate in F to Fe* = ro(N), for each e. Property 1 is suggested by the 
desired F-invariance of w, and property 2 by Lemma 1.1 arising from the 
p-adic residue theorem. Note that an element of the space S2(T, F) of cusp 
forms of weight 2 on (T x NT)/F is completely described by a collection {fe} 
of cusp forms on re, indexed by the edges e of T, satisfying the compatibility 
relation 

(32) f^e(yZ)d(yz) = fe(z)dz, for all y C F, 

together with the harmonicity condition 2. 
To analyse the structure of S2(T,F) it is convenient to introduce other 

spaces of modular forms defined in an analogous way. Let F be the image in 

PGL2(Qp) of R_, the group of invertible matrices in R whose determinant is 

positive. The group F consists of all the elements in F such that 

(33) 1[y := ordp(det(7)) = 0 (in Z/2Z), 

so that r contains r with index 2. 
Let S2(E, r) denote the space of cusp forms on (£(T) x H)/, defined as 

the functions 
f : (T) x - -- C 

satisfying the analogues of properties 1 and 3 of Definition 1.2, but not neces- 

sarily property 2, and with r replaced by F: 

1. f (e, z) (+d() f(e, z), for all = ( F. 

2. For each edge e of T, the function fe(z) := f(e, z) is a cusp form of 

weight 2 (in the usual sense) on the group F := F n Stab(e). 

Likewise, let S2(V, F) denote the space of forms on (V(T) x 'T)/F, defined as 
the functions 

f : V(T) x H C 

satisfying: 
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1. f(yv,yz) = " det()d f(v, z), for all y = 
c d e F. 

2. For each vertex v of T, the function fv(z) := f(v, z) is a cusp form of 

weight 2 (in the usual sense) on the group Fv := F n Stab(v). 

A vertex of T is said to be even if its distance from the distinguished vertex 
v, is even, and is said to be odd otherwise. Likewise, an edge e E £(T) is said 
to be even if its source vertex is even, and odd if its source vertex is odd. The 

group r preserves the parity of vertices and edges of T, while the elements in 
r - r are parity-reversing. Given f E S2(T, F), define a form f on E(T) x -1 
by choosing an element a E F - and setting 

(34) f(e,z)dz = f(e,z)dz if e is even; 

(35) f(e, z)dz = f(ae, az)daz if e is odd. 

Note: 

1. The definition of f does not depend on the choice of a that was made 
to define it, since any two such choices differ by left multiplication by an 
element of F, and f(e, z)dz is r-invariant. 

2. The function f belongs to S2(E, r). (To check that 

f(ye, yz)dyz = f(e, z)dz for all 7y E F, 

it is easiest to separate four cases, depending on the parity of e and on 
whether 7y belongs to F or F - F.) 

3. The assignment i : f - f is an injective homomorphism from S2 (T, F) 
to S2(£, r). For if f = 0, the function f(e, z) vanishes identically on all 
even edges, and hence on all edges by the harmonicity of f. 

The normaliser of Fo(N) in F consists of the elements of F that fix the un- 
ordered edge attached to e,. Hence Fo(N) has index two in this normaliser. 
It will be convenient for later calculations to assume that a belongs to the 
normaliser of Fo(N) in F, so that 

(36) ae* = e*. 

There are two natural degeneracy maps 

(37) s:, t : S2(E, r) S2(V, r) 

defined by 

(38) 7r,(f)( v,z):= E f(e,z), rt(f)(v, z):= ( f(e,z). 
s(e)=v t(e)=v 
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The exactness of the next sequence follows directly from the definitions: 

(39) 0 - 2(T, F) - S2(£, r) r S2(V, r)S 2(V,r). 

Let S2 (r(N)) denote the usual complex vector space of holomorphic cusp 
forms of weight 2 on 'H/Fo(N). Let 

Ps : Xo(N) - Xo (M) 

be the natural projection arising from the inclusion Fo(N) C ro(M), and let 

(pt = ys~Wp where Wp is the Atkin-Lehner involution at p acting on Xo(N), 
defined by 

(40) Wpfo(z)dz = fo(az)d(az). 

Making an abuse of notation, denote by the same symbols os and (t the two 

degeneracy maps from S2(Fo(N)) to S2(Fo(M)) induced from os and 0t by 
pushforward of differential forms. More precisely, choose a system of coset 
representatives for Fo(N) in ro(M): 

(41) Fo(M) = lro(N)U... U Uyp+lFo(N). 

One then has 

(42) 
p+l p+l 

Vos(f)(z)dz = > f( 1 z)d( ½1z). Vot(f)(z)dz = ( f(ay 1z)d(ac lz). 
j=1 j=1 

The kernel of 

(43) coseyot : 52(ro(N)) - 52(ro(M))eS2(ro(M)) 

is called the subspace of p-new forms, denoted S2new-P(Fr(N)). The following 
lemma relates the various spaces of forms on T to spaces of classical modular 
forms. 

LEMMA 1.3. 1. The function which to f(e,z) associates fo(z) := fe*(z) 
induces an isomorphism from S2(E, r) to S2(Fo(N)). 

2. The function which to f(v, z) associates fo(z) := fv (z) induces an iso- 
morphism from S2((V, F) to S2(Fo(M)). 

3. The function which to f(e,z) associates fo(z) := fe*(z) induces an iso- 
morphism from S2(T, r) to S2new-P(o(N)). 

Proof. To prove part 1, note that by definition of S2(E, F), the form fo(z) 
is a cusp form on Fo(N). The fact that F acts transitively on £(T) implies 
that f E S2(E,I ) is completely determined by its restriction to {e*} x E, so 
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that the assignment f -- fo is injective. To show surjectivity, note that any 
fo in S2(Fo(N)) can be extended to a form on S2(E, F) by the rule 

(44) fe(z)dz = fo(3yz)dyz 

if e = y-le* with y E F. Part 2 is proved in an identical way, after observation 
that the stabiliser of v* in F is equal to Fo(M). Finally, to prove part 3, 
consider the following natural diagram in which the first row is taken from 

equation (39) and the vertical maps are those of Lemma 1.3: 

1 1 1 

-0 S2(Tr,r) S 2(&,r) - S2(v, F) e 2(v, F) 

0 - Snewp (rF(N)) S2(Fo(N)) - S2(ro(M))e S2(Fo(M)). 

This diagram commutes: the commutativity of the first square follows directly 
from equation (34) defining i, in view of the fact that e* is an even edge. The 

commutativity of the second square follows from the choice of a satisfying 
(36) which shows that y1e*,... 7p+le* is a complete list of edges with source 

v,, while 7lae,,... .p+iae* is a complete list of edges with target v,. Part 3 
of Lemma 1.3 follows from the five lemma. 

The Hecke operators Te (e£ /N) act on the spaces S2(S, F), S2(V, F), and 

S2(T, r) via the identifications of Lemma 1.3. More precisely, for each prime 

e, write the double coset F ( O ) F as a disjoint union of left cosets: 

(45) (F 1)F=Uir. 

Then Tef is given by 

(46) (Tef)(e,z)dz = f(yj-le, 1yz)d(y-lz). 

Similarly, for each prime £ dividing M, let We denote the Atkin-Lehner 
involution at £ acting on S2new-P(r(N)) or on S2(T, F) via the identification 
of Lemma 1.3. Writing N = CnN', choose integers x, y, z, t such that 

(47) £nxt- Nyz = 1, and set c = ( et 

The actions of We are given by the rules 

(48) (Wefo)(z)dz = fo(aez)d(aez) 

(49) (Wef)(e,z)dz = f(aee,aez)d(aez), 

for all fo E S2(ro(N)) and for all f E S2(T,F). 

The involution Wp on S2(Fo(N)) defined in (40) plays a particularly im- 

portant role in our discussion. 
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LEMMA 1.4. Let fo be a form in S2 eWP(ro(N)) and let f be the form in 
S2(T, r) associated to it by the identification of Lemma 1.3. Denote by Wpf 
the form attached to Wpfo by this identification. Then 

(50) (Wpf)(e, z)dz := -f (ae, az)d(az). 

(Note the minus sign appearing in this formula.) 

Proof. Let e be any even edge of T, so that e = ye, for some y c F. A 
direct calculation using definition (40) of Wp and property (36) satisfied by a 
shows that 

Wpf(e,z)dz = Wpfo(y-lz)d(y-lz) = fo(a/-1z)d(a--lz) 
= (e,, a~-lz)d(c~-lz) -= -f(e, oa-lz)d(ay-lz) 

= -f(e, -yac-lz)d(-ya-~z) 
= -f(-ya~-le, yt-lz)d(yao-lz) = -f(ae, az)d(az), 

where the last equality follows from the fact that -yacy-1 belongs to F - F. 
Similar reasoning works if e is odd, and the lemma follows. 

Let fo be a normalized newform on Fo(N) having rational Fourier coef- 
ficients, so that it corresponds to an elliptic curve E over Q of conductor N 

by the Eichler-Shimura construction. Let f be the form in S2(T, r) which is 
related to fo by Lemma 1.3, so that fe* = fo. The form fo is an eigenvector 
for Wp acting on S2(Fr(N)). It is known that 

(51) Wpfo = -fo if E has split multiplicative reduction at p, 

(52) Wpfo = fo if E has nonsplit multiplicative reduction at p. 

Let w be the negative of the eigenvalue of Wp acting on fo, so that w = 1 
if E has split multiplicative reduction at p, and w = -1 if E has nonsplit 
multiplicative reduction at p. 

LEMMA 1.5. The form f satisfies the following transformation rule under 
the group F D F: 

f(ye, yz)d(yz) = wiylf(e, z)dz, for all y C r. 

Proof. This is a direct consequence of the transformation property of fo 
under Wp and Lemma 1.4. 

