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EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES 

By M. BERTOLINI and H. DARMON 

Abstract. This article relates the Gross-Zagier formula with a simpler formula of Gross for special 
values of L-series, via the theory of congruences between modular forms. Given two modular forms 

f and g (of different levels) which are congruent but whose functional equations have sign -1 

and 1 respectively, and an imaginary quadratic field K satisfying certain auxiliary conditions, the 
main result gives a congruence between the algebraic part of L'(f/K, 1) (expressed in terms of 
Heegner points) and the algebraic part of the special value L(g/K, 1). Congruences of this type 
were anticipated by Jochnowitz, and for this reason are referred to as "Jochnowitz congruences." 

Introduction. Let E be a modular elliptic curve over Q of conductor N, and 
let K be a quadratic imaginary field. The L-function L(E/K, s) has a functional 

equation of the standard kind relating its values at s and 2 - s. When all the 

primes dividing N are split in K, then K is said to satisfy the Heegner hypothesis 
relative to E. In that case the sign in the functional equation of L(E/K, s) is -1. 
Furthermore, a construction of Birch and Heegner based on the theory of com 

plex multiplication gives a Heegner point YK E E(K) coming from the modular 

parametrization 

7E : Xo(N) > E. 

In fact, the Mordell-Weil group E(K) 0 Q decomposes into plus and minus eigen 
spaces E(K)+ and E(K)- for the action of complex conjugation, and the point YK 
belongs to E(K)E, where -e is the sign in the functional equation for L(E/Q, s). 

Much deeper is the result of Gross and Zagier [GZ] which expresses the 
Neron-Tate canonical height of YK as a nonzero multiple of L'(E/K, 1). In par 
ticular, YK is of infinite order if and only if L(E/K, s) has a simple zero at s = 1. 

Later, in [Ko], Kolyvagin showed that if YK is of infinite order, then the rank 
of E(K) is equal to one, and the Shafarevich-Tate group III(E/K) is finite. 

The results of Gross-Zagier and Kolyvagin go a long way toward proving 
the Birch and Swinnerton-Dyer conjecture for (modular) elliptic curves having 
analytic rank < 1. In particular they imply: 
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260 M. BERTOLINI AND H. DARMON 

THEOREM 1.1. Suppose that K satisfies the Heegner hypothesis relative to E. If 
L'(E/K, 1) 0, then E has rank one over K, and III(E/K) is finite. 

Suppose now that E has a prime q of multiplicative reduction. A quadratic imag 
inary field is said to satisfy the modified Heegner hypothesis relative to E and q 
if q is inert in K and all other primes dividing N are split. In that case, the sign 
in the functional equation for L(E/K, s) is 1, so that L(E/K, s) vanishes to even 
order at s = 1. Presumably, one often has L(E/K, 1) / 0. In harmony with that 

fact, there is no natural Heegner point construction yielding a point on E(K). But 
there is a variant of the Heegner point construction, explained in [BD2] or [Ro], 
yielding (for n > 1) a family of Heegner points yn E E(L(n)); here L( denotes 
the ring class field of K of conductor qn. (It is a cyclic extension of the Hilbert 
class field of K of degree #x-(q + 1)q"n-, which is totally ramified at the primes 
above q.) 

In [BD2], a q-adic analogue of the Gross-Zagier formula was obtained, relat 

ing this time the image of Yn in the group of connected components of E/L(n) at q 
to the special value L(E/K, 1). By applying Kolyvagin's method in this setting, 
it was then possible to show: 

THEOREM 1.2. Suppose that K satisfies the modified Heegner hypothesis rela 
tive to q and E. If L(E/K, 1) / O, then E(K), and the q-primary part of II(E/K), 
are finite. 

The method of descent can also be made to yield (somewhat weaker) information 
on the p-primary part of III(E/K), where p is a prime dividing q + 1, but a proof 
of the finiteness of the entire Shafarevich-Tate group still escapes the methods of 

[BD2]. 
The principal goal of this paper is to relate the Gross-Zagier formula and 

the formula of [BD2] (and, thereby, Theorems 1.1 and 1.2) via the theory of 

congruences between modular forms. In the remainder of the introduction, we 
will state our main result precisely. 

Fix a modular elliptic curve E of conductor N, associated to a normalized 

cusp form of weight 2 for Fo(N): 

f= anqn, an EZ, a = 1. 

n 

Let T7r : E - Jo(N) and 7rE* : Jo(N) - E be the maps of Jacobians deduced 
from TrE by contravariant and covariant functoriality respectively. The map 7rE is 
defined over Q, and hence the same is true for 7rE* and 7r:. Assume that E is the 

strong Weil curve in its isogeny class, and that deg (rE) is minimal. Since N is 
assumed to be the conductor of E and f is normalized, E is a strong Weil curve 
if and only if 7rt is injective, or also if and only if lrE* has connected kernel. 

Let K be a quadratic imaginary field satisfying the Heegner hypothesis relative 
to E. 
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EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES 261 

Fix an auxiliary prime p (which will be the "descent prime," i.e., we will 

perform a p-descent in all that follows) to satisfy the following conditions: 

(1) the mod p Galois representation PE,p associated to E is absolutely irre 
ducible. 

(2) p does not divide 2N and the degree of the modular parametrization 7rE. 

By a result of Serre [Se], all but finitely many primes p satisfy these two condi 
tions. 

Let Ep be the module of p-division points of E, and let K(Ep) be the smallest 
extension of K over which these points are defined. The prime q is called a 

Kolyvagin prime (relative to E, K and p) if it does not divide NDisc(K)p-so 
that in particular it is unramified in K(Ep)/Q-and its Frobenius element in this 
extension belongs to the conjugacy class of complex conjugation. This implies 
that p divides q + 1 and aq. There are infinitely many primes q satisfying this 

condition, by the Chebotarev density theorem. 
Let q be a Kolyvagin prime relative to (E, K,p). Let Xo(Nq) be the modular 

curve of level Nq, and let T = T(Nq) be the Hecke algebra of level Nq, generated 
by the Hecke operators Tt for f ,(Nq and Ut for ?INq acting faithfully on Jo(Nq). 

