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Abstract

This article relates the Gross-Zagier formula with a simpler formula of Gross for
special values of L-series, via the theory of congruences between modular forms.
Given two modular forms f and g (of different levels) which are congruent but
whose functional equations have sign −1 and 1 respectively, and an imaginary
quadratic field K satisfying certain auxiliary conditions, the main result gives a
congruence between the algebraic part of L′(f/K, 1) (expressed in terms of Heegner
points) and the algebraic part of the special value L(g/K, 1). Congruences of
this type were anticipated by Jochnowitz, and for this reason are referred to as
“Jochnowitz congruences”.

1 Introduction

Let E be a modular elliptic curve over Q of conductor N , and let K be
a quadratic imaginary field. The L-function L(E/K, s) has a functional
equation of the standard kind relating its values at s and 2 − s. When all
the primes dividing N are split in K, then K is said to satisfy the Heegner
hypothesis relative to E. In that case the sign in the functional equation of
L(E/K, s) is −1. Furthermore, a construction of Birch and Heegner based
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on the theory of complex multiplication gives a Heegner point yK ∈ E(K)
coming from the modular parametrization

πE : X0(N) −→ E.

In fact, the Mordell-Weil group E(K)⊗Q decomposes into plus and minus
eigenspaces E(K)+ and E(K)− for the action of complex conjugation, and
the point yK belongs to E(K)ε, where−ε is the sign in the functional equation
for L(E/Q, s).

Much deeper is the result of Gross and Zagier [GZ] which expresses the
Néron-Tate canonical height of yK as a non-zero multiple of L′(E/K, 1). In
particular, yK is of infinite order if and only if L(E/K, s) has a simple zero
at s = 1.

Later, in [Ko], Kolyvagin showed that if yK is of infinite order, then the
rank of E(K) is equal to one, and the Shafarevich-Tate group III(E/K) is
finite.

The results of Gross-Zagier and Kolyvagin go a long way toward prov-
ing the Birch and Swinnerton-Dyer conjecture for (modular) elliptic curves
having analytic rank ≤ 1. In particular they imply:

Theorem 1.1 Suppose that K satisfies the Heegner hypothesis relative to E.
If L′(E/K, 1) 6= 0, then E has rank one over K, and III(E/K) is finite.

Suppose now that E has a prime q of multiplicative reduction. A quadratic
imaginary field is said to satisfy the modified Heegner hypothesis relative to
E and q if q is inert in K and all other primes dividing N are split. In
that case, the sign in the functional equation for L(E/K, s) is 1, so that
L(E/K, s) vanishes to even order at s = 1. Presumably, one often has
L(E/K, 1) 6= 0. In harmony with that fact, there is no natural Heegner
point construction yielding a point on E(K). But there is a variant of the
Heegner point construction, explained in [BD2] or [Ro], yielding (for n ≥ 1)
a family of Heegner points yn ∈ E(L(n)); here L(n) denotes the ring class field
of K of conductor qn. (It is a cyclic extension of the Hilbert class field of K
of degree 2

#O×K
(q + 1)qn−1, which is totally ramified at the primes above q.)

In [BD2], a q-adic analogue of the Gross-Zagier formula was obtained,
relating this time the image of yn in the group of connected components of
E/L(n) at q to the special value L(E/K, 1). By applying Kolyvagin’s method
in this setting, it was then possible to show:
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Theorem 1.2 Suppose that K satisfies the modified Heegner hypothesis rel-
ative to q and E. If L(E/K, 1) 6= 0, then E(K), and the q-primary part of
III(E/K), are finite.

The method of descent can also be made to yield (somewhat weaker) infor-
mation on the p-primary part of III(E/K), where p is a prime dividing q+1,
but a proof of the finiteness of the entire Shafarevich-Tate group still escapes
the methods of [BD2].

The principal goal of this paper is to relate the Gross-Zagier formula and
the formula of [BD2] (and, thereby, theorems 1.1 and 1.2) via the theory of
congruences between modular forms. In the remainder of the introduction,
we will state our main result precisely.

Fix a modular elliptic curve E of conductor N , associated to a normalized
cusp form of weight 2 for Γ0(N):

f =
∑

n

anq
n, an ∈ Z, a1 = 1.

Let π∗E : E −→ J0(N) and πE∗ : J0(N) −→ E be the maps of Jacobians
deduced from πE by contravariant and covariant functoriality respectively.
The map πE is defined over Q, and hence the same is true for πE∗ and π∗E.
Assume that E is the strong Weil curve in its isogeny class, and that deg(πE)
is minimal. Since N is assumed to be the conductor of E and f is normalized,
E is a strong Weil curve if and only if π∗E is injective, or also if and only if
πE∗ has connected kernel.

Let K be a quadratic imaginary field satisfying the Heegner hypothesis
relative to E.

Fix an auxiliary prime p (which will be the “descent prime”, i.e., we will
perform a p-descent in all that follows) to satisfy the following conditions:

1. the mod p Galois representation ρ̄E,p associated to E is absolutely irre-
ducible.

2. p does not divide 2N and the degree of the modular parametrization
πE.

By a result of Serre [Se], all but finitely many primes p satisfy these two
conditions.

Let Ep be the module of p-division points of E, and let K(Ep) be the
smallest extension of K over which these points are defined. The prime q
is called a Kolyvagin prime (relative to E, K and p) if it does not divide
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NDisc(K)p – so that in particular it is unramified in K(Ep)/Q – and its
Frobenius element in this extension belongs to the conjugacy class of complex
conjugation. This implies that p divides q + 1 and aq. There are infinitely
many primes q satisfying this condition, by the Chebotarev density theorem.

Let q be a Kolyvagin prime relative to (E,K, p). Let X0(Nq) be the
modular curve of level Nq, and let T = T(Nq) be the Hecke algebra of level
Nq, generated by the Hecke operators T` for ` 6 |Nq and U` for `|Nq acting
faithfully on J0(Nq).