1.2. Mixed period integrals. The discussion preceding Definition 1.2 sug- 
gests that f should be viewed as a system of residues for a "form w of weight 
(2, 2)" on (XHp x 7-)/r, even though the w itself is not defined. It is natural in 
this light to seek to attach to f periods analogous to the periods of modular 
forms of weight (2, 2) on a Hilbert modular surface. 

604 

This content downloaded from 132.206.150.153 on Sun, 26 Jul 2015 15:07:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INTEGRATION ON Hp xH6 

By assumption 2, the elliptic curve E is isomorphic to the strong Weil 
curve in its isogeny class. Let 9p : *lro(N) - E(C) be the strong Weil 
parametrisation attached to E. Letting WE denote the Neron differential of E, 
one has 

(53) * *(WE) = 27ric,fo(z)dz, 

where c%o, the so-called Manin constant, is a rational number which is known 
to be equal to ±1 in many cases (cf. [Ed]). 

Choose elements x, y in the extended upper half-plane 17* ':= U Pi (Q). 
The function jf{x+y} : £(T) - C defined by 

(54) kf{x-+y}(e) := 2ric, fe(z)dz 

is a complex-valued harmonic cocycle on T, as follows immediately from the 
harmonicity properties of f itself. At the same time, the elements of E(T) 
correspond to basic compact open subsets of PI(Qp) when 

U(e*) := Zp C Pl(Q(p), 

and when, for any edge e = e,* with y E GL2(Qp), 

(55) U(e) := yU(e*) = y7p = {x E P (Qp) such that y-l-x E Zp}. 

Thus kf{x-+y} gives rise to a complex-valued distribution /ff{x-+y} on the 

boundary Pi (Qp) of '-p by the rule 

(56) If {x-+}((e)) = f {x-y}(e) 

This distribution can only be integrated against locally constant complex- 
valued functions on Pl(Qp). For the purposes of p-adic integration, it is 
desirable that kf{x-+y} take on integral, or at least p-adic integral, values. 
Fortunately, this can be achieved, provided that x and y belong to P1(Q). 
For in this case, the values of kf{x-)y}(e) can be expressed in terms of the 
modular symbols 

a 

(57) AE(a, b) := 27ricf fo(z)dz, 

defined in [MTT, §8], where they are simply called 27ric%,AE(a,b). More pre- 
cisely, choose y E r such that ye = e*, and write 'yx = -a, y = -_ . Then 

(58) If{x-y}(e) = f{x-+y}(U(e)) = wll(AE(c,d) - AE(a,b)). 

Let Q denote the Neron lattice attached to the elliptic curve E. The following 
proposition, proved under assumption 2, plays a key role in the definition of 
integrals on (7ip x 7i)/r. 
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PROPOSITION 1.6 (Drinfeld-Manin). The Z-module A c C generated by 
the modular symbols AE(a, b) is contained in Q. 

Proof. From equations (57) and (53), 

(59) AE(a, b) := 27ric bJ fo(z)dz = j E, 

where p([oo, -a]) is the image of the path joining oo to -a/b in 7* under the 
modular parametrisation (p. By the theorem of Drinfeld and Manin, all cusps 
in '1* map to rational torsion points in E. Hence by assumption 2, p([oo, -]) 
is a closed path on E(C) and hence AE(a, b) belongs to Q. 

If E(R) has two components then Q is generated by a positive real period 
Q+ and a purely imaginary period Q_. If E(R) has one connected component, 
then Q is contained with index two in the lattice spanned by Q+ and Q_, where 

Q+ (resp. Q_) denotes the real (resp. imaginary) half-period attached to E. 
In either case, thanks to Proposition 1.6, one can write 

(60) AE(a, b) = A+(a, b)Q+ + AE(a, b) Q_, 

with A4(a,b) E 2. Choose a sign w, =- 1 and let AE(a, b) denote A+(a, b) 

(resp. AE(a,b)) if w,o = 1 (resp. w, = -1). Write rf (resp. ,pf) for the 

Z-valued harmonic cocycle on T (resp. distribution on P(Qp)) attached to 
this modular symbol, so that, with 7y, a, b, c and d as in (58), 

(61) f {x-+y}(e) = uf {x-+y}(U(e)) = w' (AE(c, d) - AE(a, b)). 

It is worth recording the following lemma which will be used repeatedly in the 

sequel: 

LEMMA 1.7. For all y E r, x, y E I (Q), and e E £(T), 

Kf {-yx-+-}(-e) = w^ cf {x-y}(e) 

Proof. By definition, 

rx yyx I~f{1x-+1y}(7ye) j 
fye(z)dz wlVl fe(if-lz)d(f-z1) 

= wI j fe(z)dz = wl kf{x-+y}(e). 

The same result with ;f replaced by sf follows at once. 

The next lemma complements Lemma 1.7 by describing the transforma- 
tion behaviour of rf under the entire group Rx which contains F with index 
two. 
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LEMMA 1.8. If acO E RX is any element of determinant -1, then 

Kf{aoox-oo+ay}(ae) = W hf{ X+y} (e). 

Proof. It is enough to show this for a single such a,o, say the matrix 

( ). In this case it follows directly from the relation 
0 -1 

(62) AE(-a, b) = wXAE(a, b) 

satisfied by the modular symbol AE attached to the choice of sign wo (cf. [MTT]). 

For any y E Rx, set sgn(-y) = 0 if det(y) > 0, and sgn(-y) 1 if det(y) < 0. 
Lemmas 1.7 and 1.8 can be combined into the following transformation formula 
satisfied by Kf under the action of RX: 

(63) Kf{7x-7y)}(7e) = wl^lwSn(f)f{xg-y}(e), for all EC RX. 

Because the values /uf{x-y}(U(e)) are integral and hence p-adically 
bounded as e E £(T), the distribution iff{x-y} defines a p-adic measure on 
W1 (Qp). In particular, if h is any bounded locally analytic Cp-valued function 
on P1(Qp), the integral 

(64) h(t)clf{x--y}(t) C Cp 
I (Q'p) 

can be defined in the usual way. 

Digression on p-adic modular forms, continued. To motivate Definition 
1.9 below of the periods attached to w, it is useful to return to the digression 
about p-adic modular forms and the setting where f is a rigid analytic modular 
form on -pl/F, with F a discrete arithmetic subgroup of SL2(Qp). The function 

nf : ( (T) - Cp encoding the residues of f gives rise to a p-adic distribution 

/f on Pi (Qp) which is p-adically bounded, since T/F is a finite graph. In [Te], 
it is proved that the weight-two modular form f can be recovered from its 
boundary distribution /if by the elegant Poisson inversion formula 

(65) f(z) (p) z - df(t) 
I(Qp) 

- t 
To the modular form f and a choice of two endpoints zl, Z2 E '-~p is at- 
tached the Coleman p-adic line integral f2 f(z)dz which depends on a choice of 
p-adic logarithm log: C· -p Cp. Taking this Coleman integral on both sides 
of equation (65) and formally interchanging the order of integration on the 
right suggest the identity 
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(66) J f(z)dz= J( ) log( 
t 

d- 
z 

(t) 
I ( (Q,p) t - l z 

which can be justified rigorously as in [BDIS] or alternately can be adopted as 
a definition of the Coleman line integral in this setting. 

Returning to the original setting, but guided by formula (66), we have 
the following definition which depends similarly on a choice of log and imposes 
itself naturally. 

Definition 1.9. Let z1 and z2 be elements of IHp, and let x, y C Pi(Q). 
z2 

fy t_- 
(67) t (j = J2 log (t - z2 4)f{x-+y}(t) E Cp 

The following lemma shows that this definition is well-behaved: 

LEMMA 1.10. The double integrals of Definition 1.9 satisfy the following 
properties: 

rZ3 ry rZ2 rY Z3 rY 

(68) = u + a; 

(69) 3 Z X2 JrZ2 X3 

J Z1 JX Z1 JX1 Zil X2 

rYZ2 ryY rz2 r Y 

(70) J J W [ = wsgn(j) , for ally E RX 
JyzJ1 JX Z1 X 

Proof. The first and second identity are a direct consequence of Definition 
1.9, while the third follows from equation (63). 

Caveat. Once again, the reader should not be misled by this notation into 
thinking that w is defined by itself; only its system of p-adic residues, described 
by f, is defined, but this is enough to make sense of Definition 1.9. Of course, 
the notation is meant to be suggestive, and the reader should view the left-hand 
side of Definition 1.9 as a period for a form of weight (2,2) on (-Hp x ~)/r, 
with the complex period Q+ or Q_ "factored out". 

To obtain stronger formulae, it is preferable to avoid choosing a p-adic 
logarithm, exploiting the fact that Kf{x--y} is Z-valued to define 

(71) 
jjY := y 

(t ) df{x-+y}(t) Cp. 
21 JZdXw :1P l(Q,,p) 

- 
z1/ 

Here J< denotes the multiplicative integral, in which limits of products replace 
the usual limits of Riemann sums. More precisely, 

(72) 7 g(t)+d(t) := lim II g(t,)C(UC), '1 (':,Qp) C U cEC 
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where the limit is taken over increasingly fine covers C = {U,}, of P1 (Qp) by 
disjoint compact open subsets, with t, E Ua. This limit exists if log g is locally 
analytic and g takes values in a compact subset of Cp, as is the case for the 
integrand appearing in (71). 

