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1. Introduction. Let E/Q be a modular elliptic curve of conductdf, and letp
be a prime of split multiplicative reduction fd&. Write C, for a fixed completion of
an algebraic closure d®,. Tate's theory ofp-adic uniformization of elliptic curves
yields a rigid-analytic, G&lC,/Q),,)-equivariant uniformization of th& ,-points of

E:
(1) 0— g7 - €5 ™, E(C)) — 0,
whereq € pZ, is the p-adic period ofE.

Mazur, Tate, and Teitelbaum conjectured in [MTT] that the cyclotoptiadic L-
function of E/Q vanishes at the central point to order one greater than that of its
classical counterpart. Furthermore, they proposed a formula for the leading coefficient
of such ap-adic L-function. In the special case where the analytic rankz o)
is zero, they predicted that the ratio of the special value of the first derivative of
the cyclotomicp-adic L-function and the algebraic part of the special value of the
complexL-function of E/Q is equal to the quantity

log, (¢)
ord,(q)
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306 BERTOLINI AND DARMON

(where log, is Iwasawa’s cyclotomic logarithm), which is defined purely in terms
of the p-adic uniformization off. Greenberg and Stevens [GS] gave a proof of this
special case. See also the work of Boichut [Boi] in the case of analytic rank one.

The article [BD1] formulates an analogue of the conjectures of [MTT] in which
the cyclotomicZ ,-extension ofQ is replaced by the anticyclotomi&,-extension of
an imaginary quadratic fiel& . Whenp is split in K and the sign of the functional
equation ofL(E /K, s) is 41, this conjecture relates the first derivative of the anticy-
clotomic p-adic L-function of E to the anticyclotomic logarithm of the-adic period
of E. The present paper supplies a proof of this conjecture. Our proof is based on the
theory of p-adic uniformization of Shimura curves.

More precisely, assume thAtis an imaginary quadratic field witflisa K ), N) =
1 such that

(i) pissplitink;

(ii) E is semistable at the rational primes that divideand are inert ink;

(i) the number of these rational primes is odd.
The complexL-function L(E/K,s) of E over K has a functional equation and an
analytic continuation to the whole complex plane. Under our assumptions, the sign of
the functional equation cE(E /K, s) is +1 (cf. [GZ, p. 71]), and hencé&(E/K,s)
vanishes to even order at= 1.

Fix a positive integer prime to N, and let0 be the order ok of conductorc.
Let H, be the ring class field ok of conductorcp”, with n > 0, and letH, be the
union of the H,. By class field theory, the Galois group GHl,/Hp) is identified
with 0%\ (Og ®Z,,)X/Z; ~Z,xZ/((p—1/u)Z, with u := (1/2)#0*. Moreover,
Gal(Hp/K) is identified with the Picard group Rig). Set

G, :=Gal(H,/K), Gu :=Gal(Hs/K).

Thus, G is isomorphic to the product of , by a finite abelian group. Choose a
primep of K abovep. Identify K, with Q,, and let

rec, : Q; — Gy
be the reciprocity map of local class field theory. Define the integral completed group

ring of G, to be
n
where the inverse limit is taken with respect to the natural projections of group rings.
In Section 3, we recall the construction explained in [BD1, Sec. 2.7] of an element

Lp(E/K) € Z[[Gooll

attached to(E, H./K), which interpolates the special valuésE/K, x,1) of
L(E/K,s) twisted by finite-order characters 6f,,. The construction of thig-adic
L-function is based on the ideas of Gross [Gr] and a generalization due to Daghigh
[Dag]. We show thatf,(E/K) belongs to the augmentation iddabf Z[[G]]. Let
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¢',(E/K) be the natural image 6f,(E/K) in 1/1? = Gy, The elementt), (E/K)
should be viewed as the first derivative6f (E/K) at the central point.
Let f = anlanq" be the newform attached #, and let

Qy ::47[2// |f(D)?dt Aid7T
%/ To(N)

be the Petersson inner product ofwith itself. We assume thdt is the strong Weil

curve for the Shimura curve parametrization defined in Section 44 Setdis(0),

and letr ¢ be the positive integer defined later in this introduction and specified further
in Section 2. Our main result (stated in a special case: see Theorem 6.4 for the general
statement) is the following.