Our goal is to study certain modular forms of level Nq which are con-
gruent to f modulo p. Accordingly, let m be the maximal ideal of T defined
by

m = 〈p, T` − a` (where ` 6 |Nq), U` − a` (where `|N), Uq − ε〉 .

Denote by Tm the completion of the Hecke algebra T at m:

Tm := lim
←

T/mn,

and let I be the kernel of the natural map T −→ Tm. Following [Ma1],
ch. II (10.4), associate to m a quotient J of J0(Nq) by the rule:

J := J0(Nq)/I.

The abelian variety J is analogous to Mazur’s Eisenstein quotient, except
that the ideal I of T in this case corresponds to an absolutely irreducible mod
p representation, and is not Eisenstein. (This has the effect of simplifying
considerably some of the technical features of the study.)

Section 3 invokes a “raising the level” theorem of Ihara and Ribet to
establish the following basic fact about the structure of J :

The abelian variety J is isogenous to E2×J ′, where J ′ is a non-trivial abelian
variety having purely toric reduction at q. More precisely, J ′ has split toric
reduction if ε = 1 , and non-split toric reduction if ε = −1.

Let g be a normalised eigenform of weight 2 on Γ0(Nq), corresponding to
an algebra homomorphism φg : T −→ Og, where Og is the ring generated by
the Fourier coefficients of g. Let mg := φg(m). It is a maximal ideal of Og

(possibly equal to Og itself).
The eigenform g is said to be a form on J (resp. J ′) if the abelian variety

Ag associated to g by the Eichler-Shimura construction is a quotient of J
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(resp. J ′). One can show that g is a form on J ′ if and only if g is new at q
and mg 6= Og.

A formula of Gross [Gr1] and a generalization of Daghigh [Dag] allows
one to define in section 4 the algebraic part L(g/K, 1) of the special value
L(g/K, 1). It can be thought of as (a square root of) the special value
L(g/K, 1), “divided by the appropriate non-zero period”. More precisely,
L(g/K, 1) belongs to an Og-moduleMg (defined in section 4) which is locally
free of rank 1 at mg, and

L(g/K, 1) = 0 ⇐⇒ L(g/K, 1) = 0. (1)

Write L(g/K, 1) = 0 (mod mg) if L(g/K, 1) belongs to mgMg.
In section 5 a precise definition of the Heegner point yK in E(K) is given.

Let Kq denote the completion of K at the prime q. The main result, whose
proof is the object of section 6, is

Theorem 1.3 The image of yK in E(Kq)/pE(Kq) is non-zero if and only if

L(g/K, 1) 6= 0 (mod mg),

for all forms g on J ′.

Since the point yK encodes the special value of L′(f/K, 1) by the Gross-
Zagier formula, theorem 1.3 can be viewed as supplying a mod m congruence
between L′(f/K, 1) and L(g/K, 1). To even express precisely such a con-
gruence between a special value and a derivative of an L-function requires
the machinery of Heegner points and the formula of Gross and Zagier. Con-
gruences of this type were anticipated by Jochnowitz, and for this reason
are referred to as “Jochnowitz congruences”. The article [J] considered the
case of Eisenstein series and of certain modular forms of CM type associated
to Hecke L-series, exploiting a formula of Rubin [Ru]. Other instances of
this phenomenon, involving congruences at Eisenstein primes, also appear
in [Ma2]. Indeed, this work of Mazur is the precursor and one of the main
inspirations of the present article.

Let us mention the following corollary of theorem 1.3.

Corollary 1.4 If the image of yK in E(Kq)/pE(Kq) is non-zero, then

L(J ′/K, 1) 6= 0.
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Proof: By theorem 1.3, L(g/K, 1) 6= 0 (mod mg) for all normalised eigen-
forms g on J ′. Hence L(g/K, 1) 6= 0, and therefore L(g/K, 1) 6= 0 by equa-
tion (1). But L(J ′/K, 1) =

∏
g L(g/K, 1), where the product is taken over

the distinct normalised eigenforms on J ′. The result follows.

On the arithmetic side, there is:

Proposition 1.5 If the image of yK is non-zero in E(Kq)/pE(Kq), then

1. The p-Selmer group of E(K) is one-dimensional over Fp, and is gener-
ated by the image of yK by the connecting homomorphism of Kummer
theory.

2. The m-Selmer group of J ′ is trivial, and hence J ′(K) is finite.

Sketch of Proof: To prove the first part, observe that the hypothesis implies
that the image of yK in E(K)/pE(K) is non zero. The conclusion then
follows from a more precise formulation of the theorem of Kolyvagin. (Cf.
[Gr2], prop. 2.1). The second part follows from theorem 1.3 and the natural
generalization (cf. [BD2]) of theorem 1.2 for eigenforms with non-rational
fourier coefficients.

In light of corollary 1.4, part 2 of proposition 1.5 is consistent with the
Birch and Swinnerton-Dyer conjecture. This proposition establishes a link
(via the theory of congruences between modular forms) between Kolyvagin’s
descent and the descent of [BD2]. It is worth noting that parts 1 and 2
of proposition 1.5 can be shown to be equivalent, independently of any L-
function calculation, by a formula for comparing the orders of Selmer groups.

Acknowledgements: The authors would like to thank Fred Diamond and
Dino Lorenzini for helpful exchanges related to this paper.

2 Preliminaries

Modular curves:
Let M be a positive integer. If A is an elliptic curve and C ⊂ A is a cyclic
subgroup of order M , then (following Ribet) the pair A := (A,C) is called an
enhanced elliptic curve with Γ0(M)-structure. An isogeny between two such
enhanced elliptic curves is an isogeny between the underlying curves which
induces an isomorphism between the level M structures. The curve X0(M) is
the (coarse) moduli space of enhanced elliptic curves with Γ0(M)-structure.
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If M = Nq where q is a prime not dividing N , then the modular curve
X0(M) of level Nq can also be viewed as the moduli space for diagrams

(A→ A′)

where A and A′ are enhanced elliptic curves with Γ0(N)-structure, and the
arrow is a cyclic q-isogeny between them. The curve X0(Nq) maps to X0(N)
via the two standard degeneracy maps:

π1, π2 : X0(Nq) −→ X0(N),

which send the diagram (A → A′) to A and A′ respectively. The degen-
eracy maps induce maps between Jacobians by covariant and contravariant
functoriality respectively:

π1∗, π2∗ : J0(Nq) −→ J0(N), π∗1, π
∗
2 : J0(N) −→ J0(Nq).

