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Abstract

In [Tei], Teitelbaum formulates a conjecture relating first derivatives of the Mazur–
Swinnerton-Dyer p-adic L-functions attached to a modular forms of even weight
k ≥ 2 to certain L-invariants arising from Shimura curve parametrisations. This
article formulates an analogue of Teitelbaum’s conjecture in which the cyclotomic
Zp extension of Q is replaced by the anticyclotomic Zp-extension of an imaginary
quadratic field. This analogue is then proved by using the Cerednik-Drinfeld theory
of p-adic uniformisation of Shimura curves.

Introduction

Let φ =
∑
anq

n be an eigenform of even weight k ≥ 2 on Γ0(N). The
classical L-function L(φ, s) admits an analytic continuation to the entire
complex plane, and a functional equation which relates its values at s and
k− s. Of special arithmetic interest for the present work is the central value
L(φ, k/2).

For example, when k = 2, the Birch and Swinnerton-Dyer conjecture
relates the behaviour of L(φ, s) at s = 1 to the arithmetic of the abelian
variety Aφ associated to φ by the Eichler-Shimura construction. In [MTT],
a p-adic variant of the Birch and Swinnerton-Dyer conjecture is formulated
with L(φ, s) replaced by a p-adic analogue Lp(φ, s) attached to the cyclotomic
Zp-extension of Q.

When p divides N exactly and ap = 1 (which implies that Aφ has split
multiplicative reduction at p), the function Lp(φ, s) vanishes at s = 1. In
this case the conjectures of [MTT] imply the following relationship between
the first derivative L′p(φ, 1) and the special value L(φ, 1):

L′p(φ, 1) = L(φ) · L(φ, 1)/Ω, (1)

where Ω is an appropriate real period and L(φ), the so-called L-invariant, is
an isogeny invariant of Aφ/Qp . It is defined by using the Tate-Morikawa theory
of p-adic uniformisation of abelian varieties with multiplicative reduction at
p. For example, when φ has rational Fourier coefficients, so that Aφ is an
elliptic curve, then

L(φ) =
logp(q)

ordp(q)
,
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where q ∈ Q×
p is the Tate period associated to Aφ over Qp, and logp is the

branch of the p-adic logarithm such that log p = 0. The conjectured relation
(1) was proved by Greenberg and Stevens [GS] using Hida’s theory of p-
adic families of ordinary eigenforms and the two-variable p-adic L-functions
attached to them.

Subsequently, much work has gone into formulating and proving simi-
lar conjectures for modular forms of higher (even) weight. The following
generalisation of (1) was conjectured in this setting,

L′p(φ, k/2) = L(φ) · L(φ, k/2)/Ω, (2)

with several possible definitions for the L-invariant.

1. The first candidate for L(φ), denoted LT (φ), was proposed by Teitelbaum
[Tei], relying on the Jacquet-Langlands correspondence between forms on
Γ0(N) and on certain indefinite quaternion algebras, and on the Cerednik-
Drinfeld theory of p-adic uniformisation of Shimura curves. In particular,
LT (φ) is only defined when φ can be associated via the Jacquet-Langlands
correspondence to a modular form on such a Shimura curve.

2. A second invariant LC(φ) was proposed by Coleman [Co], based on his
theory of p-adic integration on the modular curve X0(N).

3. Finally, a third L-invariant LFM(φ) was introduced by Fontaine and
Mazur [Mz1] in terms of the semistable Dieudonné module of the local p-
adic Galois representation attached to φ.

Proofs of equation (2) have been announced by Stevens and by Kato, Kuri-
hara and Tsuji, with L(φ) replaced by LC(φ) and LFM(φ) respectively.

Parallel to these developments, a p-adic conjecture of Birch and Swin-
nerton-Dyer type (for weight two modular forms) is formulated in [BD1],
with the cyclotomic Zp-extension of Q replaced by the anticyclotomic Zp-
extension of a quadratic imaginary field K. In the anticyclotomic setting,
the p-adic L-function admits a construction which appeals to the p-adic ana-
lytic uniformization of Shimura curves, unlike the cyclotomic setting, where
the complex uniformisation is required in the definition of modular sym-
bols. Thus the anticyclotomic setting is more amenable to the purely p-adic
approach initially proposed by [Sch] for the cyclotomic setting. Further-
more, new exceptional zero phenomena emerge which have no counterpart
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in the situation explored by Mazur, Tate and Teitelbaum, and which can
be approached through other methods, most notably the theory of complex
multiplication. (See for example the formulae of [BD2] and [BD3].)

When the prime p splits in K, the article [BD4] gives a proof of formula
(1) in the anticyclotomic context. This proof differs from the one given
by Greenberg and Stevens in the cyclotomic case, making no use of Hida
families or two-variable p-adic L-functions, but relying on p-adic integration
on Shimura curves in an essential way. Since this ingredient is precisely the
one that enters both into the definition of Teitelbaum’s L-invariant and of
the anticyclotomic p-adic L-function, it is natural to build on the methods of
[BD4] to prove the anticyclotomic analogue of Teitelbaum’s conjecture. This
is one task carried out in this paper. (Cf. theorem 3.4 of section 3.2.)

The case where p is inert in K (which for weight 2 is treated in [BD3])
is different: both the p-adic and classical L-functions vanish at the central
point, and the discrepancy between them cannot be accounted for by a simple
L-invariant. This case is discussed in section 3.3; theorem 3.5 expresses
L′p(φ, k/2) in terms of a p-adic Coleman integral between two CM points on
the p-adic upper half plane, and can be viewed as a generalisation of one of
the main results of [BD3] to weight k > 2. The arithmetic interpretation of
this integral will be explored in a future work.

Note that by combining the above mentioned results of Stevens with those
of Kato-Kurihara-Tsuji implies the equality of the (cyclotomic) Coleman and
Fontaine-Mazur L-invariants. In general, a direct, local comparison of these
L-invariants is investigated in [CI] where it is shown that they are equal when
they are defined. This applies to the present work, so that the anticyclotomic
analogue of LT (φ) could be replaced by LC(φ) or LFM(φ) in the statement
of theorem 3.4.

The present work has its roots in a graduate course taught by one of the
authors (Iovita) at McGill University in the Spring of 1998, in which the
connection between the p-adic L-function of [BD1] and Schneider’s rigid an-
alytic L-transforms was emphasized. The first three authors were then led to
recast the proofs of the main results of [BD3] and [BD4] in this framework,
while a similar approach was being developed independently by the fourth
author. What emerged were proofs of the main results of [BD3] and [BD4]
which, while not fundamentally different from the originals, are more elegant
and conceptual, and clarify the role of the underlying machinery of p-adic in-
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tegration. In particular, the use of Schneider’s p-adic boundary distributions
and Teitelbaum’s p-adic Poisson transform, implicit in [BD3] and [BD4], is
made explicit. This point of view has been influential in later work, notably
[Da].

Because of the more conceptual point of view taken in the present work,
even the reader interested only in the weight two results of [BD3] and [BD4]
may find it helpful to study this paper after setting k = 2. The authors also
felt it would be worthwhile to generalize the results of [BD3] and [BD4] to
higher weight, a context in which the original approach had seemed unduly
burdensome to carry through.

Acknowledgements: It is a pleasure to thank Andreas Schweizer and Glenn
Stevens for many inspiring discussions on quaternion algebras, p-adic integra-
tion and p-adic L-functions. Bertolini thanks the University of Strasbourg,
Darmon the ETH (Zurich), and Iovita the University of Münster for their
hospitality while much of this research was carried out. Two of the authors
(Darmon and Iovita) were partially supported by CICMA (Centre Interuni-
versitaire en Calcul Mathématique Algébrique). Finally the authors thank
the referee for helpful suggestions which led to significant improvements in
the article.

1 Preliminaries

1.1 Review

In this section we review the main ingredients which enter our constructions
and fix the notations.

The p-adic upper half plane. Let Cp be the completion of the algebraic
closure Q̄p of Qp, and let

Hp := P1(Cp)− P1(Qp)

be Drinfeld’s p-adic upper half plane. It has a natural structure of a rigid
analytic space (see [SS] where a more general situation is treated or [BD5]
§3.1 for details on what is need here and where the notations are consistent
with the ones in the current paper.) The group PGL2(Qp) acts on Hp by

5



fractional linear transformations. Fix once and for all an embedding of Q̄
into Q̄p, and hence Cp.

Write T = Tp for the Bruhat-Tits tree of PGL2(Qp) and denote by
→
E (T ) the

set of its oriented edges. If e ∈
→
E (T ) we denote by V (e) the inverse image

under reduction of e. It is a wide open annulus in Hp.

Quaternion algebras. Let B be an indefinite quaternion algebra over Q,
i.e., a central simple algebra of rank 4 satisfying

B ⊗Q R 'M2(R).

An order in B is a subring of B which is of rank 4 as a Z-module. A maximal
order is an order which is contained in no larger order, and an Eichler order
is the intersection of two maximal orders. (For the definition of the level of
an Eichler order, see [Vi], ch. I, §4.)

Let B be a definite quaternion algebra, i.e., a quaternion algebra over Q
satisfying

B ⊗Q R ' H,

where H = R + Ri + Rj + Rk is Hamilton’s skew field of real quaternions.
The algebra B does not satisfy the Eichler condition, and in general contains
several distinct conjugacy classes of maximal orders. (The number of such
classes is called the type number of B, cf. [Vi], ch. V.)

Fix a prime p for which B splits. A Z[1/p]-order in B is a subring of B
which is stable under multiplication by Z[1/p] and is of rank 4 as a Z[1/p]-
module. A maximal Z[1/p]-order of B is a Z[1/p]-order which is contained in
no larger Z[1/p]-order, and an Eichler Z[1/p]-order is the intersection of two
maximal Z[1/p]-orders. For more details on quaternion algebras see [BD5]
§3.2.

Shimura curves. Let S be a finite set of places of Q of odd cardinality
containing the place ∞, and let N+ be an integer which is not divisible by
any prime in S. Then a Shimura curve X over Q can be associated to the
data (S,N+) and described as follows. The presentation of the material is
inspired by [Gr1], ch.IV.

Let B be the indefinite quaternion algebra ramified exactly at the places
in S − {∞}, let R be an Eichler order in B of level N+, and let Rmax be
a maximal order containing R. Let R×

1 be the group of elements of R of
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reduced norm 1, and let Γ∞ := ι∞(R×
1 ) ⊂ SL2(R). Then the Riemann

surface X(C) can be described as the quotient H/Γ∞. See [BD 5] for more
details.

Assume that S − {∞} is non-empty and let p ∈ S be a rational prime.
Let B be the (definite) quaternion algebra ramified precisely at the places in
S − {p}, and let R be an Eichler Z[1/p]-order in B of level N+. Let us fix
an isomorphism ι : B ⊗Qp −→M2(Qp). It induces a group homomorphism,
also denoted ι by abuse of notation, ι : B× −→ PGL2(Qp). Let Γ = ι(R×

1 ) ⊂
PSL2(Qp) be the image under ι of the elements of norm 1 in R. Then the
rigid analytic curve X(Cp) can be described as the quotient Hp/Γ.