Our goal is to study certain modular forms of level Nq which are congruent 
tof modulo p. Accordingly, let m be the maximal ideal of T defined by 

m = (p, Te - at (where f? XNq), Ut - at (where ?IN), Uq 
- 

) . 

Denote by Tm the completion of the Hecke algebra T at m: 

Tm :=limT/mn, 

and let I be the kernel of the natural map T > Tm. Following [Mal], chap 
ter II (10.4), associate to m a quotient J of Jo(Nq) by the rule: 

J := Jo(Nq)/I. 

The abelian variety J is analogous to Mazur's Eisenstein quotient, except that the 
ideal I of T in this case corresponds to an absolutely irreducible mod p repre 

sentation, and is not Eisenstein. (This has the effect of simplifying considerably 
some of the technical features of the study.) 

Section 3 invokes a "raising the level" theorem of Ihara and Ribet to establish 

the following basic fact about the structure of J: 

The abelian variety J is isogenous to E2 x J', where J' is a nontrivial abelian variety 

having purely toric reduction at q. More precisely, J' has split toric reduction if 
= 1, and nonsplit toric reduction if = -1. 
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262 M. BERTOLINI AND H. DARMON 

Let g be a normalized eigenform of weight 2 on Fo(Nq), corresponding to an 

algebra homomorphism g : T -> Og, where Og is the ring generated by the 

Fourier coefficients of g. Let mg := g(m). It is a maximal ideal of Og (possibly 
equal to Og itself). 

The eigenform g is said to be a form on J (resp. J') if the abelian variety Ag 
associated to g by the Eichler-Shimura construction is a quotient of J (resp. J'). 

One can show that g is a form on J' if and only if g is new at q and mg O9g. 
A formula of Gross [Grl] and a generalization of Daghigh [Dag] allows one 

to define in Section 4 the algebraic part L(g/K, 1) of the special value L(g/K, 1). 
It can be thought of as (a square root of) the special value L(g/K, 1), "divided 

by the appropriate nonzero period." More precisely, L(g/K, 1) belongs to an 
Og-module Mg (defined in Section 4) which is locally free of rank 1 at mg, and 

(1) L(g/K, 1) = 0 = L(g/K, 1) = 0. 

Write L(g/K, 1) = 0 (mod mg) if L(g/K, 1) belongs to mgMg. 
In Section 5 a precise definition of the Heegner point YK in E(K) is given. 

Let Kq denote the completion of K at the prime q. The main result, whose proof 
is the object of Section 6, is 

THEOREM 1.3. The image of YK in E(Kq)/pE(Kq) is nonzero if and only if 

L(g/K, 1) 0 (mod mg), 

for allforms g on J'. 

Since the point YK encodes the special value of L'(f/K, 1) by the Gross-Zagier 
formula, Theorem 1.3 can be viewed as supplying a mod m congruence between 

L'(f/K, 1) and L(g/K, 1). To express precisely such a congruence between a 

special value and a derivative of an L-function requires the machinery of Heeg 
ner points and the formula of Gross and Zagier. Congruences of this type were 

anticipated by Jochnowitz, and for this reason are referred to as "Jochnowitz con 

gruences." The article [J] considered the case of Eisenstein series and of certain 
modular forms of CM type associated to Hecke L-series, exploiting a formula of 
Rubin [Ru]. Other instances of this phenomenon, involving congruences at Eisen 
stein primes, also appear in [Ma2]. Indeed, this work of Mazur is the precursor 
and one of the main inspirations of the present article. 

Let us mention the following corollary of Theorem 1.3. 

COROLLARY 1.4. If the image of YK in E(Kq)/pE(Kq) is nonzero, then 

L(J'/K, 1) 0. 

Proof. By Theorem 1.3, L(g/K, 1) 0 (mod mg) for all normalized eigen 
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EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES 263 

forms g on J'. Hence L(g/K, 1) =/ 0, and therefore L(g/K, 1) : O by equation 
(1). But L(J'/K, 1) = ng L(g/K, 1), where the product is taken over the distinct 
normalized eigenforms on J'. The result follows. 

On the arithmetic side, there is: 

PROPOSITION 1.5. If the image of YK is nonzero in E(Kq)/pE(Kq), then 

(1) The p-Selmer group ofE(K) is one-dimensional over Fp, and is generated 
by the image of YK by the connecting homomorphism of Kummer theory. 

(2) The m-Selmer group ofJ' is trivial, and hence J'(K) isfinite. 

Sketch of Proof. To prove the first part, observe that the hypothesis implies 
that the image of YK in E(K)/pE(K) is nonzero. The conclusion then follows from 
a more precise formulation of the theorem of Kolyvagin (cf. [Gr2], Prop. 2.1). 
The second part follows from Theorem 1.3 and the natural generalization (cf. 
[BD2]) of Theorem 1.2 for eigenforms with nonrational fourier coefficients. 

In light of Corollary 1.4, part 2 of Proposition 1.5 is consistent with the 
Birch and Swinnerton-Dyer conjecture. This proposition establishes a link (via 
the theory of congruences between modular forms) between Kolyvagin's descent 
and the descent of [BD2]. It is worth noting that parts 1 and 2 of Proposition 1.5 
can be shown to be equivalent, independently of any L-function calculation, by 
a formula for comparing the orders of Selmer groups. 

Acknowledgments. The authors would like to thank Fred Diamond and Dino 
Lorenzini for helpful exchanges related to this paper. 