Hecke algebras:
For any M > 0, let T(M) be the full Hecke algebra of level M , i.e., the
subring of the endomorphism ring of J0(M) generated by the Hecke operators
T` with 6̀ |M and the operators U` with `|M . It is a Z-algebra which is finitely
generated as a Z-module. For example, the operator T` acts on J0(M) via
the correspondence on X0(M):

T`(A) =
∑
A′

A′,

where the sum is taken over the ` + 1 enhanced elliptic curves which are
`-isogenous to A. The degeneracy maps π1 and π2 introduced above satisfy
the relations

π1∗π
∗
1 = π2∗π

∗
2 = q + 1, π2∗π

∗
1 = π1∗π

∗
2 = Tq.

The operator Uq acts on J0(Nq) via the correspondence on X0(Nq) de-
fined by

Uq(A→ B) =
∑
X 6=A

(B → X),

where the sum is taken over the q distinct cyclic q-isogenies from B, omitting
the dual of A → B. Define an action of T = T(Nq) on J0(N)2 by letting
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T` and U` act diagonally on each factor for ` 6= q, and letting Uq act by left

multiplication by the matrix

(
Tq q
−1 0

)
. Let

π∗12 : J0(N)2 −→ J0(Nq), π12∗ : J0(Nq) −→ J0(N)2

be the degeneracy maps formed from the pairs (π∗1, π
∗
2) and (π1∗, π2∗), and

set

π̃12∗ :=

(
1 −Tq

0 1

)
◦ π12∗.

Lemma 2.1 The functions π∗12 and π̃12∗ are compatible with the actions of
T(Nq) on J0(Nq) and J0(N)2 defined above.

Proof: The main point is to check that the maps are compatible with the
action of the Hecke operator Uq. From the description of the action of Uq

given above, one sees directly that

Uq ◦ π∗12 = π∗12 ◦
(

Tq q
−1 0

)
, π12∗ ◦ Uq =

(
0 q
−1 Tq

)
π12∗.

It follows from this last equation that

π̃12∗ ◦ Uq =

(
Tq q
−1 0

)
π̃12∗.

Character groups of Jacobians:
Let J0(Nq) be the Néron model for J0(Nq) over Zq, and let J0(Nq)

0 be
its connected component. The special fiber at q of J0(Nq)

0 is an extension
of the abelian variety J0(N) × J0(N) over Fq by a torus T . Let M denote
the character group of this torus. It is a free Z-module of finite rank which
inherits an action of the Hecke algebra T from its action on J0(Nq).

The work of Grothendieck [SGA], Raynaud [Ra], Deligne and Rapoport
[DR] provides an explicit description of the T-module M. Here in fact are
two equivalent descriptions:

1. The module M is isomorphic to the group of degree 0 divisors supported
on the supersingular points of X0(N)F̄q

. (Cf. for example [Ri2], prop. 3.1.)
In other words, M consists of the formal degree zero Z-linear combinations∑

i niAi, where the Ai are enhanced elliptic curves with Γ0(N)-structure
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defined over F̄q, which are supersingular (in the sense that the underlying
elliptic curve is.)

2. Let B be the definite quaternion algebra which is ramified at q and ∞.
An Eichler order R in B of level N is said to be oriented if it is equipped with
a surjective algebra homomorphism ι : R −→ Z/NZ. The set of conjugacy
classes of oriented Eichler orders of level N is in natural bijection with the
set of supersingular points described in 1. (Cf. [Gr1].) Choose a system of
representatives R1, . . . , Rt for the conjugacy classes of oriented Eichler orders
of level N . Thus each Rj is an Eichler order of level N equipped with an
orientation

ιj : Rj −→ Z/NZ. (2)

An element inM will sometimes be written as a formal Z-linear combination∑
j nj[Rj] with

∑
j nj = 0.

The moduleM also comes equipped with a natural positive-definite inner
product defined by

〈[Ri], [Rj]〉 :=
1

2
δij#R

×
j . (3)

In other words, 〈[Ri], [Rj]〉 is the number of isomorphisms between Ri and
Rj. The Hecke operators T` with ` 6 |N are self-adjoint for this inner product.
(Cf. for example [Gr1], prop. 4.6).

Component groups of Néron Models:
Let F be a finite extension of Qq with ramification index e, and let J0(Nq)F

be the Néron model of the Jacobian J0(Nq) over the ring of integers of F .
Denote by Φ(J0(Nq)/F ) the group of connected components of the special
fiber of J0(Nq)F . This group can be described canonically as the cokernel of
the composition

M e−→M −→M∨,

where the first map is multiplication by e and the second is the natural
inclusion ofM intoM∨ := Hom(M,Z) arising from the pairing 〈 , 〉. Hence,
there is an exact sequence:

0 −→M⊗ (Z/eZ) −→ Φ(J0(Nq)/F ) −→ Φ(J0(Nq)/Qq) −→ 0,

where the last map is induced from the norm if F/Qq is totally ramified.
The group Φ(J0(Nq)/Qq) is Eisenstein in the sense of [Ri2], thm. 3.12. In
particular, taking the completion at a non-Eisenstein maximal ideal m of the
Hecke algebra, one obtains:
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Proposition 2.2 The completion of Φ(J0(Nq)/F ) at a non-Eisenstein ideal
m is isomorphic as a Hecke module to the completion of M⊗ (Z/eZ) at m.