THEOREM 1.1 Suppose that = 1. The equality (up to sign)

rec,(q)
ord,(q)

& (E/K) = \/L(E/K, HQ;LdY2uln;

holds in1/1?® Q.

For the convenience of the reader, we now briefly sketch the strategy of the proof
of Theorem 1.1.

Write the conductolV of E aspNtN~, whereN ™ (respectivelyN ) is divisible
only by primes that are split (respectively, inert)kh Under our assumptionsy
has an odd number of prime factors, gndl ~ is squarefree. Denote B/ the definite
quaternion algebra ove® of discriminantN —, and fix an Eichler ordeR of B of
level NTp. LetT" be the subgroup of elements @;\R[l/p]X whose norm has
even p-adic valuation, and set’" := Hom(I", Z). The moduleN is a free abelian
group and is equipped with the action of a Hecke algebrattached to modular
forms of levelN that are new alv ™~ p. In Section 2, we also define a canonical free
quotientNsp of ', which is stable for the action df and is such that the image &f
in End(N'sp) corresponds to modular forms that are split multiplicative aket 7 ¢
be the idempotent of ® Q associated witly, and letn ; be a positive integer such
thatn, := n s, belongs tol. Denote byN/ the submodule off on whichT acts
via the character

T =12, T,—ay

defined byf. By the multiplicity-one theorem, the modulé’ is isomorphic toZ. The
operatom ; yields a map (denoted in the same way by an abuse of notatjon) —
N/, which factors through\'sp. We define an elemett, (Nsp/K) € Nsp® Z[Goo1l,
such that (up to sign)

(ny ®id) (£, (Nsp/K)) = cp-Lp(E/K),

wherec, := ord,(q). We recall that the derivativﬁ;(E/K) of £,(E/K) belongs
to N/ ®Goo = Gro.
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On the other hand, the modukeis related to the theory gf-adic uniformization
of Shimura curves. LeB be the indefinite quaternion algebra of discriminant™,
and let® be an Eichler order of8 of level N*. Write X for the Shimura curve over
Q associated witl (see Section 4), and writé for the jacobian ofX. A theorem
of Cherednik (see [C]), combined with the theory of jacobians of Mumford curves
(see [GvdPY)), yields a rigid-analytic uniformization

(2) 0> A—N®CE 2 J(Cp) -0,

whereA is the lattice ofp-adic periods of/. The Tate uniformization (1) is obtained
from the sequence (2) by applying the operatpto the Hecke modules ® C; and
J(C,) of (2). In particular, thep-adic periodg of E can be viewed as an element of
the moduleN/ ® Cy, and in fact one checks that it belongské ®Q; =Qj. An
explicit calculation ofp-adic periods, combined with a formula foKE /K, 1) given

in [Gr] and [Dag], proves Theorem 1.1.

A similar strategy was used in [BD2], whenis inert in K and the sign of the
functional equation oL.(E /K, s) is —1, to obtain gp-adic analytic construction of a
Heegner point in terms of the first derivative of an anticyclotopyiadic L-function.

It is worth observing that an analogous strategy has not (yet) been proven to work
in the case of the cyclotomi£,-extension ofQ. The difficulty is that of relating in a
natural way the construction of the cyclotomieadic L-function, which is defined in
terms of modular symbols, to theadic uniformization of Shimura curves. Schneider
[Sch] has proposed the definition ofpaadic L-function based on the notion, which
stems directly from the theory g#-adic uniformization, of rigid-analytic modular
symbol. Klingenberg [KI] has proven an exceptional zero formula similar to Theorem
1.1 for this rigid-analyticp-adic L-function. However, the relation (if any) between
Schneider’'sp-adic L-function and the cyclotomig-adic L-function considered in
[MTT] is at present mysterious.

The reader is also referred to Teitelbaum’s paper [T], where the thegpyaafic
uniformization of Shimura curves is used to formulate analogues of the conjectures
of [MTT] for cyclotomic p-adic L-functions attached to modular forms of higher
weight.

The proof by Greenberg and Stevens [GS] of the cyclotomic “exceptional zero”
formula of [MTT] follows a completely different strategy from the one of this paper,
and is based on Hida’s theory pfadic families of modular forms.