2. Preliminaries. 

Modular curves. Let M be a positive integer. If A is an elliptic curve and 

C C A is a cyclic subgroup of order M, then (following Ribet) the pair A := (A, C) 
is called an enhanced elliptic curve with ro(M)-structure. An isogeny between 
two such enhanced elliptic curves is an isogeny between the underlying curves 

which induces an isomorphism between the level M structures. The curve Xo(M) 
is the (coarse) moduli space of enhanced elliptic curves with Fo(M)-structure. 

If M = Nq where q is a prime not dividing N, then the modular curve Xo(M) 
of level Nq can also be viewed as the moduli space for diagrams 

(A_ 
- 

A') 

where A and A' are enhanced elliptic curves with ro(N)-structure, and the arrow 

is a cyclic q-isogeny between them. The curve Xo(Nq) maps to Xo(N) via the two 
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264 M. BERTOLINI AND H. DARMON 

standard degeneracy maps: 

7ri, 7T2: Xo(Nq) - Xo(N), 

which send the diagram (A -? A') to A and A' respectively. The degeneracy 

maps induce maps between Jacobians by covariant and contravariant functoriality 
respectively: 

7rl*, 7r2* : Jo(Nq) Jo(N), Tr, r : Jo(N) -- Jo(Nq). 

Hecke algebras. For any M > 0, let T(M) be the full Hecke algebra of 

level M, i.e., the subring of the endomorphism ring of Jo(M) generated by the 
Hecke operators T7 with e M and the operators Ue with (IM. It is a Z-algebra 
which is finitely generated as a Z-module. For example, the operator Te acts on 

Jo(M) via the correspondence on Xo(M): 

T(A_) 
= A', 

A' 

where the sum is taken over the f + 1 enhanced elliptic curves which are g 

isogenous to A. The degeneracy maps 7rl and 7T2 introduced above satisfy the 
relations 

rl1*7rT = 712*7r2 = q + 1, T2*T71 = 7r1*7r2 = Tq. 

The operator Uq acts on Jo(Nq) via the correspondence on Xo(Nq) defined by 

Uq(A -B) = (B 
- 

X), 
XZA 

where the sum is taken over the q distinct cyclic q-isogenies from B, omitting the 
dual of A -* B. Define an action of T = T(Nq) on Jo(N)2 by letting Te and Ue 
act diagonally on each factor for f? q, and letting Uq act by left multiplication 

by the matrix 1 q 
)Let 

7r12: Jo(N)2 - Jo(Nq), 712* : Jo(Nq) Jo(N)2 

be the degeneracy maps formed from the pairs (T7r*, 7r) and (Trl*, 7r2*), and set 

fr12* 
I -Tq 

0 7rl2* 

0^[ i ? 
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EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES 265 

LEMMA 2.1. The functions 7r2 and 7rl2* are compatible with the actions of 
T(Nq) on Jo(Nq) and Jo(N)2 defined above. 

Proof. The main point is to check that the maps are compatible with the 
action of the Hecke operator Uq. From the description of the action of Uq given 
above, one sees directly that 

Uq o 7r2 = 7r12 O 1 g ) 7r 2* ? Uq 1 q 712. 

It follows from this last equation that 

Cf12* 
O 

Uq 
= e ) m12*. 

Character groups of Jacobians. Let Jo(Nq) be the Neron model for Jo(Nq) 
over Zq, and let Jo(Nq)? be its connected component. The special fiber at q of 

Jo(Nq)? is an extension of the abelian variety Jo(N) x Jo(N) over Iq by a torus 

T. Let M denote the character group of this torus. It is a free Z-module of finite 

rank which inherits an action of the Hecke algebra T from its action on Jo(Nq). 
The work of Grothendieck [SGA], Raynaud [Ra], and Deligne and 

Rapoport [DR] provides an explicit description of the T-module M. Here in 
fact are two equivalent descriptions: 

(1) The module M is isomorphic to the group of degree 0 divisors supported 
on the supersingular points of Xo(N)pq (cf. for example [Ri2], Prop. 3.1). In other 

words, M consists of the formal degree zero Z-linear combinations EiniAi, 
where the Ai are enhanced elliptic curves with ro(N)-structure defined over IF, 
which are supersingular (in the sense that the underlying elliptic curve is). 

(2) Let B be the definite quaternion algebra which is ramified at q and oo. 

An Eichler order R in B of level N is said to be oriented if it is equipped with 

a surjective algebra homomorphism L : R - Z/NZ. The set of conjugacy 
classes of oriented Eichler orders of level N is in natural bijection with the set of 

supersingular points described in 1 (cf. [Grl]). Choose a system of representatives 
R1,... , R for the conjugacy classes of oriented Eichler orders of level N. Thus 

each Rj is an Eichler order of level N equipped with an orientation 

(2) lj : Rj - Z/NZ. 

An element in M will sometimes be written as a formal Z-linear combination 

Ej ni[Rj] with Ej ni = 0. 
The module M also comes equipped with a natural positive-definite inner 
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266 M. BERTOLINI AND H. DARMON 

product defined by 

(3) ([Ri],[Rj]) := #Rx 

In other words, ([Ri], [Rj]) is the number of isomorphisms between Ri and Rj. 
The Hecke operators Tf with f ,N are self-adjoint for this inner product (cf. for 

example [Grl], Prop. 4.6). 

Component groups of Neron models. Let F be a finite extension of Qq 
with ramification index e, and let Jo(Nq)F be the Neron model of the Jacobian 

Jo(Nq) over the ring of integers of F. Denote by I((Jo(Nq)/F) the group of con 

nected components of the special fiber of Jo(Nq)F. This group can be described 

canonically as the cokernel of the composition 

M 
e 

M - MV 

where the first map is multiplication by e and the second is the natural inclusion 
of M into Mv := Hom(M, Z) arising from the pairing (, ). Hence, there is an 
exact sequence: 

0 -) M ? (Z/eZ) -- (Jo(Nq)/F) -- 4(Jo(Nq)/Qq) - 0, 

where the last map is induced from the norm if F/Qq is totally ramified. The group 
4(Jo(Nq)/Qq) is Eisenstein in the sense of [Ri2], Theorem 3.12. In particular, 
taking the completion at a non-Eisenstein maximal ideal m of the Hecke algebra, 
one obtains: 

PROPOSITION 2.2. The completion of (D(Jo(Nq)/F) at a non-Eisenstein ideal m 
is isomorphic as a Hecke module to the completion of M 0 (Z/eZ) at m. 

