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Abstract

This article describes a conjectural p-adic analytic construction of global points
on (modular) elliptic curves, points which are defined over the ring class fields of
real quadratic fields. The resulting conjectures suggest that the classical Heegner
point construction, and the theory of complex multiplication on which it is based,
should extend to a variety of contexts in which the underlying field is not a CM
field.

Introduction

Let E be an elliptic curve over Q of conductor N . It is now known (cf.
[Wi], [TW], [BCDT]) that E is modular, so that E(C) is equipped with a
non-constant analytic uniformisation

ϕ : H∗/Γ0(N) −→ E(C), (1)

where H∗ := H ∪ Q ∪ {i∞} is the extended Poincaré upper half-plane,
and Γ0(N) ⊂ PSL2(Z) is the usual Hecke congruence group, acting on
H∗ by Möbius transformations. The compact Riemann surface H∗/Γ0(N)
parametrizes pairs (A, C) where A is a (generalized) elliptic curve over C
and C ⊂ A(C) is a cyclic subgroup of order N . In this way H∗/Γ0(N) is
identified with the complex points of an algebraic curve X0(N) defined over
Q. The map ϕ of equation (1) is defined over Q, in the sense that it arises,
after extending scalars from Q to C, from a morphism of algebraic curves
defined over the rational numbers.

An important application of (1) arises from the theory of complex mul-
tiplication. More precisely, let K ⊂ C be an imaginary quadratic field and
let τ be any point in H∩K. The set O of matrices in T ∈ M2(Z) which are
upper-triangular modulo N and satisfy

T = 0 or Tτ = τ (2)

is isomorphic to an order in K (of conductor f, say) which can be identified
with the endomorphism ring of the pair (Aτ , Cτ ) attached to τ . The theory of
complex multiplication asserts that this pair is defined over the ring class field
H of K of conductor f. Hence the so-called Heegner point Pτ := ϕ(τ) ∈ E(C)
is defined over H as well. This remark enables the construction of a plentiful
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supply of algebraic points on E, points which are defined over suitable ring
class fields of imaginary quadratic fields.

The Heegner point construction is consistent with the Birch and Swin-
nerton-Dyer conjecture, in the following sense. The complex L-function
L(E/H, s) factors as a product

L(E/H, s) =
∏
χ

L(E/K, χ, s), (3)

where χ ranges over the complex characters Gal(H/K) −→ C×. The defini-
tion of L(E/K,χ, s) as an Euler product implies that

L(E/K,χ, s) = L(E/K, χ̄, s). (4)

At the same time, Rankin’s method yields the analytic continuation and
functional equation of the L-function L(E/K,χ, s) for each χ, relating the
expressions L(E/K,χ, s) and L(E/K, χ̄, 2 − s). Assume for simplicity that
the discriminant of K and the conductor f are prime to N , which implies that
all the primes dividing N are split in K/Q. In this case the sign appearing
in the functional equation is −1, so that, by parity considerations,

L(E/K, χ, 1) = 0 for each χ : Gal(H/K) −→ C×. (5)

It follows from (3) and (5) that

ords=1L(E/H, s) ≥ [H : K]. (6)

The Birch and Swinnerton-Dyer conjecture leads to the expectation that

rank(E(H))
?

≥ [H : K]. (7)

It is believed that Heegner points account for the bulk of the growth of
rank(E(H)) as H varies over all ring class fields of K of discriminant prime
to N . For example, calculations of the kind carried out by Gross and Zagier
in [GZ] should prove that an equality in (6) implies that the Heegner points
in E(H) generate a subgroup of rank at least [H : K]. Under this hypothesis
the work of Kolyvagin establishes an equality in (7), so that the Heegner
points generate a finite index subgroup of E(H).

Replacing K by a real quadratic field, one is confronted with many situ-
ations in which inequality (6) continues to hold. For example, suppose that
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N = pM , where p is a prime which does not divide M . Let K be a real
quadratic field in which p is inert and all primes ` dividing M are split. If
H is any ring class field of K of conductor prime to N , then an argument
identical to the one sketched above carries over to establish inequality (6).
This is tantalising insofar as the theory of complex multiplication provides no
handle on the problem of understanding inequality (7). In fact, no extension
of the theory of complex multiplication to the context of real quadratic fields
is known. The problem of supplying such a theory is intimately connected to
Hilbert’s 12th problem of constructing the class fields of real quadratic fields
(or of more general number fields) by analytic means.

The main goal of this work is to formulate a conjectural (p-adic) analytic
construction of global points in the Mordell-Weil groups of E over certain
ring class fields of real quadratic fields, generalising the theory of complex
multiplication presented above. For the convenience of the reader, the main
steps in this construction, and the main theorems of this article, are sum-
marised in the remainder of the introduction.

1. Integration on Hp × H. Suppose now that N = pM , where M is a
positive integer, and p is a prime not dividing M . Choose an Eichler Z[1/p]-
order R of level M in M2(Q). (These are all conjugate to each other.) To fix
ideas, take from now on

R =

{(
a b
c d

)
∈ M2(Z[1/p]) with c ≡ 0 (mod M)

}
. (8)

Denote by Γ ⊂ PSL2(Z[1/p]) the image of the group of elements of determi-
nant 1 in R×. It acts by Möbius transformations both on the p-adic upper
half-plane

Hp := P1(Cp)− P1(Qp) (9)

and on the extended Poincaré upper half-plane H∗. The induced diagonal
action of Γ onHp×H is discrete and discontinuous. The quotient (Hp×H)/Γ
is investigated in a series of works of Ihara (cf. for example [Ih1] and [Ih2])
where it is related to the special fiber of X0(M) in characteristic p. Stark
[St] remarked that this quotient is formally analogous to a Hilbert modular
surface.

Section 1 develops Stark’s analogy by formulating a theory of integration
of “differential two-forms” on the quotient (Hp×H)/Γ, and deriving a notion
of p-adic periods associated to such forms. More precisely, it is explained
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how a newform f0 of weight 2 on Γ0(N) can be viewed as encoding the p-
adic residues of a form ω of weight (2, 2) on (Hp ×H)/Γ. If f0 has rational
Fourier coefficients (i.e., it arises from an elliptic curve E of conductor N) a
so-called double multiplicative integral is defined, depending on a choice of a
homomorphism from the Néron lattice of E to Z:

×
∫ τ2

τ1

∫ y

x

ω ∈ C×
p , τ1, τ2 ∈ Hp, x, y ∈ P1(Q). (10)

As stated in lemma 1.11 of section 1, this function of the variables τ1, τ2, x, y
behaves formally “as if” ω were a Hilbert modular form of weight (2, 2) on
(Hp × H)/Γ, even though the object ω is not defined independently of its
periods.

2. Periods attached to split tori. Since E has conductor N and p divides
N exactly, the curve E has multiplicative reduction at p. Let

ΦTate : C×
p −→ E(Cp) (11)

be Tate’s p-adic uniformisation attached to E over Cp, and let q ∈ pZp denote
the p-adic period attached to this uniformisation.

Let K ' Q×Q be the split quadratic algebra, and let Ψ : K −→ M2(Q)
be a Q-algebra embedding. Write Ψ̄ : K× −→ PGL2(Q) for the natural
homomorphism induced by Ψ. The torus Ψ̄(K×) acting on the extended
upper half plane H∗ has exactly two fixed points xΨ, yΨ ∈ P1(Q). The group
Ψ̄(K×) ∩ Γ is free of rank one, generated by an element γΨ. A p-adic period
IΨ ∈ C×

p is associated to Ψ by choosing a point z ∈ Hp and setting

IΨ := ×
∫ γΨz

z

∫ yΨ

xΨ

ω. (12)

It is shown in lemma 2.3 of section 2 that IΨ does not depend on the choice
of z that was made to define it, and that it belongs to Q×

p .
Let ordp : C×

p −→ Q be the valuation at p normalised so that ordp(p) = 1,
and let log : C×

p −→ Cp be any choice of p-adic logarithm. In section 2 the
following identity is proved

Theorem 1

log(IΨ) =
log(q)

ordp(q)
ordp(IΨ).
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The proof of this theorem proceeds by evaluating both expressions ordp(IΨ)
and log(IΨ) independently. The quantity ordp(IΨ) is related to special values
of certain partial L-functions attached to E/Q, while log(IΨ) is expressed in
terms of the first derivative of the corresponding p-adic L-function. Viewed
in this way theorem 1 becomes a reformulation of a conjecture of Mazur, Tate
and Teitelbaum [MTT] that was proved by Greenberg and Stevens [GS].

To allow for a cleaner statement of the conjectures and results, the following
assumption on E is made from now on throughout the article:

Assumption 2 The elliptic curve E is unique in its Q-isogeny class.

The following conjecture, a multiplicative refinement of theorem 1, relates
the period IΨ directly to q:

Conjecture 3 The period IΨ belongs to qZ.

Remarks:

1. Theorem 1 implies that the group IZ
Ψ ⊂ Q×

p is either finite or is a lattice
commensurable with qZ. More precisely, it follows from this theorem that

I
ordp(q)
Ψ = qordp(IΨ) (mod (Q×

p )tors) (13)

To prove conjecture 3 in its entirety, it remains to:

• show that ordp(q) divides ordp(IΨ), so that

IΨ = qn (mod (Q×
p )tors), with n = ordp(IΨ)/ordp(q). (14)

Some theoretical evidence for this divisibility is given in [BD7], using
multiplicity-one results of Mazur, the level-lowering result of Ribet, and
the theory of Wiles yielding an isomorphism between certain Hecke rings
and deformation rings. Alternately, as explained in section 2, much of
the divisibility of ordp(IΨ) by ordp(q) can be derived as a consequence
of the Birch and Swinnerton-Dyer conjecture.

• remove the (Q×
p )tors-indeterminacy in formula (14). In the case where

M = 1, de Shalit’s multiplicative refinement [DS] of the result of Green-
berg and Stevens can be used to remove a large part of this indetermi-
nacy. There is every reason to expect that the assumption M = 1
in [DS] is not essential, so that a full proof of conjecture 3, while not
present in the literature, should lie within the scope of the methods
developed in [GS] and [DS].
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2. Note the analogy of conjecture 3 with the results of Oda [O] concerning
periods on the Hilbert modular surface attached to a real quadratic field.

3. The Cohomology of Γ. An M-symbol with values in an abelian group
C is a function m : P1(Q) × P1(Q) −→ C, denoted (x, y) 7→ m{x→y} and
satisfying

m{x→y}+ m{y→z} = m{x→z}, m{x→y} = −m{y→x}, (15)

for all x, y, z ∈ P1(Q). Denote by M the group of Cp-valued M-symbols,
and by M(C) the group of C-valued M-symbols. The group PSL2(Q) (and
hence, Γ) acts on M(C) by the rule

(γm){x→y} := m{γ−1x→γ−1y}. (16)

Choose τ ∈ Hp and x ∈ P1(Q). The double multiplicative integral of equation
(10) gives rise to a one-cocycle c̃f,τ ∈ Z1(Γ,M(C×

p )) by the rule

c̃f,τ (γ){x→y} = ×
∫ γτ

τ

∫ y

x

ω. (17)

The natural image cf of c̃f,τ in H1(Γ,M(C×
p )) is independent of the choice

of τ that was made to define it.
Basic facts about the structure of H1(Γ,M) as a module over the Hecke

algebra show that the classes

ordp(cf ) ∈ H1(Γ,M(Q)) ⊂ H1(Γ,M) (18)

and
log(cf ) ∈ H1(Γ,M) (19)

belong to the same one-dimensional Cp-vector subspace of H1(Γ,M). The-
orem 1 is used to conclude:

Theorem 4

log(cf ) =
log(q)

ordp(q)
ordp(cf ).

Conjecture 3 suggests the following multiplicative refinement of theorem 4.
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Conjecture 5 Let L = Qp(τ) be the field generated over Qp by τ . There
exists a one-cocycle ẽf,τ ∈ Z1(Γ,M(Z)) and an M-symbol η̃f,τ ∈ M(L×)
satisfying the relation

c̃f,τ (γ){x→y} = qẽf,τ (γ){x→y} ×
(
η̃f,τ{γ−1x→γ−1y} ÷ η̃f,τ{x→y}

)
, (20)

for all γ ∈ Γ and x, y ∈ P1(Q).

Remark:
1. Note that the image ef of ẽf,τ in H1(Γ,M(Q)) is determined by the
property

ordp(cf ) = ordp(q)ef . (21)

2. The proofs of theorems 1 and 4 make no use of assumption 2, so these
results hold without this assumption. On the other hand, computer calcula-
tions carried out by Peter Green [DG] indicate that conjecture 5 is false in
general in the absence of assumption 2.

Let ηf,τ be the natural image of η̃f,τ in M(L×/qZ). Reducing equation
(20) of conjecture 5 modulo qZ yields

×
∫ γτ

τ

∫ y

x

ω = ηf,τ{γ−1x→γ−1y} ÷ ηf,τ{x→y} (mod qZ). (22)

Note that this relation makes ηf,τ well-defined up to multiplication by ele-
ments in H0(Γ,M(L×/qZ)).

To avoid certain technical complications that will receive due treatment in
chapter 3.3, assume for the rest of the introduction that M = 1; in this case
the group H0(Γ,M(L×/qZ)) vanishes, so that ηf,τ ∈ M(L×/qZ) is uniquely
determined by (22). Thus conjecture 5 makes it possible to define, for all
x, y ∈ P1(Q), the indefinite multiplicative integral

×
∫ τ∫ y

x

ω := ηf,τ{x→y} ∈ L×/qZ. (23)

This indefinite integral satisfies the basic multiplicativity and Γ-equivariance
properties stated in lemma 3.7 of section 3 (with Q = qZ).