This description of the Shimura curveX follows from a theorem of Cerednik-
Drinfeld, see [Ce] and [Dr]. Detailed proofs of these results can be found in
[JL1] and [BC].

p-adic modular forms. For the following definition recall the quotient
X(Cp) = Hp/Γ from the paragraph on Shimura curves above. For all M =(
a b
c d

)
∈ GL2(Cp), write

(f |kM)(z) :=
det(M)k/2

(cz + d)k
f(Mz).

Definition 1.1 A p-adic modular form of weight k on Γ (or on X) is a
global rigid analytic function f on Hp satisfying

f(γz) = (cz + d)kf(z), (i.e., f |kγ = f), for all γ =

(
a b
c d

)
∈ Γ.

We denote by Srigk (Γ) the space of p-adic modular forms of weight k for the
group Γ.

Hecke operators. Let N be a positive integer, and fix a prime p which
divides N exactly. The space Sk(Γ0(N)) of cusp forms of weight k on Γ0(N),
and the space Snewk (Γ0(N)) of newforms on this group, are endowed with an
action of the commuting Hecke operators Tn for each n ≥ 1, defined in the
standard way. (See for example [MTT], ch. I, §4.) Note that, following the
conventions of [MTT], when ` is a prime dividing N the symbol T` is used
to denote the Hecke operator sometimes written U` in other articles.
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The space Sk(Γ0(N)) is also acted on by the Atkin-Lehner involutions W`

for each prime `|N . (In [MTT], ch. I, § 5, the involution W` is called w`a ,
where `a is the maximal power of ` dividing N .) The normalized newforms
in Sk(Γ0(N)) are also eigenvectors for these involutions. Let w = ±1 denote
the negative of the eigenvalue of Wp acting on φ,

Wp(φ) = −wφ, so that Tp(φ) = wp
k−2
2 φ.

The form φ is said to be of split multiplicative type if w = 1, and of
non-split multiplicative type if w = −1.

Let S be a set of places of Q of odd cardinality containing {∞}, and
suppose that

N = N+
∏

`∈S−∞

`,

with N+ not divisible by any prime in S. Let X be the Shimura curve
attached to the data (S,N+). By abuse of notation, let Tn denote the n-th
Hecke correspondence on X, defined for example as in [JL2]. When ` /∈ S is
a prime which does not divide N+, (resp. divides N+), the correspondence T`
is of bidegree `+1 (resp. `), just like its X0(N)-counterpart. When ` belongs
to S, the operator T` arises from an an involution on X. (Cf. for example
[BD1], sec. 1.5, where Tp is denoted W−

p .)

The Jacquet-Langlands correspondence. Crucial to the constructions
of this paper is the Jacquet-Langlands correspondence which allows the nor-
malised newform φ =

∑
anq

n on Γ0(N) to be replaced by a modular form
on a Shimura curve associated to the appropriate quaternion algebra. Let X
be the Shimura curve defined in the previous section.

Theorem 1.2 (Jacquet-Langlands) There exists a p-adic modular form
f of weight k for the group Γ satisfying

T`(f) = a`f, ∀` /∈ S.

This function is unique, up to scaling by a non-zero scalar in Cp.

The group Γ arising in the p-adic uniformisation of X is contained in Γ̃ :=
ι(R×) ⊂ PGL2(Qp) with index two. Choose any element γ̃ ∈ Γ̃− Γ. Then

f |kγ̃ = wf,
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where the reader is reminded that w is the negative of the sign of the Atkin-
Lehner involution Wp acting on φ. Thus f is Γ̃-invariant if and only if φ is
of split multiplicative type at p.

1.2 Harmonic cocycles

Harmonic cocycles are treated in both [Sch] and [Tei] but as our point of view
is slightly different we prefer to restate the definitions and main properties
of these objects here. Let Γ be the subgroup of PSL2(Qp) defined above and
let M be a Cp[Γ]-module, where the action of Γ is written on the left.

Definition 1.3 An M-valued harmonic cocycle on T is an M-valued func-

tion on
→
E (T ) satisfying

c(e) = −c(ē),
∑

source(e)=v

c(e) = 0, ∀v ∈ T .

Write Char(M) for the Cp-vector space of M -valued harmonic cocycles, and
Char(M)Γ for the space of Γ-equivariant harmonic cocycles, i.e., harmonic
cocycles c satisfying

c(γe) = γ · c(e), for all γ ∈ Γ.

Let Pk−2 be the (k − 1)-dimensional Cp-vector space of polynomials of
degree ≤ k − 2 with coefficients in Cp. It is endowed with a right action of
GL2(Qp) (and actually of PGL2(Qp)) by the rule

P (x) · β :=
(cx+ d)k−2

(det(β))
k−2
2

P (
ax+ b

cx+ d
), β =

(
a b
c d

)
, P ∈ Pk−2.

In this way P∨
k−2 := hom(Pk−2,Cp) inherits a left PGL2(Qp)-action by

β ·R(P ) := R(P · β), ∀ P ∈ Pk−2.

Let U := ad0(B) be the representation of B× consisting of the elements of B
of reduced trace zero on which B× acts on the right by the rule

u · b := (b−1ub).
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The function which to every u ∈ U associates the polynomial Pu(x) ∈ P2

(with coefficients in Qp) given by

Pu(x) = trace

(
ι(u)

(
x −x2

1 −x

))
= trace

(
ι(u)

(
x
1

)(
1 −x

))
(3)

satisfies Pu·b(x) = Pu(x) · ι(b), and hence induces a linear map from U ⊗ Cp

to P2 which intertwines the B× and PGL2(Qp) actions.
The symmetric bilinear Q-valued pairing on U arising from the Cartan-

Killing form on ad0(B),

〈u1, u2〉1 :=
1

2
trace(u1ū2)

satisfies 〈u1 · b, u2〉1 = 〈u1, u2 · b̄〉1, so that 〈u1 · b, u2 · b〉1 = 〈u1, u2〉1. This
pairing gives rise to a perfect symmetric pairing 〈 , 〉j on Symj(U) by the
rule

〈u1 · · ·uj, v1 · · · vj〉j =
1

j!

∑
σ∈Sj

〈u1, vσ1〉1 · · · 〈uj, vσj〉1. (4)

Thus the space Sym
k−2
2 (U) is identified with its own dual via the pairing

〈 , 〉 k−2
2

. Dualizing the natural surjection

Sym
k−2
2 (U)⊗ Cp −→ Pk−2 (5)

induced from the map U −→ P2 of equation (3) yields an inclusion

P∨
k−2 −→ Sym

k−2
2 (U)⊗ Cp. (6)

In this way P∨
k−2 inherits a perfect bilinear pairing arising from 〈 , 〉 k−2

2
,

denoted simply by 〈 , 〉.
If L is any subfield of Cp, write Pk−2(L) for the natural image of the

map Sym
k−2
2 (U)⊗L −→ Pk−2 arising from equation (5), and let P∨

k−2(L) :=
hom(Pk−2(L), L). This definition yields a rational structure on Pk−2 and
P∨
k−2. Note that in general Pk−2(Q) is not the space of polynomials with

rational coefficients.
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Definition 1.4 A harmonic cocycle of weight k on T is a P∨
k−2-valued har-

monic cocycle.

Set Char(k) := Char(P∨
k−2), and Char(k)

Γ := Char(P∨
k−2)

Γ.
Following Schneider [Sch], [Tei], associate to a rigid analytic modular form

f of weight k on Γ a harmonic cocycle cf ∈ Char(k) by the rule

cf (e)(r) = rese(f(z)r(z)dz), r(z) ∈ Pk−2, (7)

where rese is the p-adic annular residue along the oriented wide open annulus
V (e) in P1(Cp), defined by

rese(ω) := resV (e)(ω|V (e)).

The fact that cf is harmonic follows from the p-adic residue formula. (Cf.
[Sch].)

Definition 1.5 For γ ∈ PGL2(Qp) denote by |γ| :=ordp(det (γ))(mod 2),
where γ is any lift of γ in GL2(Qp).

Lemma 1.6 The cocycle cf satisfies the following transformation with re-
spect to Γ̃

cf (γe) = w|γ|γ · cf (e), ∀γ ∈ Γ̃.

Proof: For all r ∈ Pk−2, and γ =

(
a b
c d

)
,

cf (γe)(r) = resγe(f(z)r(z)dz) = rese(f(γz)r(γz)d(γz))

= rese(w
|γ| (cz + d)k

(detγ)
k
2

f(z)
(cz + d)2−k

(detγ)
2−k
2

(r(z) · γ) detγ

(cz + d)2
dz)

= w|γ|rese(f(z)(r(z) · γ)dz) = w|γ|cf (e)(r(z) · γ)
= w|γ|γ · cf (e)(r).

Define a pairing on Char(k)
Γ by the rule

〈c1, c2〉 =
∑

e∈
→
E (T )/Γ

we〈c1(e), c2(e)〉,
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where the sum is taken over a set of representatives for the Γ-orbits in
→
E (T ),

the integer we is the cardinality of the stabiliser of e in Γ, and the pairing
on P∨

k−2 is the one defined by equation (6) and the sentence after it. The
pairing on Char(k)

Γ is non-degenerate, because of the non-degeneracy of the
pairing on P∨

k−2 used to define it. It can be checked directly that the Hecke
operators T` for ` 6 |N are self-adjoint with respect to 〈 , 〉.

Let now φ be a normalized newform of weight k ≥ 2 on Γ0(N) and f ∈ Srigk (Γ)
be the rigid analytic modular form on Γ attached to it by section 1.1. The
associated cocycle cf ∈ Char(k)

Γ belongs to a one-dimensional simultaneous
eigenspace for the Hecke algebra, by theorem 1.2. Hence the non-degeneracy
of the pairing 〈 , 〉 on Char(k)

Γ implies that

〈cf , cf〉 6= 0.

Note that the form f is only well-defined up to multiplication by a non-zero
scalar; the following definition is introduced to remove this ambiguity.

Definition 1.7 An eigenform f ∈ Srigk (Γ) is said to be normalised if its
associated cocycle cf ∈ Char(k) satisfies

〈cf , cf〉 = 1.

Note that the normalised eigenform f ∈ Srigk (Γ) attached to φ is well defined,
up to a sign. Suppose from now on that f is normalised in this way.

Recall that Kφ ⊂ Cp is the finite extension of Q generated by the Fourier
coefficients of φ. The normalised eigenform f satisfies the following rational-
ity property.

Lemma 1.8 The P∨
k−2-valued cocycle cf takes values in P∨

k−2(Kf ), where Kf

is an extension of Kφ of degree ≤ 2.