Multiplicity one. Let m be a maximal ideal of the Hecke algebra 1' whose 
residue characteristic is prime to 2Nq(q-1), associated to an absolutely irreducible 

Galois representation. The following multiplicity one theorem of Mazur (cf. [Ri2], 
Theorem 6.4) will be crucial in our later study: 

THEOREM 2.3. The group M/m is a one-dimensional vector space over the 

field T/mT. (And hence, the completion M O? ftm is free of rank one over Tm.) 

3. The abelian variety J. We now turn to a detailed study of the abelian 

variety J defined in the introduction. In particular, the integers N, p and q satisfy 
all the assumptions stated there, namely: 

(1) The quadratic imaginary field K satisfies the Heegner hypothesis relative 
to E. 
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EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES 267 

(2) The mod p representation attached to E is absolutely irreducible and p 
does not divide 2N or deg (7rE). 

(3) The prime q is a Kolyvagin prime relative to E, K and p. 

The ideal m. The normalized eigenform f of weight 2 on Fo(N) 

00 

f= anq, al=l, q=e27i, 
n=l 

can also be viewed as a modular form on ro(Nq), but it is not an eigenform for 
the Hecke algebra T = T(Nq), because it fails to be an eigenform for the Hecke 

operator Uq. Choose a root a of the polynomial 

X2 - aqX + q, 

and define the modular form fq with coefficients in the ring Z[a] by 

fq :=f(T) - q/af(qT). 

Its L-function factorizes as the following Euler product: 

L(fq, s) = (1 - cqaq-S)-l H ( - 
ap-S)-l 1 (1 - app- +p-2s)-l 

p\N p[Vq 

The form fq is an eigenform for T of level Nq which is in the same old-class 

as f, and the eigenvalue of Uq acting on it is a. By the assumption that q is a 

Kolyvagin prime, the eigenvalues of the Frobenius element at q acting on Ep are 
1 and -1, i.e., 

x2 - 
aqX 

+ q 
- 

(x - 1)(x + 1) (mod p). 

Since p is odd, it splits in the quadratic imaginary order Z[a], and is equal to 

(p, a- 1)(p, a + 1). 
Recall that -c is the sign in the functional equation for L(E/Q, s). Let mf be 

the ideal (p, a - e) of Z[a], and let m be the inverse image of mf in I' for the 

homomorphism T -> Z[a] determined by fq. Specifically, the ideal m is equal 
to 

m = (p, T7 - aj (where e )Nq), Ue - ae (where ?IN), Uq 
- e), 

as defined in the introduction. 

If M is any T-module, denote by 

Mm := limM/mnM 
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268 M. BERTOLINI AND H. DARMON 

the completion of M at m. The ideal m is said to be in the support of M if this 

completion is nonzero. 
The ring Tm is a direct factor of the semi-local ring 7T ( Zp: 

(4) T (gp =Tm X T, 

where (T)m = 0 (cf. [Mal], sec. 11.7). Let I be the kernel of the natural map 
T > Tm (so that T/AnnTI injects into T). 

The abelian variety J. As in the introduction, let 

J = Jo(Nq)/IJo(Nq). 

If g is any normalized eigenform on Fo(Nq) and 0g is the ring generated by 
its Fourier coefficients, recall that g : 7T > Og is the algebra homomorphism 
associated to g, and that Ig is its kernel. Following the introduction, we say that 

g is a form on J if the following three equivalent conditions are satisfied: 

(1) The abelian variety quotient Ag := Jo(Nq)/Ig associated to g by the 
Eichler-Shimura construction is a quotient of J. (Note that Ag depends only on 
the Galois orbit [g] of g.) 

(2) I C Ig; 

(3) The ideal mg := bg(m) is a maximal ideal of Og which is not equal to Og 
itself, and 

(5) an(fq) (mod mf)=an(g) (mod mg). 

The absolute Galois group of Q acts on the normalized eigenforms via its 
action on Fourier expansions. If g is any normalized eigenform, let [g] denote 
its orbit under this action. We may write 

J .-I Ag, 
[g] 

where the symbol 
~ denotes isogeny and the product is taken over the distinct 

Galois orbits of normalized eigenforms g on J. Because of the assumption in 
the introduction that p does not divide the degree of the modular parametrization 
rE, there is only one oldform (up to the Galois action) which is congruent to 

fq, namely fq itself. The ring Ofq = T/Ifq is equal to Z[a]. Finally, the abelian 

variety Afq := Jo(Nq)/Ifq is isogenous to E x E. Hence, J is isogenous to the 
abelian variety 

(6) J E2 
x 
fAg, 

[g] 

where the product now is taken over the Galois orbits of normalized eigenforms 
on J which are new at q. 
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EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES 269 

Here is a precise description of such an isogeny. Let 7r : E - Jo(N) be the 

map deduced from TTE by contravariant functoriality. It induces a homomorphism 
E2 - Jo(N)2, which will also be denoted irE by abuse of notation. Let 

(7) PE : E2 J 

be the composition of the maps 

(8) E2 Jo(N)2 rF2 Jo(Nq) j. 