The last two sections (sections 4 and 5) are devoted to studying certain p-adic
periods in C×

p associated to an embedding

Ψ : K −→ M2(Q) (24)
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of a quadratic étale algebra K into M2(Q), the case K = Q×Q corresponding
to the situation already studied in section 2. An analogous setting in which
K is an imaginary quadratic field, falling somewhat outside the scope of the
machinery developed above, has been explored implicitly in [BD2], using the
theory of complex multiplication and some facts about the bad reduction of
modular curves. Sections 4 and 5 concentrate on the case where K is a real
quadratic field.

4. Periods attached to real quadratic fields. Suppose that the prime
p splits in the real quadratic field K. Choose τ ∈ Hp and x ∈ P1(Q). Given
α, β ∈ Ψ̄(K×) ∩ Γ, the quantity

〈α, β〉Ψ := ×
∫ α−1τ

τ

∫ βx

x

ω ÷×
∫ β−1τ

τ

∫ αx

x

ω (25)

is proven in section 4 to be independent of the choice of τ ∈ Hp and x ∈ P1(Q)
that is made to define it. Moreover, 〈 , 〉Ψ defines a C×

p -valued alternating
bilinear pairing on Ψ̄(K×) ∩ Γ.

The group Ψ̄(K×)∩ Γ is a free Z-module of rank two. Let γ1 and γ2 ∈ Γ
be Z-module generators for this group. The period IΨ ∈ C×

p attached to Ψ
is defined by setting

IΨ := 〈γ1, γ2〉Ψ. (26)

Note that {IΨ, I−1
Ψ } is independent of the choice of basis (γ1, γ2). Theorem 6

below expresses IΨ in terms of the Tate period for E. More precisely, theorem
4 is shown to imply the analogue of theorem 1 for the real quadratic field K:

Theorem 6 If IΨ is the period attached to Ψ as in (26), then

log(IΨ) =
log(q)

ordp(q)
ordp(IΨ).

Furthermore, if conjecture 5 holds, then IΨ belongs to qZ.

This identity should be viewed as the counterpart of the Greenberg-Stevens
formula for real quadratic fields. See [BD6], where the connection of IΨ with
special values of L-functions attached to E/K is briefly discussed.

5. Heegner points attached to real quadratic fields. The most intrigu-
ing application of the formalism of p-adic period integrals arises when the
prime p is inert in the real quadratic field K, so that the p-adic completion
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Kp of K is isomorphic to the quadratic unramified extension of Qp. In that
case certain periods JΨ ∈ K×

p /qZ attached to Ψ (whose definition relies on
the validity of conjecture 5) are predicted to give rise to global points on E
defined over the ring class fields of K, in a manner analogous to the classical
Heegner point construction when K is imaginary quadratic.

To describe JΨ precisely, note first that the torus Ψ(K×) acting on Hp has
precisely two fixed points zΨ and z̄Ψ, which belong to P1(Kp)−P1(Qp) ⊂ Hp

and are interchanged by the action of Gal(Kp/Qp). The group Ψ̄(K×) ∩ Γ
is free of rank one, with a generator γΨ of the form Ψ̄(u), where u is an
appropriate power of the fundamental unit attached to K.

The period JΨ ∈ K×
p /qZ is defined by choosing a base point x ∈ P1(Q)

and using the indefinite integral of (23) to set

JΨ := ×
∫ zΨ
∫ γΨx

x

ω ∈ K×
p /qZ. (27)

Section 5 shows that JΨ does not depend on the choice of x ∈ P1(Q) that
was made to define it, and that it depends in fact only on the Γ-conjugacy
class of Ψ.

The algebra Ψ(K) ∩ R is isomorphic to a Z[1/p]-order in K. Let fΨ be
the conductor of this order, and denote by H+ the narrow ring class field of
K of conductor fΨ, defined as in section 5.2. Since p is inert in K/Q and
does not divide fΨ, it splits completely in H+/K. Choose an embedding of
H+ into Kp. The main conjecture of section 5 (and, indeed, of the entire
paper) is

Conjecture 7 The local point

PΨ := ΦTate(JΨ) ∈ E(Kp)

is a global point in E(H+).

Conjecture 7 extends the repertoire of modular constructions of rational
points on elliptic curves beyond the currently known methods, which are
all based on the theory of complex multiplication. The possibility of this
construction, foreshadowed in [Da2], is directly inspired by the main the-
orem of [BD3]. But a proof would appear to fall beyond the scope of the
methods used in that article, where the theory of complex multiplication and
the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves play
a central role.
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Section 5 refines conjecture 7 by formulating a conjectural generalized
Shimura Reciprocity Law describing the action of Gal(H+/K) on PΨ. Af-
ter a brief discussion of the expected relation between the points PΨ and
derivatives of L-series, in the spirit of the formula of Gross and Zagier, the
article concludes by presenting some numerical evidence for conjecture 7 and
its refinements.
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1 Integration on (Hp ×H)/Γ

1.1 Forms on T ×H
Let T be the Bruhat-Tits tree of PGL2(Qp). Its set V(T ) of vertices is
identified with the set of Q×

p -homothety classes of rank two Zp-modules in
Q2

p, two vertices being joined by an edge if the corresponding homothety
classes have representatives which are contained in each other with index p.
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Write E(T ) for the set of ordered edges of T , and denote by s(e) and t(e)
respectively the source and target vertex of e ∈ E(T ).

The group PGL2(Qp) acts naturally on T by isometries. The stabiliser of
a vertex is conjugate to PGL2(Zp) while the stabiliser of an edge is conjugate
to the group

Γ0(pZp) =

{(
a b
c d

)
∈ PGL2(Zp) such that p|c

}
. (28)

Let v∗ be the distinguished vertex corresponding to the homothety class of
Z2

p ⊂ Q2
p, whose stabiliser is equal to PGL2(Zp). Let e∗ be the edge whose

source is v∗ and whose stabiliser is equal to Γ0(pZp). Note that the stabiliser
of v∗ in Γ is equal to Γ0(M), while the stabiliser of e∗ in Γ is equal to Γ0(N).

Recall (cf. [GvdP]) the reduction map

red : Hp −→ T (29)

from Hp to the Bruhat-Tits tree T of PGL2(Qp). The inverse image of
each open edge e ∈ E(T ) is called a basic wide open annulus in Hp, while
the inverse image of a vertex is an example of an affinoid subdomain of Hp.
If e is an edge of T , the orientation on it determines an orientation of the
associated annulus Ve, i.e., an “interior” B0 and an “exterior” B∞. (The
reversed edge ē obtained from e by interchanging source and target gives rise
to the same annulus Ve, but the interior and exterior p-adic discs attached
to e and ē are exchanged.) Choose a coordinate function ze on P1(Cp) which
induces the identifications

Ve
'→ {z ∈ Hp : 1/p < |z|p < 1}, B0

'→ {z ∈ Cp : |z|p ≤ 1/p}. (30)

This coordinate function is well-defined, up to multiplication by an element
of O×

Cp
. (For further background on T and its relation to Hp, the reader is

invited to consult [Kl] or [GvdP] for example.)

Digression on p-adic modular forms. For this paragraph, replace Γ
temporarily by a subgroup of PSL2(Qp) acting discretely on Hp. (Arithmetic
groups of this type can be obtained from the unit groups of Z[1/p] orders
of definite quaternion algebras B which are split at p, after choosing an
identification of B ⊗ Qp with M2(Qp); see for example [BD1] or [BDIS].)
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Following [Sch], a rigid-analytic modular form of weight 2 on Hp/Γ is defined
to be a rigid-analytic function f on Hp satisfying

f(
az + b

cz + d
) = (cz + d)2f(z), for all γ =

(
a b
c d

)
∈ Γ, z ∈ Hp. (31)

The coefficient of dze/ze in the Mittag-Leffler expansion of f on the affinoid
B0 is called the residue of f at e and is denoted rese(f(z)dz). (Cf. [Sch],
p. 224.)

Lemma 1.1 The function κf : E(T ) −→ Cp defined by κf (e) = rese(f(z)dz)
is harmonic, i.e.,

κf (ē) = −κf (e) for all e ∈ E(T ),
∑

s(e)=v

κf (e) = 0, for all v ∈ V(T ).

This lemma follows from a rigid analytic analogue of the classical residue
theorem of complex analysis, and is explained in [Sch], p. 225.

Returning to the case where Γ is the subgroup of SL2(Qp) of the intro-
duction, the objects of definition (31) become trivial, since Γ acts on Hp with
dense orbits. Motivated by an analogy with the theory of Hilbert modular
forms, it seems desirable to replace rigid analytic modular forms on Hp/Γ
by an appropriate notion of “form of weight (2, 2) on (Hp × H)/Γ”. Such
an object should be a Γ-invariant expression of the form ω = f(zp, z)dzpdz,
where zp is a p-adic and z a complex variable. The function f would be
rigid analytic in the first variable and holomorphic in the second. While it
is unclear from the outset how to supply a sensible definition of ω, it is still
possible to intuit a rigorous definition for its p-adic residues. More precisely,
imagine taking the Mittag-Leffler expansion of ω on affinoid subdomains of
Hp (leaving aside for the moment the problem that ω has not been defined!).
The coefficient of dze/ze in such an expansion – the residue rese(ω) – should
be interpreted as a holomorphic differential form on H. This informal dis-
cussion leads to the following precise definition, motivated by lemma 1.1 and
tailored to capture the notion of the “p-adic residues of ω”.

Definition 1.2 A cusp form of weight 2 on (T ×H)/Γ is a function

f : E(T )×H −→ C

satisfying
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1. f(γe, γz) = (cz + d)2f(e, z), for all γ =

(
a b
c d

)
∈ Γ.

2. The function f is harmonic, i.e., for each vertex v of T ,∑
s(e)=v

f(e, z) = 0,

and for each edge e of T , f(ē, z) = −f(e, z).

3. For each edge e of T , the function fe(z) := f(e, z) is a cusp form of
weight 2 (in the usual sense) on the group Γe := StabΓ(e).

Since Γ acts transitively on the unoriented edges of T , the group Γe is con-
jugate in Γ to Γe∗ = Γ0(N), for each e. Property 1 is suggested by the
desired Γ-invariance of ω, and property 2 by lemma 1.1 arising from the p-
adic residue theorem. Note that an element of the space S2(T , Γ) of cusp
forms of weight 2 on (T ×H)/Γ is completely described by a collection {fe}
of cusp forms on Γe, indexed by the edges e of T , satisfying the compatibility
relation

fγe(γz)d(γz) = fe(z)dz, for all γ ∈ Γ, (32)

together with the harmonicity condition 2.
In analysing the structure of S2(T , Γ) it is convenient to introduce other

spaces of modular forms defined in an analogous way. Let Γ̃ be the image in
PGL2(Qp) of R×

+, the group of invertible matrices in R whose determinant
is positive. The group Γ consists of all the elements in Γ̃ such that

|γ| := ordp(det(γ)) = 0 (in Z/2Z), (33)

so that Γ̃ contains Γ with index 2.
Let S2(E , Γ̃) denote the space of cusp forms on (E(T ) × H)/Γ̃, defined

as the functions
f : E(T )×H −→ C

satisfying the analogues of properties 1 and 3 of definition 1.2, but not nec-
essarily property 2, and with Γ replaced by Γ̃:

1. f(γe, γz) = (cz+d)2

det(γ)
f(e, z), for all γ =

(
a b
c d

)
∈ Γ̃.

2. For each edge e of T , the function fe(z) := f(e, z) is a cusp form of
weight 2 (in the usual sense) on the group Γe := Γ̃ ∩ Stab(e).

14



Likewise, let S2(V , Γ̃) denote the space of forms on (V(T ) × H)/Γ̃, defined
as the functions

f : V(T )×H −→ C
satisfying:

1. f(γv, γz) = (cz+d)2

det(γ)
f(v, z), for all γ =

(
a b
c d

)
∈ Γ̃.

2. For each vertex v of T , the function fv(z) := f(v, z) is a cusp form of
weight 2 (in the usual sense) on the group Γv := Γ̃ ∩ Stab(v).

A vertex of T is said to be even if its distance from the distinguished vertex
v∗ is even, and is said to be odd otherwise. Likewise, an edge e ∈ E(T ) is
said to be even if its source vertex is even, and odd if its source vertex is
odd. The group Γ preserves the parity of vertices and edges of T , while the
elements in Γ̃− Γ are parity-reversing. Given f ∈ S2(T , Γ), define a form f̃
on E(T )×H by choosing an element α ∈ Γ̃− Γ and setting

f̃(e, z)dz = f(e, z)dz if e is even; (34)

f̃(e, z)dz = f(αe, αz)dαz if e is odd. (35)

Note that

1. The definition of f̃ does not depend on the choice of α that was made
to define it, since any two such choices differ by left multiplication by
an element of Γ, and f(e, z)dz is Γ-invariant.

2. The function f̃ belongs to S2(E , Γ̃). (To check that

f̃(γe, γz)dγz = f̃(e, z)dz for all γ ∈ Γ̃,

it is easiest to separate four cases, depending on the parity of e and on
whether γ belongs to Γ or Γ̃− Γ.)

3. The assignment i : f 7→ f̃ is an injective homomorphism from S2(T , Γ)
to S2(E , Γ̃). For if f̃ = 0, the function f(e, z) vanishes identically on all
even edges, and hence on all edges by the harmonicity of f .