Multiplicity one:
Let m be a maximal ideal of the Hecke algebra T whose residue character-
istic is prime to 2Nq(q − 1), associated to an absolutely irreducible Galois
representation. The following multiplicity one theorem of Mazur (cf. [Ri2],
th. 6.4) will be crucial in our later study:

Theorem 2.3 The group M/m is a one-dimensional vector space over the
field T/mT. (And hence, the completion M⊗T Tm is free of rank one over
Tm.)

3 The abelian variety J

We now turn to a detailed study of the abelian variety J defined in the
introduction. In particular, the integersN , p and q satisfy all the assumptions
stated there, namely:

1. The quadratic imaginary field K satisfies the Heegner hypothesis rela-
tive to E.

2. The mod p representation attached to E is absolutely irreducible and p
does not divide 2N or deg(πE).

3. The prime q is a Kolyvagin prime relative to E, K and p.

The ideal m:
The normalised eigenform f of weight 2 on Γ0(N)

f =
∞∑

n=1

anq
n, a1 = 1, q = e2πiτ ,

can also be viewed as a modular form on Γ0(Nq), but it is not an eigenform
for the Hecke algebra T = T(Nq), because it fails to be an eigenform for the
Hecke operator Uq. Choose a root α of the polynomial

x2 − aqx+ q,

and define the modular form fq with coefficients in the ring Z[α] by

fq := f(τ)− q/αf(qτ).
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Its L-function factorizes as the following Euler product:

L(fq, s) = (1− αq−s)−1
∏
p|N

(1− app
−s)−1

∏
p6|Nq

(1− app
−s + p1−2s)−1.

The form fq is an eigenform for T of level Nq which is in the same old-class
as f , and the eigenvalue of Uq acting on it is α. By the assumption that q is
a Kolyvagin prime, the eigenvalues of the Frobenius element at q acting on
Ep are 1 and −1, i.e.,

x2 − aqx+ q ≡ (x− 1)(x+ 1) (mod p).

Since p is odd, it splits in the quadratic imaginary order Z[α], and is equal
to (p, α− 1)(p, α+ 1).

Recall that −ε is the sign in the functional equation for L(E/Q, s). Let
mf be the ideal (p, α− ε) of Z[α], and let m be the inverse image of mf in T
for the homomorphism T −→ Z[α] determined by fq. Specifically, the ideal
m is equal to

m = 〈p, T` − a` (where ` 6 |Nq), U` − a` (where `|N), Uq − ε〉 ,

as defined in the introduction.
If M is any T-module, denote by

Mm := lim
←
M/mnM

the completion of M at m. The ideal m is said to be in the support of M if
this completion is non-zero.

The ring Tm is a direct factor of the semi-local ring T⊗ Zp:

T⊗ Zp = Tm × T′, (4)

where (T′)m = 0 (cf. [Ma1], sec. II.7). Let I be the kernel of the natural map
T −→ Tm (so that T/AnnTI injects into T′).

The abelian variety J :
As in the introduction, let

J = J0(Nq)/IJ0(Nq).

If g is any normalised eigenform on Γ0(Nq) andOg is the ring generated by its
Fourier coefficients, recall that φg : T −→ Og is the algebra homomorphism
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associated to g, and that Ig is its kernel. Following the introduction, we say
that g is a form on J if the following three equivalent conditions are satisfied:

1. The abelian variety quotient Ag := J0(Nq)/Ig associated to g by the
Eichler-Shimura construction is a quotient of J . (Note that Ag depends only
on the Galois orbit [g] of g.)

2. I ⊂ Ig;

3. The ideal mg := φg(m) is a maximal ideal of Og which is not equal to Og

itself, and
an(fq) (mod mf ) = an(g) (mod mg). (5)

The absolute Galois group of Q acts on the normalised eigenforms via its
action on Fourier expansions. If g is any normalised eigenform, let [g] denote
its orbit under this action. We may write

J ∼
∏
[g]

Ag,

where the symbol ∼ denotes isogeny and the product is taken over the dis-
tinct Galois orbits of normalised eigenforms g on J . Because of the assump-
tion in the introduction that p does not divide the degree of the modular
parametrization πE, there is only one oldform (up to the Galois action) which
is congruent to fq, namely fq itself. The ring Ofq = T/Ifq is equal to Z[α].
Finally, the abelian variety Afq := J0(Nq)/Ifq is isogenous to E×E. Hence,
J is isogenous to the abelian variety

J ∼ E2 ×
∏
[g]

Ag, (6)

where the product now is taken over the Galois orbits of normalised eigen-
forms on J which are new at q.

Here is a precise description of such an isogeny. Let π∗E : E −→ J0(N)
be the map deduced from πE by contravariant functoriality. It induces a
homomorphism E2 −→ J0(N)2, which will also be denoted π∗E by abuse of
notation. Let

ϕE : E2 −→ J (7)

be the composition of the maps

E2 π∗E−→ J0(N)2 π∗12−→ J0(Nq)
πJ−→ J. (8)
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By lemma 2.1, the map ϕE is T-equivariant for the action of T on E2 de-
fined by making the Hecke operators T` for ` 6 |Nq and U` for `|N act by
multiplication by a`, and letting Uq act by left multiplication by the matrix(

aq q
−1 0

)
. (9)

Let J ′0(Nq) be the q-new subvariety of J0(Nq), i.e., the kernel of the map

π12∗ : J0(Nq) −→ J0(N)2.

(Note that we may also replace π12∗ by π̃12∗ in this definition.) Let J ′ be the
image of J ′0(Nq) in J , and let

ϕ′ : J ′ −→ J

be the natural inclusion map. Define an isogeny ϕ by

ϕ := ϕE + ϕ′ : E2 × J ′ −→ J.

Proposition 3.1 The abelian variety J ′ is non-trivial, and has purely mul-
tiplicative reduction at q. This reduction is split if ε = 1, and is non-split if
ε = −1.