By Lemma 2.1, the map (pE is T-equivariant for the action of T on E2 defined by 
making the Hecke operators T7 for ? (Nq and Ue for ?fN act by multiplication 
by ae, and letting Uq act by left multiplication by the matrix 

(9) (- 
) 

Let JO(Nq) be the q-new subvariety of Jo(Nq), i.e., the kernel of the map 

r12*: Jo(Nq) - Jo(N)2. 

(Note that we may also replace 7r12* by Ti12 in this definition.) Let J' be the 

image of JO(Nq) in J, and let 

: J/ J 

be the natural inclusion map. Define an isogeny ,o by 

Sp := OE + p :J E2 X' --j j. 

PROPOSITION 3.1. The abelian variety J' is nontrivial, and has purely multi 

plicative reduction at q. This reduction is split if e = 1, and is nonsplit if = -1. 

Proof. By equation (6), 

J' - nAg 
[g] 

where the product is taken over the Galois orbits of normalized eigenforms of 

level Nq which are new at q and satisfy mg =/ Og. Such eigenforms satisfy the 

congruence 

an(g) (mod mg) = an(fq) (mod mf) for all n. 
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270 M. BERTOLINI AND H. DARMON 

But a raising the level theorem of Ribet [Ril] states that there exists such an 

eigenform g if and only if a - ? (mod mf). Furthermore, aq(g) = 1 (resp. -1) 
if and only if Ag has split (resp. nonsplit) multiplicative reduction at q. Since 

aq(g) - e (mod mg), and since p - 2, the result follows. 

COROLLARY 3.2. (1) There is an exact sequence 

0 --A - (KqX)d J(Kq) - 0, 

where A is a lattice in (Kq )d, (and d is the dimension of J'). 
(2) Denote by z H- z the usual complex conjugation acting on Kq, and make 

Gal(Kq/Qq) = (r) act on KqX by setting r(z) = z6. Then the exact sequence of l is 

Gal(Kq /q )-equivariant. 

LEMMA 3.3. The ideal m is not in the support of the kernel of (rE- (In other 

words, (OE is "injective at m".) 

Proof. The map 7r* : E2 > Jo(N)2 is injective, by our assumption that rTE is 
the strong Weil parametrization associated tof. The map 7rT2 has a kernel (related 
to the Shimura subgroup of Jo(N)) whose support consists entirely of Eisenstein 

primes (cf. [Rill). Finally, any submodule M of IJo(Nq)(Q) has support disjoint 
from m by the construction of J. This is because the action of Tr ( 

Zp on M 0 7p 
factors through the ring Ti of equation (4). 

If M is any module on which complex conjugation in Gal(Q/Q) acts, write 

M+ and M- for the submodules of M on which this involution acts by 1 and -1 

respectively. 

LEMMA 3.4. Let V denote the kernel of the isogeny (p. Then 

(1) The map V - E2 induced by projection onto the firstfactor is injective, 
so that V/Kq extends to afiniteflat group scheme over the ring of integers Oq of Kq. 

(2) The map V(Kq)m - E2(Kq)m is an isomorphism. 

Proof. (1) is a consequence of the injectivity of the map J' - J. Projection 
onto E2 now allows us to view V as a finite subgroup scheme V of E2 over 

Oq. In order to prove (2), we describe V more explicitly. Begin by noting that 
x belongs to V(Kq) if and only if pE(x) belongs to p'(J'), i.e., if and only if 

7rT27r;(x) belongs to the q-new subvariety JO(Nq), which is the kernel of 7Fl2,. 
Hence Vm is equal to the completion at m of the kernel of the endomorphism 

(10) 7rE*12*T27rl = deg (7rE) (q 
+ q -a 

aq q+ 1 

Let 
Vpo 

:= UnVn, and let Epoo be the p-divisible group over Oq attached to E. 

For the purpose of this proof, denote by a the root of x2 - aqx + q in Zp which 

is congruent to 1 mod p, and let d be the root which is congruent to -1. By 
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diagonalizing the matrix in equation (10), we find that (since deg(TrE) is a unit 
at p) the module Vpo is equal to the kernel of the endomorphism of E20: 

1 a 
1 

1-oc2 0 1 
(11) 

-a0 1-2 -1 -a 
)' 

Let 

n := ordp(l 
- 

a2), n- := ordp(l 
- 62). 

By (11), the isomorphism E2~ -> 
E2~ sending (x, y) to (x+dy, -x-ay) induces 

an isomorphism 

G:' Vpoo -> Epn 
x Epn-. 

Note that 

n+ = 
ordp(q + 1 - aq), n- = 

ordp(q + 1 + aq). 

The isomorphism M is equivariant for the Hecke operators Te for f? Nq, and 
satisfies the relation 

q ( Ua ) ', 

so that it "diagonalizes" the action of Uq. In other words, the Hecke operator Uq 
acts on Epn+ x 

Ep- 
with eigenvalue a and ri on the first and second component. 

Hence completing at the ideal m gives an isomorphism 

im :Vm --Epn. 

It follows that Vy is a cyclic group of order pnf. The same is true of E2(Kq)M, 
as can be seen from a direct calculation using (9). Hence the map of part (2) is 

an isomorphism. 

If F is any finite extension of Kq with ring of integers OF, denote by 

jo(Nq)/or, (resp. i/oF' J'/oF) the Neron model of Jo(Nq) (resp. J, J') over 

OF, and let F(Jo(Nq)/F), (resp. 4)(J/F), 1(J'/F)) denote the component groups 
of these Neron models. Since we will be working exclusively with the Neron 

models from now on, we will make an abuse of notation and write Jo(Nq)(F) 

(resp. J(F), J'(F)) instead of Jo(Nq)(OF) (resp. J(OF), J'(OF)). In particular, 
J?(F) will denote the connected component of the identity in J(OF), etc. 
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272 M. BERTOLINI AND H. DARMON 

LEMMA 3.5. The natural map 

D(Jo(Nq)/F)m -- (J/F)m 

is an isomorphism. 