The normaliser of Γ0(N) in Γ̃ consists of the elements of Γ̃ that fix the
unordered edge attached to e∗. Hence Γ0(N) has index two in this normaliser.
It will be convenient for later calculations to assume that α belongs to the
normaliser of Γ0(N) in Γ̃, so that

αe∗ = ē∗. (36)
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There are two natural degeneracy maps

πs, πt : S2(E , Γ̃) −→ S2(V , Γ̃) (37)

defined by

πs(f)(v, z) :=
∑

s(e)=v

f(e, z), πt(f)(v, z) :=
∑

t(e)=v

f(e, z). (38)

The exactness of the following sequence follows directly from the definitions:

0 −→ S2(T , Γ)
i−→ S2(E , Γ̃)

πs⊕πt−→ S2(V , Γ̃)⊕S2(V , Γ̃). (39)

Let S2(Γ0(N)) denote the usual complex vector space of holomorphic cusp
forms of weight 2 on H/Γ0(N). Let

ϕs : X0(N) −→ X0(M)

be the natural projection arising from the inclusion Γ0(N) ⊂ Γ0(M), and let
ϕt = ϕsWp where Wp is the Atkin-Lehner involution at p acting on X0(N),
defined by

Wpf0(z)dz = f0(αz)d(αz). (40)

Making an abuse of notation, denote by the same symbols ϕs and ϕt the two
degeneracy maps from S2(Γ0(N)) to S2(Γ0(M)) induced from ϕs and ϕt by
pushforward of differential forms. More precisely, choose a system of coset
representatives for Γ0(N) in Γ0(M):

Γ0(M) = γ1Γ0(N) ∪ · · · ∪ γp+1Γ0(N). (41)

One then has

ϕs(f)(z)dz =

p+1∑
j=1

f(γ−1
j z)d(γ−1

j z), ϕt(f)(z)dz =

p+1∑
j=1

f(αγ−1
j z)d(αγ−1

j z).

(42)
The kernel of

ϕs⊕ϕt : S2(Γ0(N)) −→ S2(Γ0(M))⊕S2(Γ0(M)) (43)

is called the subspace of p-new forms, denoted Snew−p
2 (Γ0(N)). The following

lemma relates the various spaces of forms on T to spaces of classical modular
forms.
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Lemma 1.3 1. The function which to f(e, z) associates f0(z) := fe∗(z)
induces an isomorphism from S2(E , Γ̃) to S2(Γ0(N)).

2. The function which to f(v, z) associates f0(z) := fv∗(z) induces an iso-
morphism from S2(V , Γ̃) to S2(Γ0(M)).

3. The function which to f(e, z) associates f0(z) := fe∗(z) induces an iso-
morphism from S2(T , Γ) to Snew−p

2 (Γ0(N)).

Proof: To prove part 1, note that by definition of S2(E , Γ̃), the form f0(z)
is a cusp form on Γ0(N). The fact that Γ̃ acts transitively on E(T ) implies
that f ∈ S2(E , Γ̃) is completely determined by its restriction to {e∗}×H, so
that the assignment f 7→ f0 is injective. To show surjectivity, note that any
f0 in S2(Γ0(N)) can be extended to a form on S2(E , Γ̃) by the rule

fe(z)dz = f0(γz)dγz (44)

if e = γ−1e∗ with γ ∈ Γ̃. Part 2 is proved in an identical way, after observing
that the stabiliser of v∗ in Γ̃ is equal to Γ0(M). Finally, to prove part 3,
consider the following natural diagram in which the first row is taken from
equation (39) and the vertical maps are those of lemma 1.3:

0 −→ S2(T , Γ)
i−→ S2(E , Γ̃) −→ S2(V , Γ̃)⊕ S2(V , Γ̃)

↓ ↓ ↓
0 −→ Snew−p

2 (Γ0(N)) −→ S2(Γ0(N)) −→ S2(Γ0(M))⊕ S2(Γ0(M)).

This diagram commutes: the commutativity of the first square follows di-
rectly from equation (34) defining i, in view of the fact that e∗ is an even
edge. The commutativity of the second square follows from the choice of α
satisfying (36) which shows that γ1e∗, . . . γp+1e∗ is a complete list of edges
with source v∗, while γ1αe∗, . . . γp+1αe∗ is a complete list of edges with target
v∗. Part 3 of lemma 1.3 follows from the five lemma.

The Hecke operators T` (` 6 |N) act on the spaces S2(E , Γ̃), S2(V , Γ̃), and
S2(T , Γ) via the identifications of lemma 1.3. More precisely, for each prime

`, write the double coset Γ

(
` 0
0 1

)
Γ as a disjoint union of left cosets:

Γ

(
` 0
0 1

)
Γ = ∪jγjΓ. (45)
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Then T`f is given by

(T`f)(e, z)dz =
∑

j

f(γ−1
j e, γ−1

j z)d(γ−1
j z). (46)

Similarly, for each prime ` dividing M , let W` denote the Atkin-Lehner
involution at ` acting on Snew−p

2 (Γ0(N)) or on S2(T , Γ) via the identification
of lemma 1.3. Writing N = `nN ′, choose integers x, y, z, t such that

`nxt−N ′yz = 1, and set α` =

(
`nx y
Nz `nt

)
. (47)

The actions of W` are given by the rules

(W`f0)(z)dz = f0(α`z)d(α`z) (48)

(W`f)(e, z)dz = f(α`e, α`z)d(α`z), (49)

for all f0 ∈ S2(Γ0(N)) and for all f ∈ S2(T , Γ).

The involution Wp on S2(Γ0(N)) defined in (40) plays a particularly im-
portant role in our discussion.

Lemma 1.4 Let f0 be a form in Snew−p
2 (Γ0(N)) and let f be the form in

S2(T , Γ) associated to it by the identification of lemma 1.3. Denote by Wpf
the form attached to Wpf0 by this identification. Then

(Wpf)(e, z)dz := −f(αe, αz)d(αz). (50)

(Note the minus sign appearing in this formula.)
Proof: Let e be any even edge of T , so that e = γe∗ for some γ ∈ Γ. A
direct calculation using definition (40) of Wp and property (36) satisfied by
α shows that

Wpf(e, z)dz = Wpf0(γ
−1z)d(γ−1z) = f0(αγ−1z)d(αγ−1z)

= f(e∗, αγ−1z)d(αγ−1z) = −f(ē∗, αγ−1z)d(αγ−1z)

= −f(ē, γαγ−1z)d(γαγ−1z)

= −f(γαγ−1e, γαγ−1z)d(γαγ−1z) = −f(αe, αz)d(αz),

where the last equality follows from the fact that γαγ−1 belongs to Γ̃−Γ. A
similar reasoning works if e is odd, and the lemma follows.
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Let f0 be a normalized newform on Γ0(N) having rational Fourier coeffi-
cients, so that it corresponds to an elliptic curve E over Q of conductor N
by the Eichler–Shimura construction. Let f be the form in S2(T , Γ) which is
related to f0 by lemma 1.3, so that fe∗ = f0. The form f0 is an eigenvector
for Wp acting on on S2(Γ0(N)). It is known that

Wpf0 = −f0 if E has split multiplicative reduction at p (51)

Wpf0 = f0 if E has non-split multiplicative reduction at p. (52)

Let w be the negative of the eigenvalue of Wp acting on f0, so that w = 1
if E has split multiplicative reduction at p, and w = −1 if E has non-split
multiplicative reduction at p.

Lemma 1.5 The form f satisfies the following transformation rule under
the group Γ̃ ⊃ Γ:

f(γe, γz)d(γz) = w|γ|f(e, z)dz, for all γ ∈ Γ̃.

Proof: A direct consequence of the transformation property of f0 under Wp

and lemma 1.4.

1.2 Mixed period integrals

The discussion preceding definition 1.2 suggests that f should be viewed as
a system of residues for a “form ω of weight (2, 2)” on (Hp × H)/Γ, even
though the ω itself is not defined. It is natural in this light to seek to attach
to f periods analogous to the periods of modular forms of weight (2, 2) on a
Hilbert modular surface.

By assumption 2, the elliptic curve E is isomorphic to the strong Weil
curve in its isogeny class. Let ϕ : H∗/Γ0(N) −→ E(C) be the strong Weil
parametrisation attached to E. Letting ωE denote the Néron differential of
E, one has

ϕ∗(ωE) = 2πicϕf0(z)dz, (53)

where cϕ, the so-called Manin constant, is a rational number which is known
to be equal to ±1 in many cases (cf. [Ed]).

Choose elements x, y in the extended upper half-plane H∗ := H∪ P1(Q).
The function κ̃f{x→y} : E(T ) −→ C defined by

κ̃f{x→y}(e) := 2πicϕ

∫ y

x

fe(z)dz (54)
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is a complex-valued harmonic cocycle on T , as follows immediately from the
harmonicity properties of f itself. At the same time, the elements of E(T )
correspond to basic compact open subsets of P1(Qp) by setting

U(e∗) := Zp ⊂ P1(Qp),

and defining, for any edge e = γe∗ with γ ∈ GL2(Qp),

U(e) := γU(e∗) = γZp = {x ∈ P1(Qp) such that γ−1x ∈ Zp}. (55)

Thus κ̃f{x→y} gives rise to a complex-valued distribution µ̃f{x→y} on the
boundary P1(Qp) of Hp by the rule

µ̃f{x→y}(U(e)) = κ̃f{x→y}(e). (56)

This distribution can only be integrated against locally constant complex-
valued functions on P1(Qp). For the purposes of p-adic integration, it is
desirable that κ̃f{x→y} take on integral, or at least p-adic integral, values.
Fortunately, this can be achieved, provided that x and y belong to P1(Q).
For in this case, the values of κ̃f{x→y}(e) can be expressed in terms of the
modular symbols

λ̃E(a, b) := 2πicϕ

∫ −a
b

∞
f0(z)dz, (57)

defined in [MTT], §8, where they are simply called 2πicϕλE(a, b). More
precisely, choose γ ∈ Γ̃ such that γe = e∗, and write γx = −a

b
, γy = − c

d
.

Then

κ̃f{x→y}(e) = µ̃f{x→y}(U(e)) = w|γ|(λ̃E(c, d)− λ̃E(a, b)). (58)

Let Ω denote the Néron lattice attached to the elliptic curve E. The following
proposition, proved under assumption 2, plays a key role in the definition of
integrals on (Hp ×H)/Γ.

Proposition 1.6 (Drinfeld-Manin) The Z-module Λ ⊂ C generated by
the modular symbols λ̃E(a, b) is contained in Ω.

Proof: From equations (57) and (53),

λ̃E(a, b) := 2πicϕ

∫ −a
b

∞
f0(z)dz =

∫
ϕ([∞,−a

b
])

ωE, (59)
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where ϕ([∞,−a
b
]) is the image of the path joining ∞ to −a/b in H∗ under

the modular parametrisation ϕ. By the theorem of Drinfeld and Manin, all
cusps in H∗ map to rational torsion points in E. Hence by assumption 2,
ϕ([∞,−a

b
]) is a closed path on E(C) and hence λ̃E(a, b) belongs to Ω.

If E(R) has two components then Ω is generated by a positive real period
Ω+ and a purely imaginary period Ω−. If E(R) has one connected component,
then Ω is contained with index two in the lattice spanned by Ω+ and Ω−,
where Ω+ (resp. Ω−) denotes the real (resp. imaginary) half-period attached
to E. In either case, thanks to proposition 1.6, one can write

λ̃E(a, b) = λ+
E(a, b) · Ω+ + λ−E(a, b) · Ω−, (60)

with λ±E(a, b) ∈ Z. Choose a sign w∞ = ±1 and let λE(a, b) denote λ+
E(a, b)

(resp. λ−E(a, b)) if w∞ = 1 (resp. w∞ = −1). Write κf (resp. µf ) for the
Z-valued harmonic cocycle on T (resp. distribution on P1(Qp)) attached to
this modular symbol, so that, with γ, a, b, c and d as in (58),

κf{x→y}(e) = µf{x→y}(U(e)) = w|γ|(λE(c, d)− λE(a, b)). (61)

It is worth recording the following lemma which will be used repeatedly in
the sequel:

Lemma 1.7 For all γ ∈ Γ̃, x, y ∈ P1(Q), and e ∈ E(T ),

κf{γx→γy}(γe) = w|γ|κf{x→y}(e).

Proof: By definition,

κ̃f{γx→γy}(γe) =

∫ γy

γx

fγe(z)dz = w|γ|
∫ γy

γx

fe(γ
−1z)d(γ−1z)

= w|γ|
∫ y

x

fe(z)dz = w|γ|κ̃f{x→y}(e).

The same result with κ̃f replaced by κf follows at once.

The next lemma complements lemma 1.7 by describing the transformation
behaviour of κf under the entire group R× which contains Γ̃ with index two.

Lemma 1.8 If α∞ ∈ R× is any element of determinant −1, then

κf{α∞x→α∞y}(α∞e) = w∞κf{x→y}(e).
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Proof: It is enough to show this for a single such α∞, say the matrix(
1 0
0 −1

)
. In this case it follows directly from the relation

λE(−a, b) = w∞λE(a, b) (62)

satisfied by the modular symbol λE attached to the choice of sign w∞.
(Cf. [MTT].)

For any γ ∈ R×, set sgn(γ) = 0 if det(γ) > 0, and sgn(γ) = 1 if det(γ) <
0. Lemmas 1.7 and 1.8 can be combined into the following transformation
formula satisfied by κf under the action of R×:

κf{γx→γy}(γe) = w|γ|wsgn(γ)
∞ κf{x→y}(e), for all γ ∈ R×. (63)

Because the values µf{x→y}(U(e)) are integral and hence p-adically
bounded as e ∈ E(T ), the distribution µf{x→y} defines a p-adic measure on
P1(Qp). In particular, if h is any bounded locally analytic Cp-valued function
on P1(Qp), the integral∫

P1(Qp)

h(t)dµf{x→y}(t) ∈ Cp (64)

can be defined in the usual way.