Proof: By equation (6),

J ′ ∼
∏
[g]

Ag,

where the product is taken over the Galois orbits of normalised eigenforms
of level Nq which are new at q and satisfy mg 6= Og. Such eigenforms satisfy
the congruence

an(g) (mod mg) = an(fq) (mod mf ) for all n.

But a raising the level theorem of Ribet [Ri1] states that there exists such an
eigenform g if and only if α ≡ ±1 (mod mf ). Furthermore, aq(g) = 1 (resp.
−1) if and only if Ag has split (resp. non-split) multiplicative reduction at q.
Since aq(g) ≡ ε (mod mg), and since p 6= 2, the result follows.
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Corollary 3.2 1. There is an exact sequence

0 −→ Λ −→ (K×q )d −→ J ′(Kq) −→ 0,

where Λ is a lattice in (K×q )d, (and d is the dimension of J ′).
2. Denote by z 7→ z̄ the usual complex conjugation acting on Kq, and

make Gal(Kq/Qq) = 〈τ〉 act on K×q by setting τ(z) := z̄ε. Then the exact
sequence of 1 is Gal(Kq/Qq)-equivariant.

Lemma 3.3 The ideal m is not in the support of the kernel of ϕE. (In other
words, ϕE is “injective at m”.)

Proof: The map π∗E : E2 −→ J0(N)2 is injective, by our assumption that πE

is the strong Weil parametrization associated to f . The map π∗12 has a kernel
(related to the Shimura subgroup of J0(N)) whose support consists entirely
of Eisenstein primes (cf. [Ri1]). Finally, any submodule M of IJ0(Nq)(Q̄)
has support disjoint from m by the construction of J . This is because the
action of T⊗ Zp on M ⊗ Zp factors through the ring T′ of equation (4).

If M is any module on which complex conjugation in Gal(Q̄/Q) acts,
write M+ and M− for the submodules of M on which this involution acts by
1 and −1 respectively.

Lemma 3.4 Let V denote the kernel of the isogeny ϕ. Then

1. The map V −→ E2 induced by projection onto the first factor is injec-
tive, so that V/Kq extends to a finite flat group scheme over the ring of
integers Oq of Kq.

2. The map V (Kq)
ε
m −→ E2(Kq)

ε
m is an isomorphism.

Proof: Part 1 is a consequence of the injectivity of the map J ′ −→ J . Pro-
jection onto E2 now allows us to view V as a finite subgroup scheme V of E2

over Oq. In order to prove part 2, we describe V more explicitly. Begin by
noting that x belongs to V (Kq) if and only if ϕE(x) belongs to ϕ′(J ′), i.e.,
if and only if π∗12π

∗
E(x) belongs to the q-new subvariety J ′0(Nq), which is the

kernel of π̃12∗. Hence V m is equal to the completion at m of the kernel of the
endomorphism

πE∗π̃12∗π
∗
12π
∗
E = deg(πE)

(
q + 1− a2

q −aqq
aq q + 1

)
. (10)

14



Let V p∞ := ∪nV pn , and let Ep∞ be the p-divisible group over Oq attached to
E. For the purpose of this proof, denote by α the root of x2 − aqx+ q in Zp

which is congruent to 1 mod p, and let ᾱ be the root which is congruent to
−1. By diagonalizing the matrix in equation (10), we find that (since deg(πE)
is a unit at p) the module V p∞ is equal to the kernel of the endomorphism
of E2

p∞ : (
1 ᾱ
−1 −α

)−1 (
1− α2 0

0 1− ᾱ2

) (
1 ᾱ
−1 −α

)
. (11)

Let
n+ := ordp(1− α2), n− := ordp(1− ᾱ2).

By (11), the isomorphism E2
p∞ −→ E2

p∞ sending (x, y) to (x+ ᾱy,−x− αy)
induces an isomorphism

κ : V p∞ −→ Epn+ × Epn− .

Note that

n+ = ordp(q + 1− aq), n− = ordp(q + 1 + aq).

The isomorphism κ is equivariant for the Hecke operators T` for ` 6 |Nq,
and satisfies the relation

κUq =

(
α 0
0 ᾱ

)
κ,

so that it “diagonalizes” the action of Uq. In other words, the Hecke operator
Uq acts on Epn+ × Epn− with eigenvalue α and ᾱ on the first and second
component. Hence completing at the ideal m gives an isomorphism

κm : V m −→ Epnε .

It follows that V ε
m is a cyclic group of order pnε

. The same is true of E2(Kq)
ε
m,

as can be seen from a direct calculation using (9). Hence the map of part 2
is an isomorphism.

If F is any finite extension of Kq with ring of integers OF , denote by
J0(Nq)/OF

, (resp. J/OF
, J ′/OF

) the Néron model of J0(Nq) (resp. J , J ′) over

OF , and let Φ(J0(Nq)/F ), (resp. Φ(J/F ), Φ(J ′/F )) denote the component
groups of these Néron models. Since we will be working exclusively with
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the Néron models from now on, we will make an abuse of notation and
write J0(Nq)(F ) (resp. J(F ), J ′(F )) instead of J0(Nq)(OF ) (resp. J (OF ),
J ′(OF )). In particular, J0(F ) will denote the connected component of the
identity in J (OF ), etc.

Lemma 3.5 The natural map

Φ(J0(Nq)/F )m −→ Φ(J/F )m

is an isomorphism.

Proof: Let I⊥ := AnnT(I), and let J⊥ = J0(Nq)/I
⊥. Then the natural

isogeny
J0(Nq) −→ J × J⊥

has a kernel which is contained in IJ0(Nq), and hence its support is disjoint
from m. (Cf. the proof of lemma 3.3.) Therefore this isogeny induces an
isomorphism

Φ(J0(Nq)/F )m −→ Φ(J/F )m × Φ(J⊥/F )m.

But the action of T⊗Zp on Φ(J⊥)⊗Zp factors through the ring T′ of equation
(4). Hence Φ(J⊥/F )m = 0, and the result follows.