Finally, let us mention that Kato, Kurihara, and Tsuji [KKT] recently announced
more general results on the conjectures of [MTT], which make use of an Euler system
constructed by Kato from modular units in towers of modular function fields.

2. Definite quaternion algebras and graphs. We keep the notation and assump-
tions of the introduction. In particular, we recall thtis an imaginary quadratic field
and B is a definite quaternion algebra of discriminaht. Given a rational primé,
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and order9) of K andS of B, set
Ki:=K®7Zy, By :=B®Z,, Or:=0Q12,, S :=8SRZ,.
Denote by? =[] Z, the profinite completion of. Set
I%::K@Z é::B@Z é:=0®2=]_[0e, §:=S®2=HS5.

Fix an Eichler orderR of B of level N* p. Equip R with an orientation that is, a
collection of algebra homomorphisms

of :R— Z/0"Z, |NTp,
0, :R— Fp, ¢|N™.
The groupl.‘?X acts transitively (on the right) on the set of Eichler orders of level
N7 p by the rule
Sxb = (3_13“[;) NB.

The orientation orR induces an orientation ok« b, and the stabilizer of the oriented
orderR is equal toQ* R*. This sets up a bijection between the set of oriented Eichler
orders of levelN* p and the coset spad®* R*\B*. Likewise, there is a bijection

between the set of oriented Eicher orders of levelp modulo conjugation byB >
and the double coset space

R*\B*/B*.
Setl'} := Q;\R[1/p]* and, as in the introduction, |€t be the image in" of the
elements inR[1/p]* whose reduced norm has evgradic valuation.
LEmMMA 2.1 T hasindexin ;.
Proof. See [BD2, Lemma 1.5].

Let 7 be theBruhat-Tits treeassociated with the local algebi,. The set of
vertices¥'(7) of 7 is equal to the set of maximal orders B),. The seté(J) of
oriented edges of is equal to the set of oriented Eichler orders of leyeh B,,.
Thus,(7) can be identified with the coset spa@g R 7\ By, by mapping), € B
to R, *b), = b;lR,,bp. Similarly, if R, is a maximal order irB;, containingk,, we
identify 9°(7) with the coset spac& ; R 7\ B);. Define the graphs

G:=J/T, 4 :=9/T,.
By strong approximation (see [Vi, p. 61]), there is an identification

é(4y) = R*\B* /B~
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of the set of oriented edges@éf. with the set of conjugacy classes of oriented Eichler
orders of levelN * p.

Fixing a vertexvp of J gives rise to an orientation ¢f in the following way. A
vertex of7 is calledeven(respectivelypdd) if it has even (respectively, odd) distance
from vg. The direction of an edge is said to be positive if it goes from the even to the
odd vertex. Sinc& sends even vertices to even ones, and odd vertices to odd ones,
the orientation off induces an orientation &. Define a map

K E(G) — €(9y)

from the set of edges &f to the set of oriented edges @f., by mapping an edge
{v,v'} (modT) of 4, wherev andv’ are vertices off and we assume thatis even,
to the oriented edgey, v') (modT'y) of 4..

LemMMA 2.2 The mapc is a bijection.

Proof. Suppose that,v’) (modT';) = (u,u’) (modTI'y). Thus,thereig € 'y
such thatyv = u andyv’ = «’. If v andu are both eveny must belong td", and this
proves the injectivity ok. As for surjectivity,(v, v") (modT) is the image by of
{v,v'} (modT) if vis even, and ofwv, wv’'} (modT'), wherew is any element of
Iy —T,if vis odd.

Given two vertices andv’ of 7, write path(v, v’) for the natural image i#[%(%)]
of the unigue geodesic dhjoining v with v". For example, i andv’ are even vertices
joined by four consecutive edges, ez, e3, es, by our convention for orienting the
edges of7, pathv, v’) is the image inZ[€(9)] of e1 —ex +e3—e4.