Digression on p-adic modular forms, continued. To motivate definition
1.9 below of the periods attached to ω, it is useful to return to the digres-
sion about p-adic modular forms and the setting where f is a rigid analytic
modular form on Hp/Γ, with Γ a discrete arithmetic subgroup of SL2(Qp).
The function κf : E(T ) −→ Cp encoding the residues of f gives rise to a
p-adic distribution µf on P1(Qp) which is p-adically bounded, since T /Γ is a
finite graph. In [Te], it is proved that the weight two modular form f can be
recovered from its boundary distribution µf by the elegant Poisson inversion
formula

f(z) =

∫
P1(Qp)

1

z − t
dµf (t). (65)

To the modular form f and a choice of two endpoints z1, z2 ∈ Hp is attached
the Coleman p-adic line integral

∫ z2

z1
f(z)dz which depends on a choice of p-

adic logarithm log : C×
p −→ Cp. Taking this Coleman integral on both sides

22



of equation (65) and formally interchanging the order of integration on the
right suggests the identity∫ z2

z1

f(z)dz =

∫
P1(Qp)

log

(
t− z2

t− z1

)
dµf (t), (66)

which can be justified rigorously as in [BDIS] or alternately can be adopted
as a definition of the Coleman line integral in this setting.

Returning to the original setting, but guided by formula (66), the following
definition, depending similarly on a choice of log, imposes itself naturally.

Definition 1.9 Let z1 and z2 be elements of Hp, and let x, y ∈ P1(Q).∫ z2

z1

∫ y

x

ω :=

∫
P1(Qp)

log

(
t− z2

t− z1

)
dµf{x→y}(t) ∈ Cp. (67)

The following lemma shows that this definition is well-behaved:

Lemma 1.10 The double integrals of definition 1.9 satisfy the following
properties: ∫ z3

z1

∫ y

x

ω =

∫ z2

z1

∫ y

x

ω +

∫ z3

z2

∫ y

x

ω; (68)∫ z2

z1

∫ x3

x1

ω =

∫ z2

z1

∫ x2

x1

ω +

∫ z2

zi1

∫ x3

x2

ω; (69)∫ γz2

γz1

∫ γy

γx

ω = w|γ|wsgn(γ)
∞

∫ z2

z1

∫ y

x

ω, for all γ ∈ R×. (70)

Proof: The first and second identity are a direct consequence of definition
1.9, while the third follows from equation (63).

Caveat: Once again, the reader should not be misled by this notation into
thinking that ω is defined by itself; only its system of p-adic residues, de-
scribed by f , is defined, but this is enough to make sense of definition 1.9.
Of course, the notation is meant to be suggestive, and the reader should view
the left hand side of definition 1.9 as a period for a form of weight (2, 2) on
(Hp ×H)/Γ, with the complex period Ω+ or Ω− “factored out”.

To obtain stronger formulae, it is preferable to avoid choosing a p-adic loga-
rithm, exploiting the fact that κf{x→y} is Z-valued to define

×
∫ z2

z1

∫ y

x

ω := ×
∫

P1(Qp)

(
t− z2

t− z1

)
dµf{x→y}(t) ∈ C×

p . (71)
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Here ×
∫

denotes the multiplicative integral, in which limits of products replace
the usual limits of Riemann sums. More precisely,

×
∫

P1(Qp)

g(t)dµ(t) := lim
C

∏
Uα∈C

g(tα)µ(Uα), (72)

where the limit is taken over increasingly fine covers C = {Uα}α of P1(Qp)
by disjoint compact open subsets, with tα ∈ Uα. This limit exists if log g is
locally analytic and g takes values in a compact subset of C×

p , as is the case
for the integrand appearing in (71).

The multiplicative integral has the advantage that it does not rely on a
choice of p-adic logarithm. It is related to its additive counterpart by the
formula ∫ z2

z1

∫ y

x

ω = log

(
×
∫ z2

z1

∫ y

x

ω

)
. (73)

Since any p-adic logarithm vanishes on the torsion in C×
p , the multiplicative

integral carries more information than the additive one. Note also that it is
C×

p , and not Cp, which arises most naturally in Tate’s p-adic uniformisation
theory of elliptic curves with multiplicative reduction.

Properties analogous to those of lemma 1.10, with addition replaced by mul-
tiplication, hold for the multiplicative integral:

Lemma 1.11 The double multiplicative integral of definition 1.9 satisfies the
following properties:

×
∫ z3

z1

∫ y

x

ω = ×
∫ z2

z1

∫ y

x

ω ××
∫ z3

z2

∫ y

x

ω; (74)

×
∫ z2

z1

∫ x3

x1

ω = ×
∫ z2

z1

∫ x2

x1

ω ××
∫ z2

z1

∫ x3

x2

ω; (75)

×
∫ γz2

γz1

∫ γy

γx

ω =

(
×
∫ z2

z1

∫ y

x

ω

)w|γ|w
sgn(γ)
∞

, for all γ ∈ R×. (76)

Proof: The proof is identical to that of lemma 1.10.

24



2 Periods attached to split tori

2.1 Preliminary calculations

Let K = Q × Q, let Ψ : K −→ M2(Q) be a Q-algebra embedding, and
let c be a positve integer which is relatively prime to N . One says that Ψ
is an optimal embedding of conductor c if the subring O := Ψ−1(R) is the
Z[1/p]-order in K of conductor c, so that

O = {(u, v) ∈ Z[1/p]× Z[1/p] such that u ≡ v (mod c)}. (77)

An orientation on O is a ring homomorphism

o : O −→ Z/MZ. (78)

If M = M1M2 is a factorisation of M into a product of two relatively prime
integers, the homomorphism oM1,M2 defined by

oM1,M2((a, b)) = (a mod M1, b mod M2) ∈ Z/M1Z× Z/M2Z = Z/MZ (79)

is an orientation, and all orientations are of this form.
An optimal embedding Ψ of conductor c gives rise to an orientation oΨ

on O, sending x ∈ O to the residue class modulo M of the upper left hand
entry of Ψ(x). The embedding Ψ is said to be oriented if

oΨ = oM,1. (80)

Lemma 2.1 Let M = M1`
nM2 be a factorization of M into three relatively

prime integers M1, `n and M2. If oΨ = oM1,`nM2, and α` is the matrix of
(47) used to define the Atkin-Lehner involution W`, then

oα`Ψα−1
`

= oM1`n,M2 .

Proof: This follows by a direct calculation with matrices using the definition
of α` given in (47).

For each integer ν satisfying gcd(ν, c) = 1, define the embedding Ψν of K
into M2(Q) by the rule

Ψν(a, a) =

(
a 0
0 a

)
, Ψν(c, 0) =

(
c ν
0 0

)
. (81)

Note that Ψν is an oriented optimal embedding of conductor c. Conversely:
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Lemma 2.2 If Ψ is any oriented optimal embedding of K of conductor c,
it is Γ-conjugate to the embedding Ψν for some ν with gcd(ν, c) = 1. The
image of ν in (Z/cZ)×/〈p2〉 is uniquely determined by Ψ.

Proof: The embedding Ψ maps (c, 0) to a matrix in M2(Z[1/p]) of determi-
nant 0 and trace c, so that

Ψ(c, 0) =

(
r s
t u

)
, r ≡ c (mod M), ru− ts = 0, r + u = c.

Let x and y be relatively prime integers satisfying the equation tx− ry = 0.
Note that M divides y, since M divides t and r is a unit modulo M . Hence
one can choose γ ∈ Γ of the form

γ =

(
x x′

y y′

)
. (82)

A direct calculation now shows that

γ−1Ψ(c, 0)γ =

(
c ν
0 0

)
, (83)

where ν ∈ Z[1/p] is relatively prime to c. Conjugating by the matrices(
1 1
0 1

)
and

(
p 0
0 p−1

)
shows that Ψν and Ψν′ are conjugate to each

other in Γ if and only if the natural images of ν and ν ′ in (Z/cZ)×/〈p2〉 are
the same.

Recall from the introduction that the torus Ψ(K×) acting on H∗ has
exactly two fixed points xΨ and yΨ, and that Ψ̄(K×) ∩ Γ is free of rank one,
generated by an element γΨ ∈ Γ. The period IΨ is then defined by choosing
z ∈ Hp and setting

IΨ = ×
∫ γΨz

z

∫ yΨ

xΨ

ω. (84)

Lemma 2.3 The period IΨ does not depend on the choice of z ∈ Hp that
was made to define it. Furthermore, it depends only on the Γ-conjugacy class
of Ψ.

Proof: The integral IΨ is independent of z, since

×
∫ γΨz1

z1

∫ yΨ

xΨ

ω ÷×
∫ γΨz2

z2

∫ yΨ

xΨ

ω = ×
∫ z2

z1

∫ yΨ

xΨ

ω ÷×
∫ γΨz2

γΨz1

∫ yΨ

xΨ

ω,
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by property (74) of the multiplicative integral stated in lemma 1.11. By
property (76),

×
∫ z2

z1

∫ yΨ

xΨ

ω = ×
∫ γΨz2

γΨz1

∫ yΨ

xΨ

ω,

and it follows that IΨ does not depend on z. Replacing Ψ by αΨα−1 with
α ∈ Γ̃, the period attached to αΨα−1 becomes

×
∫ αγΨα−1z

z

∫ αyΨ

αxΨ

ω =

(
×
∫ γΨα−1z

α−1z

∫ yΨ

xΨ

ω

)w|α|

=

(
×
∫ γΨz

z

∫ yΨ

xΨ

ω

)w|α|

, (85)

where the first equality follows from property (76) of the integral, and the
second equality follows from the independence of IΨ on z.

The goal of section 2 is to prove theorem 1 of the introduction. We begin
by disposing of it in the following trivial special case.

Lemma 2.4 Suppose that E has non-split multiplicative reduction at p and
that p has odd order in (Z/cZ)×. Then IΨ = ±1.

Proof: Let t be the order of p in (Z/cZ)× and let α = Ψ(pt, 1) ∈ Γ̃−Γ. Then
Ψ = αΨα−1. On the other hand, by equation (85), IαΨα−1 = I−1

Ψ .

Because of lemma 2.4, the following assumption will be made in the rest of
section 2.

Assumption 2.5 When w = −1, the order of p in (Z/cZ)× is even.

By interchanging xΨ and yΨ if necessary, assume that yΨ is an attractive fixed
point for γΨ and that xΨ is a repulsive fixed point, so that, for all t ∈ Hp,

γn
Ψ(t) → yΨ as n →∞, γn

Ψ(t) → xΨ as n → −∞. (86)

Let MΨ(t) be a Möbius transformation with coefficients in Qp sending yΨ to
0 and xΨ to ∞. For example, if xΨ and yΨ are not equal to ∞, one may take

MΨ(t) =
t− yΨ

t− xΨ

.

Note that MΨ(t) is well-defined up to multiplication by a scalar in Q×
p .

The element γΨ acts discretely on the complement P1(Qp) − FPΨ of the
fixed-point set FPΨ := {xΨ, yΨ}. In fact,
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Lemma 2.6
MΨ(γΨt) = psMΨ(t),

where
s = 2× the order of p2 in (Z/cZ)×.

(Note that by assumption 2.5, s is equal to the order of p in (Z/cZ)× when
w = −1.)
Proof: Note that the Möbius tranformations MΨ(γΨt) and MΨ(t) both send
yΨ to 0 and xΨ to ∞, so they must differ by multiplication by a scalar in Q×

p .
A direct calculation shows that this scalar is equal to ps, using the fact that

γΨ = Ψ̄

((
ps/2 0
0 p−s/2

))
is the image in PSL2(Qp) of a matrix having eigenvalues ps/2 and p−s/2.

Lemma 2.6 allows the calculation of a fundamental region FΨ for the action
of the element γΨ on P1(Qp)− FPΨ:

FΨ = {t ∈ P1(Qp)− FPΨ such that 0 ≤ ordp(MΨ(t)) < s} . (87)

Points of the boundary P1(Qp) of the p-adic upper half-plane Hp correspond
to ends of T ; let path(xΨ, yΨ) be the infinite path on T joining the ends
associated to xΨ and yΨ. For each vertex v on this path, let

U(v) ⊂ P1(Qp)− FPΨ

be the compact open subset corresponding to all points associated to ends
originating from v and not passing through any edge in path(xΨ, yΨ). The
vertices of path(xΨ, yΨ) can be indexed consecutively by subscripts j ∈ Z so
that

U(vj) = {t ∈ P1(Qp)− FPΨ such that ordp(MΨ(t)) = j} , (88)

so that
FΨ = U(v0) ∪ U(v1) ∪ · · · ∪ U(vs−1). (89)

Let ej be the edge on path(xΨ, yΨ) joining vj−1 to vj. Note that

γΨ(vj) = vj+s, γΨ(ej) = ej+s. (90)
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Set
mΨ = κf{xΨ→yΨ}(e0) = κf{xΨ→yΨ}(es). (91)

The remainder of section 2.1 is devoted to proving the following proposition,
a first step in the evaluation of IΨ.

Proposition 2.7 For all z ∈ Hp,

IΨ = ×
∫ γΨz

z

∫ yΨ

xΨ

ω =

(
×
∫
FΨ

MΨ(t)dµf{xΨ→yΨ}(t)
)
× psmΨ .

In particular, IΨ belongs to Q×
p .