Lemma 3.6 The natural map V (Kq) −→ Φ(J ′/Kq)m is surjective.

Proof: Consider the commutative diagram

V (Kq) −→ E2(Kq)× J ′(Kq) −→ J(Kq)
| |

↘ ↓ ↓
Φ(J ′/Kq)m −→ Φ(J/Kq)m.

By lemma 3.5, the group Φ(J/Kq)m is isomorphic to Φ(J0(Nq)/Kq)m. The
latter group is trivial, because the group of connected components in J0(Nq)
over an unramified extension of Qq is Eisenstein. But it follows from [BLR]
th. 4 (ii) that the cokernel of the diagonal map above injects into Φ(J/Kq)m.

Proposition 3.7 The map

i : E2(Kq)
ε
m −→ J(Kq)

ε
m

induced by the map ϕE of equation (7) is an isomorphism.

16



Proof: By lemma 3.3, the map i is injective. To prove surjectivity, consider
the diagram

0 0
↓ ↓

E2(Kq)
ε
m = E2(Kq)

ε
m

↓ ↓ i

V (Kq)
ε
m −→ (E2(Kq)× J ′(Kq))

ε

m

ϕm−→ J(Kq)
ε
m

↘ |
↓

Φ(J ′/Kq)
ε
m

(12)

Note that:
1. The leftmost vertical sequence is exact. Indeed, the kernel of the map
J ′(Kq)

ε −→ Φ(J ′/Kq) is isomorphic to an extension of a group of exponent
q − 1 by a pro-q group, by proposition 3.1; hence the support of this kernel
is disjoint from m, as p does not divide q(q − 1).

2. The map ϕm is surjective. Indeed, taking Kq-rational points in the exact
sequence

0 −→ V −→ E2 × J ′ −→ J −→ 0

gives the long exact cohomology sequence

E2(Kq)× J ′(Kq) −→ J(Kq) −→ H1(Kq, V ) −→ H1(Kq, E
2)×H1(Kq, J

′).

Note that since q does not divide pN , the Galois representation V (over Kq)
is unramified. Using lemma 3.4, we see that the kernel of H1(Kq, V ) −→
H1(Kq, E

2) is the finite part H1
f (Kq, V ) of the cohomology, since the curve

E has good reduction at q. Let V 0 be the kernel of the natural map V −→
Φ(J ′/Kq). The kernel of H1

f (Kq, V ) −→ H1(Kq, J
′) is contained in the image

of H1
f (Kq, V

0). Hence, the cokernel of φm is a quotient of H1
f (Kq, V

0)ε
m. But

this group is trivial, since complex conjugation acts by −ε on (V 0)m and
trivially on Gal(Knr

q /Kq).

3. The diagonal map in the diagram of equation (12) is surjective, by lemma
3.6.

The surjectivity of the map i now follows from combining these three
facts with a diagram chase.
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Let H be the Hilbert class field of K, and let L denote the ring class field
of K of conductor q. It is a cyclic extension of H of degree (q + 1)/u, where
u = 1

2
#O×K .

The prime q is inert in K/Q, and hence splits completely in H/K. Fur-
thermore, any prime of H above q is totally ramified in L/H. Let Lq be the
completion of L at any such prime above q. The extension Lq is a totally
ramified cyclic extension of Kq of degree (q + 1)/u. Let σ be a generator
for Gal(Lq/Kq). Note that Gal(Lq/Qq) is isomorphic to a dihedral group of
order 2(q+ 1)/u, and that complex conjugation in Gal(Kq/Qq) conjugates σ
to σ−1.

Let J̃ be the group

J̃ =
J(Lq)

ϕE(E2(Lq)) + (σ − 1)J(Lq)
.

The module J̃ is equipped with a natural action of the Hecke operators and of
complex conjugation. Since ϕE(E2) is contained in the connected component
of the identity of J , and since Gal(Lq/Kq) acts trivially on Φ(J/Lq) (because
it acts trivially on Φ(J0(Nq)/Lq)), projection onto the group of connected
components gives a well-defined map

p : J̃ ε
m −→ Φ(J/Lq)m.

Proposition 3.8 The map p is an isomorphism.

Proof: The surjectivity of p follows directly from its definition. To prove the
injectivity, choose an element τ ∈ Gal(Lq/Qq) whose image in Gal(Kq/Qq)
is complex conjugation. (Such a τ is necessarily an involution.) If M is any
Gal(Lq/Qq)-module, write M+ and M− for the submodules of M on which
τ acts by 1 and −1 respectively. By the same reasoning as in part 2 of
the proof of proposition 3.7, the map ϕm : (E2(Lq) × J ′(Lq))

ε
m −→ J(Lq)

ε
m

is surjective. Recall that J ′(Lq)
0 denotes the connected component of the

identity of Néron model of J ′ over the ring of integers of Lq. Let V̄ ε
m be the

image of V (Lq)
ε
m in Φ(J ′/Lq)

ε
m. Then the rows and columns in the following
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diagram are exact:

V (Lq)
ε
m −→ V̄ (Lq)

ε
m −→ 0

↓ ↓
(E2(Lq)× J ′(Lq)

0)ε
m −→ (E2(Lq)× J ′(Lq))

ε
m −→ Φ(J ′/Lq)

ε
m −→ 0

ϕ0
m ↓ ϕm ↓ ↓

J0(Lq)
ε
m −→ J(Lq)

ε
m −→ Φ(J/Lq)

ε
m −→ 0

↓
0

A straightforward diagram chase show that the map ϕ0
m is surjective, so that

we have an exact sequence

(E2(Lq)× J ′(Lq)
0)ε

m −→ J(Lq)
ε
m −→ Φ(J/Lq)

ε
m −→ 1.