Proof: The space of Γ-equivariant P∨
k−2(Q)-valued cocycles gives a rational

structure Char(k)
Γ
Q on Char(k)

Γ which is preserved by the Hecke operators,
and on which the pairing 〈 , 〉 takes values in Q. Hence the one-dimensional
eigenspace of Char(k)

Γ attached to φ contains a Kφ-rational vector c̃f ∈
Char(k)

Γ
Q ⊗Kφ. Since 〈c̃f , c̃f〉 belongs to Kφ,the lemma follows, with Kf =

Kφ(
√
〈c̃f , c̃f〉).
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1.3 Schneider’s distribution

This section reviews a construction of Schneider which associates to a rigid
analytic modular form f of weight k on Γ a “boundary distribution” µf .

An end of T is an equivalence class of sequences (en)
∞
n=1 of elements en ∈

→
E (T ) satisfying target(en) = source(en+1), and target(en+1) 6= source(en),
two such sequences (en) and (e′n) being identified if there exist N and N ′

with eN+j = e′N ′+j for all j ≥ 0. Let E∞(T ) be the space of ends on T . It is
identified with P1(Qp) by the rule

(en) 7→ lim
n
ben(∞),

where ben is the coset in PGL2(Qp) associated to en. (See [BD 5] §3.1.)
The space E∞(T ) thus inherits a natural topology coming from the p-adic

topology on P1(Qp). Each edge e ∈
→
E (T ) corresponds to a compact open

subset U(e) of E∞(T ) consisting of all ends having a representative which
contains e.

Locally analytic distributions. We would like now to recall a few facts
on p-adic distributions. We will adopt the point of view and notations from
[St].
Suppose that X ⊂ P1(Cp) is a compact subset. Let us recall the following
well known definition. Let α, β ∈ P1(Cp) be represented by α = (a1, a2) and
β = (b1, b2) with a1, a2, b1, b2 ∈ OCp such that g.c.d.(a1, a2) =g.c.d.(b1, b2) = 1
and set d(α, β) := p−ordp(a1b2−a2b1). Then d is a well defined non-archimedean
metric on P1(Cp). For every integer n ≥ 1 denote by

X[n] := {x ∈ P1(Cp) | there is y ∈ X with d(x, y) ≤ p−n}.

Then X[n] is an affinoid subdomain of P1(Cp), in fact it is a finite disjoint
union of affinoid balls. Let A(X[n]) be the Qp-algebra of rigid analytic func-
tions on X[n], and denote by ρ(n) : A(X[n]) −→ A(X[n + 1]) the restriction
map. Then for each n ≥ 1, A(X[n]) is a Banach algebra over Qp for the spec-
tral norm || • ||n and ρ(n) is a continuous homomorphism of Banach algebras.
Let us denote

A(X) := lim
→
A(X[n])

and call it the Qp-algebra of locally analytic functions on X. We endow this
algebra with the Morita topology.
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Let us now fix X = P1(Qp) and write simply A for A(X). Let us go back
to the notations at the beginning of this section. The cocycle cf associated
to f by equation (7) gives rise to a continuous linear functional µf on the
space of locally analytic functions on Qp with compact support, defined by
the basic relation

µf (r · χU(e)) :=

∫
U(e)

r(x)dµf (x) = cf (e)(r), (8)

for all r ∈ Pk−2 and e edge of T such that U(e) ⊂ Qp. (See [Sch].) Here χU(e)

denotes the characteristic function of U(e) in Qp. Then µf extends uniquely
to the space, denoted Ak, of locally analytic Cp-valued functions on P1(Qp)
having a pole of order at most k − 2 at ∞. (See [Tei], proposition 9.) This
linear functional will be also denoted by µf .

Lemma 1.9 If r is any polynomial of degree ≤ k − 2, then∫
P1(Qp)

r(x)dµf (x) = 0.

Proof: Let v be any vertex of T . By the finite additivity of µf ,∫
P1(Qp)

r(x)dµf (x) =
∑

e,source(e)=v

∫
U(e)

r(x)dµf (x).

The lemma follows from (8) combined with the harmonicity of cf .

Now define a weight k − 2 action of PGL2(Qp) on Ak by the rule

(ϕ ∗ γ)(x) :=
(cx+ d)k−2

(detγ)
k−2
2

ϕ(γ ∗ x) for ϕ ∈ Ak, γ ∈ PGL2(Qp).

We have

Lemma 1.10 The boundary distribution µf satisfies the following transfor-
mation property with respect to Γ̃

µf (ϕ ∗ γ) = w|γ|µf (ϕ) for all γ ∈ Γ̃ and ϕ ∈ A.

14



Proof: It is enough to check the formula for functions of the form r · χU(e),
where r is any polynomial of degree ≤ k− 2, e any edge of T and now χU(e)

is the characteristic function of U(e) in P1(Qp). For this apply lemma 1.6
and the definition of µf .

Remark: Let P ∈ Pk−2 having coefficients in Qp. Let us consider the free
A-module of rank one MP := P · A ⊂ Ak and endow it with the topology
induced from the Morita topology of A. Then the restriction of µf to MP is
a continuous linear functional i.e. a distribution. (See [Tei] proposition 9.)

The p-adic Poisson transform. The following result can be viewed as a
p-adic analogue of the Poisson inversion formula: it allows a rigid analytic
modular form to be recovered from its associated boundary distribution.

Proposition 1.11 (Teitelbaum) Let f be a rigid analytic modular form of
weight k on Γ and let µf be the associated distribution on P1(Qp). Then

f(z) =

∫
P1(Qp)

1

z − t
dµf (t).

Proof: See [Tei], theorem 3. Note that the integrand 1
z−t is a bounded analytic

function of t so that the integral in the theorem converges.

2 The p-adic L-function

Let K be an imaginary quadratic field. The goal of this chapter is to define
the anticyclotomic p-adic L-function attached to φ and K. As explained
in section 2.2, its construction is inspired by Schneider’s “rigid analytic”
definition [Sch] of p-adic L-functions in the cyclotomic case. For simplicity,
the following assumption is made throughout.

Assumption 2.1 The discriminant of K is relatively prime to the level N
of φ.

Thus one may write
N = pN+N−,

where N+ (resp. N−) is divisible only by primes which are split (resp. inert)
in K. The following assumption is also made for simplicity:

Assumption 2.2 The integer N− is square-free.

15



2.1 Complex L-functions

The classical L-function attached to φ is defined by

L(φ, s) =
∏
`|N

(1− a``
−s)−1

∏
` 6|N

(1− a``
−s + `k−1−2s)−1 =

∞∑
n=1

ann
−s,

where the Euler product is taken over the rational primes. It has an analytic
continuation and a functional equation relating its values at s and k − s.
More precisely, the function

Λ(φ, s) := N s/2(2π)−sΓ(s)L(φ, s)

extends holomorphically to the entire complex plane and satisfies

Λ(φ, s) = (−1)k/2wNΛ(φ, k − s),

where wN = ±1 is the eigenvalue of the Atkin-Lehner involution WN acting
on φ.

More germane to the present article is the L-function of φ over K, defined
by

L(φ/K, s) = L(φ, s)L(φ, ε, s),

where ε is the quadratic Dirichlet character attached to K and L(φ, ε, s) =∑
anε(n)n−s is the twisted L-function. For each prime ` - N write (x −

α`)(x − β`) := x2 − a`x + `k−1, and set a(`t) = αt` + βt`. The function
L(φ/K, s) factors into an Euler product,

L(φ/K, s) =
∏
v|N

(1− aNvNv−s)−1
∏
v 6|N

(1− a(Nv)Nv−s + Nvk−1−2s)−1,
(9)

the product being taken this time over all the finite places v of K. The
function L(φ/K, s) can also be expressed as a sum of partial L-functions,

L(φ/K, s) =
∑

a

L(φ/K, a, s).

Here the a’s range over the ideal classes of K, and

L(φ/K, a, s) =

 ∞∑
n=1

(n,N)=1

ε(n)

n2s−k+1

( ∞∑
n=1

anra(n)

ns

)
, (10)
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where ra(n) is the number of integral ideals of norm n in the class of a.
More generally, let Oc be the order of K of conductor c, and let Gc =

Pic(Oc) be the Picard group of rank one projective Oc-modules. If a is a class
in Gc, define L(φ/K, a, s) as in equation (10). The group Gc is identified with
the Galois group of an abelian extension Kc of K, the so-called ring class
field of conductor c. If χ : Gc −→ C× is any character, set

L(φ/K, χ, s) :=
∑

χ(a)L(φ/K, a, s),

the sum being taken over all elements of Gc. Like L(φ/K, s), and unlike the
partial L-functions L(φ/K, a, s), the functions L(φ/K, χ, s) admit an Euler
product decomposition analogous to (9), and a simple functional equation.

Proposition 2.3 Suppose that χ is a ring class character of conductor pn

where n > 0. The L-function L(φ/K, χ, s) satisfies the functional equation

Λ(φ/K, χ, s) := (2π)−2sΓ(s)2(ND)sL(φ/K, χ, s) = −ε(N−)Λ(φ/K, χ, k − s)

relating its values at s and k − s.

For a discussion in weight 2, see [PR], sec. 5.2.

The anticyclotomic p-adic L-function studied in this work interpolates the
special values of L(φ/K, χ, s) at the central point s = k/2, where χ ranges
over ring class characters of p-power conductor. Proposition 2.3 shows that
L(φ/K, χ, k/2) vanishes identically for all such χ, if the number of primes
dividing N− is even. This justifies the following basic assumption which is
made throughout the paper:

Assumption 2.4 The sign εK := −ε(N−) in the functional equation of
proposition 2.3 is equal to 1, i.e., in light of assumptions 2.1 and 2.2, N− is
a product of an odd number of primes.

2.2 The basic strategy

The construction of the p-adic L-function attached to φ and K proceeds as
follows.

17



1. Write N− = `1 · · · `r for the prime factorisation of N−, and set S =
{p,∞, `1, . . . , `r}. Note that S is a set of places of odd cardinality, by
assumption 2.4. Let X be the Shimura curve associated to the data
(S,N+) as in section 1.1, and let ω be the modular form of weight k on
X attached to φ by the Jacquet-Langlands theorem (theorem 1.2).

2. Applying the Cerednik-Drinfeld theorem, see 1.1 let f ∈ Srigk (Γ) be
the rigid analytic modular form on Hp associated to ω. It satisfies
invariance properties under a p-adic discrete group Γ arising from the
definite quaternion algebra B ramified at the primes in S − {p}. More
precisely, Γ = ι(R×

1 ), where R is an Eichler Z[1/p]-order of level N+ in
B and R×

1 is the group of elements of reduced norm 1 in R×. Assume
that f is normalised as in definition 1.7.

3. The p-adic L-function Lp(f,K, s) is defined as a p-adic Mellin transform
of Schneider’s distribution µf attached to f as in section 1.3, along the p-
adic points of a (suitably chosen) maximal torus in B×/Q×, isomorphic
to K×/Q×.