Proof: By definition,

×
∫ γΨz

z

∫ yΨ

xΨ

ω = ×
∫

P1(Qp)

(
t− γΨz

t− z

)
dµf{xΨ→yΨ}(t). (92)

For conciseness, write µf for µf{xΨ→yΨ} and κf for κf{xΨ→yΨ} in the
remainder of section 2.

Lemma 2.8 The measure µf is invariant under multiplication by γΨ, i.e,.
µf (γΨU) = µf (U) for all compact open subsets U of P1(Qp).

Proof: This follows directly from lemma 1.7.

Lemma 2.9 If c ∈ C×
p is any non-zero constant, then

×
∫
FΨ

cdµf (t) = 1.

Proof: This is simply because µf (FΨ) = κf (e0)− κf (es) = 0.

Proof of proposition 2.7:
To evaluate the integral appearing in the right hand side of equation (92),
break up the region of integration P1(Qp) as follows:

P1(Qp) = U−(n) ∪ U+(n) ∪
n⋃

j=−n

γj
ΨFΨ, (93)

where

U−(n) = {t ∈ P1(Qp)− FPΨ s.t. ordp(MΨ(t)) < −ns} ∪ {xΨ},
U+(n) = {t ∈ P1(Qp)− FPΨ s.t. ordp(MΨ(t)) ≥ (n + 1)s} ∪ {yΨ}.
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Invoking lemma 2.8, define

I(n) :=
n∏

j=−n

×
∫

γj
ΨFΨ

(
t− γΨz

t− z

)
dµf (t) =

n∏
j=−n

×
∫
FΨ

(
γj

Ψt− γΨz

γj
Ψt− z

)
dµf (t). (94)

Observe that

µf (U−(n)) = −κf (e0) = −mΨ, µf (U+(n)) = κf (es) = mΨ. (95)

Hence by definition of the multiplicative integral,

×
∫

P1(Qp)

(
t− γΨz

t− z

)
dµf (t) =

(
xΨ − γΨz

xΨ − z

)−mΨ
(

yΨ − γΨz

yΨ − z

)mΨ

lim
n→∞

I(n)

=

(
MΨ(γΨz)

MΨ(z)

)mΨ

lim
n−→∞

I(n) = psmΨ lim
n→∞

I(n), by lemma 2.6. (96)

Note that the integrand
γj
Ψt−γΨz

γj
Ψt−z

appearing in the definition of I(n) and the

function
t−γ−j+1

Ψ z

t−γ−j
Ψ z

differ by a non-zero scalar multiple (depending on z but

not on t), so that by lemma 2.9

×
∫
FΨ

(
γj

Ψt− γΨz

γj
Ψt− z

)
dµf (t) = ×

∫
FΨ

(
t− γ−j+1

Ψ z

t− γ−j
Ψ z

)
dµf (t). (97)

Interchanging the order of summation and integration in the definition (94)
of I(n),

I(n) = ×
∫
FΨ

(
n∏

j=−n

t− γ−j+1
Ψ z

t− γ−j
Ψ z

)
dµf (t) (98)

= ×
∫
FΨ

(t− γn+1
Ψ z)

(t− γ−n
Ψ z)

dµf (t) (99)

= ×
∫
FΨ

M(γn+1
Ψ z; γ−n

Ψ z; t)dµf (t), (100)

where for a, b ∈ H, M(a; b; t) is any Möbius transformation sending a to 0
and b to ∞.
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By (86), there exists a sequence of scalars λn ∈ C×
p such that the C×

p -

valued functions λnM(γn+1
Ψ z; γ−n

Ψ z; t) converge to MΨ(t) uniformly on com-
pact subsets of P1(Qp)− {xΨ, yΨ} as n →∞, so that

lim
n→∞

I(n) = ×
∫
FΨ

MΨ(t)dµf (t). (101)

Combining this with equations (92) and (96),

×
∫ γΨz

z

∫ yΨ

xΨ

ω =

(
×
∫
FΨ

MΨ(t)dµf{xΨ→yΨ}(t)
)
× psmΨ , (102)

as was to be shown.

2.2 Evaluation of ordp(IΨ)

Define the so-called Winding element attached to Ψ by choosing a vertex of
T and setting

WΨ =
∑

v→γΨv

κf{xΨ→yΨ}(e),

the sum being taken over all edges in the path joining v to γΨv.

Lemma 2.10 The winding element WΨ does not depend on the choice of
v ∈ V(T ) that was made to define it, and it depends only on the Γ-conjugacy
class of Ψ.

Replacing v by v′ changes WΨ by the quantity∑
v′→γΨv′

κf{xΨ→yΨ}(e)−
∑

v→γΨv

κf{xΨ→yΨ}(e)

=
∑
v′→v

κf{xΨ→yΨ}(e)−
∑

γΨv′→γΨv

κf{xΨ→yΨ}(e) = 0,

where the first equality follows from the harmonicity of κf{xΨ→yΨ} and the
fact that T is simply connected, while the second equality follows from the
Γ-invariance of κf (lemma 1.7).

Proposition 2.11
ordp(IΨ) = WΨ.
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Proof: By proposition 2.7,

ordp

(
×
∫ γΨz

z

∫ yΨ

xΨ

ω

)
= ordp

(
×
∫
FΨ

MΨ(t)dµf (t)× psmΨ

)
(103)

=

(∫
FΨ

ordp(MΨ(t))dµf (t)

)
+ smΨ. (104)

But the function g(t) := ordp(MΨ(t)) is locally constant on FΨ, and satisfies

g(t) = i, for all t ∈ U(vi). (105)

Hence

ordp

(
×
∫ γΨz

z

∫ yΨ

xΨ

ω

)
=

(
s−1∑
i=0

i(κf (ei)− κf (ei+1))

)
+ sκf (es) (106)

=
s∑

i=1

κf (ei) =
∑

v0→γΨv0

κf (e) = WΨ, (107)

and the result follows.

Lemma 2.1 implies that any embedding Ψ of conductor c is conjugate,
under the action of the group generated by the matrices α`, to an oriented
optimal embedding of conductor c. In particular, since the newform f0 is an
eigenvector for all the Atkin-Lehner involutions, one has

Lemma 2.12 Given any embedding Ψ : K −→ M2(Q) of conductor c, there
exists an oriented embedding Ψ′ of conductor c for which

IΨ′ = I±1
Ψ .

Hence, to show conjecture 3 or theorem 1 it is enough to show it for all ori-
ented optimal embeddings. Lemma 2.2 allows us to focus exclusively on the
embeddings of the special form described in (81). When Ψ = Ψν , the follow-
ing proposition evaluates the winding number WΨ in terms of the modular
symbols λE(a, b) attached to E in equation (57) of section 1.

Proposition 2.13 Let J be the coset of (Z/cZ)× consisting of a such that
a/ν ≡ pj (mod c) for some j = j(a). Then

ordp(IΨν ) = WΨν =
∑
a∈J

wj(a)λE(a, c). (108)
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Proof: Keeping the notations of the discussion preceding the statement of
proposition 2.7, note that

WΨ = κf{xΨ→yΨ}(e0) + · · ·+ κf{xΨ→yΨ}(es−1). (109)

A direct calculation reveals that the two fixed points for the action of Ψ(K×)
on P1(Q) are

xΨ = ∞ and yΨ = −ν

c
, (110)

and that a fundamental region for the action of γΨ on P1(Qp) − {xΨ, yΨ} is
therefore given by

FΨ =
{

t ∈ P1(Qp) such that 0 ≤ ordp

(
t +

ν

c

)
< s
}

, (111)

where s is twice the order of p2 in (Z/cZ)×. By proposition 2.7, and since
MΨ(t) can be chosen to be equal to t + ν

c
,

U(ej) =
{

t ∈ P1(Qp) such that ordp

(
t +

ν

c

)
≥ j
}

, (112)

=
{

t ∈ P1(Qp) such that p−j
(
t +

ν

c

)
∈ Zp

}
. (113)

Hence U(ej) = U(γ−1e∗), where γ =

(
1 −ν ′

0 pj

)
. Noting that

γxΨ = ∞, γ(yΨ) =
(−ν − cν ′)/pj

c
, |γ| = j, (114)

we find
µf (U(ej)) = κf{xΨ→yΨ}(ej) = wjλE(a, c), (115)

where a is an integer which is defined modulo c by the congruence a ≡ νp−j.
The result follows.

Let χ be a Dirichlet character of conductor c prime to N .

Lemma 2.14 If χ(p) = w, then∑
ν∈(Z/cZ)×

χ(ν)WΨν = s
∑

a∈(Z/cZ)×

χ(a)λE(a, c).

33



Proof: This follows from proposition 2.13 by a direct calculation.

Recall the choice of sign w∞ that was made in defining the modular symbol
λE(a, c).

Lemma 2.15 If χ(p) = w and χ(−1) = −w∞, then∑
ν∈(Z/cZ)×

χ(ν)WΨν = 0.

Proof: This follows directly from lemma 2.14 and from the relation

λE(−a, b) = w∞λE(a, b) (116)

satisfied by the modular symbols attached to the choice of sign w∞.

Let

L(f0, χ, s) = L(E/Q, χ, s) =
∞∑

n=1

anχ(n)n−s (117)

be the L-series of E/Q twisted by χ. Write

τ(χ) :=
∑

ν∈(Z/cZ)×

χ(ν)e2πiν/c (118)

for the Gauss sum attached to χ.

Proposition 2.16 If χ(p) = w and χ(−1) = w∞, then∑
ν∈(Z/cZ)×

χ(ν)WΨν =
sc

τ(χ)

L(E/Q, χ, 1)

cϕΩw∞

.

Proof: This follows by combining lemma 2.14 with equation (8.6) of §I.8 of
[MTT]. (The discrepancy involving the factors of 2πi and cϕ are accounted
for by the different normalisations used in the definition of λE(a, c) in [MTT]
and in this article.)

Lemma 2.17 There exist infinitely many Dirichlet characters χ of conduc-
tor prime to N satisfying

χ(p) = w, χ(−1) = w∞,
∑

ν∈(Z/cZ)×

χ(ν)WΨν 6= 0.
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Proof: In view of proposition 2.16, it is enough to show that there exist
infinitely many Dirichlet characters of conductor prime to N satisfying

χ(p) = w, χ(−1) = w∞, L(E/Q, χ, 1) 6= 0. (119)

This can be proved by considering averages of L(E/Q, χ, 1) as χ ranges over
characters of conductor c satisfying χ(p) = w and χ(−1) = w∞, and showing
that such averages are non-zero as c becomes large. In fact, when M 6= 1
or w∞ 6= −1, it is enough to consider averages over quadratic characters χ.
In the exceptional situation where N = p and ww∞ = −1, the sign in the
functional equation of L(E/Q, χ, s) is always −1. It then becomes necessary
to allow χ to be a non-quadratic character, so that this sign does not force
the vanishing of L(E/Q, χ, s) at s = 1. See for example [MM] where non-
vanishing results for twists of L-series, and the averaging techniques used to
obtain them, are explained in detail.

Remarks:
1. The non-vanishing of the expression

∑
a χ(a)λE(a, c), for some Dirichlet

character χ, is an elementary consequence of the fact that the paths between
elements of P1(Q) generate the rational homology of the curve H∗/Γ0(N)
so that the modular symbols λE(a, c) cannot vanish identically. It seems
more difficult to exploit this property of the modular symbols to establish the
corresponding non-vanishing as χ ranges over the smaller subset of characters
satisfying χ(p) = w and χ(−1) = w∞, without exploiting the connection
between modular symbols and special values of twisted L-series and invoking
analytic arguments to establish non-vanishing theorems for such twists.

2. The fact that E has split (resp. non-split) multiplicative reduction at p
when w = 1 (resp. when w = −1) combined with the fact that χ(p) = w
implies that the factor ordp(q) appears as one of the fudge factors (attached to
the prime p) in the algebraic part of the special value L(E/Q, χ, 1) predicted
by the Birch and Swinnerton-Dyer conjecture. Hence for all such χ, one
expects that

ordp(q) divides
L(E/Q, χ, 1)

Ωw∞

. (120)

This can be used to deduce the corresponding divisibility of ordp(IΨ) by
ordp(q), at least away from the primes dividing s, c and cϕ, and lends some
support for conjecture 3. (Cf the remarks immediately following the state-
ment of theorem 1 in the introduction.)
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The divisibility of ordp(IΨ) by ordp(q) will be established in many cases,
independently of any conjectures, in [BD7].

2.3 Evaluation of log(IΨ)

Set Ψ = Ψν as before. The following proposition evaluates log(IΨ) explicitly
in terms of modular symbols.

Proposition 2.18 Let Jn be the coset in (Z/pncZ)× consisting of a such
that a/ν ≡ pj (mod c) for some j = j(a). Then

log(IΨ) =

∫ γΨz

z

∫ yΨ

xΨ

ω = lim
n→∞

wn
∑
a∈Jn

wj(a) log(a)λE(a, pnc).

Note that the expression wj(a) which appears in the right-hand limit is well
defined, since assumption 2.5 makes the parity of j well-defined in the case
where w = −1.