Proof. Let I- := AnnT(I), and let J1 = Jo(Nq)/I. Then the natural isogeny 

Jo(Nq) - X J x J 

has a kernel which is contained in IJo(Nq), and hence its support is disjoint from 
m (cf. the proof of Lemma 3.3). Therefore this isogeny induces an isomorphism 

D(Jo(Nq)/F)m ) <D(J/F)m x D(JL/F)m. 

But the action of T(?Zp on (J?1)? Zp factors through the ring T1 of equation (4). 
Hence F(J /F)m = 0, and the result follows. 

LEMMA 3.6. The natural map V(Kq) ) 4D(J'/Kq)m is surjective. 

Proof. Consider the commutative diagram 

V(Kq) - E2(Kq) x J(Kq) - J(Kq) 
I I 

((J'/Kq)m 
- 

(I(J/Kq)m. 

By Lemma 3.5, the group (I(J/Kq)m is isomorphic to (I(Jo(Nq)/Kq)m. The latter 

group is trivial, because the group of connected components in Jo(Nq) over an 
unramified extension of Qq is Eisenstein. But it follows from [BLR] Theorem 4 

(ii) that the cokernel of the diagonal map above injects into 0((J/Kq)m. 

PROPOSITION 3.7. The map 

i: E2(Kq)m > J(Kq)m 

induced by the map PE of equation (7) is an isomorphism. 
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Proof. By Lemma 3.3, the map i is injective. To prove surjectivity, consider 
the diagram 

0 0 

(12) q 
l i 

2 1 

E2(Kq) = E2 (Kq)m 

(12) V(Kq)m 3 (E2(Kq) x J(K(Kq)) 

I 

W mm 

(D(Jt/Kq)m. 

Note that: 

(1) The leftmost vertical sequence is exact. Indeed, the kernel of the map 

J'(Kq)Y -) ((J'/Kq) is isomorphic to an extension of a group of exponent q - 1 

by a pro-q group, by Proposition 3.1; hence the support of this kernel is disjoint 
from m, as p does not divide q(q 

- 1). 

(2) The map opm is surjective. Indeed, taking Kq-rational points in the exact 

sequence 

0 - V - E2 x -' J - 0 

gives the long exact cohomology sequence 

E2(Kq) x J'(Kq) - J(Kq) > H (Kq, V) > H (Kq, E2) x H (Kq, J). 

Note that since q does not divide pN, the Galois representation V (over Kq) is un 
ramified. Using Lemma 3.4, we see that the kernel of Hl(Kq, V) - H1(Kq, E2) 

is the finite part Hf (Kq, V) of the cohomology, since the curve E has good reduc 

tion at q. Let V? be the kernel of the natural map V -> 
4(J'/Kq). The kernel 

of H)(Kq, V) > 
Hl(Kq,J') is contained in the image of H (Kq, V?). Hence, 

the cokernel of O/m is a quotient of HI (Kq, V?)m. But this group is trivial, since 

complex conjugation acts by -e on (V?)m and trivially on Gal(Kqr/Kq). 
(3) The diagonal map in the diagram of equation (12) is surjective, by 

Lemma 3.6. 

The surjectivity of the map i now follows from combining these three facts 
with a diagram chase. 

Let H be the Hilbert class field of K, and let L denote the ring class field 

of K of conductor q. It is a cyclic extension of H of degree (q + 1)/u, where 

u = 
#0o. 

The prime q is inert in K/Q, and hence splits completely in H/K. Further 

more, any prime of H above q is totally ramified in L/H. Let Lq be the completion 
of L at any such prime above q. The extension Lq is a totally ramified cyclic ex 
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tension of Kq of degree (q + 1)/u. Let a be a generator for Gal(Lq/Kq). Note 

that Gal(Lq/Qq) is isomorphic to a dihedral group of order 2(q + 1)/u, and that 

complex conjugation in Gal(Kq/Qq) conjugates a to a-1. 
Let J be the group 

j^_- _ J(Lq) 

(PE(E2(Lq)) + ( - 1)J(Lq) 

The module J is equipped with a natural action of the Hecke operators and of 

complex conjugation. Since (pE(E2) is contained in the connected component of 
the identity of J, and since Gal(Lq/Kq) acts trivially on I(J/Lq) (because it acts 

trivially on ((Jo(Nq)/Lq)), projection onto the group of connected components 
gives a well-defined map 

P :Jm ) ( <(J/Lq)m. 

PROPOSITION 3.8. The map p is an isomorphism. 

Proof. The surjectivity of p follows directly from its definition. To prove 
the injectivity, choose an element r E Gal(Lq/Qq) whose image in Gal(Kq/Qq) 
is complex conjugation. (Such a T is necessarily an involution.) If M is any 

Gal(Lq/Qq)-module, write M+ and M- for the submodules of M on which r acts 

by 1 and -1 respectively. By the same reasoning as in part 2 of the proof of 

Proposition 3.7, the map Pm : (E2(Lq) x J'(Lq)) -) J(Lq)m is surjective. Recall 
that J'(Lq)? denotes the connected component of the identity of Neron model of 

J' over the ring of integers of Lq. Let Vm be the image of V(Lq)' in (I(J'/Lq)M. 
Then the rows and columns in the following diagram are exact: 

V(Lq) > V(Lq)m > 0 

1 1 
(E2(Lq) X J'(Lq)?)m - (E2(Lq) J'(Lq))m )-- (J'/Lq)m - 0 

(Pm' I m 1 1 
J0(Lq) >- J(Lq) > (J/Lq) >-M 0 

A straightforward diagram chase shows that the map p?m is surjective, so that we 
have an exact sequence 

(E2(Lq) J'(Lq)?) J(Lq)m -- (J/Lq)Z > 1. 