It is the last step of this construction which remains to be explained. In sec-
tions 2.3 and 2.4, a distribution on (K⊗Qp)

×/Q×
p is defined using Schneider’s

distribution. Section 2.5 explains how this distribution interpolates special
values of classical L-functions of φ over K. The construction of the p-adic
L-function is then carried out in section 2.6

2.3 Embeddings of K into B

Let OK be the ring of integers of K, and O = OK [1/p] its ring of p-integers.
An orientation of the Eichler order R is a surjective ring homomorphism

o : R −→ (Z/N+Z)×
∏
`|N−

F`2 .

The pair (R, o) is called an oriented Eichler order. Likewise, an orientation
on O is a surjective homomorphism O −→ (Z/N+Z) ×

∏
`|N− F`2 . This

amounts to choosing, for each prime ` dividing N+, a prime ideal of K above
`, and, for each prime ` dividing N−, an identification of the residue field of
K at ` with F`2 . Fix orientations on R and O once and for all.

An embedding Ψ : K −→ B is called an oriented optimal embedding of O
into R if

18



1. Ψ(K) ∩R = Ψ(O), so that Ψ induces an embedding of O into R.

2. Ψ is compatible with the chosen orientations on O and R in the sense
that the following diagram commutes

O Ψ−→ R
↘ o ↙

(Z/N+Z)×
∏

`|N− F`2 .

The group R× acts naturally by conjugation on the set of oriented optimal
embeddings. Write emb(O, R) for the set of all oriented optimal embeddings
of O into R, taken modulo conjugation by R×

1 .
Denote by ∆ = Pic(O) the Picard group of projective modules of rank

one over O. (In classical language, it is the quotient of the class group of K,
by the subgroup generated by the classes of the prime ideals above p.) The
group ∆ acts naturally on emb(O, R) as follows (see also [Gr2], sec. 1 and 3).
Let a ⊂ O be a projective O-module representing a class α ∈ ∆, chosen in
such a way that a⊗Z` = O⊗Z` for all `|N+N−, and let Ψ : K −→ B be an
oriented optimal embedding of O into R. The right order of the left R-ideal
RΨ(a), denoted Ra, is an Eichler order of level N+ in B, which inherits an
orientation from the one on R, since Ra ⊗ Z` = R` for all `|N+N−. The
right action of Ψ(O) on RΨ(a) yields an embedding Ψ̃a : O −→ Ra, which is
compatible with the orientations on O and Ra. Since all Eichler Z[1/p]-orders
of level N+ in B are conjugate, there exists a ∈ B× such that

ordp(aā) ≡ 0 (mod 2), a ∈ R×
` for all `|N+N−, R = aRaa

−1.
(11)

Set

α ·Ψ := aΨ̃aa
−1. (12)

It can be checked that α ·Ψ is an oriented optimal embedding of K into B,
and that its image in emb(O, R) depends only on the image of a in Pic(O)
and of Ψ in emb(O, R), so that (12) gives a well-defined action of ∆ on
emb(O, R). The following result is proved as in [Gr2], sec. 3.

Proposition 2.5 The group ∆ = Pic(O) acts freely on emb(O, R). The set
emb(O, R)is the disjoint union of two ∆-orbits under this action.

In particular, emb(O, R) is finite and has cardinality 2h, where h = #∆.
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2.4 The p-adic distribution attached to an embedding

Let Ψ : K −→ B be an oriented optimal embedding of O into R. It induces
an embedding

Ψ : Kp −→ Bp, where Kp := K ⊗Qp.

Let us recall that we have fixed an isomorphism ι : Bp −→ M2(Qp). The
map ιΨ : Kp −→M2(Qp) induces an embedding of K×

p /Q×
p into PGL2(Qp),

which will also be denoted by ιΨ by abuse of notation. Thus Ψ gives rise to
an action of K×

p /Q×
p on the boundary P1(Qp) of Hp by the rule

α∗x := ιΨ(α)(x), α ∈ K×
p /Q×

p , x ∈ P1(Qp). (13)

Choose a base point ? ∈ P1(Qp). The element bΨ := Ψ(
√
−D) is an element

of B of reduced trace 0. Let PΨ be the polynomial PbΨ in P2 defined as in
equation (3) of section 1.2. Note that

PΨ · (ιΨ(α)) = PΨ, (14)

for all α ∈ K×
p .

Case 1: p is inert in K. The (compact) torus ιΨ(K×
p /Q×

p ) ⊂ PGL2(Qp)
acts simply transitively on the boundary P1(Qp). The choice of ? determines
an isomorphism ηΨ,? : K×

p /Q×
p −→ P1(Qp). The torus ιΨ(K×

p ) has two fixed
points in Hp, denoted a and ā, which belong to Kp and are interchanged
by Gal(Kp/Qp). Let us now fix the base point ? = ∞. We have a natural
homeomorphism K×

p /Q×
p
∼= K×

p,1 sending x (mod Q×
p ) to x/x ∈ K×

p,1. Here
K×
p,1 denotes the compact subgroup of K×

p of elements of norm 1. Let us
denote by ηΨ the composition

ηΨ : G := K×
p,1 −→ K×

p /Q×
p −→ P1(Qp).

We then have the following formulas

ηΨ(α) =
(aα− ā)

α− 1
, η−1

Ψ (x) =
x− ā

x− a
. (15)

Pullback by ηΨ and η−1
Ψ on functions preserve local analyticity and so we get

a natural, continuous isomorphism

ηΨ∗ = (η−1
Ψ )∗ : A(G) −→ A,
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where the notations of section 1.3 are used. Recall that we have defined a
natural, continuous linear functional µf on the free A-module of rank one

P
k−2
2

Ψ · A ⊂ Ak in section 1.3. We will use it to define the locally analytic
distribution µf,Ψ,? on G = K×

p,1, which will be simply denoted by µΨ whenever
f and the basepoint ? are fixed, by

µf,Ψ,?(ϕ) = µΨ(ϕ) := µf (P
k−2
2

Ψ × (η−1
Ψ )∗(ϕ)), for ϕ ∈ A(G).

Case 2: p is split. The torus ιΨ(K×
p /Q×

p ) ⊂ PGL2(Qp) has precisely two
fixed points a, b ∈ P1(Qp), and it acts simply transitively on the complement
P1(Qp)−{a, b}. The choice of a base point ? in this complement determines
an identification

ηΨ,? : K×
p /Q×

p −→ P1(Qp)− {a, b}

by the rule

ηΨ,?(α) := α∗ ? . (16)

Choose ? so that the Möbius transformation sending (a, b, ?) to (0, 1,∞) has
the property that its determinant has even p-adic valuation. Base points
satisfying this property will be called Ψ-normalised. Let w(α) be the locally
constant function of α ∈ Q×

p defined by

w(α) := wordp(α), (17)

where w = ±1 is the sign defined in section 1.1.

Now choose a prime p of K above p. This choice defines identifications
K×
p /Q×

p = (K ⊗Qp)
×/Q×

p = (K×
p ×K×

p̄ )/Q×
p and a group isomorphism

ε : K×
p /Q×

p −→ K×
p = Q×

p ,

which has the basic property that if x ∈ K×, then

ε([x]) =
x

x̄
∈ K×

p = Q×
p .

Here [x] denotes the image of x in K×
p /Q×

p . Let u0 be a generator of the rank
one group O×/Z[1/p]× and let u ∈ Q×

p be the image of u0/ū0 in Kp = Qp,
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normalised so that ordp(u) > 0. In other words u = ε([u0]). Let us consider
the group denerated by u, i.e. let σ := 〈u〉 ⊂ Q×

p . Our next goal is to define
a locally analytic distribution on G := Q×

p /σ.
Let us now fix a Ψ-normalized base point ? ∈ P1(Qp)−{a, b}, and denote by
ηΨ the following composition

ηΨ : Q×
p

ε−1

−→ K×
p /Q×

p

ηΨ,?−→ P1(Qp)− {a, b}.

The map ηΨ satisfies the basic property that if x, y ∈ Q×
p then

ηΨ(xy) = Ψ(ε−1(x)) ∗ ηΨ(y).

ηΨ extends to a fractional linear transformation ηΨ : P1(Qp) −→ P1(Qp) send-
ing 0 to a, ∞ to b and 1 to ?. Obviously, ηΨ extends uniquely to a fractional
linear transformation denoted by the same symbol P1(Cp) −→ P1(Cp).

In order to define the distribution µf,Π,? when p is split, we need to introduce
locally analytic functions and distributions on Q×

p with compact support.
Let X be a compact open subset of Q×

p and n an integer. Let us recall
the Qp-topological algebras A(X[n]) and A(X) from section 1.3. If m,n are
integers such that m ≥ n and X, Y are compact open subsets of Q×

p , with
X ⊂ Y then the restriction map A(Y [n]) −→ A(X[m]) is continuous and we
denote

Ac := lim
→
A(X[n]),

where the inductive limit is over pairs (n,X) with n integer and X compact
open subset of Q×

p . Then Ac is the Qp-algebra of locally analytic functions
on Q×

p with compact support. We will endow it with the Morita topology.
Let us now fix a parameter z on P1(Qp). This determines an embedding
Q×
p ⊂ P1(Qp) and a continuous Qp-algebra homomorphism

ψ! : Ac −→ A,

which is extension by zero. Let us recall from section 1.3 that we have defined

a natural, continuous linear functional µf on the A-module P
k−2
2

Ψ · A ⊂ Ak.
We’ll use µf to define a continuous linear functional µf,Ψ,? on Ac, which will
be simply denoted by µΨ whenever f and ? are fixed. Let ϕ ∈ Ac then

µf,Ψ,?(ϕ) = µΨ(ϕ) := µf (P
k−2
2

Ψ (η−1
Ψ )∗(ψ!(ϕw))),
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where w is the function defined in equation (17). We will sometimes denote

µf,Ψ,?(ϕ) =

∫
Q×p
ϕdµf,Ψ,?.

We’ll now use µf,Ψ,? in order to define a locally analytic distribution on G.
Let us denote by F a fundamental domain in Q×

p for the action of σ, for
example:

F := {x ∈ Q×
p | p|u| ≤ |x| ≤ 1}.

Then F is a compact open subset of Q×
p and Q×

p = ∪i∈Zu
iF . To give a

function ϕ : G −→ Cp is equivalent to giving a function ϕ : Q×
p −→ Cp such

that ϕ(ux) = ϕ(x) for all x ∈ Q×
p . Such a function is determined by its

restriction to F . We say that a function ϕ on G is locally analytic if ϕχF
is the restriction to Q×

p of an element of Ac, where χF is the characteristic
function of the set F ⊂ Q×

p .

Definition 2.6 Let A(G) denote the Qp-algebra of locally analytic functions
on G.

Let us remark that the map “restriction to F” defines an isomorphism be-
tween A(F) and A(G). We will identify these two algebras whenever conve-
nient and endow A(G) with the natural topology on A(F).

We define an action of the discrete subgroup σ ⊂ Q×
p on Ac by (ϕ×u)(x) :=

ϕ(ux) for all x ∈ Q×
p and ϕ ∈ Ac. Obviously this action is continuous and it

defines an action of σ on linear functionals on Ac.

Proposition 2.7 u× µf,Ψ,? = µf,Ψ,?, i.e. µf,Ψ,? is σ-invariant.