Proof of proposition 2.18: By proposition 2.7, and since MΨ(t) can be chosen
to be equal to t + ν

c
,∫ γΨz

z

∫ yΨ

xΨ

ω = log(IΨ) =

∫
FΨ

log
(
t +

ν

c

)
dµf{xΨ→yΨ}(t). (121)

As in the discussion preceding the proof of proposition 2.7, write

FΨ = U(v0) ∪ · · · ∪ U(vs−1), (122)

where
U(vj) =

{
t ∈ P1(Qp) such that ordp

(
t +

ν

c

)
= j
}

. (123)

For each positive integer n, the compact open subset U(vj) can be further
decomposed as

U(vj) = ∪a∈(Z/pnZ)×Uj,a, (124)

where

Uj,a =
{

t ∈ U(vj) such that p−j
(
t +

ν

c

)
≡ a (mod pn)

}
. (125)

Choose an integer ν ′ such that

ν ′ ≡ −ν

c
(mod pn+s), (126)
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and observe that

Uj,a = U(γ−1e∗), where γ =

(
1 −ν ′ − pja
0 pn+j

)
∈ R×. (127)

Noting that

γxΨ = ∞, γ(yΨ) =
(−ν − cν ′)/pj − ac

cpn
, |γ| = n + j, (128)

we find by equation (61) of section 1 that

µf{xΨ→yΨ}(Uj,a) = wn+jλE(aj, cp
n), (129)

where aj is an integer which is defined modulo cpn by the congruences

aj ≡ ac (mod pn), aj ≡ νp−j (mod c). (130)

It follows that∫
FΨ

log
(
t +

ν

c

)
dµf{xΨ→yΨ}(t) = lim

n→∞
wn
∑

a

wj(a) log(a)λE(a, pnc), (131)

where the sum ranges over a ∈ Jn. The proposition follows.

We now turn to the proof of theorem 1 of the introduction.

Proof of theorem 1.
By combining propositions 2.18 and 2.13, one is reduced to showing that for
each ν in (Z/cZ)×/〈p2〉,

lim
n→∞

wn
∑
a∈Jn

wj(a) log(a)λE(a, pnc) =
log(q)

ordp(q)

∑
a∈J

wj(a)λE(a, c). (132)

Let χ : (Z/cZ)× −→ C×
p be a Dirichlet character with the property that

χ(p) = w, so that in particular χ factors through (Z/cZ)×/〈p2〉. Recall the
sign w∞ that was used to define λE(a, b). If χ(−1) = −w∞, then a direct
calculation using the relation λE(−a, b) = w∞λE(a, b) shows that

lim
n→∞

wn
∑

a∈(Z/pncZ)×

χ(a) log(a)λE(a, pnc) =
∑

a∈(Z/cZ)×

χ(a)λE(a, c) = 0. (133)
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If χ(−1) = w∞, then the exceptional zero conjecture of Mazur, Tate and
Teitelbaum ([MTT], §13, conjecture 1) proved by Greenberg and Stevens
[GS] states that for all such χ,

lim
n→∞

wn
∑

a∈(Z/pncZ)×

χ(a) log(a)λE(a, pnc) =
log(q)

ordp(q)

∑
a∈(Z/cZ)×

χ(a)λE(a, c),

(134)
where the sums now are taken over all congruence classes a in (Z/pncZ)× and
(Z/cZ)× respectively. Hence relation (134) holds for all Dirichlet characters
χ such that χ(p) = w. But the relation expressed in equation (132) can
be written as a Cp-linear combination of the relations expressed in equation
(134). Theorem 1 follows.

3 The cohomology of Γ

3.1 The cohomology of M-symbols

Recall from the introduction that an M-symbol with values in an abelian
group C is a function

m{ → } : P1(Q)× P1(Q) −→ C (135)

satisfying

m{x→y}+ m{y→z} = m{x→z}, m{x→y} = −m{y→x}, (136)

for all x, y, z ∈ P1(Q). The group of Cp-valued M-symbols is denoted M,
and more generally the group of C-valued M -symbols is denoted by M(C).
Recall also that Γ acts on M(C) by the rule

(γm){x→y} := m{γ−1x→γ−1y}. (137)

The cohomology groups H i(Γ,M) play the crucial role in this section. Recall
that Γ acts on T with e∗ as fundamental region. The stabiliser of e∗ in Γ is
equal to Γ0(N) and the stabiliser of s(e∗) (resp of t(e∗)) is equal to Γ0(M)
(resp Γ′0(M) := αpΓ0(M)α−1

p ). Proposition 13 of sec. II.2.8 of [Se1], applied
to the case M = M and G = Γ acting on T , yields a natural exact sequence
of Cp-vector spaces

MΓ0(M) ⊕MΓ′0(M) −→MΓ0(N) θ−→ H1(Γ,M)
−→ H1(Γ0(M),M)⊕H1(Γ′0(M),M).

(138)
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To describe the map θ explicitly, note that a Γ0(N)-invariant M -symbol
m{x→y} gives rise to a unique system of M -symbols me indexed by the
edges of T , satisfying me∗{x→y} = m{x→y} as well as

mγe{γx→γy} = me{x→y}, mē{x→y} = −me{x→y}, (139)

for all x, y ∈ P1(Q) and γ ∈ Γ. One can then write

(θm)(γ){x→y} =
∑

v∗→γv∗

me{x→y}. (140)

All the cohomology groups appearing in the exact sequence (138) are en-
dowed with a natural action of the Hecke operators T` with ` 6 |N , defined as
in [Sh], §8.3. Furthermore these groups are equipped with the “Atkin-Lehner

involution W∞ at ∞”, defined using the matrix α∞ =

(
1 0
0 −1

)
of deter-

minant −1 which belongs to the normalisers of the groups Γ0(N), Γ0(M),
Γ′0(M), and Γ in R×. On M -symbols W∞ is defined by the rule

(W∞m){x→y} = m{α∞x→α∞y} = m{−x→− y}, (141)

and on H1(Γ,M) by the rule

(W∞c)(γ){x→y} = c(γα∞){−x→− y}. (142)

A direct calculation exploiting the explicit description of θ given by (140)
shows that the maps arising in (138) are compatible with the action of the
Hecke operators T` as well as with the involution W∞. For example, to check
this last compatibility note that

θ(W∞m)(γ){x→y} =
∑

v∗→γv∗

(W∞m)e{x→y} =
∑

v∗→γv∗

mα∞e{−x→− y}.

(143)
As e ranges over the edges in the path joining v to γv, the edges α∞e range
over the edges in the path joining α∞v∗ = v∗ to α∞γv∗ = γα∞v∗. Hence the
right hand side of (143) is equal to∑

v∗→γα∞v∗

me{−x→− y} = W∞(θ(m))(γ){x→y}. (144)

39



Given the newform in S2(T , Γ) satisfying

T`(f) = a`(f)f (145)

for all ` 6 |N , and a Cp-vector space H equipped with the commuting actions
of the Hecke operators T` and the involution W∞, denote by Hf the f -isotypic
component of H, defined as the set of classes c ∈ H for which

T`(c) = a`(f)c for all ` 6 |N. (146)

Denote also by Hw∞ the space on which the involution W∞ acts with the
eigenvalue w∞, and by Hf,w∞ the intersection of Hf and Hw∞ .

Proposition 3.1 The space (MΓ0(N))f,w∞ is a one-dimensional Cp-vector
space.

Proof: Let F be the space of Cp-valued functions on P1(Q), endowed with
the natural action of Γ. The assignment d : F −→M defined by

(df){x→y} := f(y)− f(x) (147)

defines a surjective homomorphism of Γ-modules, with kernel the space of
constant functions, identified with Cp. Taking the Γ0(N)-cohomology of the
exact sequence

0 −→ Cp −→ F d−→M −→ 0 (148)

yields the exact sequence of cohomology groups

FΓ0(N) −→MΓ0(N) −→ H1(Γ0(N), Cp) −→ H1(Γ0(N),F) (149)

which is compatible under the natural action of the Hecke operators and the
involution W∞. On the other hand, the space FΓ0(N) is Eisenstein, i.e.,

If x ∈ FΓ0(N), then T`x = (` + 1)x for all ` 6 |N. (150)

The same is true of H1(Γ0(N),F), since F can be written as a direct sum of
induced modules:

F = ⊕xInd
Γ0(N)
Γx

Cp, (151)

where the direct sum is taken over a system of representatives for the Γ0(N)-
orbits in P1(Q), and Γx denotes the stabiliser of x in Γ0(N). By Shapiro’s
lemma,

H1(Γ0(N),F) = ⊕xH
1(Γx, Cp), (152)
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and the action of the Hecke algebra on this module is Eisenstein. It follows
that (FΓ0(N))f = 0 and that H1(Γ0(N),F)f = 0. By the Eichler-Shimura
period isomorphism (cf. [Sh]. §8.2), the space H1(Γ0(N), Cp)

f is a two-
dimensional Cp-vector space, on which the involution W∞ acts with eigen-
values 1 and −1. Proposition 3.1 therefore follows from the exact sequence
(149).

Proposition 3.2 The map θ induces an isomorphism from (MΓ0(N))f,w∞ to
H1(Γ,M)f,w∞.

Proof: The arguments used in the proof of proposition 3.1 show that the
action of the Hecke operators on H0(Γ0(M),M) factors through the natural
image of the algebra of Hecke operators in the endomorphism ring of the
space of modular forms of weight 2 on Γ0(M). Since the Hecke eigenvalues
attached to f are those of a newform of level N , it follows that

H0(Γ0(M),M)f = 0. (153)

Pursuing the long exact sequence in cohomology attached to the Γ0(M)-
cohomology of the sequence (148) yields the sequence

H1(Γ0(M),F) −→ H1(Γ0(M),M) −→ H2(Γ0(M), Cp). (154)

The same argument as in the proof of proposition 3.1 (with N replaced by M)
shows that H1(Γ0(M),F) is Eisenstein and hence that H1(Γ0(M),F)f = 0.
Furthermore it is well-known that H2(Γ0(M), Cp) = 0. (For example, if
Γ0(M) acts on H without fixed points, then it is a free group.) Hence it
follows that

H1(Γ0(M),M)f = 0. (155)

The result now follows from (153) and (155) (and the corresponding state-
ments with Γ0(M) replaced by the conjugate subgroup Γ′0(M)) combined
with the exact sequence (138).

Corollary 3.3 The vector space H1(Γ,M)f,w∞ is one-dimensional over Cp.

Proof: This follows from propositions 3.1 and 3.2.

41



3.2 Proof of theorem 4

Given τ ∈ Hp, a 1-cocycle c̃f,τ ∈ Z1(Γ,M(C×
p )) is defined by setting

c̃f,τ (γ){x→y} = ×
∫ γτ

τ

∫ y

x

ω. (156)

The image of c̃f,τ in H1(Γ,M(C×
p )), denoted cf , does not depend on τ . Let

ordp(cf ) ∈ H1(Γ,M) be the cohomology class obtained by applying the
function ordp : C×

p −→ Q ⊂ Cp to cf , and let log(cf ) be the image of cf in
H1(Γ,M) under the logarithm map.

Lemma 3.4 The class ordp(cf ) is non-zero. (And hence generates the one-
dimensional Cp-vector space H1(Γ,M)f,w∞.)

Proof: Suppose that ordp(cf ) = 0. Then the one-cocycle ordp(c̃f,τ ) is the
coboundary of an M -symbol η ∈M:

ordp(c̃f,τ )(γ){x→y} = η{γ−1x→γ−1y} − η{x→y}. (157)

Let Ψ be an oriented embedding of Q×Q of conductor c prime to M in M2(Q).
Letting γ = γΨ and (x, y) = (xΨ, yΨ), the right-hand term of equation (157)
disappears and one finds

WΨ = 0 for all such Ψ. (158)

This contradicts lemma 2.17.

We are now ready to prove theorem 4 of the introduction:

Proof of theorem 4: Since ordp(cf ) and log(cf ) each belong to the one-
dimensional vector space H1(Γ,M)f,w∞ , and since ordp(cf ) 6= 0, there exists
a constant Lf ∈ Cp such that log(cf ) = Lfordp(cf ). Hence there is an
M-symbol η ∈M such that

log(c̃f,τ (γ){x→y}) = Lfordp(c̃f,τ (γ){x→y}) + (η{γ−1x→γ−1y} − η{x→y}),

for all γ ∈ Γ and x, y ∈ P1(Q). Choosing an embedding Ψ of conductor prime
to N and letting (x, y) = (xΨ, yΨ) and γ = γΨ as in the proof of lemma 3.4
shows that

log(IΨ) = Lfordp(IΨ). (159)
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By proposition 2.17 it is possible to choose a Ψ for which ordp(IΨ) = WΨ is
non-zero. It now follows from theorem 1 that

Lf =
log(q)

ordp(q)
, (160)

as was to be shown.

Remark: While the evaluation of the constants Lf requires the full strength of
the Greenberg-Stevens theorem, the equality log(cf ) = Lfordp(cf ) for some
Lf ∈ Cp is sufficient to imply that log(IΨ) = Lfordp(IΨ) for all Ψ, with Lf

not depending on Ψ. This in turn implies that the extra zero occurring in
the exceptional zero conjecture of Mazur, Tate and Teitelbaum is of “local
type” in the sense of [MTT], ch I, §19. In other words, the factor Lf , which
describes the discrepancy between the first derivative of the p-adic L-function
attached to E in [MTT] and the special value of the classical L-function
attached to E, is invariant under twists by Dirichlet characters χ for which
χ(p) = 1. Note that our proof of this fact is based on little more than purely
formal arguments involving the cohomology of Γ.

3.3 Indefinite integrals

Theorem 4 justifies the slightly stronger multiplicative refinement of it that
is formulated in conjecture 5 of the introduction. Assume this conjecture.
Let τ be an element of Hp and let L be the field generated by τ over Qp.
The conjecture guarantees the existence of an M-symbol ηf,τ ∈ M(L×/qZ)
satisfying

×
∫ γτ

τ

∫ y

x

ω = ηf,τ{γ−1x→γ−1y} ÷ ηf,τ{x→y} (mod qZ) (161)

for all γ ∈ Γ and x, y ∈ P1(Q). The M-symbol ηf,τ is defined uniquely by
this property modulo elements of H0(Γ,M(L×/qZ)).