But by Corollary 3.2, (J'(Lq)0)6 is an extension of a group of exponent q - 1 by 
a pro-q-group, and so its completion at m is zero. Hence, the group (JO(Lq)m)6 
is generated by the image of (pE(E2(Lq)m). The injectivity of p follows. 

a pro-qgroupand soits copletio at m s zero Hence the goup (J(LqWm) 
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COROLLARY 3.9. The group (J/mJ)6 is a one-dimensional T/mT-vector space. 

Proof. The one-dimensionality of the group D(J/Lq)/m4(J/Lq) follows di 

rectly from Theorem 2.3 in light of Proposition 2.2. The corollary is now a 

consequence of Proposition 3.8. 

Let NLq/Kq = 
d(+l)/cra denote the norm map of Lq over Kq. Since the 

extension Lq/Kq is totally ramified of degree (q + 1)/u prime to q, we have 

NLq/K,(E(Lq)) 
= ;lE(Kq), and hence 

NLq/Kq(PE(E2(Lq)) 
= 

PE(NLq/Kq(E2(Lq))) 
= (PE((q + 1)E2(Kq)) C mJ(Kq). 

It follows that NLq/Kq induces a well-defined map 

n : J/mJ > J(Kq)/mJ(Kq) 

which commutes with the action of complex conjugation on these two groups. 

PROPOSITION 3.10. The map 

n: (j/lmJ)e6 (J(Kq)/mJ(Kq))E 

obtained by restricting n to e-eigencomponents is an isomorphism. 

Proof. We begin by proving the surjectivity of n. For this, consider the dia 

gram 

(J'(Lq)/mJ'(Lq))6 (J/mJ)6 
1 in 

V(Kq)n > ((E2(Kq) X J(Kq))/m)6 ((Kq)/J(K q)/)(K 

(E2(Kq)/m)E, 

where the topmost vertical arrows are induced by the norm maps, and the bottom 

vertical arrow is the natural projection onto the first component. Observe that: 

(1) The leftmost vertical sequence is exact. Indeed, since J'(Lq) is isomorphic 
to a quotient of (Lq ) by a discrete subgroup, it follows from local class field 

theory that the image of the norm map contains J'(Kq)6. 
(2) As in part 2 in the proof of Prop. 3.7, the map (pm is surjective. 

(3) The map V(Kq)m - (E2(Kq)/m)6 is surjective, by part 2 of Lemma 3.4. 
The surjectivity of n follows directly from these three remarks by a diagram 

chase. 

Now, to prove injectivity, observe that (J/mrJ) is a one-dimensional Fp 
vector space, by Corollary 3.9, and that (J(Kq)/mJ(Kq))6 has dimension one as 
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well, by Proposition 3.7 (cf. the proof of Lemma 3.4). It follows that n is an 

isomorphism. 

To summarize the main results of this section, all the arrows in the following 
diagram are isomorphisms of one-dimensional Fp-vector spaces: 

4D(Jo(Nq)/Lq)/m 
lij 

(JI/mlJ) P (J/Lq)/m 
in 

(E2(Kq)/m) (J(Kq)/mJ(Kq))6 

(We have applied Lemma 3.5 to conclude that j is an isomorphism.) Recall from 

Proposition 2.2 that 4(Jo(Nq)/Lq)/m can be identified with M/mM, where M 
is the module introduced in Section 2. Let 

: (E2(Kq)/m)E - M/mM 

be the isomorphism defined by r7 = j-pn-li. It will play an important role later 
on. 

4. Special values of L-functions. 

The module Mg. We view the module M introduced in Section 2 as the set 

of formal degree zero Z-linear combinations of [R1],..., [Rt], where R,... ,Rt 
are the (distinct, up to conjugacy) oriented Eichler orders of level N. It will also 
be convenient to work with the module M of all formal Z-linear combinations 
of the [Ri], which sits in an exact sequence 

(13) 0 > M > M - Z 0. 

The module M is endowed with a natural Hecke action compatible with the 
inclusion M - M. 

If g is any form on J', let Ig be the kernel of the natural map )g : ?T 
-> Og 

as before, and let Og,m be the completion of Og at mg. Finally, let 

Mg := (M/Ig) OT Og,m, Mg := (M/Ig) (T 0g,m. 

PROPOSITION 4.1. The natural map Mg > Mg is an isomorphism, and Mg 
is free of rank one over Og,m. 

Proof. The first statement follows upon tensoring the exact sequence (13) 
with 9g,m, and noting that the action of the Hecke algebra on M/M 

= Z is 

Eisenstein. The second statement follows from Theorem 2.3. 
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Algebraic parts of special values. By the Heegner hypothesis, there exists 
an ideal A/ C OK such that OKI/K 

- 
Z/NZ. Fix such an ideal A/ of OK. An 

embedding (4 : OK - R) is called oriented relative to this fixed choice of 
AJ if the kernel of t o 4 is equal to Af (where L is the orientation provided to 
R, as in equation (2) of Section 2). There are exactly h = #Pic(OK) distinct 
oriented embeddings 0 1,... , Oh of OK into some oriented Eichler order, taken 
modulo conjugation (cf. [Grl], Section 3. In fact, the group Pic(OK) acts simply 
transitively on the 4j). 

Each (bj : OK - Rj) gives rise to the element [Rj] E M. Let OK be the 
formal sum 

OK 
'= 1 +** + h, 

viewed as an element of M. 

Definition 4.2. The algebraic part of L(g/K, 1), denoted L(g/K, 1), is the 

image of OK in the rank one Og,m-module Mg 
= Mg. 

Remark. Although we view L(g/K, 1) as the "algebraic part" of L(g/K, 1), it 

might perhaps be more appropriate to view it as the "square root" of this algebraic 
part; cf. formula (15) below. 

The main justification for this definition is the following theorem of Gross 

(generalized to cover our situation by Daghigh [Dag]). 

THEOREM 4.3. L(g/K, 1) = 0 if and only if L(g/K, 1) = 0. 