The multiplicative integral has the advantage that it does not rely on a 
choice of p-adic logarithm. It is related to its additive counterpart by the 
formula 

rz2 Y /z2 Y \ 

(73) / i= log i 

Since any p-adic logarithm vanishes on the torsion in Cp, the multiplicative 
integral carries more information than the additive one. Note also that it is 

Cp, and not Cp, which arises most naturally in Tate's p-adic uniformisation 

theory of elliptic curves with multiplicative reduction. 
Properties analogous to those of Lemma 1.10, with addition replaced by 

multiplication, hold for the multiplicative integral: 

LEMMA 1.11. The double multiplicative integral of Definition 1.9 satisfies 
the following properties: 

fz3 y rZ2 Y rz3 Y 

(74) iOi = J f x w; 

(76) c o = ( J ]W for all 7 E RX. 
2f1 aX Z1 2 

(75) Jqz J'Z J l x 
' 

Proof. The proof is identical to that of Lemma 1.10. 

2. Periods attached to split tori 

2.1. Preliminary calculations. Let K = Q x Q, let T : K - M2(Q) be a 

Q-algebra embedding, and let c be a positve integer which is relatively prime 
to N. One says that ' is an optimal embedding of conductor c if the subring 
O := I-1(R) is the Z[1/p]-order in K of conductor c, so that 

(77) ( = {(u, v) E Z[l/p] x Z[l/p] such that u= v (mod c)}. 

An orientation on 0 is a ring homomorphism 

o: 0 > Z/MZ. 
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If M = M1M2 is a factorisation of M into a product of two relatively prime 
integers, the homomorphism OM1,M2 defined by 

(79) OMl,M2((a,b)) = (a mod M, b mod M2) C Z/M1ZxZ/M22 = Z/MZ 

is an orientation, and all orientations are of this form. 
An optimal embedding I of conductor c gives rise to an orientation op on 

0, sending x C ( to the residue class modulo M of the upper left-hand entry 
of @(x). The embedding I is said to be oriented if 

(80) O = OMI,1- 

LEMMA 2.1. Let M = MlInM2 be a factorization of M into three rela- 
tively prime integers M1, 0n and M2. If o = OMl,enM2, and ae is the matrix 

of (47) used to define the Atkin-Lehner involution We, then 

°oageo1 = OMl-n,M2- 

Proof. This follows by a direct calculation with matrices from the defini- 
tion of ac given in (47). 

For each integer v satisfying gcd(v, c) = 1, define the embedding 1, of K 
into M2(Q) by the rule 

(81) v(a·,a) ( (0 a (c,o) ( 0) 

Note that 'I is an oriented optimal embedding of conductor c. Conversely: 

LEMMA 2.2. If I is any oriented optimal embedding of K of conductor 
c, it is F-conjugate to the embedding ,v for some v with gcd(v, c) = 1. The 

image ofv in (Z/cZ)X(p2) is uniquely determined by I. 

Proof. The embedding I maps (c, 0) to a matrix in M2(Z[1/p]) of deter- 
minant 0 and trace c, so that 

'(c,0) = , r c (mod M), ru-ts = O, r+u = c. 

Let x and y be relatively prime integers satisfying the equation tx - ry = 0. 
Note that M divides y, since M divides t and r is a unit modulo M. Hence 
one can choose y E F of the form 

(82) x x ) 
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INTEGRATION ON 7Hp xH 

A direct calculation now shows that 

(83) -y 0(c,O)t=( ( 

where v E Z[l/p] is relatively prime to c. Conjugating by the matrices 

(O ) )and ( - ) shows that , and T, are conjugate to each other 

in r if and only if the natural images of v and v' in (Z/cZ)X/(p2) are the same. 
Recall from the introduction that the torus 4(KX) acting on H* has 

exactly two fixed points xp and y~, and that 4(KX) n F is free of rank one, 
generated by an element '7 E F. The period IT is then defined by choosing 
z E ~p and setting 

n^Yz ryq 

(84) I@= f / . 

LEMMA 2.3. The period Iq does not depend on the choice of z E H~p that 
was made to define it. Furthermore, it depends only on the F-conjugacy class 

of '. 

Proof. The integral Ip is independent of z, since 
J^Yz rYl J rYJ Z2 ry' Y7 f^2 rYJ 

Xqi 2 I Xq Z X/ - / Jz1 Jx'O JZ2 Jx, Jz JZl JX,\ J' YZl Jx 
O' 

by property (74) of the multiplicative integral stated in Lemma 1.11. By 
property (76), 

rZ2 rYq f^YTZ2 ry41 

JI JqX 

-- 

1 J Xq0 

and it follows that I, does not depend on z. Replacing I by axa~1- with 
a r, the period attached to aa~-1 becomes 

(85) j / =( 
1z 

) ( J 
Jz Jax cX Ja \J 1 Jx z X '/ 

where the first equality follows from property (76) of the integral, and the 
second equality follows from the independence of Ip on z. 

The goal of Section 2 is to prove Theorem 1 of the introduction. We begin 
by disposing of it in the following trivial special case. 

LEMMA 2.4. Suppose that E has nonsplit multiplicative reduction at p 
and that p has odd order in (Z/cZ)X. Then Ii = ±1. 

Proof. Let t be the order of p in (Z/cZ)x and let a = (pt, 1) E - F. 
Then I = aIa-1. On the other hand, by equation (85), laqa-1 = I11. 
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HENRI DARMON 

Because of Lemma 2.4, the following assumption will be made in the rest 
of Section 2. 

ASSUMPTION 2.5. When w = -1, the order of p in (Z/cZ)X is even. 

By interchanging xp and yf if necessary, assume that yV is an attractive 
fixed point for 7y and that xp is a repulsive fixed point, so that, for all t C 'Tp, 

(86) 7y(t) - yq as n - oo, 7y(t) -- x as -noo. 

Let AI (t) be a M6bius transformation with coefficients in Qp sending y, to 0 
and xqf to oo. For example, if xp and yq, are not equal to oc, one may take 

t-x~ 
t - Xx 

Note that MT(t) is well-defined up to multiplication by a scalar in Q. 
The element 7y acts discretely on the complement IF(Qp) - FP, of the 

fixed-point set FP := {xx, yp}. In fact, 

LEMMA 2.6. 
MA (7y t) = pS M(t), 

where 
s = 2 x the order of p2 in (/cZ)x. 

(Note that by assumption 2.5, s is equal to the order of p in (Z/cZ) x when 
w =-1.) 

Proof. Note that the Mobius tranformations MT(?yt) and M,(t) both 
send yV to 0 and xp to oc, so they must differ by multiplication by a scalar in 

Qp. A direct calculation shows that this scalar is equal to pS, by the fact that 

(( 12 0 
[((0 p-s/2)) 

is the image in PSL2(Qp) of a matrix having eigenvalues pS/2 and pS/2. 

Lemma 2.6 allows the calculation of a fundamental region .F for the 
action of the element %y on IP1(Qp) - FP~q: 

(87) FT, = {t C IP1(Qp) - FPp such that 0 < ordp(Mi(t)) < s}. 

Points of the boundary I1 (Qp) of the p-adic upper half-plane -Hp correspond to 
ends of T; let path(xp, yp) be the infinite path on T joining the ends associated 
to xy and yp. For each vertex v on this path, let 

U(v) c ?1(Qp)- FPf 
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be the compact open subset corresponding to all points associated to ends 

originating from v and not passing through any edge in path(x, ,yp). The 
vertices of path(xV, yT) can be indexed consecutively by subscripts j E Z so 
that 

(88) U(vj) = {t P((Qp) - FP4 such that ordp(Mw(t)) = j}, 

so that 

(89) .F = U(vo) U U(V1) U ... U U(vs-_). 

Let ej be the edge on path(xqi, y) joining vj-_ to vj. Note that 

(90) 7y (vj) = j+s, 7 (ej) = ej+s. 

Set 

(91) m = Kf f{x --y I}(eo) = f {x(-*yj})(es). 

The remainder of subsection 2.1 is devoted to proving the following propo- 
sition, a first step in the evaluation of II. 

PROPOSITION 2.7. For all z E Xp, 

I f Z=4jY| = (j M(t)dUf{x -y}(t)}) x psm. 
Jz Jx ,i 

In particular, I, belongs to Qp. 

Proof. By definition, 

(92) j 
y 

= ( (t z Z) f{X t -yY}(t). 
Jz Jx (Qp) t- z 

For conciseness, write /If for pIf{x,--+yT} and nf for nf{xq,-+yq} in the re- 
mainder of Section 2. 

LEMMA 2.8. The measure pIf is invariant under multiplication by 7y; 
i.e., l,f(QyTU) = lf (U) for all compact open subsets U of IP(Qp). 

Proof. This follows directly from Lemma 1.7. 

LEMMA 2.9. If c E Cp is any nonzero constant, then 

j C+f (t)= 1. 

Proof. This is simply because [Lf(rF) = _Kf(eo) - hf(es) = 0. 
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HENRI DARMON 

Proof of Proposition 2.7. To evaluate the integral appearing on the right- 
hand side of equation (92), break up the region of integration P1 (Qp) as follows: 

n 

(93) Pl(Qp) = U(n) U+ (n)U U y 7F, 
j=-n 

where 
U_ (n) = {t E IP1(Q)p) - FP such that ordp(M((t)) < -ns} U {x}, 

U+ (n) = {t E PI(Qp) - FPp such that ordp(Mp (t)) > (n + 1)s} U {y }. 

Invoking Lemma 2.8, define 
ni 

3w-T 

( t - z ) 
\ t- z 

Observe that 

(95) /if(U_(n)) = -/if(eo) = -mq, If (U+(n)) = Kf(es) = mV. 

Hence by definition of the multiplicative integral, 

( t- z)() 

kM1 (z) ,I 

-7 Z 
m 

li I(n) 
(y - n--oo 

lim I(n) = pSm" lim I(n), 
n---o- nT--OO 

by Lemma 2.6. 