There is a coboundary map

" L Z[V(9)] — Z[E€(9)],

which maps the image i’ (%) of an odd (respectively, even) vertexof J to the
image inZ[€(%)] of the formal sum of the edges @femanating from (respectively,
the opposite of this sum). There is also a boundary map

It Z[€(9)] — L[V (9],

which maps an edge to the differencev’ — v of its vertices, where is the even
vertex andv’ is the odd vertex ok. The integral homology (respectively, the in-
tegral cohomology) of the graph is defined byH1 (%, Z) = ker(d,) (respectively,
H1(4,7) = cokend*)).
Let
() ZIE(9]x Z[E(9)] — Z

be the pairing orZ[€(9)] defined by the rulde;, ¢;) := w,,é;;, where thee; are the
elements of the standard basisZif(%)] andw,, is the order of the stabilizer ifi
of a lift of ¢; to 7. Likewise, let

(o N LIV L[V (9] — £
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be the pairing o[V’ (%9)] defined by(v;, v;)) := w,,d;;, where they; are the elements
of the standard basis @[V (%)] andw,, is the order of the stabilizer ifi of a lift of
v;toJ.

We use the notatiotit to indicate the modulé?1(4, 7). Let T be the mgximal
torsion-free abelian quotient af. As in the introduction, Wrige'\f for Hom(T", 7).
Given an elemeny € T, denote byy the natural image of in T.

Lemma 2.3 (i) The map fromI to Hy(%,7) that sendsy e I to the cycle
path(vg, yvg), whereuvg is any vertex ofg and y is any lift of y to I', is an iso-
morphism.

(ii) The map fromit to N that sendsn < Jt to the homomorphism

y + (path(vo, yvo), m)
is injective and has finite cokernel.

Proof (Sketch). Part (i) is proved in [Se]. Part (ii) follows from part (i) and from
the fact that the maps* andd, are adjoint with respect to the pairings defined above.

Write .ilsp for the maximal torsion-free quotient af/(w +1).M, withw e 'y, —T'.
By part (i) of Lemma 2.3, the action @b € 'y — " on H1(%, Z) induces an action
of w on N'. Write N'sp for the maximal torsion-free quotient of/(w 4 1)N. We have
an induced map fronilsp to Ngp that is injective and has finite cokernel.

The moduleZ[¢(%9)] is equipped with the natural action of an algefirgenerated
overZ by the Hecke correspondencEsfor ¢ { N andU, for £ | N, coming from its
double coset description: see [BD1, Sec. 1.5]. The moHul&, 7) is stable under the
action of T. Hence, by part (i) of Lemma 2.3, the algeﬁfralso acts on the modules
andNsp. Let T andTsp denote the image daf in End(N) and End.Ngp), respectively.

Thus, there are natural surjectiohs> T — Tsp. By an abuse of notation, we denote
by 7, andU, also the natural images ih and Tsp of 7, andU;, .

The next proposition clarifies the relation between the modkilasdN'sp and the
theory of modular forms.

ProposiTION 2.4 Let¢ be an algebra homomorphism froin(respectivelyT's)
to C, and leta, := ¢(T,). Then, thez, are the Fourier coefficients of a normalized
eigenform of levelV, which is new atN ™ p (respectively, is new av~ p and is
split multiplicative atp). Conversely, any such modular form arises as above from a
character ofT (respectively[l'sp).

Proof. Eichler’s trace formula identifies the Hecke-moddl& (%)] with a space
of modular forms of levelV that are new atv —. Moreover, the algebrd can also
be viewed as the Hecke algebra of the modtldefined above, and Proposition 1.4
of [BD2] shows thatil is equal to the p-new” quotient ofZ[€(%)]. This proves
the statement of Proposition 2.4 concerning character§.ofhe abelian variety
associated to @-new modular formf is split multiplicative atp if and only if
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U, f = f. Moreover, the Atkin-Lehner involution atacts on g-new modular form
as—U,, and acts onit asT"/I". This concludes the proof of Proposition 2.4.

Modular parametrizations, I.We now make a specific choice of the operajor
(where f is the newform of levelNV attached taF) considered in the introduction. It
is used in formulating the results in the sequel of the paper.

As stated in Lemma 2.3; can be identified with the homology grou (4, Z) C
Z[€(%)]. Thus, when convenient, we tacitly view elementsTofs contained in
Z[€(%)]. The restriction of the pairing o@[€¢(%)] defined above td" yields the
monodromy pairingdenoted in the same way by an abuse of notation)

(,):I'x —Z.