Proof: First of all, we know that Ψ(ε−1(u)) = Ψ(u0) ∈ Γ̃ and w × u =
wordp(u)w. Let ϕ ∈ Ac and let us write η instead of ηΨ and µΨ instead of µf,Ψ,?

for this proof. Then (u×µΨ)(ϕ) = µΨ(ϕ×u) = µf (P
k−2
2

Ψ (η−1)∗(ψ!((ϕ×u)w))).
Let us denote g := ψ!(ϕw). Then

P
k−2
2

Ψ (η−1)∗(ψ!((ϕ× u)w))(x) = wordp(u)(P
k−2
2

Ψ (η−1)∗(g × u))(x)

= wordp(u)P
k−2
2

Ψ (x)g(uη−1(x)) = wordp(u)P
k−2
2

Ψ (x)g(η−1(Ψ(u0) ∗ x))
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= wordp(u)P
k−2
2

Ψ (x)((η−1)∗(g))(Ψ(u0) ∗ x)

= wordp(u)[(P
k−2
2

Ψ (η−1)∗(g)) ∗Ψ(u0)](x).

Therefore P
k−2
2

Ψ (η−1)∗(g×u) = wordp(u)(P
k−2
2

Ψ (η−1)∗(g))∗Ψ(u0). But ordp(u)+
|Ψ(u0)| = 0 (mod 2) and the result follows upon applying lemma 1.10.

Lemma 2.8 Let V be a compact open subset of Q×
p and ϕ ∈ Ac. Then∫

uiV

ϕdµΨ =

∫
V

(ϕ× ui)dµΨ,

for all i ∈ Z.

Proof: We have∫
uiV

ϕdµΨ = µΨ(ϕχuiV ) = µΨ(ϕ(χV × u−i)) =

= µΨ(((ϕ× ui)χV )× u−i) = µΨ((ϕ× ui)χV ) =

∫
V

(ϕ× ui)dµΨ.

Corollary 2.9 If ϕ ∈ A(G) then∫
uiF

ϕdµΨ =

∫
F
ϕdµΨ,

for all i ∈ Z.

Definition 2.10 The distribution µf,Ψ,? on Ac induces a distribution, de-
noted also by µf,Ψ,? (and by µΨ whenever f and ? are fixed) on G i.e. a
continuous linear functional on A(G) by

µf,Ψ,?(ϕ) =

∫
G

ϕdµf,Ψ,? :=

∫
F
ϕdµf,Ψ,?, for all ϕ ∈ A(G).
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For the rest of this section, the assumption that w = 1 will be made. First
of all

Remark: If ϕ ∈ A then P
k−2
2

Ψ (η−1
Ψ )∗(ϕ) is an element of the free A-module of

rank one P
k−2
2

Ψ ·A. Therefore µf,Ψ,? extends to a continuous linear functional
on A denoted by the same symbol and given by the formula:

µf,Ψ,?(ϕ) = µΨ(ϕ) := µf (P
k−2
2

Ψ (η−1
Ψ )∗(ϕ)).

We end this section with a few properties of the above defined distribution
on G, which will be used in chapter 3.

Lemma 2.11 Let ϕ ∈ A[n0] for some n0 ∈ N and suppose that i0 ∈ N is
such that ordp(u

i0) ≥ n0. Moreover suppose that ϕ(0) = ϕ(∞) = 0. Then
there is a constant Cϕ such that for all i ≥ i0, if V denotes the closed ball
around 0 or around ∞ of radius |ui| then

|
∫
V

ϕdµΨ| ≤ Cϕ|ui|.

Proof: It is enough to treat the case V = B[0, |ui|]. Let D := B[0, |ui0|], then
V = ui−i0D. Using the results above,∫

ui−i0D

ϕdµΨ =

∫
D

(ϕ× ui−i0)dµΨ.

Because ϕ(0) = 0, it follows that ϕ(z) =
∑

j≥1 ajz
j for z ∈ D, and

(ϕ× ui−i0)(z) = ui−i0(
∑
j≥1

aju
(j−1)(i−i0)zj).

Therefore

|
∫
V

ϕdµΨ| ≤ |ui|(|u−i0| sup
j≥1

(|aju(j−1)(i−i0)

∫
D

zjdµΨ(z)|) ≤ |ui|Cϕ,

where

Cϕ := |u−i0| sup
j≥1

|aj
∫
D

zjdµΨ(z)|.

Note that the supremum is finite by the continuity of µΨ.

Finally we have the following
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Proposition 2.12 Let ϕ ∈ A be such that ϕ(0) = ϕ(∞) = 0. Then
a)
∑

i∈Z(ϕ|Q×p × ui) ∈ A(G).

b) We have ∫
P1(Qp)

ϕdµΨ := µΨ(ϕ) =

∫
G

(
∑
i∈Z

ϕ|Q×p × ui)dµΨ.

Proof: a) Let us denote by ψ(x) :=
∑

i∈Z ϕ(uix), for all x ∈ Q×
p . Then the

convergence of the series and the invariance of ψ with respect to the action of
σ is clear. Moreover if denote by ψN :=

∑N
i=−N(ϕ|Q×p × ui) for every N ∈ N,

then one sees that ψ = limN→∞ ψN where the limit is uniform on compact
open subsets of Q×

p . We leave it to reader to show that ψ|F , ψN |F ∈ A(G)
for all N and that the limit above is a limit in A(G). In the application of
this proposition to the proof of theorem 3.3 these facts will be obvious.
b) We have∫

P1(Qp)

ϕdµΨ −
∫
F
ψNdµΨ =

∫
P(Qp)

ϕdµΨ −
∫
∪N

i=−Nu
iF
ϕdµΨ =

=

∫
B[0,|uN+1|]

ϕdµΨ +

∫
B[∞,|uN |]

ϕdµΨ.

For N big enough, ϕ ∈ A[ordp(u
N)] and from lemma 1.6 we have

|
∫

P(Qp)

ϕdµΨ −
∫
F
ψNdµΨ| ≤ |uN |C ′

ϕ
N→∞−→ 0.

The fact that µΨ is a continuous linear functional on Ac imply that

lim
N→∞

∫
F
ψNdµΨ =

∫
F
ψdµΨ =

∫
G

ψdµΨ.

2.5 Interpolation of classical special values

This section describes how the distributions µf,Ψ interpolate special values
of the classical L-function L(φ/K, s) at s = k/2, justifying for the defini-
tion of the p-adic L-function that is given in section 2.6, definitions 2.19
and 2.20. The interpolation properties of µf,Ψ are summarized in formula
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(18) and proposition 2.18. Strictly speaking, these are not required for the
construction of the p-adic L-function given in section 2.6, but merely pro-
vide motivation and justification for it. Therefore, in a first reading, the
reader may wish to skip directly to section 2.6 after looking at (18) and the
statement of proposition 2.18, postponing the proofs for later.

Galois-theoretic preliminaries. An abelian extension L/K is called anticy-
clotomic if it is Galois over Q and if the involution in Gal(K/Q) acts as −1
on Gal(L/K) by conjugation. Let K∞ denote the maximal anticyclotomic
extension of K which is unramified outside p. Let H denote the Hilbert
class field of K, and let Hp be the field fixed by a Frobenius element at p in
Gal(H/K) (i.e., the maximal unramified abelian extension of K in which p
splits completely). Let Kn denote the ring class field of K of conductor pn,
so that K0 = H. The fields Kn form a tower of extensions containing the
anticyclotomic Zp-extension:

Q ⊂ K ⊂ Hp ⊂ H ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · .

Class field theory provides a Galois theoretic interpretation of the p-adic
group G defined in section 2.4. More precisely,

G = Gal(K∞/Hp)

if O×
K = {±1}. For simplicity assume from now on that O×

K = {±1}, a
condition which is satisfied as soon as Disc(OK) < −4. We denote

G0 = Gal(K∞/H), Gn = Gal(K∞/Kn), ∆ = Gal(Hp/K),

(where ∆ is the group defined in section 2.3). Write

G̃ := Gal(K∞/K).

This group fits into the exact sequence

1 −→ G −→ G̃ −→ ∆ −→ 1,

and it can be identified with the Picard group of rank one projective O-
modules a equipped with a trivialisation at p, i.e., a fixed isomorphism
Kp −→ a ⊗ Qp. More precisely, let K̂ denotes the finite adèles of K, and
write

Ô =
∏
`

O`, Ô# =
∏
` 6=p

O`.
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Class field theory identifies G̃ with K̂×/K×Q̂×Ô×
#. An element in this coset

space with representative (g`) corresponds to the projective module a =
K ∩

∏
` 6=pO`g`, with trivialisation at p sending 1 to gp. Let Λ be the set of

pairs (Ψ, ?) taken modulo conjugation by R×
1 , where Ψ is an oriented optimal

embedding of O into R, and c is a Ψ-normalised base point (if p is inert in
K, every base point is defined to be Ψ-normalised.)

Lemma 2.13 The action of ∆ on emb(O, R) lifts to a free action of G̃ on
Λ, which is the union of two orbits under this action.

The description of this action proceeds along the same lines as in section 2.3.
Let a ⊂ O be a representative for a class α ∈ G̃, i.e., a projective rank one
O-module together with a Kp-generator t for a⊗Qp. Let Ra denote the right
order of the left R-ideal RΨ(a) of section 2.3, and let g = Ψ(t) ∈ Ra ⊗ Qp.
Choosing an element a ∈ B× satisfying the conditions of equation (11) of
section 2.3, and letting Ψ̃a be the embedding defined there, set

α · (Ψ, ?) = (Ψ′, ?′), where Ψ′ = aΨ̃aa
−1, c′ = ι(aga−1)(c).

By fixing a representative Ψ for an element of emb(O, R), and a Ψ-normalised
base point c, a locally analytic distribution µf,K on G̃ will be defined as
follows. First, for all δ ∈ ∆ choose and fix a lift αδ ∈ G̃. This allows us to
view G̃ as the disjoint union of the orbits αδG for δ ∈ ∆. Let ϕ : G̃ −→ Cp

be a function. We say that ϕ is locally analytic if

(ϕ|αδG)× αδ ∈ A(G) for all δ ∈ ∆,

where let us recall (ϕ × αδ)(x) := ϕ(αδx) for all x ∈ G. The set of locally
analytic functions on G̃ will be denoted A(G̃). To define µf,K , let ϕ ∈ A(G̃).
Then set

µf,K(ϕ) =

∫
G̃

ϕdµf,K :=
∑
δ∈∆

µf,Ψδ ,?δ
(ϕ|αδG × αδ),

where, if δ ∈ ∆ then (Ψδ, ?δ) = αδ(Ψ, ?).

For further applications, we want to calculate the values of µf,K on locally
constant functions on G̃.