Nt that - ywt z 
Note that the integrand '7t_ 

z 
appearing in the definition of I(n) and the 

t- t-z 

function t-_J differ by a nonzero scalar multiple (depending on z but not 
t--7 z 

on t), so that by Lemma 2.9 

(97) 

Interchanging the order of summation and integration in the definition (94) of 

I(n), we have 

(98) I(n) 

(99) 

(100) 

t - ~ ?+ z )df (t) 
j=-n 

t 
- 

F- "/J Z 

J t - 
/ 

Mz); 
)/ 

jN= 1+ 
n 

M( 
_ nz; t)duf (t), 

J T "T k 

where for a, b E 7t, M(a; b; t) is any M6bius transformation sending a to 0 and 
b to oo. 
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n 
t ~- -~Tz 

(94) I(n) :- 
(" dy f (t) L) 

j=-n x3v3 

(96) 
1 (Z'lop) 

xq 
- 

3 t- ~yt - z t - 
-, - 

y-3 
)z ll 

T 
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INTEGRATION ON 7-tH xH-6 

By (86), there exists a sequence of scalars A,, E C> such that the p 
C>-valued functions A,M( f'+lz; y-n7z;t) converge to MTp (t) uniformly on p qf q r 
compact subsets of IP1(Qp) - { x, yg} as n -+ oc, so that 

(101) lim 1(n) = j Myp(t 4If(t). 

Combining this with equations (92) and (96), we have 

(102) jY:zW MO()df{X-* l(t)x pSmT, 

as was to be shown. 

2.2. Evaluation of ordp(Ixp). Define the so-called winding element attached 
to 'I by choosing a vertex of T and setting 

WIT = E rffx*-+yT (e) 

the sum being taken over all edges in the path joining v to %ypv. 

LEMMA 2.10. The winding element WTp does not depend on the choice of 
v E V(F) that was made to define it, and it depends only on the F-conjugacy 
class of T. 

Replacing v by v' changes WTp by the quantity 

S If f{xq-*-yqp}(e- e /'if{xT -*ylTJ}(e) 

= f Kf{x*1i-+yT I}(e) - S Kf{xqz --yT}(e) = 0, 
v/-4V - 'Fv' - -'F 

where the first equality follows from the harmonicity of IEf{fxvI-+~yT} and the 
fact that T is simply connected, while the second equality follows from the 
F-invariance of rf (Lemma 1.7). 

PROPOSITION 2.11. 

ordp (h) = Wq. 

Proof. By Proposition 2.7, 

(103) ordp(jJw)= ordp(j MT4t)dpf t) ) x psm') 

(104) or(J Ordp(M4(t)) dIf(t)) + sm. 

But the function g(t) ordp(MTij(t)) is locally constant on .F, and satisfies 

g(t) = i, for all t E U(vi). 
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HENRI DARMON 

Hence 

N/ z ry \ s 

(106) ord (j ) ( i i(;f(ei) 
- f(ei+l)) + srf(es) 

Jz x \i=/ 

(107) = Znf(ei)= Kf (e)=W WI, 
i= 1 vo0-7q vO 

and the result follows. 

Lemma 2.1 implies that any embedding T of conductor c is conjugate, 
under the action of the group generated by the matrices oee, to an oriented 
optimal embedding of conductor c. In particular, since the newform fo is an 

eigenvector for all the Atkin-Lehner involutions, one has 

LEMMA 2.12. Given any embedding I : K - M2(Q) of conductor c, 
there exists an oriented embedding V' of conductor c for which 

I=, 4 Ii1. 

Hence, to show Conjecture 3 or Theorem 1 it is enough to show it for all 
oriented optimal embeddings. Lemma 2.2 allows us to focus exclusively on the 

embeddings of the special form described in (81). When T = i,, the following 
proposition evaluates the winding number W1 in terms of the modular symbols 
AE(a, b) attached to E in equation (57) of Section 1. 

PROPOSITION 2.13. Let J be the coset of (Z/cZ)X consisting of a such 
that a/v - p (mod c) for some j = j(a). Then 

(108) ordp(I) = WV = Z i (a) AE(a, c). 
aCJ 

Proof. Keeping the notation of the discussion preceding the statement of 

Proposition 2.7, note that 

(109) W = ,f {x --y+}(eo) + .. + iKf{x iy-y }(es-_). 

A direct calculation reveals that the two fixed points for the action of I(KX) 
on P1i(Q) are 

/y 

(110) x- = oo and y --, 
c 

and that a fundamental region for the action of 7y on IP1(Qp) - {xw, yw} is 
therefore given by 

(111) = {t E PIl((p) such that 0 < ordp t + ) <s , 
c ) 
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INTEGRATION ON p1, xJH 617 

where s is twice the order of p2 in (Z/cZ)X. By Proposition 2.7, and since 
Mw (t) can be chosen to be equal to t + 4, 

(112) U(ej) = t E P (Qp) such that ordp (t + -) > , 

(113) = {t E Iri(Qp) such that p-3 (t + -) p}. 

Hence U(ej) = U(y-le*), where 7y = ( 0 ) Noting that 

((-1 - c') /pI 
(114) x-00, ?(yr) -J,Y 

we find 

(115) iuf(U(ej)) = if{x I--+yY}(ej) = wjXE(a, c), 

where a is an integer which is defined modulo c by the congruence a = vp-. 
The result follows. 

Let X be a Dirichlet character of conductor c prime to N. 

LEMMA 2.14. If X(p) = w, then 

Z X(v)wT, = S X (a)AE(a, ). 
vE (Z/cZ) aE (Z/cZ) 

Proof. This follows from Proposition 2.13 by a direct calculation. 

Recall the choice of sign w,o that was made in defining the modular symbol 
AE(a, c). 

LEMMA 2.15. If X(p) = w and X(-1) = -wo, then 

E X(v)WV, = 0. 

Proof. This follows directly from Lemma 2.14 and from the relation 

(116) AE(-a, b) = wooAE(a, b) 

satisfied by the modular symbols attached to the choice of sign woo. 

Let 
00 

(117) L(fo, X, s) = L(E/Q, X, s) = a anX(n)n-s 
n=l 
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be the L-series of E/Q twisted by X. Write 

(118) T(X) := E X(v)e22iv/c 
vE (/cEZ) 

for the Gauss sum attached to X. 

PROPOSITION 2.16. If X(p) = w and X(-1) = w,,o then 

Z X(v)Ww = -sc L(E/Q, X, 1) 
T ll w 

Proof. This follows by combination of Lemma 2.14 with equation (8.6) 
of §1.8 of [MTT]. (The discrepancy involving the factors of 27ri and c, are 
accounted for by the different normalisations used in the definition of AE(a, c) 
in [MTT] and in this article.) 

LEMMA 2.17. There exist infinitely many Dirichlet characters X of con- 
ductor prime to N satisfying 

X(p) = w, x(-l) =w-o, ( X(v)W, + 0. 
vE(Z/cZ) X 

Proof. In view of Proposition 2.16, it is enough to show that there exist 

infinitely many Dirichlet characters of conductor prime to N satisfying 

(119) X(P) = w, X(-l) = woo, L(E/Q, X, 1) : 0. 

This can be proved by considering averages of L(E/Q, X, 1) as X ranges over 
characters of conductor c satisfying X(p) = w and X(-1) = w0, and showing 
that such averages are nonzero as c becomes large. In fact, when M 2: 1 or 

woo 7 -1, it is enough to consider averages over quadratic characters X. In the 

exceptional situation where N = p and wwo = -1, the sign in the functional 

equation of L(E/Q, X, s) is always -1. It then becomes necessary to allow X 
to be a nonquadratic character, so that this sign does not force the vanishing 
of L(E/Q, X, s) at s = 1. See for example [MM] where nonvanishing results 
for twists of L-series, and the averaging techniques used to obtain them, are 

explained in detail. 

Remarks. 1. The nonvanishing of the expression YEaX(a)E(a, c), for 
some Dirichlet character X, is an elementary consequence of the fact that the 

paths between elements of I1P(Q) generate the rational homology of the curve 

7-*/Fo(N) so that the modular symbols AE(a,c) cannot vanish identically. 
It seems more difficult to exploit this property of the modular symbols to 
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establish the corresponding nonvanishing as X ranges over the smaller subset 
of characters satisfying X(p) = w and x(-1) = w,, without exploiting the 
connection between modular symbols and special values of twisted L-series 
and invoking analytic arguments to establish nonvanishing theorems for such 
twists. 

2. The fact that E has split (resp. nonsplit) multiplicative reduction at p 
when w = 1 (resp. when w = -1) combined with the fact that X(p) = w imply 
that the factor ordp(q) appears as one of the fudge factors (attached to the 
prime p) in the algebraic part of the special value L(E/Q, X, 1) predicted by 
the Birch and Swinnerton-Dyer conjecture. Hence for all such X, one expects 
that 

(120) ordp (q) divides L(E/ X1) 

This can be used to deduce the corresponding divisibility of ordp(I) by 
ordp(q), at least away from the primes dividing s, c and c,, and lends some sup- 
port for Conjecture 3. (Cf. the remarks immediately following the statement 
of Theorem 1 in the introduction.) 

The divisibility of ordp(Ik) by ordp(q) will be established in many cases, 
independently of any conjectures, in [BD7]. 

2.3. Evaluation of log(Ip). Set 1 = IJ as before. The following proposi- 
tion evaluates log(IA) explicitly in terms of modular symbols. 

PROPOSITION 2.18. Let Jn be the coset in (Z/pncZ)X consisting of a 
such that a/v - p (mod c) for some j = j(a). Then 

log(r)-=z Jj = im w O w j(a) log(a)AE(a, pnc). x~ n-oo00 
Jz aEJn 

Note that the expression wj(a) which appears in the right-hand limit is 
well defined, since assumption 2.5 makes the parity of j well-defined in the 
case where w = -1. 