Proof. Viewing OK as an element of M 0 C, and g as a complex normalized 

eigenform, let OK,g be the projection of 4K onto the g-isotypic component of 
M 0 C. Then 

(14) OK,g = 0 if and only if Lg/K, 1) = 0. 

The g-isotypic component of M ( C is a one-dimensional complex vector space 
and the pairing ( , ) on M defined by equation (3) gives rise to a perfect 
nondegenerate pairing on it. By a formula of Gross [Grl], Prop. 11.2, and a 

generalization by Daghigh for modular forms of arbitrary level [Dag], 

(15) L(g/K, 1) _ ({K,g, OK,g) 
(g, g) u2yV/D 

where (g, g) is the Petersson scalar product of g with itself, u is equal to #OK /2, 
and D is the discriminant of K. The result follows at once from (14) and (15). 

The main advantage of having defined L(g/K, 1) in this way is that it allows 
us to talk of congruences for L(g/K, 1) modulo ideals in the Hecke algebra. For 

example, say that L(g/K, 1) is congruent to 0 mod mg, and write L(g/K, 1) _ 0 

(mod mg), if L(g/K, 1) belongs to mgMg. 
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5. Heegner points. Let K be as before a quadratic imaginary field satisfying 
the Heegner hypothesis relative to E. Choose a Kolyvagin prime q (relative to 

E, K and p) as in the introduction. Recall that H and L denote the Hilbert class 

field of K and the ring class field of K of conductor q respectively. Finally, note 

Gq := Gal(L/), Gq = Gal(L/H), Gal(LK), A = Gal(H/K). 

Heegner points. By the theory of complex multiplication, there are h dis 
tinct elliptic curves A1,... ,Ah up to isomorphism satisfying End(Aj) 

- OK. They 
are defined over the Hilbert class field H and are permuted transitively by A. Re 

call the ideal A of OK which was fixed in the previous section. Letting Cj be 
the group Aj[/] of A/-torsion points of Aj, one obtains enhanced elliptic curves 

Aj = (Aj, Cj) with ro(N)-structure, which are also defined over H. Let 

Pj E Xo(N)(H) 

be the algebraic point corresponding to the modulus Aj. 
Recall that u = #(OK)/2. There are (q + l)/u possible cyclic q-isogenies 

Aj 
- 

Aj, up to composition on the left by O9/(?l). The assumption that q is 

inert in K implies that the possible isomorphism classes of diagrams (Aj 
- AJ) 

are defined over the ring class field L, and are permuted transitively by Gq. The 

endomorphism ring of Aj is isomorphic to the order of K of conductor q. For 

each j = 1,..., h, choose any q-isogeny (Ai 
- 

Aj), and let 

P, E Xo(Nq)(L) 

be the algebraic point corresponding to the diagram of enhanced elliptic curves 

(Aj - AJ). 
Write oo for the cusp of Xo(Nq) corresponding to the point ioo in the com 

pleted upper half plane. Let PK and PL be the elements of Jo(N)(K) and Jo(Nq)(L) 
respectively represented by the degree 0 divisors: 

PK := (Pi) + ' - 
(Ph) - h(oc), PL = (Pl) + + (Ph) 

- 
h(oo). 

Let C(Nq) be the cuspidal subgroup of Jo(Nq). It is a finite subgroup of Jo(Nq) 
which is Eisenstein as a T-module. We write x _ y (mod C(Nq)) if the differ 
ence x - y belongs to C(Nq). 

PROPOSITION 5.1. Let NL/H be the norm map ECGq a. Then 

7ri*(PL) = PK, T7r(PK)= UNL/H(PL) (mod C(Nq)). 

Proof. A direct calculation. 
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Now, define the Heegner point YK E E(K) by the formula: 

YK := 7E*(PK) 

6. Jochnowitz congruences. Recall the isomorphism 7 : (E2(Kq)/m)E -> 

M/mM = Mg/mgMg constructed in Section 3. The following is our main 
result, which is the Jochnowitz congruence alluded to in the title. It directly 
implies Theorem 1.3. 

THEOREM 6.1. If g is a normalized eigenform on J', then 

?r((yK, 0))-- u deg (RE). L(g/K, 1) (mod m). 

Proof. Let 7rj be the natural projection Jo(Nq) - J, and let fif be the induced 

map from Jo(Nq)(Lq) to J/mn. Let Jo(Nq)(Lq)E denote the module of points in 

Jo(Nq)(Lq) whose natural image in Jo(Nq)(Lq)/(aq - 1)Jo(Nq)(Lq) belongs to the 

e-eigenspace for the action of complex conjugation on this module. Consider the 
commutative diagram 

Jo(Nq)(Lq)E q M/mM 
TJ1 lj 

(16) (J/mhJ)e -t 
P 

(J/Lq)/m 
in 

(E2(Kq)/m i (J(Kq)/m)Y. 

The proof of Theorem 6.1 rests on the following two lemmas: 

LEMMA 6.2. p(irj(PL)) = j(L(g/K, 1)) (mod mg). 

Proof. See [BD2], Section 3, Theorem 3.2. 

LEMMA 6.3. u deg (TrE) * n(irj(PL)) = i(yK, 0). 

Proof. By Proposition 5.1, we have 

U n(irj(PL)) = 7rJ(i7r(PK)) (mod m). 

But the following equality holds in J(Kq)/m: 

deg (7rE)PK = 7r(YK). 

Hence 

u deg (TE) . n(7rj(PL)) = 7rJirrEW(yK) = WTJTr 27rE(yK, 0) = i(yK, 0), 
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where the last equality follows from the definition of WOE (and hence, of i) given 
in equation (7) of Section 3. The lemma follows. 

Combining Lemmas 6.2 and 6.3 and using the commutativity of the diagram 
(16) yields Theorem 6.1. 
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