Let Z[¢(9)]/ (respectively[/) be the submodule of[€(%)] (respectivelyl’) on
which T (respectively,T) acts via the character associated wjthNote that the
quotient ofZ[€(%)] by T is torsion free, and thus there is a canonical identification
7[€(9))/ =T/. Lete/ be a generator df/ ~ Z.

Define the “modular parametrizations”

7T — T, 7T > T
by 1. (e) := (e, e Vel andrz*(ef) :=e/. Since
(r*om)’ = (e, e/ )(*omy),

we obtain thatr* o 7, is equal tole’, e/ ) ;, wherer ; is the idempotent off ® Q
associated witly. From now on, we assume that the operatpis defined by

nyi=m"omy,

so that the integet ; is equal tofe/, /).

As observed in the introduction, the operatgr induces a map\' — Z, which
is well defined up to sign. Sincg has split multiplicative reduction ai, this map
factors through a map'sp — Z. By an abuse of notation, we indicate both of the
above maps by 7.

Remark 2.5. The modulel” can be identified with the character group associated
with the reduction modulg of Pic®(X), whereX is the Shimura curve considered
in the introduction. As is explained in Section 4, the mép ., on T is induced by
functoriality from a modular parametrization Pi&) — E.

3. The p-adic L-function. Let0, denote the order & of conductorp™, n > 0.
(We usually write0 instead 0f0g.) Equip the order§),, with compatible orientations,
that is, with compatible algebra homomorphisms

o0, > 770", {™INTp,
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0, :0, > Fa,  C|N.

An algebra homomorphism df, into an oriented Eichler orde§ of level N*p
is called anoriented optimal embedding it respects the orientation of, and on
S, and does not extend to an embedding of a larger orderdntGonsider pairs
(Re. &), whereR; is an oriented Eichler order of leval™ p and¢ is an element of
Hom(K, B) that restricts to an oriented optimal embeddingpfinto Re. A Gross
point of conductorp™ (n > 0) is a pair as above, taken modulo the actiorBdf
By our previous remarks, a Gross point can be viewed naturally as an element of
the double coset space

W = (R*\B* x Hom(K, B))/B*.
(See [Gr, Sec. 3] for more details.) Strong approximation gives the identification
W = ((J) x Hom(K, B))/ 4.

By Lemma 2.2, there is a natural map&imodulesZ[W] — Z[€(%)], whereZ[W]
is the module of finite formaZ-linear combinations of elements #. The Hecke
algebraT of Z[€(%)] acts naturally also o@[W] (see [BD1, Sec. 1.5]), in such a
way that the above map i-equivariant.

The groupG, = Pic(0,) = 6X\K*/K* acts simply transitively on the Gross
points of conductoep” by the rule

o(Re. &) == (RexE(0)71,8),

whereé denotes the extension &fto a map fromk to B.

Now, fix a Gross pointPy = (Ro, &9) (mod B*) of conductorc. By the above
identification, Py corresponds to a paiieo, &) <€ %(g) x Hom(K, B), modulo the
action of I'y. As above, the origing of ¢p determines an orientation ¢f. Let
¢ be one of thep oriented edges offi originating fromep. All the Gross points
corresponding to pair&, &) as above have conductap, except for one, which has
conductore. Fix an end

(0,21, ....8n,...)
such thatey, &) defines a Gross point of conductgr. Then,(e,,, &o) defines a Gross
point P, of conductorcp”, for all n > 0.
Denote by Norng,, /s, the norm operato}, cayn, ./ #,) &-

LemMA 3.1 (1) Letu = (1/2)#0*. The equality
UpPo=uNormy, /g, P1+0p Py

holds inZ[W] for a primep abovep, whereoy, € Gal(Ho/K) denotes the image of
p by the Artin map.
(2) Forn > 1,
Up P, =Normy, ,/u, Ppy1.
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Proof. The proof follows from the definition of the operatty, (see [BD1, Sec.
1.5]) and the action of P{©,) on the Gross points.

Figure 1, drawn in the case whepe= 2, illustrates geometrically the relation
between the Galois action and the action of the Hecke correspondgnce

FIGURE 1

By Lemma 2.3, the natural map fro&{ W] to Z[¢(%9)] induces maps frord[W]
to the modules\" and N'sp. These maps are Hecke-equivariant.