Let Γ′ ⊂ Γ denote the smallest normal subgroup of Γ generated by the
commutators and the rational elements in Γ. (An element of Γ is said to be
rational if its fixed points belong to P1(Q).)

Lemma 3.5 The group Γ′ is of finite index in Γ. It is equal to Γ if M = 1.
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Proof: The first part of this lemma follows for example from theorem 2 of
[Me] (see also Théorème 3 of [Se2]). The second part follows from a direct
calculation, using the fact that SL2(Z) is equal to its commutator subgroup.

Remark: The main result of [Me], stating that the group Γ has the congruence
subgroup property, makes it possible to calculate Γ′, and bound its index, in
any specific situation. See [BD7] for a more complete discussion.

Let eΓ denote the exponent of the finite abelian group Γ/Γ′.

Proposition 3.6 Let C be an abelian group (with trivial Γ-action) and let
t be the exponent of the eΓ-torsion module C[eΓ]. If x and y are in the same
Γ-orbit in P1(Q), and m belongs to M(C)Γ, then

t ·m{x→y} = 0.

Proof: It follows directly from the Γ-invariance of m that the function which
to γ associates m{x→γx} is a homomorphism from Γ to C. Hence its ker-
nel contains the commutator subgroup of Γ. It also contains the rational
elements, since if γy = y for some y ∈ P1(Q),

m{x→γx} = m{x→y}+ m{y→γx} = m{x→y}+ m{y→x} = 0.

Proposition 3.6 follows.

Let Q0 = (L×/qZ)[eΓ] be the eΓ-torsion subgroup of L×/qZ, and let Q ⊂ L×

denote the preimage of Q0 under the natural projection. It follows from
proposition 3.6 that the image of ηf,τ{x→y} in L×/Q does not depend on
the choice of M -symbol ηf,τ satisfying (161), if x and y belong to the same
Γ-orbit in P1(Q). This makes it possible to define the indefinite integral
attached to τ by the rule

×
∫ τ∫ y

x

ω := the natural image of ηf,τ{x→y} in L×/Q, (162)

for all such x, y. Note that when M = 1, lemma 3.5 implies that Q = qZ.
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Lemma 3.7 The indefinite multiplicative integral of (23) satisfies the fol-
lowing properties:

×
∫ τ2

τ1

∫ y

x

ω = ×
∫ τ2
∫ y

x

ω ÷×
∫ τ1
∫ y

x

ω, (mod Q) (163)

×
∫ τ∫ x3

x1

ω = ×
∫ τ∫ x2

x1

ω ××
∫ τ∫ x3

x2

ω, (mod Q) (164)

×
∫ γτ∫ γy

γx

ω =

(
×
∫ τ∫ y

x

ω

)w|γ|w
sgn(γ)
∞

, (mod Q) (165)

for all γ ∈ R×.

Proof: The first identity is proved by showing that the coboundary of the M -
symbol ηf,τ2 ÷ ηf,τ1 (viewed as a 0-cochain with values in M(L×/qZ)) agrees
with the coboundary of the M -symbol

mτ1,τ2{x→y} := ×
∫ τ2

τ1

∫ y

x

ω.

The second relation follows directly from the definitions. The third is proved
by showing that the L×/qZ-valued M -symbol γητ satisfies the defining prop-

erty of the M -symbol w|γ|w
sgn(γ)
∞ ηγτ , so that these two M -symbols are equal

up to elements in M(L×/qZ)Γ.

4 Periods attached to real quadratic fields

Suppose in this section that the prime p splits in the real quadratic field K,
and let Ψ denote an algebra embedding of K into M2(Q).

Choose a base point τ ∈ Hp and x ∈ P1(Q), and define a C×
p -valued function

on Γ× Γ by the rule

〈α, β〉Ψ := ×
∫ α−1τ

τ

∫ βx

x

ω ÷×
∫ β−1τ

τ

∫ αx

x

ω (166)

Lemma 4.1 If α and β commute, the expression 〈α, β〉Ψ does not depend
on the choices of τ ∈ Hp and x ∈ P1(Q) that were made to define it.
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Proof: The element 〈α, β〉Ψ can be expressed in terms of the C×
p -valued 2-

cocycle d̃τ,x ∈ Z2(Γ, C×
p ) defined by setting

d̃τ,x(α, β) := c̃f,τ (α
−1){x→βx} = ×

∫ α−1τ

τ

∫ βx

x

ω. (167)

More precisely, one has

〈α, β〉Ψ = d̃τ,x(α, β)÷ d̃τ,x(β, α). (168)

A direct calculation shows that the natural image d of d̃τ,x in H2(Γ, C×
p )

does not depend on the choices of τ and x, so that a different choice would
have the effect of multiplying d by a coboundary of the form h(α, β) =
g(α)× g(β)÷ g(αβ). The corresponding change in 〈α, β〉Ψ is then given by
h(α, β)÷h(β, α). Since α and β commute, this ratio of coboundaries is equal
to 1 and the result follows.

The Dirichlet S-unit theorem implies that the group O×
1 is free of rank

two, so that Ψ̄(K) ∩ Γ = Ψ̄(O×
1 ) is free of rank two as well.

Lemma 4.2 The restriction of 〈 , 〉Ψ to Ψ̄(O×
1 ) is a bilinear alternating

C×
p -valued pairing.

Proof: Note that the restriction of 〈 , 〉Ψ to Ψ̄(O×
1 ) does not depend on the

choice of τ and x, by lemma 4.1. A direct calculation based on the definitions
shows that 〈 , 〉Ψ is bilinear and alternating.

Let γ1 and γ2 ∈ Γ be Z-module generators for Ψ(K) ∩ Γ. The period
IΨ ∈ C×

p attached to Ψ is defined by setting

IΨ := 〈γ1, γ2〉Ψ. (169)

Note that {IΨ, I−1
Ψ } is independent of the choice of basis (γ1, γ2).

Proof of theorem 6: Let ordp(df ) and log(df ) be the classes in H2(Γ, Cp)
obtained from df by applying ordp and log respectively. Theorem 4 implies
that

log(df ) =
log(q)

ordp(q)
ordp(df ). (170)

The first part of theorem 6 follows immediately from (168) and (170). It
also follows from these arguments that the period IΨ belongs to qZ assuming
conjecture 5.
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Remark:

1. Choose a prime p of K above p, and let Ō× be the p-adic closure of the
group O× in K×

p = Q×
p . In [BD6], it is explained how the period IΨ, taken

modulo this finite index subgroup, can be interpreted as the leading term
in a θ-element which interpolates the special values of L(E/K, 1) twisted by
certain finite order characters of Gal(K̄/K). On the other hand, ordp(IΨ) can
be expressed in terms of algebraic parts of classical special values of certain
partial L-functions attached to E/K. Thus, theorem 6 can be viewed as
giving an exceptional zero result for the leading terms of the theta-elements
attached to elliptic curves over a real quadratic K, expressing his leading
term in terms of Tate’s period attached to E.

2. Note that the identities of conjectures 3 and theorem 6 provide a natural
lifting of the exceptional zero conjectures (which are formulated as identities
in compact quotients of K×

p admitting a Galois-theoretic interpretation) to
the group K×

p itself; this suggests that the exceptional zero conjectures might
arise as consequences of more basic identities involving double integrals of ω,
identities which can be expressed without appealing to the notion of p-adic
L-functions or θ-elements. It is this point of view that provided some of the
inspiration for the conjectures of the next section.

5 Heegner points attached to real quadratic

fields

5.1 The main conjecture

Assume now that the prime p is inert in the real quadratic field K. For
x ∈ K, let x̄ denote the Galois conjugate of x. Fix embeddings of K into R
and Cp, so that K can be viewed simultaneously as a subfield of these two
fields.
As before, let

Ψ : K −→ M2(Q) (171)

be an algebra embedding. As in section 2, the conductor of Ψ is defined to
be the conductor of the Z[1/p]-order O = Ψ−1(R) of K. Let c denote this
conductor, and make the following simplifying assumption from now on:
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Assumption 5.1 The discriminant c2Disc(K) of O is relatively prime to
N .

The torus Ψ̄(K×) acting on Hp by Möbius transformations has two fixed
points in P1(Kp)−P1(Qp) ⊂ Hp which are interchanged by Gal(Kp/Qp). Let
zΨ be the unique fixed point with the property that Ψ(λ) acts on the tangent
space of Hp at zΨ by multiplication by λ/λ̄ (i.e., such that the column vector
(zΨ, 1) is an eigenvector for Ψ(λ) with eigenvalue λ), and let z̄Ψ be the other
fixed point. The group Ψ̄(K×) ∩ Γ is free of rank one, generated by the
element γΨ := Ψ̄(u) where u is a generator for the group of units of norm one
in O×. Normalise γΨ by the requirement that u be greater than 1 (relative
to the chosen real embedding of K).

A period IΨ ∈ C×
p is naturally attached to Ψ by choosing a base point

x ∈ P1(Q) and setting

IΨ := ×
∫ zΨ

z̄Ψ

∫ γΨx

x

ω ∈ K×
p . (172)

Lemma 5.2 The period IΨ does not depend on the choice of x ∈ P1(Q) that
was made to define it. Furthermore, it depends only on the Γ-conjugacy class
of Ψ.

The proof is identical to the proof of lemma 2.3. (But observe how the roles
of the places p and ∞ are interchanged in these two proofs.)

Let H+ denote the narrow ring class field of K of conductor c. (The
definition of this class field is recalled in section 5.2.) The Galois groups
Gal(H+/Q) is a generalized dihedral group, in which any element mapping
to a generator of Gal(K/Q) is necessarily of order two. Hence, since the
prime p is inert in K/Q, it splits completely in H+/K. Fix an embedding of
H+ into Cp. (This is tantamount to choosing a prime ideal of H+ above p.)

Conjecture 5.3 The local point

P−
Ψ := ΦTate(IΨ) ∈ E(Kp)

is a global point in E(H+).

Conjecture 5.3 makes it clear that the period IΨ is a more subtle arithmetic
invariant than in the previous situations that were treated. Indeed, one
disposes of no modular construction of global points on E over ring class
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fields of real quadratic fields, such as is provided by the theory of complex
multiplication when K is a quadratic imaginary field.

As will be seen in section 5.2, the points P−
Ψ are not the “right” gen-

eralisation of Heegner points in this setting, because they fail to obey an
analogue of the classical Shimura reciprocity law (cf. the discussion following
the statement of corollary 5.12).

To obtain the appropriate generalisation, choose a Γ-orbit in P1(Q), say
Γ∞ to fix ideas. Select any x in this orbit and use the indefinite multiplicative
integral of (162) to define

JΨ := ×
∫ zΨ
∫ γΨx

x

ω ∈ K×
p /Q.

Lemma 5.4 The period JΨ does not depend on the choice of x ∈ Γ∞. Fur-
thermore, it depends only on the Γ-conjugacy class of Ψ.

Proof: This follows directly from the properties of the indefinite multiplica-
tive integral given in lemma 3.7, by manipulations identical to those presented
in the proof of lemma 2.3.

Thus, JΨ is a canonical element in K×
p /Q attached to Ψ. It is related to

the period IΨ as follows:

Lemma 5.5 For all embeddings Ψ of K into M2(Q),

JΨ/J̄Ψ = ×
∫ zΨ

z̄Ψ

∫ γΨx

x

ω = IΨ (mod Q).

Proof: This follows directly from property (163) of lemma 3.7 of the indefinite
multiplicative integral.

Let t denote the exponent of the group Q0 introduced before, so that

t divides gcd(eΓ, (p2 − 1)ordp(q)). (173)

Since raising to the power t maps Q to qZ, the element J t
Ψ is well-defined

element in K×
p /qZ. In view of lemma 5.5, the following modification of con-

jecture 5.3 is natural:

Conjecture 5.6 The local point

PΨ := ΦTate(J
t
Ψ) ∈ E(Kp)

is a global point in E(H+).

Assuming this conjecture, one can (and will) view PΨ as global points in
E(H+).
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5.2 A Shimura Reciprocity Law

The goal of the Shimura Reciprocity Law is to give an explicit (conjectural)
description of the action of Gal(H+/K) on the global points PΨ. An indis-
pensable ingredient in formulating such a law is the concrete description of
Gal(H+/K) provided by class field theory.

Let I ⊂ K be a free Z[1/p]-submodule of rank two. The order associated
to I is the set of λ ∈ K satisfying λI ⊂ I. A fractional O-ideal of K is a
free Z[1/p]-module of rank two in K whose associated order is equal to O.
Two such fractional O-ideals I1 and I2 are said to be equivalent if there exists
α ∈ K× such that I1 = αI2, and are said to be strictly equivalent if α can be
chosen to be of positive norm. Let Pic(O) (resp. Pic+(O)) denote the group
of equivalence (resp. strict equivalence) classes of fractional O-ideals in K,
where the group operation is the usual multiplication of fractional ideals. Let
h and h+ denote the cardinalities of Pic(O) and Pic+(O) respectively. Note
that if O× contains an element of negative norm, then strict equivalence is
no stronger than equivalence and h+ = h. Otherwise, we have h+ = 2h.

The reciprocity law of class field theory identifies Pic+(O) and Pic(O)
with the Galois groups of certain abelian extensions of K, denoted H+ and
H respectively. The field H+ is the strict ring class field of K of conductor
c introduced in section 5.1, and H is simply called the ring class field of K
of conductor c. The extension H is the maximal totally real subfield of H+.
Denote by rec the isomorphism given by the reciprocity law of class field
theory:

rec : Pic(O)
'−→ Gal(H/K), rec : Pic+(O)

'−→ Gal(H+/K). (174)

Lemma 5.7 An embedding Ψ of conductor c exists if and only if there is a
ring homomorphism o from O = Ψ−1(R) to Z/MZ.