Lemma 2.14 For all α ∈ G̃,

µf,K(αGn) = µf,Ψ′,?′(G
n), where (Ψ′, ?′) = α · (Ψ, ?).
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Proof: Let δ be the projection of α on ∆. Then, by the definition above,

µf,K(αGn) := µf,K(χαGn) = µf,Ψδ ,?δ
(aGn) := µf,Ψδ ,?δ

(χaGn),

where a = α−1
δ α ∈ G. We have

(Ψ′, ?′) = α(Ψ, ?) = a(αδ(Ψ, ?)) = a(Ψδ, ?δ) = (Ψδ,Ψδ(a) ∗ cδ).

A calculation, using the fact that both c′ and cδ are Ψ′ = Ψδ normalised
based points, shows that

µf,Ψδ ,?δ
(aGn) = µf,Ψδ ,Ψδ(a)∗?δ

(Gn) = µf,Ψ′,?′(G
n).

The lemma shows that the restriction of µf,K to locally constant functions is
independent of the choices of the αδ’s. Moreover

Lemma 2.15 The distribution µf,K depends on the choice of (Ψ, ?), only
up to translation by an element of G̃, and up to multiplication by w. Its
restriction to G is equal to µf,Ψ,?.

Proof: If (Ψ, ?) is replaced by (γΨγ−1, γ?) with γ ∈ R×
1 , the associated

distribution is unchanged, by lemma 1.10. If (Ψ, ?) and (Ψ′, ?′) = α · (Ψ, ?
are in the same G̃-orbit, the associated distributions differ by translation by
α. Finally, if (Ψ, ?) and (Ψ′, ?′) belong to different G̃-orbits, the associated
distributions differ by translation by an element of G̃, and multiplication by
w.

Choose a complex embedding of the field Kf introduced in lemma 1.8.
Since the cocycle cf takes values in P∨

k−2(Kf ) (lemma 1.8), the p-adic dis-
tribution µf,K can also be viewed as a complex-valued distribution, against
which locally constant C-valued functions on G̃ can be integrated.

In particular, let χ : G̃ −→ C× be a continuous character of finite order.
By lemma 2.15, the integral

∫
G̃
χ(α)dµf,K(α) depends on the choice of (Ψ, ?)

only up to multiplication by a root of unity, so that its complex norm is well
defined.

Define the multiplier M(χ) by

M(χ) =

{
1 if χ is ramified;
(1− wχ(frobp))(1− wχ̄(frobp)) otherwise.
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Write uK = #O×
K/2, let DK be the discriminant of K, and denote by (φ, φ)

the Petersson scalar product of φ with itself.
The distribution µf,K is expected to satisfy the following interpolation

property with respect to special values of the L-function of φ over K.∣∣∣∣∫
G̃

χ(x)dµf,K(x)

∣∣∣∣2 = M(χ)u2
KD

k−1
2

K

L(φ/K, χ, k/2)

(φ, φ)
. (18)

The remainder of this section elucidates the relation between (18) and the
calculations explained in [Gr2] for weight k = 2 and in [Ha] for general even
weight. These articles treat the case—too restrictive for the application to
(18)—of a modular form φ of prime level N , and an unramified character
χ. Specializing temporarily to the setting considered by [Gr2] and [Ha], take
N− = N to be prime and set N+ = 1. Let B denote the definite quaternion
algebra ramified at N− and choose a maximal Z-order R of B. Let B0 be
the space of elements of B of trace 0, and set

R̂ :=
∏
`

(R⊗ Z`), B̂ := R̂⊗Q.

The article [Ha] introduces a vector bundle V by the rule

V = (R̂
×
\B̂× × Sym

k−2
2 (B0))/B

×,

where the action of B× on Sym
k−2
2 (B0) is as described in page 543 of [Ha].

Thanks to equation (3) of section 1.2, the Picard group of V maps to the

space of Pk−2-valued functions on R̂
×
\B̂× which are invariant under the

action of B×. Let P (V ) denote this image, i.e.,

P (V ) := {c : R̂
×
\B̂× −→ Pk−2 | c(xb) = c(x) · ι(b), for all b ∈ B×}.

It is a finite-dimensional Cp-vector space since an element c is entirely deter-
mined by its values on a system of representatives for the finite double coset

space R̂
×
\B̂×/B× (cf. [Vi], ch. V). The space P (V ) is also endowed with

a linear action of the Hecke operators Tn defined as in [Ha], sec. 4, and is
isomorphic, as a Hecke module, to the space of modular forms of weight k
on Γ0(N

−) with Cp-coefficients.
In the paragraph before ch. 4 of [Ha], the author defines Heegner elements

in V . These elements are described by pairs (Ψ, RΨ) modulo conjugation by
B×, where
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1. RΨ is a maximal Z-order of B. (By strong approximation there are only
finitely many such orders, up to conjugation in B×.)

2. Ψ : K −→ B is an oriented embedding which is optimal relative to OK

and RΨ, in the sense that Ψ(K) ∩RΨ = Ψ(OK).

Such a pair yields an element in V represented by ((b`)`; Ψ(
√
−D)

k−2
2 ), where

(b`) represents the coset describing RΨ as in [Ha]. The group Pic(OK) acts
transitively on the set of Heegner elements in a manner similar to proposition
2.5. (Cf. also [Ha].)

Fix a Heegner element (Ψ, RΨ), and, for a ∈ Pic(OK) let

va = a · (Ψ, RΨ),

viewed as an element of P (V ). If χ is any character of Pic(OK), write
vχ =

∑
a χ(a)va, and let vf,χ ∈ P (V ) ⊗ C be the projection of this vector

to the f -isotypic component for the action of the Hecke algebra. Recall the
natural pairing 〈 , 〉 of equation (6) of section 1.2. It naturally induces a
symmetric pairing on the spaces Char(k) and Char(Pk−2)

Γ of Γ-equivariant
harmonic cocycles, as well as on the space P (V ). Use the same symbol 〈 , 〉
to denote these pairings, by abuse of notation. The following formula is
proved by Gross in weight 2 [Gr2], and by Hatcher for even weight k ≥ 2 (cf.
proposition 8.2. of [Ha]):

Proposition 2.16 (Gross, Hatcher)

〈vf,χ, vf,χ̄〉 = u2
KD

k−1
2

K

L(φ/K, χ, k/2)

(φ, φ)
.

Remark: Note that the factor (k−2
2

)!2 which is present in prop. 8.2 of [Ha]
does not appear in proposition 2.16, because of the different normalisation
that is used for the inner product on P∨

k−2. (Compare equation (4) of section
1.2 with equation (3.1) of [Ha].)

To establish equation (18), it is first necessary to capture the modular
forms on Γ0(N

+N−p). In order to do this, introduce an auxiliary Γ0(N
+p)-

structure and replace the maximal order R by an Eichler order of level N+p
in the definite quaternion algebra of discriminant N−, to be denoted by the
same letter, R, from now on. By strong approximation, the double coset
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space R̂
×
\B̂×/B× is identified with R×

p \B×
p /R

×, where R := R[1/p]. Note
that R is an Eichler Z[1/p]-order of level N+ in B, as in the previous sections.

Under ι the space R×
p \B×

p is identified with the space
→
E (T ) of edges of T .

Thus P (V ) is identified with the space of functions c̃ :
→
E (T ) −→ Pk−2

satisfying
c̃(γ−1e) = c̃(e) · γ, for all γ ∈ Γ̃ = ι(R×).

Suppose that c̃ is an eigenfunction for the Hecke correspondences satisfying
Tnc̃ = anc̃ for all n. The fact that φ is new at p implies that∑

source(e)=v

c̃(e) = 0,
∑

target(e)=v

c̃(e) = 0, for all v ∈ V(T ).

(Cf. [BD3], prop. 1.4.) However, c̃ does not satisfy the rule c̃(ē) = −c̃(e) in
general, but merely the formula

c̃(ē) = −wc̃(e),

where −w is the eigenvalue of the Atkin-Lehner involution at p acting on φ,
which is equal to −1 when φ is of split multiplicative type, and 1 otherwise.

To turn c̃ into a harmonic cocycle when φ is of non-split multiplicative
type, recall the base vertex v◦ on T and call a vertex even (resp. odd) if its
distance from v◦ is even (resp. odd). An edge is then said to be positively
oriented if its source is even and its target is odd, and negatively oriented
otherwise. Note that this orientation is reversed by elements in Γ̃ − Γ, but
is preserved by the index two subgroup Γ. Now given c̃, define similarly as
in the proof of prop. 1.4 of [BD3],

c(e) =

{
c̃(e) if e is positively oriented,
−c̃(ē) if e is negatively oriented.

The assignment c̃ 7→ c defines a Hecke equivariant isomorphism between the
space of p-new vectors in P (V ) and the space Char(Pk−2)

Γ of Γ-equivariant
harmonic cocycles on T with values in Pk−2.

For the purposes of equation (18), it is also necessary to generalize the
notion of Heegner elements. A Heegner element of level pn is now described
by a pair (Ψ, RΨ), taken modulo conjugation by B×, satisfying
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1. RΨ is an Eichler order of level N+p in B; by strong approximation it
can be assumed without loss of generality that RΨ[1/p] = R, and this
is done from now on.

2. Ψ is an optimal embedding of On, the order in OK of conductor pn, i.e.,
Ψ(K)∩RΨ = Ψ(On). Note that when n ≥ 1, such optimal embeddings
always exist, whereas an optimal embedding of OK into an Eichler order
of level N+p only exists if p is split in K/Q.

To give a pair (Ψ, RΨ) as above is equivalent to giving a pair (Ψ, e) satisfying

1. Ψ(K) ∩R = Ψ(O),

2. e is an edge of T which is at distance n from the vertices fixed by
ιΨ(G0).

For example, the Eichler order RΨ is equal to R ∩ ι−1(Me), where Me ⊂
M2(Zp) is the local Eichler order of level p attached to the edge e. The group
G̃n = Pic(On) acts naturally on the set of Heegner elements of level pn, and
the action of G = K×

p /Q×
p is given by

α · (Ψ, e) = (Ψ, ιΨ(α)e).

Fix a Heegner element (Ψ, RΨ) of level pn and write as before va := a·(Ψ, RΨ),
with a ∈ G̃n. Since it is only the images of the elements va in P (V ) which
matter in the calculations, the va are viewed as elements of P (V ) from now
on. The projection of va onto the f -isotypic component of Char(Pk−2)

Γ,
denoted va,f , can be viewed as elements of Char(Pk−2)

Γ by the identification
of the previous paragraph, and can be written as

va,f = 〈va, cf〉c∨f ,

where c∨f is the vector attached to f in the basis for Char(Pk−2)
Γ dual to the

basis of normalised eigenforms in Char(k)
Γ. It follows from the definition of

µf,K that, after a suitable choice of base point (Ψ, ?) of Λ, compatible with
the choice (Ψ, RΨ) made to define va, that

〈va,f , cf〉 = µf,K(ã ·Gn),

where ã is any lift of a ∈ G̃n to G̃. Hence if χ factors through G̃n,

〈vf,χ, cf〉 = ±
∫
G̃

χ(x)dµf,K(x), where vf,χ =
∑

χ(a)va,f . (19)

The following generalization of the proposition 2.16 is expected to hold
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Conjecture 2.17 : In the notations above,

〈vf,χ, vf,χ̄〉 = M(χ)u2
KD

k−1
2

K

L(φ/K, χ, k/2)

(φ, φ)
, if n = 0; (20)

〈vf,χ, vf,χ̄〉 = u2
KD

k−1
2

K

L(φ/K, χ, k/2)

(φ, φ)
if n > 0. (21)

Remark The identities of conjecture 2.17 should follow from a direct general-
ization of the calculations carried on in [Gr2] and [Ha], but these calculations
are not present in the literature. See also [Dag] and [Va] for a discussion of
related topics.
Granting conjecture 2.17 and combining it with formula (19) yields∣∣∣∣∫

G̃

χ(x)dµf,K(x)

∣∣∣∣2 = M(χ)u2
KD

k−1
2

K

L(φ/K, χ, k/2)

(φ, φ)
,

and (18) follows.