The Gross points, give rise to ap-adic distribution onG,, with values in the
moduleNsp as follows. Giverg € G,,, denote bye;; the natural image o in Ngp.
Forn > 0, define the truncategd-adic L-function

$p7n(Nsp/K) = Z e§~g_l eNsp®Z[Gn]
8<Gy

Note that¥, , (Nsp/K) is well defined up to multiplication by elements Gf,.
Forn > 1, letv, : Z[G,] — Z[G,—1] be the natural projection of groups rings.

LemMA 3.2 (1) The equality
v1(Ep1(Nsp/K)) = u™ (1= 0p) L) 0(Nsp/ K )

holds inNsp® Z[Go].
(2) For n > 2, the equality

Vn (ﬁgp,n (Nsp/K)) = gp,n—l(NSP/K)
holds inNsp® Z[G,—1].
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Proof. By Proposition 2.4, the operatéf, acts ast-1 on.Ngp. The claim follows
from Lemma 3.1 and the fact thafp is torsion free.

Define thep-adic L-function attached tdV'sp to be

Lp(Nsp/K) :=1im L), (Nsp/K) € Nsp@Z[Gox -
n

We now define thg-adic L-function attached t&'. Observe that the maximal quotient
' of T on whichT acts via the character associated witfis isomorphic toZ. Let
ey be a generator olf‘f. The monodromy pairing oit induces aZ-valued pairing
on[/ x T's. Write ¢, for the positive integef(e/, e f)|.

Lemma 3.3 The elementn r ®id)(£,(Nsp/K)) € Z[[Goo]l is divisible byc),.

Proof. Consider the maps
s Z[€(9)] — Z[€(9)), A% 2[€(9)) — Z[€(9))

defined by, (e) := (e, e )ef and7*(ef) := e/. (The modular parametrizations
ands* introduced in Section 2 are obtained from these maps by restriction.) Hence,
il = 7* o7, is an element off, equal to(e/, e/)7 ¢, wheres s is the idempotent

in T® Q associated withy'. We have a commutative diagram

7[Eé(9)] —= N

ol

Z1€(9)) — N/,

where the upper horizontal map is defined in Lemma 2.3, and the lower horizontal map
is the restriction of the upper one. Note thét is equal to Honal" ;, Z) and therefore

is generated by the homomorphism — 1. With our choices of generators for
Z[€(%)]/ andN'/, the lower map of the above diagram is described as multiplication
by the integere”, ey). The proof of Lemma 3.2 also shows that mapping the Gross
points of conductorp” to Z[€(9)]/ by the mapi) ; yields a p-adic distribution

in Z[€(9)]/ ® Z[[Gs1l. By the above diagram, the image of this distribution in
N @Z[[Guo]l is equal to(n r ®id) (£, (Nsp/K)). This proves the lemma.

Remark 3.4. In Section 4, we show that the integérsandc, are equal.

Define thep-adic L-function attached t& to be
Lp(E/K) =, (17 ®id)(£,(Nsp/K)) € Z[Gooll.

Observe thatt,(Nsp/K) and £,(E/K) are well defined up to multiplication by
elements of5 .
Recall the quantitie ; andd defined in the introduction.
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THEOREM 3.5 Let x : G, — C* be a finite-order character of conductop”,
with n > 1. Then the equality

L(E/K,x,1
() = HE L2 0

holds.
Proof. See [Gr], [Dag], and [BD1, Sec. 2.10].

Remark 3.6. (1) Theorem 3.5 suggests tHéf, (E/K) should really be viewed as
the square root of a-adic L-function, and hence we should define the anticyclotomic
p-adicL-function of E to be¥ ,(E/K)®¥,(E/K)*, wherex denotes the involution
of Z[[Gs 1l given on grouplike elements ky+— g~1. See Section 2.7 of [BD1] for
more details.

(2) More generally, the-adic L-function¥ , (Nsp/ K) interpolates special values of
the complex_-series attached to the modular formsTogp (described in Proposition
2.4).