Proof of Proposition 2.18. By Proposition 2.7, and since Mq(t) can be 
chosen to be equal to t + , 

azz ry r vZ\ 

(121) jJ w = log(Iq) = J log (t+ -)f df{x y-y (t) 
Jz Jxq' 

-- 

C/ 

As in the discussion preceding the proof of proposition 2.7, write 

(122) F = U(vo) U ...U U(v-i) 

where 

(123) U(vj) = t C IP(Qp) such that ordp (t + - 
c 
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For each positive integer n, the compact open subset U(vj) can be further 

decomposed as 

(124) U(vj) = Ua(/pnz)x Uj,a, 

where 

(125) Uj,a = {t U(vj) such that p'- (t + - a a (mod pn) . 

Choose an integer v' such that 

(126) I -- (modp+S), c 
and observe that 

(127) Uj,,a = U(-e,), where = 
- 

0 n+J Rx. 

Noting that 

(-y - CV')/pjI - ac 
(128) -Y = o, y(y ) = , 

-c) n + 
cpn 

we find by equation (61) of Section 1 that 

(129) pf{x,y} -Y}I(Uj,a) = wn+jAE(aj, cp), 

where aj is an integer defined modulo cpn by the congruences 

(130) a - ac (mod pn), aj - p- (mod c). 

It follows that 

(131) 

| log (t+ d-) cf{x-yT}(t) = lim wn j(a) log(a)AE(a,pnc), 

where the sum ranges over a E Jn. The proposition follows. D 

We now turn to the proof of Theorem 1 of the introduction. 

Proof of Theorem 1. By combining Propositions 2.18 and 2.13, one is 
reduced to showing that for each v in (Z/cZ)X/(p2), 

(132) lim w " wj() log(a)AE(a,pnc)= log(q) E wi()AE(a,c). 
ac ord(q) aEJ 

Let X : (Z/cZ)X > Cx be a Dirichlet character with the property that 

X(P) = w, so that in particular X factors through (Z/cZ)x/(p2). Recall the 
sign w, used to define AE(a, b). If X(-1) = -w,, then a direct calculation 

using the relation AE(-a, b) = w,XEE(a, b) shows that 

(133) 
lim wn x(a) log(a)XE(a,ppnc) = x(a)AE(a,c) = 0. 

ae(Z/pncZ) aC(Z/cZ) 
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If X(-l) = wo, then the exceptional zero conjecture of Mazur, Tate and 
Teitelbaum ([MTT, §13, Conj. 1]) proved by Greenberg and Stevens [GS] states 
that for all such X, 
(134) 

log(q) x(a)A(a,c), lim wn aZ X(a) log(a)XE(a, pnc) = d() ((a/c)(a c), 
an c (q)/pn CL) X 

where the sums now are taken over all congruence classes a in (Z/pncZ)X and 

(Z/cZ)x respectively. Hence relation (134) holds for all Dirichlet characters 

X such that X(P) = w. But the relation expressed in equation (132) can be 
written as a Cp-linear combination of the relations expressed in equation (134). 
Theorem 1 follows. O 

3. The cohomology of F 

3.1. The cohomology of M-symbols. Recall from the introduction that an 

M-symbol with values in an abelian group C is a function 

(135) m{ -+ }: i(Q) x Pl1(Q) C 

satisfying 

(136) m{x-y} + m{y-:z} = m{x-z}, m{x- y} = -m{y-x}, 

for all x, y, z E P1 (Q). The group of Cp-valued M-symbols is denoted M, and 
more generally the group of C-valued M-symbols is denoted by M(C). Recall 
also that F acts on M (C) by the rule 

(137) (-ym){x-y} := m{y-lxy-ly}. 

The cohomology groups Hi(r,M) play the crucial role in this section. 
Recall that F acts on T with e, as fundamental region. The stabiliser of e, in 
r is equal to ro(N) and the stabiliser of s(e,) (resp. of t(e,)) is equal to ro(M) 
(resp Fr(M) := apo(M)ap-1). Proposition 13 of Sec. II.2.8 of [Sel], applied 
to the case M = M and G = F acting on T, yields a natural exact sequence 
of Up-vector spaces 

(138) MMrF(M) (M) Mro(N) 
0 

H1(r,M) 
> H (ro (M), M) D H1 (F' (M), I ). 

To describe the map 0 explicitly, note that a ro(N)-invariant M-symbol 
m{x-+y} gives rise to a unique system of M-symbols me indexed by the edges 
of T, satisfying me, {x-y} = m{x-*y} as well as 

mye{ y-+ } = me{x- y}, mXe{x-3y} = -me{x--+Y} 
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for all x, y E P1i(Q) and y E F. One can then write 

(140) (0m)(y){xy}= E me{xz-y}. 
v* /y v* 

All the cohomology groups appearing in the exact sequence (138) are endowed 
with a natural action of the Hecke operators Te with te N, defined as in [Sh, 
§8.3]. Furthermore these groups are equipped with the "Atkin-Lehner involu- 

tion WoO at oo", defined using the matrix = ( 1 ) of determinant 
10 o 

-1 which belongs to the normalisers of the groups Fo(N), ro(M), Fr(M), and 
r in RX. On M-symbols WoO is defined by the rule 

(141) (Woom){x- y} = m{Jao xooay} = m{-x-* - y}, 

and on H(F, M) by the rule 

(142) (WOc)(-Y){x -y} = c(-ya,){-x - y}. 

A direct calculation exploiting the explicit description of 0 given by (140) 
shows that the maps arising in (138) are compatible with the action of the 
Hecke operators Te as well as with the involution Wo,. For example, to check 
this last compatibility note that 

(143) 
0(WOOm)(y){x-)y} = (Wom)e{x- y} = E3 mae{-x- - y}. 

v.---* v--vv* Y 

As e ranges over the edges in the path joining v to 7yv, the edges a,e range 
over the edges in the path joining aov,* = v* to aoyv* = y"a/v,. Hence the 

right-hand side of (143) is equal to 

(144) E me{-x- - y} = W0(O(m))(y){x-y}. 
V* --*yaoo v* 

Given the newform in S2(T, F) satisfying 

(145) Te(f) = ae(f)f 

for all e / N, and a Cp-vector space H equipped with the commuting actions 
of the Hecke operators Te and the involution Wo, denote by Hf the f-isotypic 
component of H, defined as the set of classes c E H for which 

(146) Te(c) = ae(f)c for all £ /N. 

Denote also by HW- the space on which the involution WoO acts with the 

eigenvalue wo, and by Hf,'o the intersection of Hf and HW-. 

PROPOSITION 3.1. The space (AMr(N))f'w- is a one-dimensional Cp- 
vector space. 
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Proof. Let F be the space of Cp-valued functions on P1 (Q), endowed with 
the natural action of F. The assignment d: T - M defined by 

(147) (df){x-)y} := f(y) - f(x) 

defines a surjective homomorphism of F-modules, with kernel the space of 
constant functions, identified with Cp. Taking the ro(N)-cohomology of the 
exact sequence 

(148) 0 > Cp -> d M > 0 

yields the exact sequence of cohomology groups 

(149) ro(N) Mr(N) > H1(ro(N), Cp) > Hl(ro(N),F) 

which is compatible under the natural action of the Hecke operators and the 
involution W,. On the other hand, the space fro(N) is Eisenstein, i.e., 

(150) If x E FrO(N), then Tex = (e + 1)x for all e )N. 

The same is true of H1(ro(N), F), since Y can be written as a direct sum of 
induced modules: 

(151) F = xIndFo(N)Cp, 

where the direct sum is taken over a system of representatives for the Fo(N)- 
orbits in PI1(Q), and Fx denotes the stabiliser of x in ro(N). By Shapiro's 
lemma, 

(152) H1(Fo(N), ) = ExH1(rF,Cp), 

and the action of the Hecke algebra on this module is Eisenstein. It follows that 

(hrro(N))f = 0 and that Hl(ro(N),.F)f = 0. By the Eichler-Shimura period 
isomorphism (cf. [Sh, §8.2]), the space H1(Fr(N),Cp)f is a two-dimensional 

Cp-vector space, on which the involution WOO acts with eigenvalues 1 and -1. 
Proposition 3.1 therefore follows from the exact sequence (149). 

PROPOSITION 3.2. The map 0 induces an isomorphism from (Mr°(N))f 'W° 

to Hl(r,M)f,w°. 

Proof. The arguments used in the proof of Proposition 3.1 show that the 
action of the Hecke operators on H°(ro(M), M) factors through the natural 
image of the algebra of Hecke operators in the endomorphism ring of the space 
of modular forms of weight 2 on Fo(M). Since the Hecke eigenvalues attached 
to f are those of a newform of level N, it follows that 

H°(ro(M), M) = 0. 
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Pursuing the long exact sequence in cohomology attached to the Fo(M)-co- 
homology of the sequence (148) yields the sequence 

(154) H(rFo(M), ) - H H1(ro(M),M) -i H2(ro(M),Cp). 

The same argument as in the proof of Proposition 3.1 (with N replaced by M) 
shows that Hl(ro(M),YF) is Eisenstein and hence that H1(ro(M),YF)f = 0. 
Furthermore it is well-known that H2(ro(M), Cp) = 0. (For example, if ro(M) 
acts on 7t without fixed points, then it is a free group.) Hence it follows that 

(155) H(Fro(M),M)f = 0. 

The result now follows from (153) and (155) (and the corresponding statements 
with Fro(M) replaced by the conjugate subgroup Fo(M)) combined with the 
exact sequence (138). 

COROLLARY 3.3. The vector space H1(F,M)fw'0 is one-dimensional 
over Cp. 

Proof. This follows from Propositions 3.1 and 3.2. 

3.2. Proof of Theorem 4. When r E 'p, a 1-cocycle cf,T E Z'(F, M(AC)) 
is defined by setting 

(156) cf,r(Y) {x-y} 
- = W. 