Suppose now that p is split and that Ψj (1 ≤ j ≤ h) is one of the
oriented optimal embeddings of O into R. Choose an even vertex vj of T
whose stabiliser under the action of K×

p induced by Ψj is (OK ⊗ Zp)
×. Let

us now recall the notations of section 1.3 i.e. u0 be a generator of the rank
one group O×/Z[1/p]× such that the image u of u0

ū0
in Q×

p has ordp(u) > 0.
Denote by δj = ιΨj(u0). Given an ordered edge e, let sgn(e) be equal to 0 if
e is positively oriented, and 1 if it is negatively oriented.

Proposition 2.18 Assume conjecture 2.17. Then h∑
j=1

∑
vj→δjvj

wsgn(e)cf (e)(P
k−2
2

Ψj
)

2

= u2
KD

k−1
2

K

L(φ/K, k/2)

(φ, φ)
,

where the inner sum on the left is taken over all edges in the path joining vj
to δjvj.

Proof: We will apply formula (18) to the trivial character χtriv. Let us fix a
j as above and calculate∫

G

χtrivdµf,Ψj ,?j
=

∫
F
w(α)dµf,Ψj ,?j

(α),
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where cj is the corresponding Ψj-normalised base point, and let us recall from
section 1.3 that F is a fundamental domain for the action of u on Q×

p . Let
now Ej denote the set of oriented edges of T with same source as the edges
on the path from vj to δjvj, but not containing these edges. The geometry
of the action of δj on T , as explained in [BD4] §5, implies that the set

F ′ := ∪e∈Ej
U(e)

is a fundamental domain for the action of δj on P1(Qp)−{aj, bj}. Therefore,
η−1

Ψj
(F ′) is a fundamental domain for the action of u on Q×

p . Using the fact
that the base point cj is Ψj-normalised we have∫

F
w(α)dµf,Ψj ,?j

(α) =

∫
F ′
w(α)P

k−2
2

Ψj
dµf (α) =

=
∑
e∈Ej

∫
U(e)

w(α)P
k−2
2

Ψj
dµf (α) =

∑
e∈Ej

wsgn(e)cf (e)(P
k−2
2

Ψj
).

Proposition 2.18 now follows using the harmonicity of cf and the definition
of Ej.

Remark: The path on T joining vj to δjvj is a p-adic analogue of the geodesic
paths on the classical upper half plane associated by Shintani to narrow
ideal classes in real quadratic fields. The integrals of classical modular forms
against such paths yield special values of their L-series over the associated
real quadratic field. For this reason, the path in Hp from z0 to δj ∗ z0, or
the path in T from vj to δjvj, are sometimes called p-adic Shintani cycles
attached to the optimal embeddings Ψj (1 ≤ j ≤ h). See for example [BD4].

2.6 The p-adic L-function

If p is split in K, let log : C×
p −→ Cp be a branch of the p-adic logarithm,

normalised so that log(u) = 0. If p is inert, let log be the usual branch
satisfying log(p) = 0 (although any other choice would do equally well). The
logarithm gives a homomorphism log : K×

p −→ Kp which is 0 on O×
1 , and

hence, by passing to the quotient, a homomorphism from G to Kp which
extends uniquely to a homomorphism

log : G̃ −→ Kp ⊂ Cp.
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For α ∈ G̃ and s ∈ Zp, define

αs := exp(s log(α)),

where exp is the usual p-adic exponential. Note that s 7→ αs is an analytic
function of s ∈ Zp.

Definition 2.19 The p-adic L-function attached to the distribution µf,K is
the function of the p-adic variable s ∈ Zp defined by

Lp(f,K, s) =

∫
G̃

αs−k/2dµf,K(α).

Definition 2.20 Let Ψ be a representative for a class in emb(O, R) and let
c be a base point. The partial p-adic L-function attached to the datum (Ψ, ?)
is the function of the p-adic variable s ∈ Zp defined by

Lp(f,Ψ, ?, s) =

∫
G

αs−k/2dµf,Ψ,?(α).

Remark: If c′ = ιΨ(α0)c, then

Lp(f,Ψ, ?
′, s) = (α0)

s− k
2Lp(f,Ψ, ?, s).

In particular,

Lemma 2.21 The order of vanishing of Lp(f,Ψ, ?, s) at s = k/2, and the
value of the first non-vanishing derivative of Lp(f,Ψ, ?, s), do not depend on
the choice of c.

Because of this lemma, it is customary to drop the c from the notations and
write Lp(f,Ψ, s) instead of Lp(f,Ψ, ?, s).

If Ψ1 . . . ,Ψh are representatives for the distinct classes of oriented optimal
embeddings in emb(O, R), note that

Lp(f,K, k/2) = Lp(f,Ψ1, k/2) + · · ·+ Lp(f,Ψh, k/2). (22)

The following proposition describes the value of Lp(f,K, s) and Lp(f,Ψ, s)
at the central critical point s = k/2.

Proposition 2.22 Suppose p is split in K.
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1. If w = −1, then

Lp(f,K, k/2)2 = 4u2
KD

k−1
2
L(φ/K, k/2)

(φ, φ)
.

2. If w = 1, then Lp(f,K, k/2) = 0, and in fact Lp(f,Ψ, k/2) = 0 for all
Ψ ∈ emb(O, R).

Proof: Choose a vertex v of T which is even and fixed under the action of
ιΨ(OK ⊗ Zp)

×, and let δ = ιΨ(u). A direct evaluation shows that

Lp(f,Ψ, k/2) = ±(1− w)
∑
v→δv

wsgn(e)cf (e)(P
k−2
2

Ψ ).

The result follows directly, using (22) and proposition 2.18.

Proposition 2.23 Suppose p is inert in K. Then Lp(f,K, k/2) = 0, and in
fact Lp(f,Ψ, k/2) = 0 for all Ψ ∈emb(O, R).

Proof: This is apparent from the harmonicity of cf and the geometry of the
action of K×

p /Q×
p on T induced by Ψ.

Let Ψ1, . . . ,Ψh be representatives for the distinct classes in emb(O, R).
In the cases where p is inert in K or where p is split and w = 1, so that
Lp(f,Ψi, k/2) = 0 for all i, the first derivative of the p-adic L-function
Lp(f,K, s) at s = k/2 is given by:

L′p(f,K, k/2) =

∫
G̃

log(α)dµf,K(α) =
h∑
i=1

L′p(f,Ψi, k/2), (23)

and

L′p(f,Ψi, k/2) =

∫
G

log(α)dµf,Ψi
(α). (24)

These formulas are consequences of the continuity of µf,Ψi
for all i. The goal

of the next chapter is to derive a formula for these first derivatives.
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3 Proof of the main identities

Sections 3.1 and 3.2 contain the proofs of the main identities in the case
where p is split in K. In this situation an exceptional zero arises only if
w = 1, which will be assumed from now on for those sections. Section 3.3
discusses the case when p is inert in K.

3.1 Teitelbaum’s L-invariant

The definition of Teitelbaum’s L-invariant attached to f is recalled in this
section. It depends on the choice of p-adic logarithm that was made in section
2.6.

First let us point out that the modular form f is actually a modular form
for the group Γ̃, as a consequence of the assumption w = 1. Choose a point
z0 ∈ Hp, and a vertex v ∈ T .

Proposition 3.1 (Teitelbaum) There exists LT (f) ∈ Cp and R ∈ P∨
k−2

(the latter, depending on the choice of z0 and v) such that, for all α ∈ Γ̃ and
r ∈ Pk−2,∫ α∗z0

z0

f(z)r(z)dz = LT (f) ·
∑
v→αv

cf (e)(r) + (α ·R(r)−R(r)) .

Here the integral on the left is Coleman’s integral associated to the choice of
log, and the sum on the right is taken over the edges in the path joining v to
αv.

The proof is given in [Tei], sec. 1.

Definition 3.2 The scalar LT (f) (which depends only on the homothety
class of f) is called the Teitelbaum L-invariant associated to f .

The coboundary term (αR(r)−R(r)), which vanishes when k = 2, presents
an extra difficulty in computing LT (f) in the higher weight case. To avoid

this extra term, let δ be any element of Γ̃, let ψ = δ − 1
2
trace(δ)

(
1 0
0 1

)
∈

M2(Qp), and write Pψ for the polynomial Pι−1(ψ) ∈ P2 defined by formula
(3). Note that Pψ · δ = Pψ, and the same invariance property holds for
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P
k−2
2

ψ ∈ Pk−2. Replacing α by δ and r by P
k−2
2

ψ yields a formula which does
not involve any coboundary term and determines LT (f) when the sum on
the right is non-zero:∫ δ∗z0

z0

f(z)P
k−2
2

ψ (z)dz = LT (f)
∑
v→δv

cf (e)(P
k−2
2

ψ ). (25)

Note that both the integral and the sum in the above equation are indepen-
dent of the choice of base points z0 and v respectively.

3.2 The split case

In this section suppose that p is split in K, and let p be a prime of K above
p. Let us recall the notations of section 1.3, i.e. let u0 denote a generator of
the rank one group O×/Z[1/p]× such that the image u of u0

ū0
in Q×

p has the
property ordp(u) > 0. If Ψ is a representative for an element of emb(O, R),
write δ := ιΨ(u0) ∈ Γ̃. (This gives rise to the p-adic Shintani cycle attached
to Ψ, as in the discussion following proposition 2.18.) Let v be an even vertex
of T which is fixed by ιΨ(OK ⊗ Zp)

×.

Theorem 3.3

L′p(f,Ψ, k/2) = LT (f)
∑
v→δv

cf (e)(P
k−2
2

Ψ ),

where the sum on the right is taken over all edges e in the path joining v to
δv.

Proof: Consider the left-hand side of (25) with this choice of δ, and note that
the polynomial denoted there by Pψ is a constant multiple of PΨ.