Let op be as in Lemma 3.1. Denote By the subextension afly that is fixed by
op, and set

G, :=Gal(H,/H), Goo :=Gal(Hs/H),

Y :=Gal(Ho/H) = Go, A :=Gal(H/K).

Note the exact sequences of Galois groups

0—-G,—G,—> A—=0,

0— Goo—> G —> A—0.

The groupA is naturally identified with the Picard group Rigl/p]), andG is
equal to the image of the reciprocity mapI;ecQ; — Geo (Where we identifie@;
with K ). Let I be the kernel of the augmentation mapG..1l — Z, and let/x be
the kernel of the augmentation mafGy ]l — Z[Al.

LemMA 3.7. (i) £,(Nsp/K) belongs toNsp® /a.
(i) £,(E/K) belongs tol.

Proof. There are canonical isomorphisms
ZIGooll/In = ZIGnl/In n = ZIA],

where I ,, is the natural image of in Z[G,]. By Lemma 3.2, the image of
£p(Nsp/K) in Ngp® (Z[[Gooll/1a) is equal to the image df ), 1(Nsp/K) in Ngp®
(Z[G1]/1a,1) = Nsp® Z[A]. The first part of the lemma now follows from Lemma
3.2(1). The second part follows directly from the first.
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Since I, is contained in/, the element¥,(Nsp/K) belongs toNsp® I and
£,(E/K) belongs tol. Denote by

Ep(Nsp/K), &, (Nsp/ H)

the natural image off,(Nsp/K) in Nsp® I/12 = Nsp® G and Nsp® In /13 =
Nep® Z[A]1® G, respectively. Likewise, let

E(E/K),  L(E/H)

be the natural image ¢f,(E/K) in I/12 =Gy andia /1% = Z[A1® G oo, respec-
tively. The above elements should be viewed as derivativgsadic L-functions at
the central point.

In order to carry out the calculations of the next sections, it is useful to observe
that the derivative§£’p(N sp/K) and 58;,(N sp/ H) can be expressed in terms of the
derivatives of certain partigh-adic L-functions. Set := #(A). Fix Gross points of
conductore,

Po=PE,..., P,
corresponding to pairSR",éé), i =1,...,h, which are representatives for the

orbits of the Gross points of conducter Writing [Pé] for the T-orbit of P!, let §;
be the element oA such that

[5:Pg] = [Po].

Suppose thaPé corresponds to a paiéo (i), 56) € %(?I) x Hom(K, B), modulo the
action of'y. Fix ends

(é0(i), €100, ..., €n (i), ...)
such that(El(i),sé) defines a Gross point of conductgr. Thus, (¢, (), 56) defines

a Gross pointP,i of conductorcp”, for all n > 0. Forg € G, lete, (i)® denote the
natural image of P)$ in Ngp. Let

Lpn(Nsp/ H PY) =Y en(i)® g7 € Nsp®ZIG].
8€Gy

The proof of Lemma 3.2 also shows that the eleménts (Nsp/ H, Pé) are compat-
ible under the maps induced by the natural projections of group rings. Thus, we may
define the partiap-adic L-function attached ta(sp and P to be

p(Nsp/H, PY) :=1im £, ,(Nsp/ H, P§) € Nsp® ZI[G oo ]l.

n

We observe thatt, (Nsp/H, Pé) depends only on th&-orbit of Pé, up to multipli-
cation by elements of/ .
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Let 7 be the kernel of the augmentation MAPG ]| — Z. Like in the proof of
Lemma 3.7, one checks thm,,(Nsp/_H, Py) belongs toly. Write £, (Nsp/ H, Pp)
for the natural image of ,(Nsp/ H, P§) in Nsp® I /15 = Nsp® Goo. Thus,

&, (Nsp/H, Pg) =lim £}, , (Nsp/ H, P§),
n

where

(3) g/p,n (Nsp/H, Pé) = Z en (l)g ®g—l
8€G,

We obtain the following lemma directly.

Lemma 3.8 (i)
h

91 (oK) = 38 (s H, ).
i=1

(ii)

& (Nsp/H) =Y £, (Nsp/ H, P) 87",
i=1

4. The theory of p-adic uniformization of Shimura curves. For more details
on the results stated in this section, the reader is referred to [BC], [C], [Dr], [GvdP],
and [BD2].