JT JX' 

The image of Cf, in Hl(r, M(C)), denoted Cf, does not depend on T. Let 

ordp(cf) e H1(F,M) be the cohomology class obtained by applying the func- 
tion ordp : Cp > Q c Cp to Cf, and let log(cf) be the image of cf in 
H1 (F, M) under the logarithm map. 

LEMMA 3.4. The class ordp(cf) is nonzero (and hence generates the 
one-dimensional Cp-vector space H1 (, M)f'w ). 

Proof. Suppose that ordp(cf) = 0. Then the one-cocycle ordp(Cf,r) is the 

coboundary of an M-symbol r77 M: 

(157) ordp(Cf,r)(7){x--y} = {7-lx---'-ly} - 
r{x---y}. 

Let I be an oriented embedding of Q x Q of conductor c prime to M in M2(Q). 
When y = 7y and (x,y) = (xT, yi), the right-hand term of equation (157) 
disappears and one finds 

(158) W, = 0 for all such T. 

This contradicts Lemma 2.17. 

We are now ready to prove Theorem 4 of the introduction: 
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Proof of Theorem 4. Since ordp(cf) and log(cf) each belong to the one- 
dimensional vector space H1(r, M)f,wo, and since ordp(cf) 4 0, there exists a 
constant Cf E Cp such that log(cf) = Lfordp(cf). Hence there is an M-symbol 
r M4 such that 

log(f,T(y){x--y}) = Lfordp(fT,(7){x-*-y}) + (r{7y-lx--*-ly1} - 
/{X--y}), 

for all y E r and x, y E I1 (Q). Choosing an embedding I of conductor prime 
to N and letting (x, y) = (xp, yj) and y = 7y as in the proof of Lemma 3.4, 
we see that 

(159) log(Ij) = fordp(IT). 

By Proposition 2.17 it is possible to choose a I for which ordp(]I) = WV is 
nonzero. It now follows from Theorem 1 that 

log(q) 
ordp(q) 

as was to be shown. 

Remark. While the evaluation of the constants 1f requires the full strength 
of the Greenberg-Stevens theorem, the equality log(cf) = Cfordp(cf) for some 

Cf E Cp is sufficient to imply that log(Iu) = Cfordp(Iq) for all I, with Cf 
not depending on T. This in turn implies that the extra zero occurring in the 

exceptional zero conjecture of Mazur, Tate and Teitelbaum is of "local type" in 
the sense of [MTT, Ch. I, §19]. In other words, the factor Cf, which describes 
the discrepancy between the first derivative of the p-adic L-function attached 
to E in [MTT] and the special value of the classical L-function attached to E, 
is invariant under twists by Dirichlet characters X for which X(p) = 1. Note 
that our proof of this fact is based on little more than purely formal arguments 
involving the cohomology of F. 

3.3. Indefinite integrals. Theorem 4 justifies the slightly stronger multi- 
plicative refinement of it that is formulated in Conjecture 5 of the introduction. 
Assume this conjecture. Let r be an element of 'ip and let L be the field gen- 
erated by r over Qp. The conjecture guarantees the existence of an M-symbol 
lf,T E M(LX /q-) satisfying 

(161) j w = f,{Y-l x-*y -y} f,t{x- *y} (mod q) 
Jr Jx 

for all y E r and x, y E IP (Q). The M-symbol rIf,r is defined uniquely by this 
property modulo elements of H°(F, MA(L /q')). 

Let r' C F denote the smallest normal subgroup of F generated by the 
commutators and the rational elements in F. (An element of F is said to be 
rational if its fixed points belong to IP1(Q).) 
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LEMMA 3.5. The group F' is of finite index in F. It is equal to F if 
M= 1. 

Proof. The first part of this lemma follows for example from theorem 2 
of [Me] (see also Theoreme 3 of [Se2]). The second part follows from a direct 
calculation, using the fact that SL2(Z) is equal to its commutator subgroup. 

Remark. The main result of [Me], stating that the group F has the con- 
gruence subgroup property, makes it possible to calculate F', and bound its 
index, in any specific situation. See [BD7] for a more complete discussion. 

Let er denote the exponent of the finite abelian group F/F'. 

PROPOSITION 3.6. Let C be an abelian group (with trivial F-action) and 
let t be the exponent of the er-torsion module C[er]. If x and y are in the same 
r-orbit in Pi(Q), and m belongs to M(C)r, then 

t . m{x-y} = 0. 

Proof. It follows directly from the F-invariance of m that the function 
which to -y associates m{x--^x} is a homomorphism from F to C. Hence its 
kernel contains the commutator subgroup of F. It also contains the rational 
elements, since if -yy = y for some y E IP1(Q), 

m{x-y-x} = m{x-y} + m{y-yx} = m{x--y} + m{y-*x} = 0. 

Proposition 3.6 follows. 

Let Qo = (LX /q)[er] be the er-torsion subgroup of LX/qZ, and let Q C 
LX denote the preimage of Qo under the natural projection. It follows from 

Proposition 3.6 that the image of qf, {x--y} in LX /Q does not depend on the 
choice of M-symbol rTf, satisfying (161), if x and y belong to the same F-orbit 
in IPi(Q). This makes it possible to define the indefinite integral attached to r 

by the rule 

(162) J jw := the natural image of rlf,{x--y} in Lx/Q, 

for all such x, y. Note that when M = 1, Lemma 3.5 implies that Q = q-. 

LEMMA 3.7. The indefinite multiplicative integral of (23) satisfies the 

following properties: 
F72 rY rT2 i T r 

(163) j]w = J ]w- f J]w (mod Q) 

rr rX3 r rX2 x r jX 

(164) ; / W ; J x r7 / (mod Q) 
J j x1 J X xl J J X2( 
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T ny / T Y\ W 00IWSgn(l ) 
(165) I = (J ) , (mod Q) 

for all y C RX. 

Proof. The first identity is proved by showing that the coboundary of the 

M-symbol rf, -2-' rf,rl (viewed as a O-cochain with values in A4(LX /qz)) agrees 
with the coboundary of the M-symbol 

,rT2 ry 

1 X. 
mnll,T2{x----y} *= ffo. 

The second relation follows directly from the definitions. The third is proved 
by showing that the Lx /q--valued M-symbol -rym satisfies the defining property 
of the M-symbol wllwsgn(Y) r7yr, so that these two M-symbols are equal up to 
elements in M(LX /q)r. 

4. Periods attached to real quadratic fields 

Suppose in this section that the prime p splits in the real quadratic field K, 
and let 4 denote an algebraic embedding of K into M2(Q). 

Choose a base point r E ~p and x EE IP(Q), and define a Cp-valued 
function on F x F by the rule 

a-1T rzx r-17 rax 

(166) (a,3) = f J w / J . 
xT JX J/ JT x 

LEMMA 4.1. If a and 3 commute, the expression (a, /3) does not depend 
on the choices of r E Tlp and x EC P (Q) that were made to define it. 

Proof. The element (a, 3) can be expressed in terms of the Cx-valued 
2-cocycle d,,x E 2 (rF, Cp) defined by setting 

r-17 rBx 

(167) d-r,(a, 3) Cf,-(a-){x-+ x} = W. 

More precisely, one has 

(168) (a, /) r = d,(aC, 3) .- d,x(/3, a). 

A direct calculation shows that the natural image d of dr,x in H2(r, Cp) does 
not depend on the choices of r and x, so that a different choice would have the 
effect of multiplying d by a coboundary of the form h(a, /) = g(a) x g(3) 
g(a3). The corresponding change in (a, /3)i is then given by h(a, /3) - h(3, a). 
Since a and 3 commute, this ratio of coboundaries is equal to 1 and the result 
follows. 
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The Dirichlet S-unit theorem implies that the group O<i is free of rank 

two, so that I(K) n r = (O1 ) is free of rank two as well. 

LEMMA 4.2. The restriction of , )> to (O< Z) is a bilinear alternating 

Cp-valued pairing. 

Proof. Note that the restriction of (, )r to 1(O <) does not depend on the 
choice of T and x, by Lemma 4.1. A direct calculation based on the definitions 
shows that ( , ) is bilinear and alternating. 

Let 1y and iY2 C F be Z-module generators for @i(K) F. The period 
I E( Cx attached to I is defined by setting 

(169) 1 ':= (71,7Y2) . 

Note that {It, I,1} is independent of the choice of basis (-1, 7Y2). 

Proof of Theorem 6 (introdution). Let ordp(df) and log(df) be the classes 
in H2 (r, Cp) obtained from df by applying ordp and log respectively. Theorem 
4 implies that 

log(q) 
(170) log(df)= 

gq 
ordp(df) 

ordp (q) 

The first part of Theorem 6 follows immediately from (168) and (170). It also 
follows from these arguments that the period IT belongs to q- if Conjecture 5 
is assumed. a 

Remark. 1. Choose a prime p of K above p, and let Ox be the p-adic 
closure of the group Ox in Kp< = Qp. In [BD6], it is explained how the period 
Is, taken modulo this finite index subgroup, can be interpreted as the leading 
term in a O-element which interpolates the special values of L(E/K, 1) twisted 

by certain finite order characters of Gal(K/K). On the other hand, ordp(Ih) 
can be expressed in terms of algebraic parts of classical special values of certain 

partial L-functions attached to E/K. Thus, Theorem 6 can be viewed as giving 
an exceptional zero result for the leading terms of the theta-elements attached 
to elliptic curves over a real quadratic K, expressing this in terms of Tate's 

period attached to E. 
2. Note that the identities of Conjecture 3 and Theorem 6 provide a 

natural lifting of the exceptional zero conjectures (which are formulated as 

identities in compact quotients of Kp admitting a Galois-theoretic interpreta- 

tion) to the group Kp itself; this suggests that the exceptional zero conjectures 
might arise as consequences of more basic identities involving double integrals 
of w, identities which can be expressed without appealing to the notion of p- 
adic L-functions or O-elements. It is this point of view that provided some of 

the inspiration for the conjectures of the next section. 
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5. Heegner points attached to real quadratic fields 

5.1. The main conjecture. Assume now that the prime p is inert in the 
real quadratic field K. For x E K, let x denote the Galois conjugate of x. Fix 

embeddings of K into IR and Cp, so that K can be viewed simultaneously as a 
subfield of these two fields. 