Proof: If such a Ψ exists, the algebra homomorphism oΨ : O −→ Z/MZ
which to x ∈ O associates the upper left-hand entry of the matrix Ψ(x)
(mod M) is the desired homomorphism. Conversely, given such an o, choose
a Z[1/p]-module basis (e1, e2) for O with the property that the image of e1 in
O/MO is annihilated by ker o. The action of α ∈ O on this basis is expressed
by a matrix mα ∈ R and the assignment α 7→ Mα gives the desired Ψ.

The homomorphism oΨ is called the orientation at M attached to the embed-
ding Ψ. Conjugation by Γ (in fact, by R×) preserves the orientation of Ψ, so
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that oΨ is an invariant of the Γ-conjugacy class of Ψ. For the definition that
follows, it is worth recalling that the compact group Ψ(K×

p /Q×
p ) acts on T

leaving exactly one vertex fixed, and permuting transitively all the vertices
(or edges) which are at a common distance from this fixed vertex.

Fix an orientation o : O −→ (Z/MZ). Let Emb(O, R) denote the set of
optimal embeddings Ψ : K −→ M2(Q) of conductor c satisfying:

1. oΨ = o;

2. The vertex of T fixed by Ψ(K×) is an even vertex.

Since conjugation by the Atkin-Lehner matrices α` transitively permutes the
possible orientations of Ψ, and conjugation by αp ∈ Γ̃ − Γ interchanges the
odd and even vertices of T , it follows that Emb(O, R) is non-empty if and
only if an embedding of conductor c exists. Let Emb(O, R)/Γ denote the set
of orbits of Emb(O, R) under conjugation by Γ.

Proposition 5.8 The sets Emb(O, R)/Γ and Pic+(O) are in natural bijec-
tion with each other. In particular, Emb(O, R) is finite of cardinality h+.

Proof: A basis (e1, e2) for K over Q is said to be positive if

det

(
e1 ē1

e2 ē2

)
> 0, and ordp det

(
e1 ē1

e2 ē2

)
= 0 (mod 2).

Choose an element λ− of K× of negative norm.
Given an embedding Ψ ∈ Emb(O, R), recall the distinguished fixed point
zΨ of Ψ̄(K×) associated to it in section 5.1 and let aΨ denote the fractional
O-ideal defined by

aΨ =

{
OzΨ +O if (zΨ, 1) is a positive basis of K over Q
λ−(OzΨ +O) if (zΨ, 1) is a negative basis of K over Q.

(175)

Conjugating Ψ by an element α ∈ Γ has the effect of replacing aΨ by an ideal

which is equivalent to it, in the strict sense. This is because if α =

(
r s
t u

)
,

then the bases (zΨ, 1) and (αzΨ, 1) have the same sign of orientation if the
element (tzΨ+u) is of positive norm, and have opposite orientation otherwise.
Hence the function which to Ψ associates the narrow ideal class cΨ of aΨ gives
a well-defined map

η1 : Emb(O, R)/Γ −→ Pic+(O).
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In the opposite direction, given an ideal class c in Pic+(O), choose a repre-
sentative ideal a, and let (e1, e2) be a Z[1/p]-module basis for a chosen so
that:

1. The image of e1 in a/Ma is annihilated by ker o.

2. The pair (e1, e2) is a positive basis for K/Q.

Given λ ∈ O, the matrix mλ expressing the action of multiplication by λ
on a, relative to the basis (e1, e2), is an element of R, and the assignment
λ 7→ mλ is an algebra embedding of O into R which gives rise to an optimal
embedding Ψc of conductor c. The class of Ψc in Emb(O, R)/Γ does not
depend on the choice of basis (e1, e2) satisfying properties 1 and 2 above,
and is unaffected by replacing the ideal a by λa for any element λ of K of
positive norm. Hence it give rise to a well-defined function

η2 : Pic+(O) −→ Emb(O, R)/Γ.

The reader will check that η1 and η2 are inverse to each other and hence
define bijections between the two sets.

Thanks to proposition 5.8, the set Emb(O, R)/Γ is equipped with a nat-
ural simply transitive action by Pic+(O), denoted

(c, Ψ) 7→ c ∗Ψ.

The following conjecture is an analogue of the classical Shimura Reciprocity
Law.

Conjecture 5.9 The global points PΨ ∈ E(H+) attached to the embeddings
Ψ via conjecture 5.6 satisfy

Pc∗Ψ = rec(c)−1(PΨ), for all c ∈ Pic+(O).

We now proceed to deduce properties of the points PΨ under the assumption
that they satisfy conjecture 5.9.

The Action of Gal(Kp/Qp).
Let τp denote the generator of Gal(Kp/Qp) = Gal(K/Q), so that τp(z) = z̄.
Thanks to the chosen embedding of H+ into Kp, the involution τp can be
viewed as an element of Gal(H+/K). Recall the Atkin-Lehner involution
WN acting on S2(Γ0(N)) and let wN denote the eigenvalue of WN attached
to the eigenform f0.
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Proposition 5.10 Assume the Shimura reciprocity law of conjecture 5.9.
Then there exists σ ∈ Gal(H+/K) (depending on PΨ and on the chosen
embedding of H+ into Kp) such that

P̄Ψ := τp(PΨ) = wNσPΨ.

Proof: First note that

τpJΨ = ×
∫ z̄Ψ
∫ γΨx

x

ω = J−1
Ψ′ , (176)

where Ψ′ = Ψ ◦ τp is the embedding obtained from Ψ by composing with τp.
Note that Ψ′ is an optimal embedding of conductor c, and that Ψ′(K×) fixes
an even vertex of T , since Ψ′ has the same image as Ψ. But Ψ′ does not have
the same orientation as Ψ; more precisely, oΨ′ = oΨ ◦ τp. By the analogue of
lemma 2.1 for real quadratic embeddings, αMΨ′α−1

M is an oriented optimal
embedding. Therefore, by proposition 5.8 there exists c ∈ Pic+(O) such that

Ψ′ = αM(c ∗Ψ)α−1
M (177)

in Emb(O, R)/Γ. It follows from (176) and (177) and the fact that f0 is an
eigenform for WM with eigenvalue wM that

τpJΨ = J−wM
c∗Ψ . (178)

Raise both sides of this equality to the t-th power, and apply ΦTate, remem-
bering that

ΦTate ◦ τp = wτp ◦ ΦTate. (179)

One thus finds, after setting σ = rec(c)−1 and invoking conjecture 5.9:

wτpPΨ = −wMPc∗Ψ = −wMσPΨ. (180)

Proposition 5.10 now follows from the fact that w is the negative of the
Atkin-Lehner involution at p acting on f0, so that −wM/w = wN .

Remark: The Heegner points arising in the classical theory of complex multi-
plication satisfy a relation similar to the one of proposition 5.10, but with τp

replaced by complex conjugation. This is hardly surprising, since the prime
p plays much the same role in our theory as the infinite place in the classical
theory.
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Corollary 5.11 Assume conjecture 5.9. If h+ = 1 then PΨ belongs to
E(K)wN , the wN -eigenspace for the action of τp on E(K).

Corollary 5.12 Assume conjecture 5.9. There exists σ ∈ Gal(H+/K), de-
pending on the embedding Ψ and on the chosen embedding of H+ into Cp,
such that

tP−
Ψ = PΨ − wP̄Ψ = PΨ + wMσPΨ.

Remark: It follows from this corollary that if wM = 1 and h+ = 1, then
tP−

Ψ = 2PΨ. This remark is sometimes useful because it is somewhat easier
to compute P−

Ψ than PΨ. Note however that the points P−
Ψ are not permuted

by the action of Gal(H+/K), since τp does not commute with the elements
of this Galois group. Hence, it is essential to work with the better-behaved
points PΨ if one wishes to calculate Mordell-Weil groups of E over larger ring
class fields of K.

The action of complex conjugation.
Let τ∞ be a complex conjugation in Gal(H+/Q). Note that since K/Q

is real and complex conjugation is of order 2, it belongs to the center of
Gal(H+/K); in particular, it does not depend on the choice of complex
embedding of H+ used to define τ∞.

Proposition 5.13 Assume conjecture 5.9. Then

τ∞PΨ = w∞PΨ.

Proof: By the Shimura reciprocity law,

τ∞PΨ = Pα∞Ψα−1
∞

,

where α∞ ∈ R× is a matrix of determinant −1. On the other hand, by lemma
3.7,

Jα∞Ψα−1
∞

= Jw∞
Ψ .

The result now follows by raising both sides to the power t and applying
ΦTate.

Corollary 5.14 Assume conjecture 5.9. If w∞ = 1 then PΨ belongs to
E(H).

Remark: It follows from the above corollary that if w∞ = 1, and the order
O has class number 1, then the point PΨ belongs to E(K). If furthermore
wN = 1 then PΨ belongs to E(Q).
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5.3 A Gross-Zagier conjecture

Choose a complex character

χ : Pic+(O) −→ C× such that χ(τ∞) = w∞. (181)

Conjecture 5.9 predicts that the C-linear combination of points

Pχ =
∑

c∈Pic+(O)

χ̄(c)Pc∗Ψ (182)

belongs to (E(H+)⊗C)χ, the χ-eigenspace for the action of Gal(H+/K) on
E(H+)⊗C. In particular, when χ is the trivial character, the point PK := Pχ

is a global point in E(K).
Inspired by the formula of Gross and Zagier, one could surmise that there

is a simple formula expressing the height of Pχ (after extending this height
to a Hermitian pairing on E(H+)⊗C)) as a multiple of L′(E/K, χ, 1) by an
explicit non-zero fudge factor.

Conjecture 5.15 The vector Pχ is non-zero if and only if

L′(E/K, χ, 1) 6= 0.

In particular, the point PK is of infinite order if and only if L′(E/K, 1) 6= 0.

A proof of conjecture 5.15 is hard to conceive of in the absence of some
machinery for tackling conjectures 7 and 5.9. A precise conjectural Gross-
Zagier formula relating the height of PK to L′(E/K, 1), and some numerical
evidence for it, is given in [DG] for elliptic curves of prime conductor.

5.4 Numerical evidence

1. Let E be the elliptic curve X0(11) with minimal Weierstrass equation

y2 + y = x3 − x2 − 10x− 20.

It has split multiplicative reduction at 11 so that w = 1 and w11 = −1.
The real quadratic field of smallest discriminant in which 11 is inert is K =
Q(
√

2). The sign in the functional equation for L(E/K, s) is −1, and, as
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predicted by the Birch and Swinnerton-Dyer conjecture, E(K) contains a
point of infinite order

P =

(
9/2,

−2 + 7
√

2

4

)
,

which in fact generates E(K) up to torsion. Since the field K has narrow
class number one, there is a unique oriented optimal embedding Ψ of K of
conductor 1, up to conjugation in Γ. We have checked, to an 11-adic accuracy
of 11−8, that

PΨ = ΦTate(JΨ) = P.

It is instructive to compare this calculation with the significantly more cum-
bersome ones that were already carried out in [Da2], section 5.1.
Note that the curve E is not unique in its Q-isogeny class. The above calcula-
tion indicates that assumption 2 is unduly restrictive and ought to be relaxed,
perhaps at the cost of some minor extra complications. This question will
be discussed more fully in [DG].

2. Let E be the elliptic curve of conductor 43 with minimal Weierstrass
equation given by

E : y2 + y = x3 + x2.

The quadratic field K = Q(
√

37) has narrow class number 1, and the or-
der in K of conductor 2 has narrow class number 3. Let Ψj (j = 1, 2, 3)
denote representatives of the three distinct SL2(Z[1/43])-conjugacy classes
of oriented optimal embeddings of K into M2(Q) of conductor 2. Let τj be
the fixed point for Ψj(K

×) acting on H43, chosen as in section 5.2. A direct
calculation shows that one may take τ1, τ2 and τ3 to be

−3 +
√

37

4
,

−3 +
√

37

7
, and − 6 +

√
37. (183)

Choose w∞ = 1 and set

Pj = PΨj
= ΦTate(×

∫ τj
∫ γΨj

x

x

ω).

After computing Pj = (xj, yj) numerically to 4 significant 43-adic digits (i.e.,
modulo 434) one finds:

P1 = (1953822 + 3156001
√

37, 1647778 + 1133177
√

37) (mod 434)

P2 = (1953822 + 262800
√

37, 1647778 + 2285624
√

37) (mod 434)
P3 = (2929963, 123259). (mod 434)
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Further calculation reveals that:∏
j

(t− xj) = t3 − 5t2 − 5t− 1 (mod 434), (184)∏
j

(t− yj) = t3 + 17t2 + 17t− 1 (mod 434). (185)

Let fx(t) and fy(t) denote the polynomials in Q[t] appearing on the right
hand sides of (184) and (185) respectively. It is natural to guess (although
the author is far from being able to prove this!) that the 43-adic numbers
xj and yj are roots of these polynomials, a guess which is buttressed by the
fact that

1. The splitting field over Q of both fx(t) and fy(t) is the ring class field
H of Q(

√
37) of conductor 2;

2. If x is a root of fx(t) and y is the (unique) root of fy(t) defined over
Q(x), the pair (x, y) is a point on E(H).

Such a 43-adic calculation, leading to the discovery of global points on E
defined over a cyclic cubic extension of a real quadratic field, can be viewed
as providing strong evidence for conjectures 7 and 5.9.

The author is indebted to Peter Green for producing this example. More
extensive numerical evidence for conjectures 7, 5.9 and 5.15 will be presented
in [DG].
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