But by corollary 3.2, (J ′(Lq)
0)ε is an extension of a group of exponent q − 1

by a pro-q-group, and so its completion at m is zero. Hence, the group
(J0(Lq)m)ε is generated by the image of ϕE(E2(Lq)

ε
m). The injectivity of p

follows.

Corollary 3.9 The group (J̃/mJ̃)ε is a one-dimensional T/mT-vector space.

Proof: The one-dimensionality of the group Φ(J/Lq)/mΦ(J/Lq) follows di-
rectly from theorem 2.3 in light of proposition 2.2. The corollary is now a
consequence of proposition 3.8.

Let NLq/Kq =
∑(q+1)/u

j=1 σj denote the norm map of Lq over Kq. Since the
extension Lq/Kq is totally ramified of degree (q + 1)/u prime to q, we have
NLq/Kq(E(Lq)) = q+1

u
E(Kq), and hence

NLq/Kq(ϕE(E2(Lq)) = ϕE(NLq/Kq(E
2(Lq))) = ϕE((q+1)E2(Kq)) ⊂ mJ(Kq).

It follows that NLq/Kq induces a well-defined map

n : J̃/mJ̃ −→ J(Kq)/mJ(Kq)

which commutes with the action of complex conjugation on these two groups.

Proposition 3.10 The map

n : (J̃/mJ̃)ε −→ (J(Kq)/mJ(Kq))
ε

obtained by restricting n to ε-eigencomponents is an isomorphism.
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Proof: We begin by proving the surjectivity of n. For this, consider the
diagram

(J ′(Lq)/mJ
′(Lq))

ε −→ (J̃/mJ̃)ε

↓ ↓ n

V (Kq)
ε
m −→ ((E2(Kq)× J ′(Kq))/m)ε ϕm−→ (J(Kq)/mJ(Kq))

ε

↘ |
↓

(E2(Kq)/m)ε,

where the topmost vertical arrows are induced by the norm maps, and the
bottom vertical arrow is the natural projection onto the first component.
Observe that:

1. The leftmost vertical sequence is exact. Indeed, since J ′(Lq) is isomorphic
to a quotient of (L×q )r by a discrete subgroup, it follows from local class field
theory that the image of the norm map contains J ′(Kq)

ε.

2. As in part 2 in the proof of prop. 3.7, the map ϕm is surjective.

3. The map V (Kq)
ε
m −→ (E2(Kq)/m)ε is surjective, by part 2 of lemma 3.4.

The surjectivity of n follows directly from these three remarks by a dia-
gram chase.

Now, to prove injectivity, observe that (J̃/mJ̃)ε is a one-dimensional Fp-
vector space, by corollary 3.9, and that (J(Kq)/mJ(Kq))

ε has dimension one
as well, by proposition 3.7 (cf. the proof of lemma 3.4). It follows that n is
an isomorphism.

To summarize the main results of this section, all the arrows in the fol-
lowing diagram are isomorphisms of one-dimensional Fp-vector spaces.

Φ(J0(Nq)/Lq)/m
↓ j

(J̃/mJ̃)ε p−→ Φ(J/Lq)/m
↓ n

(E2(Kq)/m)ε i−→ (J(Kq)/mJ(Kq))
ε

(We have applied lemma 3.5 to conclude that j is an isomorphism.) Recall
from proposition 2.2 that Φ(J0(Nq)/Lq)/m can be identified with M/mM,
where M is the module introduced in section 2. Let

η : (E2(Kq)/m)ε −→M/mM
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be the isomorphism defined by η = j−1pn−1i. It will play an important role
later on.

4 Special values of L-functions

The module Mg:
We view the moduleM introduced in section 2 as the set of formal degree zero
Z-linear combinations of [R1], . . . , [Rt], where R1, . . . , Rt are the (distinct, up
to conjugacy) oriented Eichler orders of level N . It will also be convenient
to work with the module M̃ of all formal Z-linear combinations of the [Ri],
which sits in an exact sequence

0 −→M −→ M̃ −→ Z −→ 0. (13)

The module M̃ is endowed with a natural Hecke action compatible with the
inclusion M−→ M̃.

If g is any form on J ′, let Ig be the kernel of the natural map φg : T −→ Og

as before, and let Og,m be the completion of Og at mg. Finally, let

Mg := (M/Ig)⊗T Og,m, M̃g := (M̃/Ig)⊗T Og,m.

Proposition 4.1 The natural map Mg −→ M̃g is an isomorphism, and
Mg is free of rank one over Og,m.

Proof: The first statement follows upon tensoring the exact sequence (13)
with Og,m, and noting that the action of the Hecke algebra on M̃/M = Z is
Eisenstein. The second statement follows from theorem 2.3.

Algebraic parts of special values:
By the Heegner hypothesis, there exists an idealN ⊂ OK such that OK/N '
Z/NZ. Fix such an ideal N of OK . An embedding (ψ : OK −→ R) is called
oriented relative to this fixed choice of N if the kernel of ι ◦ ψ is equal to N
(where ι is the orientation provided to R, as in equation (2) of section 2).
There are exactly h = #Pic(OK) distinct oriented embeddings ψ1, . . . , ψh of
OK into some oriented Eichler order, taken modulo conjugation. (Cf. [Gr1],
sec. 3. In fact, the group Pic(OK) acts simply transitively on the ψj.)

Each (ψj : OK −→ Rj) gives rise to the element [Rj] ∈ M̃. Let ψK be
the formal sum

ψK := ψ1 + · · ·+ ψh,

viewed as an element of M̃.

21



Definition 4.2 The algebraic part of L(g/K, 1), denoted L(g/K, 1), is the
image of ψK in the rank one Og,m-module Mg = M̃g.

Remark: Although we view L(g/K, 1) as the “algebraic part” of L(g/K, 1),
it might perhaps be more appropriate to view it as the “square root” of this
algebraic part; cf. formula (15) below.

The main justification for this definition is the following theorem of Gross
(generalized to cover our situation by Daghigh [Dag]).

Theorem 4.3 L(g/K, 1) = 0 if and only if L(g/K, 1) = 0.