As before, let 

(171) I : K - M2(Q) 

be an algebraic embedding. As in Section 2, the conductor of I is defined to 
be the conductor of the Z[1/p]-order ( = --1(R) of K. Let c denote this 
conductor, and make the following simplifying assumption from now on: 

ASSUMPTION 5.1. The discriminant c2Disc(K) of ( is relatively prime 
to N. 

The torus J(KX) acting on ~-p by Mobius transformations has two fixed 
points in IP1(Kp) - P (Qp) C '-p which are interchanged by Gal(Kp/Qp). Let 
zw be the unique fixed point with the property that T(A) acts on the tangent 
space of 'Hp at zw by multiplication by A/A (i.e., such that the column vector 

(zx, 1) is an eigenvector for T(A) with eigenvalue A), and let z2 be the other 
fixed point. The group (KX) nrF is free of rank one, generated by the element 
7y := - I(u) where u is a generator for the group of units of norm one in OX. 
Normalise 7y, by the requirement that u be greater than 1 (relative to the 
chosen real embedding of K). 

A period Iw E Cp is naturally attached to I when one chooses a base 
point x E I1 (Q) and sets 

(172) - := E K' . 

LEMMA 5.2. The period I does not depend on the choice of () 
LEMMA 5.2. The period I^ does not depend on the choice of x E IPi(Q) 

that was made to define it. Furthermore, it depends only on the F-conjugacy 
class of T. 

The proof is identical to the proof of Lemma 2.3. (But observe how the 
roles of the places p and oo are interchanged in these two proofs.) 

Let H+ denote the narrow ring class field of K of conductor c. (The 
definition of this class field is recalled in subsection 5.2.) The Galois group 
Gal(H+/Q) is a generalized dihedral group, in which any element mapping to 
a generator of Gal(K/Q) is necessarily of order two. Hence, since the prime p 
is inert in K/Q, it splits completely in H+/K. Fix an embedding of H+ into 

Cp. (This is tantamount to choosing a prime ideal of H+ above p.) 
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CONJECTURE 5.3. The local point 

PI; := )Tate(lT) C E(Kp) 

is a global point in E(H+). 

Conjecture 5.3 makes it clear that the period Ij is a more subtle arithmetic 
invariant than in the previous situations discussed. Indeed, one disposes of 
no modular construction of global points on E over ring class fields of real 
quadratic fields, such as is provided by the theory of complex multiplication 
when K is a quadratic imaginary field. 

As will be seen in subsection 5.2, the points P; are not the "right" gener- 
alisation of Heegner points in this setting, because they fail to obey an analogue 
of the classical Shimura reciprocity law (cf. the discussion following the state- 
ment of Corollary 5.12). 

To obtain the appropriate generalisation, choose a F-orbit in IPi(Q), say 
Foo, to fix ideas. Select any x in this orbit and use the indefinite multiplicative 
integral of (162) to define 

J ':= j E Kp /Q. 

LEMMA 5.4. The period Jj does not depend on the choice of x C Foo. 
Furthermore, it depends only on the F-conjugacy class of T. 

Proof. This follows directly from the properties of the indefinite multi- 
plicative integral given in Lemma 3.7, by manipulations identical to those 

presented in the proof of Lemma 2.3. 
Thus, J¢, is a canonical element in Kp /Q attached to T. It is related to 

the period Iw as follows: 

LEMMA 5.5. For all embeddings T of K into M2(Q), 
rzr ynx 

J/J = - - w= I4 (mod Q). 
Jd, q J X 

l 

Proof. This follows directly from property (163) of Lemma 3.7 of the 
indefinite multiplicative integral. 

Let t denote the exponent of the group Qo introduced before, so that 

(173) t divides gcd(er, (p2 - l)ordp(q)). 

Since raising to the power t maps Q to q", the element J, is a well-defined 
element in Kp /qZ. In view of Lemma 5.5, the following modification of Con- 

jecture 5.3 is natural: 
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CONJECTURE 5.6. The local point 

PT := 'Tate(J) E E(Kp) 

is a global point in E(H+). 

Assuming this conjecture, one can (and will) view P, as global points in 
E(H+). 

5.2. A Shimura reciprocity law. The goal of the Shimura reciprocity law 
is to give an explicit (conjectural) description of the action of Gal(H+/K) on 
the global points PT. An indispensable ingredient in formulating such a law is 
the concrete description of Gal(H+/K) provided by class field theory. 

Let I C K be a free Z[1/p]-submodule of rank two. The order associated 
to I is the set of A E K satisfying XI C I. A fractional 0-ideal of K is a 
free Z[1/p]-module of rank two in K whose associated order is equal to O. 
Two such fractional 0-ideals II and I2 are said to be equivalent if there exists 
a E KX such that I1 = aI2, and are said to be strictly equivalent if a can be 
chosen to be of positive norm. Let Pic(O) (resp. Pic+(O)) denote the group of 
equivalence (resp. strict equivalence) classes of fractional O-ideals in K, where 
the group operation is the usual multiplication of fractional ideals. Let h and 
h+ denote the cardinalities of Pic(O) and Pic+(O) respectively. Note that if 
OX contains an element of negative norm, then strict equivalence is no stronger 
than equivalence and h+ = h. Otherwise, we have h+ = 2h. 

The reciprocity law of class field theory identifies Pic+(O) and Pic(O) 
with the Galois groups of certain abelian extensions of K, denoted H+ and 
H respectively. The field H+ is the strict ring class field of K of conductor 
c introduced in section 5.1, and H is simply called the ring class field of K 
of conductor c. The extension H is the maximal totally real subfield of H+. 
Denote by rec the isomorphism given by the reciprocity law of class field theory: 

(174) rec: Pic(O) -- Gal(H/K), rec: Pic+(O) - Gal(H+/K). 

LEMMA 5.7. An embedding I of conductor c exists if and only if there 
is a ring homomorphism o from 0 = ~-1(R) to Z/MZ. 

Proof. If such a I exists, the algebra homomorphism o, : O > Z/MZ 
which to x E O associates the upper left-hand entry of the matrix I(x) 
(mod M) is the desired homomorphism. Conversely, given such an o, choose 
a Z[1/p]-module basis (el, e2) for O with the property that the image of e1 in 
0/MO is annihilated by ker o. The action of a E O on this basis is expressed 
by a matrix m, E R and the assignment a - M, gives the desired I. 

The homomorphism op is called the orientation at M attached to the 
embedding I. Conjugation by F (in fact, by RX) preserves the orientation of 
IQ, so that oqi is an invariant of the F-conjugacy class of T. For the definition 
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that follows, it is worth recalling that the compact group I(KpX/Qp) acts on 
T leaving exactly one vertex fixed, and permuting transitively all the vertices 

(or edges) which are at a common distance from this fixed vertex. 
Fix an orientation o : 0 - (Z/MZ). Let Emb(O, R) denote the set of 

optimal embeddings T : K - M2(Q) of conductor c satisfying: 
1. o0 = o; 

2. The vertex of T fixed by T(KX) is an even vertex. 

Since conjugation by the Atkin-Lehner matrices ae transitively permutes the 
possible orientations of I, and conjugation by ap E r - F interchanges the odd 
and even vertices of T, it follows that Emb(O, R) is nonempty if and only if 
an embedding of conductor c exists. Let Emb(O, R)/F denote the set of orbits 
of Emb(O, R) under conjugation by F. 

PROPOSITION 5.8. The sets Emb(O, R)/F and Pic+(O) are in natural 
bijection with each other. In particular, Emb(O, R) is finite of cardinality h+. 

Proof. A basis (el, e2) for K over Q is said to be positive if 

det ( ei )> 0, and ordpdet e =0 (mod 2). 
e2 e2 ï¿½2 ï¿½2 

Choose an element A- of KX of negative norm. Given an embedding I C 

Emb(O, R), recall the distinguished fixed point z, of I(KX) associated to it 
in Section 5.1 and let a, denote the fractional 0-ideal defined by 

(175) f Oz + 0 if (zj,, 1) is a positive basis of K over Q 
( A-( Oza + 0) if (zT, 1) is a negative basis of K over Q. 

Conjugating 4 by an element a E F has the effect of replacing aF by an ideal 

which is equivalent to it, in the strict sense. This is because if a = (t ' 

then the bases (zv, 1) and (az,, 1) have the same sign of orientation if the 
element (tzx, + u) is of positive norm, and have opposite orientation otherwise. 
Hence the function which to I associates the narrow ideal class c~ of aV gives 
a well-defined map 

1ll : Emb(O, R)/r Pic+(O). 

In the opposite direction, given an ideal class c in Pic+(O), choose a repre- 
sentative ideal a, and let (e1,e2) be a Z[1/p]-module basis for a chosen so 
that: 

1. The image of e1 in a/Ma is annihilated by ker o. 

2. The pair (el, e2) is a positive basis for K/Q. 
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INTEGRATION ON -t x-6 

Given A E 0, the matrix mA expressing the action of multiplication by A on a, 
relative to the basis (el, e2), is an element of R, and the assignment A H- mA 
is an algebra embedding of 0 into R which gives rise to an optimal embedding 
'c of conductor c. The class of Ic in Emb(O, R)/r does not depend on the 
choice of basis (el,e2) satisfying properties 1 and 2 above, and is unaffected 

by replacing the ideal a by Aa for any element A of K of positive norm. Hence 
it gives rise to a well-defined function 

r2 : Pic+(O) - Emb(O, R)/r. 