By Teitelbaum’s p-adic Poisson inversion formula (proposition 1.11),

I :=

∫ δ∗z0

z0

f(z)P
k−2
2

Ψ (z)dz =

∫ δ∗z0

z0

(∫
P1(Qp)

1

z − x
dµf (x)

)
P

k−2
2

Ψ (z)dz.
(26)

Observe that

P
k−2
2

Ψ (z)− P
k−2
2

Ψ (x)

z − x
= polynomial in x of degree ≤ k − 2.
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Hence, by lemma 1.9,∫
P1(Qp)

P
k−2
2

Ψ (z)

z − x
dµf (x) =

∫
P1(Qp)

P
k−2
2

Ψ (x)

z − x
dµf (x).

Therefore the polynomial P
k−2
2

Ψ (z) can be replaced by P
k−2
2

Ψ (x) in equation
(26). Applying the reasoning in the proof of theorem 4 of [Tei], reverse the
order of integration to obtain

I =

∫
P1(Qp)

(∫ δ∗z0

z0

dz

z − x

)
P

k−2
2

Ψ (x)dµf (x) (27)

=

∫
P1(Qp)

log

(
δ ∗ z0 − x

z0 − x

)
P

k−2
2

Ψ (x)dµf (x), (28)

where the last equality follows from the definition of the Coleman inte-
gral associated to this choice of log. Recall the Möbius transformation
ηΨ : P1(Cp) −→ P1(Cp) of section 2.4. Define β0 ∈ P1(Cp) by ηΨ(β0) = z0.
Performing the change of variables x = ηΨ(α) and applying the definition of
µΨ = µf,Ψ,?

I =

∫
P1(Qp)

log

(
uβ0 − α

β0 − α

)
dµΨ(α). (29)

Note that if α = 0 or ∞, the integrand vanishes, because of the choice of
logarithm that was made in the definition of the Coleman integral. Since
log(u) = 0, observe that

∞∑
n=−∞

log

(
uβ0 − unα

β0 − unα

)
= lim

N→∞

N∑
n=−N

log

(
β0 − un−1α

β0 − unα

)
= lim

N→∞
log

(
β0 − u−N−1α

β0 − uNα

)
= lim

N→∞
log

(
uN+1β0 − α

β0 − uNα

)
= logα− log β0.

Applying the proposition 2.12 it follows that

I =

∫
G

(
∞∑

n=−∞

log
uβ0 − unα

β0 − unα

)
dµΨ(α) =

∫
G

(logα− log β0)dµΨ(α).
(30)
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Note that ∫
G

log(β0)dµΨ(α) = log(β0)Lp(f,Ψ, k/2) = 0,

by proposition 2.22, (2). It follows that

I =

∫
G

log(α)dµΨ(α) = L′p(f,Ψ, k/2), (31)

by (24). On the other hand, formula (25) for Teitelbaum’s L-invariant shows
that

I = LT (f)
∑
v→δv

cf (e)(P
k−2
2

Ψ ). (32)

Theorem 3.3 follows from (31) and (32).

The following theorem can be viewed as the analogue of Teitelbaum’s con-
jecture in the anticyclotomic setting.

Theorem 3.4 Assume conjecture 2.17. Then

L′p(f,K, k/2)2 = LT (f)2u2
KD

k−1
2

K

L(φ/K, k/2)

(φ, φ)
.

Proof: Let Ψ1, . . . ,Ψh be distinct representatives for the oriented optimal
embeddings in emb(O, R). For 1 ≤ j ≤ h, choose even vertices vj of T
which are fixed by ιΨj((OK⊗Zp)

×) and write δj = ιΨj(u0). By formula (23)
combined with theorem 3.3,

L′p(f,K, k/2) = LT (f)
h∑
j=1

∑
vj→δjvj

cf (e)(P
k−2
2

Ψj
).

Theorem 3.4 now follows from proposition 2.18.

Remark: In [Kl] Klingenberg claims to prove an “exceptional zero con-
jecture”, analogous to theorem 3.3, for Schneider’s rigid analytic p-adic L-
function. Klingenberg normalizes the Schneider L-function by choosing a
special isomorphism Bp → M2(Qp); this depends on the choice of a normal-
ization datum ([Kl], definition 6.3.1) which need not exist in general. Indeed,
assume such a datum to be given. Then there is a maximal Z-order O′ in
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B and an element δ0 ∈ O′[1/p]× such that for the zeros α, β ∈ Qp of the
minimal polynomial of δ0/Q we have ord(α/β) = 1. After multiplying δ0
by a suitable power of p one can assume that δ0 belongs to O′ and that its
reduced norm is p. Set K = Q(δ0). It is an imaginary quadratic field and
the minimal polynomial of δ0 over Q is of the form

f(X) = X2 + aX + p with a2 < 4p.

There are only finitely many such fields and hence there exist quaternion
algebras B which do not contain any of them and thus do not admit a
normalization datum. (For example, choose B such that its discriminant has
a prime factor q which splits in all the fields K as above.)

In addition, theorem 4.6.1 and 4.6.2 of [Kl] are not correct as stated. In
fact the proofs of these theorems actually yield the following (adopting the
notation from [Kl]):

Let γ, δ ∈ Γ be such that [γ] and [δ] ∈ Γab are non-zero and assume that
Lp(cγ, 1) = 0. Assume moreover that δ is hyperbolic. Then for every homo-
morphism χ ∈ Hom(Q×

p ,Qp) the following holds∫
Zp[δ]

χ(x)dµγ(x) = χ(〈γ, δ〉Γmult(δ)m) (33)

Here m is the unique integer such that 〈γ, δ〉Γmult(δ)m ∈ Zp[δ].

Consequently, theorems 6.4.2 and corollary 6.4.1 of [Kl] do not hold as stated.
(A summand logp(mult(δ)

m) is missing on the right hand side of the equations
there and it is usually non-zero.)

While it seems unlikely that there is any simple relation between Schnei-
der’s p-adic L-function (with respect to a suitable normalization) and the
cyclotomic p-adic L-function of Mazur, Tate and Teitelbaum as is speculated
in ([Kl], p.313), the arguments of [Kl] can be adapted to give a proof of theo-
rem 3.3 in the case of weight 2. Together with the result on the interpolation
of classical special values of section 2.5, this yields a proof of the exceptional
zero conjecture for the anticyclotomic p-adic L-function when k = 2.

We sketch briefly now how one can deduce theorem 3.3 in the weight two
case from (33). For simplicity assume that K has class number one. Then
ordp(u) = 1 and (33) gives

L′p(f,K, 1) =

∫
Z×p
log(x)dµf (x) = log(〈δ, cf〉),
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sincemult(δ) = u2 and thus log(mult(δ)) = 0. Now ([Kl], 5.3 and proposition
3.3.1) imply that

L′p(f,K, 1) = log(〈δ, cf〉)
∑
v→δv

cf (e).

3.3 The inert case

Assume now that p is inert in K.

Theorem 3.5 Let z0 and z̄0 ∈ Hp be the two fixed points for ιΨ(K×
p ) acting

on Hp. Then

L′p(f,Ψ, k/2) = ±
∫ z0

z̄0

f(z)P
k−2
2

Ψ (z)dz.

Proof: Beginning with the right hand side of theorem 3.5,

I :=

∫ z0

z̄0

f(z)P
k−2
2

Ψ (z)dz =

∫ z0

z̄0

(∫
P1(Qp)

1

z − x
dµf (x)

)
P

k−2
2

Ψ (z)dz,
(34)

by Teitelbaum’s p-adic Poisson inversion formula (proposition 1.11). Now
observe that

P
k−2
2

Ψ (z)− P
k−2
2

Ψ (x)

z − x
= polynomial in x of degree ≤ k − 2.

Hence, by lemma 1.9,∫
P1(Qp)

P
k−2
2

Ψ (z)

z − x
dµf (x) =

∫
P1(Qp)

P
k−2
2

Ψ (x)

z − x
dµf (x).

Therefore the polynomial P
k−2
2

Ψ (z) can be replaced by P
k−2
2

Ψ (x) in equation
(34). Reversing the order of integration as in (27),

I =

∫
P1(Qp)

(∫ z0

z̄0

dz

z − x

)
P

k−2
2

Ψ (x)dµf (x) (35)

=

∫
P1(Qp)

log

(
x− z0

x− z̄0

)
P

k−2
2

Ψ (x)dµf (x) (36)

=

∫
G

log(α)dµΨ(α), (37)
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where the last identity follows by making the change of variables x = ηΨ(α)
(cf. equation (15)). Hence

I = L′p(f,Ψ, k/2),

by (24). The result follows.

Remark: By the Cerednik-Drinfeld theorem, the rigid analytic curve Hp/Γ
has a model over Q given by a Shimura curve X classifying abelian surfaces
with quaternionic multiplication and auxiliary level structure. (Cf. [BD3],
§4.) Using Drinfeld’s moduli interpretation of Hp, it is shown in section 5
of [BD3] that the points z0 and z̄0 correspond to CM points on X defined
over the Hilbert class field H of K. Assuming k = 2, the modular form
f corresponds to a quotient Af defined over Q of the Jacobian J of X; in
this situation, the integral appearing on the right hand side of the identity of
theorem 3.5 is related to the natural image of the divisor (z0)−(z̄0) in Af (H)
via the p-adic Abel-Jacobi map. One recovers the main result of [BD3], which
gives a construction, in terms the first derivative of the anticyclotomic p-adic
L-function, of a Heegner point on Af (K) and implies that this point is of
infinite order when L′p(f,K, 1) 6= 0.

For general k, the integral appearing in theorem 3.5 can be interpreted
as the image by a higher p-adic Abel-Jacobi map of certain CM cycles in the
Chow groups of the Kuga-Sato variety attached to forms of weight k. This
interpretation will be explained in a future work.
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[GvdP] L. Gerritzen, M. van der Put, Schottky Groups and Mumford
Curves, Springer Lecture Notes 817 1980.

[GS] R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods
of modular forms, Invent. Math. 111 (1993) 407–447.

[Gr1] B.H. Gross. Heegner points on X0(N). In Modular forms (Durham,
1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Hor-
wood, Chichester (1984) 87–105.

[Gr2] B.H. Gross. Heights and the special values of L-series. Number the-
ory (Montreal, Que., 1985) CMS Conf. Proc. 7 (1987) 115–187.

45



[Ha] R.L. Hatcher, Heights and L-series. Canad. J. Math. 42 (1990)
533–560.

[JL1] B.W. Jordan and R. Livne, Local diophantine properties of Shimura
curves, Math. Ann. 270 (1985) 235–248.

[JL2] B.W. Jordan and R. Livne, Integral Hodge theory and congruences
between modular forms, Duke Math. J. 80 (1995) 419-484.

[Kl] C. Klingenberg, On p-adic L-functions of Mumford curves, in “p-
adic Monodromy and the Birch and Swinnerton-Dyer conjecture”,
Contemp Math 165 (1994) 277–315.

[MTT] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the
conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986)
1–48.

[Mz1] B. Mazur, On monodromy invariants occurring in global arith-
metic, and Fontaine’s theory. p-adic monodromy and the Birch and
Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math.
165 (1994) 1–20.

[PR] B. Perrin-Riou, Fonctions L p-adiques associées à une forme mod-
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Notes in Mathematics 800. Springer, Berlin, 1980.

46