Proof: Viewing ψK as an element of M̃⊗C, and g as a complex normalised
eigenform, let ψK,g be the projection of ψK onto the g-isotypic component of
M̃ ⊗ C. Then

ψK,g = 0 if and only if L(g/K, 1) = 0. (14)

The g-isotypic component of M̃ ⊗ C is a one-dimensional complex vector
space and the pairing 〈 , 〉 on M̃ defined by equation (3) gives rise to a
perfect non-degenerate pairing on it. By a formula of Gross [Gr1], prop. 11.2,
and a generalization by Daghigh for modular forms of arbitrary level [Dag],

L(g/K, 1)

(g, g)
=
〈ψK,g, ψK,g〉
u2
√
D

, (15)

where (g, g) is the Petersson scalar product of g with itself, u is equal to
#O×K/2, and D is the discriminant of K. The result follows at once from
(14) and (15).

The main advantage of having defined L(g/K, 1) in this way is that it
allows us to talk of congruences for L(g/K, 1) modulo ideals in the Hecke
algebra. For example, say that L(g/K, 1) is congruent to 0 mod mg, and
write L(g/K, 1) ≡ 0 (mod mg), if L(g/K, 1) belongs to mgMg.

5 Heegner points

Let K be as before a quadratic imaginary field satisfying the Heegner hy-
pothesis relative to E. Choose a Kolyvagin prime q (relative to E, K and p)
as in the introduction. Recall that H and L denote the Hilbert class field of
K and the ring class field of K of conductor q respectively. Finally, note

Gq := Gal(L/H), G̃q = Gal(L/K), ∆ = Gal(H/K).
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Heegner points:
By the theory of complex multiplication, there are h distinct elliptic curves
A1, . . . , Ah up to isomorphism satisfying End(Aj) ' OK . They are defined
over the Hilbert class field H and are permuted transitively by ∆. Recall the
ideal N of OK which was fixed in the previous section. Letting Cj be the
group Aj[N ] of N -torsion points of Aj, one obtains enhanced elliptic curves
Aj = (Aj, Cj) with Γ0(N)-structure, which are also defined over H. Let

Pj ∈ X0(N)(H)

be the algebraic point corresponding to the modulus Aj.
Recall that u = #(O×K)/2. There are (q+ 1)/u possible cyclic q-isogenies

Aj → A′j, up to composition on the left by O×K/〈±1〉. The assumption that q
is inert in K implies that the possible isomorphism classes of diagrams (Aj →
A′j) are defined over the ring class field L, and are permuted transitively
by Gq. The endomorphism ring of A′j is isomorphic to the order of K of
conductor q. For each j = 1, . . . , h, choose any q-isogeny (Aj → A′j), and let

P ′j ∈ X0(Nq)(L)

be the algebraic point corresponding to the diagram of enhanced elliptic
curves (Aj → A′j).

Write ∞ for the cusp of X0(Nq) corresponding to the point i∞ in the
completed upper half plane. Let PK and P ′L be the elements of J0(N)(K)
and J0(Nq)(L) respectively represented by the degree 0 divisors:

PK := (P1) + · · · (Ph)− h(∞), P ′L = (P ′1) + · · ·+ (P ′h)− h(∞).

Let C(Nq) be the cuspidal subgroup of J0(Nq). It is a finite subgroup of
J0(Nq) which is Eisenstein as a T-module. We write x ≡ y (mod C(Nq)) if
the difference x− y belongs to C(Nq).

Proposition 5.1 Let NL/H be the norm map
∑

σ∈Gq
σ. Then

π1∗(P
′
L) = PK , π∗1(PK) ≡ uNL/H(P ′L) (mod C(Nq)).

Proof: A direct calculation.

Now, define the Heegner point yK ∈ E(K) by the formula:

yK := πE∗(PK).
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6 Jochnowitz Congruences

Recall the isomorphism η : (E2(Kq)/m)ε −→ M/mM = Mg/mgMg con-
structed in section 3. The following is our main result, which is the Jochnowitz
congruence alluded to in the title. It directly implies theorem 1.3.

Theorem 6.1 If g is a normalised eigenform on J ′, then

η((yK , 0)) ≡ u deg(πE) · L(g/K, 1) (mod m).

Proof: Let πJ be the natural projection J0(Nq) −→ J , and let π̃J be the in-
duced map from J0(Nq)(Lq) to J̃/mJ̃ . Let J0(Nq)(Lq)

ε denote the module of
points in J0(Nq)(Lq) whose natural image in J0(Nq)(Lq)/(σq−1)J0(Nq)(Lq)
belongs to the ε-eigenspace for the action of complex conjugation on this
module. Consider the commutative diagram

J0(Nq)(Lq)
ε Ψq−→ M/mM

π̃J ↓ ↓ j

(J̃/mJ̃)ε p−→ Φ(J/Lq)/m
↓ n

(E2(Kq)/m)ε i−→ (J(Kq)/m)ε.

(16)

The proof of theorem 6.1 rests on the following two lemmas:

Lemma 6.2 p(π̃J(P ′L)) = j(L(g/K, 1)) (mod mg).

Proof: See [BD2], sec. 3, theorem 3.2.

Lemma 6.3 u deg(πE) · n(π̃J(P ′L)) = i(yK , 0).

Proof: By proposition 5.1, we have

u · n(π̃J(P ′L)) = πJ(π∗1(PK)) (mod m).

But the following equality holds in J(Kq)/m:

deg(πE)PK = π∗E(yK).

Hence

u deg(πE) · n(π̃J(P ′L)) = πJπ
∗
1π
∗
E(yK) = πJπ

∗
12π
∗
E(yK , 0) = i(yK , 0),

where the last equality follows from the definition of ϕE (and hence, of i)
given in equation (7) of section 3. The lemma follows.

Combining lemmas 6.2 and 6.3 and using the commutativity of the dia-
gram (16) yields theorem 6.1.
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