The reader will check that r71 and r72 are inverse to each other and hence define 

bijections between the two sets. 
Thanks to Proposition 5.8, the set Emb(O, R)/F is equipped with a nat- 

ural simply transitive action by Pic+(O), denoted 

(c,I) - c*, . 

The following conjecture is an analogue of the classical Shimura reciprocity 
law. 

CONJECTURE 5.9. The global points P EC E(H+) attached to the em- 

beddings I via Conjecture 5.6 satisfy 

Pc* = rec(c)-l(P4), for all c E Pic+(O). 

We now proceed to deduce properties of the points Pp under the assump- 
tion that they satisfy conjecture 5.9. 

The action of Gal(Kp/Qp). Let rp denote the generator of Gal(Kp/Qp) = 

Gal(K/Q), so that rp(z) = z. Thanks to the chosen embedding of H+ into 

Kp, the involution rp can be viewed as an element of Gal(H+/K). Recall 
the Atkin-Lehner involution WN acting on S2(Fo(N)) and let WN denote the 

eigenvalue of WN attached to the eigenform fo. 

PROPOSITION 5.10. Assume the Shimura reciprocity law of Conjecture 5.9. 
Then there exists a E Gal(H+/K) (depending on Pqs and on the chosen em- 
bedding of H+ into Kp) such that 

P* := Tp(PT) = WNJPW. 

Proof. First note that 

(176) Trp J= = J= J-, 

where T' = T o rp is the embedding obtained from T by composing with Tp. 
Note that T' is an optimal embedding of conductor c, and that I'(KX) fixes 
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HENRI DARMON 

an even vertex of T, since T' has the same image as I. But T' does not have 
the same orientation as T; more precisely, oT/ = o0 o Tp. By the analogue of 
Lemma 2.1 for real quadratic embeddings, cMV'a-1l is an oriented optimal 
embedding. Therefore, by Proposition 5.8 there exists c E Pic+(O) such that 

(177) I' = aM(c * T)aM 

in Emb(O, R)/r. It follows from (176) and (177) and the fact that fo is an 
eigenform for WM with eigenvalue WM that 

(178) rpJT = J-WM 

Raise both sides of this equality to the t-th power, and apply (Tate, remem- 
bering that 

(179) (>Tate o Tp = WTp O (ITate. 

One thus finds, after setting ao = rec(c)-1 and invoking Conjecture 5.9: 

(180) WrpPi = -WMPc*T = -WMaPT. 

Proposition 5.10 now follows from the fact that w is the negative of the Atkin- 
Lehner involution at p acting on fo. so that -WM/W = WN. 

Remark. The Heegner points arising in the classical theory of complex 
multiplication satisfy a relation similar to the one of Proposition 5.10, but 
with rp replaced by complex conjugation. This is hardly surprising, since the 
prime p plays much the same role in our theory as the infinite place in the 
classical theory. 

COROLLARY 5.11. Assume Conjecture 5.9. If h+ = 1 then P~ belongs to 

E(K)WN, the wN-eigenspace for the action of Tp on E(K). 

COROLLARY 5.12. Assume Conjecture 5.9. There exists a E Gal(H+/K), 
depending on the embedding I and on the chosen embedding of H+ into Cp, 
such that 

tPt = PT - wPqf = PTj + WMJoP4. 

Remark. It follows from this corollary that if WM = 1 and h+ = 1, then 

tP- = 2PV. This remark is sometimes useful because it is somewhat easier to 
compute Pj, than Pi. Note however that the points Pj are not permuted by 
the action of Gal(H+/K), since rp does not commute with the elements of this 
Galois group. Hence, it is essential to work with the better-behaved points PT 
if one wishes to calculate Mordell-Weil groups of E over larger ring class fields 
of K. 
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The action of complex conjugation. Let To be a complex conjugation in 

Gal(H+/Q). Note that since K/Q is real and complex conjugation is of order 
2, it belongs to the center of Gal(H+/K); in particular, it does not depend on 
the choice of complex embedding of H+ used to define To. 

PROPOSITION 5.13. Assume Conjecture 5.9. Then 

TrPp = wo PT. 

Proof. By the Shimura reciprocity law, 

TooPP = 
,a-'00 

where aoo E Rx is a matrix of determinant -1. On the other hand, by Lemma 
3.7, 

o oo o o o 

The result now follows when we raise both sides to the power t and apply 
bTate - 

COROLLARY 5.14. Assume Conjecture 5.9. If woo = 1 then PT belongs 
to E(H). 

Remark. It follows from the above corollary that if woo = 1, and the order 
( has class number 1, then the point Pj, belongs to E(K). If furthermore 
WN = 1 then P, belongs to E(Q). 

5.3. A Gross-Zagier conjecture. Choose a complex character 

(181) X: Pic+(O) - Cx> such that X(Tr) = Woo. 

Conjecture 5.9 predicts that the C-linear combination of points 

(182) P = E X(c)PC* 
CEPic+ (0) 

belongs to (E(H+) ( C)X, the X-eigenspace for the action of Gal(H+/K) on 
E(H+) 0 C. In particular, when X is the trivial character, the point PK := Px 
is a global point in E(K). 

Inspired by the formula of Gross and Zagier, one could surmise that there 
is a simple formula expressing the height of Px (after extending this height 
to a Hermitian pairing on E(H+) 0 C)) as a multiple of L'(E/K, X, 1) by an 
explicit nonzero fudge factor. 

CONJECTURE 5.15. The vector Px is nonzero if and only if 

L'(E/K, X, 1) 7 0. 

In particular, the point PK is of infinite order if and only if L'(E/K, 1) -7 0. 
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A proof of Conjecture 5.15 is hard to conceive of in the absence of some 

machinery for tackling Conjectures 7 and 5.9. A precise conjectural Gross- 
Zagier formula relating the height of PK to L'(E/K, 1), and some numerical 
evidence for it, is given in [DG] for elliptic curves of prime conductor. 

5.4. Numerical evidence. 
1. Let E be the elliptic curve Xo(11) with minimal Weierstrass equation 

y2 + y 
3 - 2 10x - 20. 

It has split multiplicative reduction at 11 so that w = 1 and wll = -1. The 
real quadratic field of smallest discriminant in which 11 is inert is K = Q(/2). 
The sign in the functional equation for L(E/K, s) is -1, and, as predicted by 
the Birch and Swinnerton-Dyer conjecture, E(K) contains a point of infinite 
order 

P 9/2, -+ 2), 
4 

which in fact generates E(K) up to torsion. Since the field K has narrow class 
number one, there is a unique oriented optimal embedding I of K of conductor 
1, up to conjugation in F. We have checked, to an 11-adic accuracy of 11-8, 
that 

P-= 'Tate(JW) P 

It is instructive to compare this calculation with the significantly more cum- 
bersome ones that were already carried out in [Da2, §5.1]. 

Note that the curve E is not unique in its Q-isogeny class. The above 
calculation indicates that assumption 2 of the introduction is unduly restrictive 
and ought to be relaxed, perhaps at the cost of some minor extra complications. 
This question will be discussed more fully in [DG]. 

2. Let E be the elliptic curve of conductor 43 with minimal Weierstrass 

equation given by 
E : y2 + y =3 x2. 

The quadratic field K = Q(V37) has narrow class number 1, and the order 
in K of conductor 2 has narrow class number 3. Let Pj (j = 1,2, 3) denote 

representatives of the three distinct SL2(Z[1/43])-conjugacy classes of oriented 

optimal embeddings of K into M2(Q) of conductor 2. Let rj be the fixed point 
for Ij(KX) acting on 7143, chosen as in subsection 5.2. A direct calculation 
shows that one may take rl, T2 and T3 to be 

(183) 
-3 + , -3 + 

/ and - 6 + 37. 
4 7 

Choose w, - 1 and set 

,P-P J - -Tate( / C ). Pi~~~~~~~~~~~ PJ 
= 4at 
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After computing Pj = (xj,yj) numerically to 4 significant 43-adic digits (i.e., 
modulo 434) one finds: 

P1 = (1953822 + 315600137, 1647778 + 1133177 37) (mod 434) 
P2 = (1953822 + 262800,37,1647778 + 2285624/37) (mod 434) 
P3 = (2929963,123259) (mod 434). 

Further calculation reveals that: 

(184) II(t-xj) = t3-5t2-5t-1 (mod434), 

(185) rI(t-yj) = t3 +17t2 + 17t-1 (mod434). 

Let fx(t) and fy(t) denote the polynomials in Q[t] appearing on the right-hand 
sides of (184) and (185) respectively. It is natural to guess (although the author 
is far from being able to prove this!) that the 43-adic numbers xj and yj are 
roots of these polynomials, a guess which is buttressed by the fact that: 

1. The splitting field over Q of both fx(t) and fy(t) is the ring class field H 
of Q(/37) of conductor 2; 

2. If x is a root of fx(t) and y is the (unique) root of fy(t) defined over 

Q(x), the pair (x, y) is a point on E(H). 

Such a 43-adic calculation, leading to the discovery of global points on E 
defined over a cyclic cubic extension of a real quadratic field, can be viewed as 
providing strong evidence for Conjectures 7 and 5.9. 

The author is indebted to Peter Green for producing this example. More 
extensive numerical evidence for Conjectures 7, 5.9 and 5.15 will be presented 
in [DG]. 

MCGILL UNIVERSITY, MONTREAL, QUEBEC, CANADA 
E-mail address: darmon@math.mcgill.ca 
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