Let % be the indefinite quaternion algebra o¥@rof discriminantN~ p, and let
% be an Eichler order of3 of level NT. Denote byX the Shimura curve ove®
associated with the ordét. We refer the reader to [BC] and [BD2, Sec. 4] for the
definition of X via moduli. Here we content ourselves with recalling Cherednik’s
theorem, which describes a rigid-analytic uniformizatiorXofWrite

¥#,:=C,—Q,

for the p-adic upper half plane. The group &1Q ) acts (on the left) ofit,, by linear
fractional transformations. Thus, fixing an isomorphism

VB, > Ma(Qp)

induces an action of on ¥,. This action is discontinuous, and the rigid-analytic
quotientl’\ %, defines theC ,-points of a nonsingular cur over Q. The curves

X and% are equipped with the action of Hecke algebfigs and Ty, respectively
(see [BC], [BD1)).

By Lemma 2.1, the action df ./ I" induces an involutiori¥V of ¥. Let sz be
the unique unramified quadratic extension®f contained inC,, and letz be the
generator of GQQPZ/QP). Denote byy € H1((t), Aut(%)) the class of the cocycle
mappingr to W, and writeX" for the curve ovefQ, obtained by twistingt by f.
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THEOREM 4.1 (Cherednik) There is a Hecke-equivariant isomorphisfr~ %7 of
curves ovel,. In particular, X and% are isomorphic ovefQ ,>.
Proof. See [C], [Dr], [BC].

Building on Theorem 4.1, the results in [GvdP] yield a rigid-analytic description
of the jacobian oX. If D=P1+---+P.—Q1—---—Q, € Divo(%p) is a divisor of
degree zero of,, define the theta function

‘ B (Z_ePl)...(Z—GPr)
¥ (z; D)—l_[ (z—€Q1)---(z—€Q,)

ecl’

Write § for the natural image i of an elemens of I". For all § in T, the above
theta function satisfies the functional equation

9(32; D) = ¢ (5)9 (z: D),

where¢p is an element of Honf, (C;) =NQ® (C; that does not depend an For
y €T, the numbetp(, ;)_(;)(§) does not depend on the choicezaf ¥, and depends
only on the image of in T'. This gives rise to a pairing
[,]:Tx[ — Q.

The pairing[ , ]is bilinear and symmetric. The next proposition explains the relation
betweer( , ] and the monodromy pairing, ) : I’ x I' — Z defined in Section 2.

ProposITION 4.2 The pairings(, ) andord, o[ , ] are equal.

Proof. See [M, Th. 7.6].

It follows that ord, o[ , ] is positive definite, so that the map
j:I— N®Q,

induced by , ] is injective and has discrete image. et= j(I"). Given a divisor
D of degree-zero off(C,) =T'\¥,,, let D denote an arbitrary lift to a degree-zero
divisor on3(,. The automorphy factap; depends on the choice of the lify, but
its image in(N®C )/ A depends only o®. Thus, the assignmeii? — ¢ 5 gives a

well-defined map from D@ (C)) to (N® C)/A.

ProrosiTiION 4.3 The marDivo(%((Cp)) — (N®(C;)/A defined above is trivial
on the group of principal divisors and induces a Hecke-equivariant isomorphism from
the C,,-points of the jacobiary of % to (W@ C )/ A.

Proof. See [GvdP, VI.2 and VII.4] and also [BC, Ch. Il].

Let
P:NQCH — 9(C))
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stand for the map induced by (the inverse of) the isomorphism defined in Proposition
4.3.

Modular parametrizations, Il. The mapn s : N — Z defined in Section 2 induces
a map
nr@®id: N@Cj — C7.
The Jacquet-Langlands correspondence [JL] implies that the quotient abelian variety
nyJ is an elliptic curveQ-isogenous taE. From now on, we assume that=nJ
is thestrong Weil curvdor the parametrization by the Shimura cut¥eBy an abuse
of notation, we denote by also the surjective map

J(Cp) = E(C)p)

induced by ¢.
Let A/ be the submodule ok on whichT acts via the charactey;.

ProrosiTION 4.4 The kernekIZ of &1ate is canonically equal to the module’,
and the diagram

0——>A—>N®CH 25 9(C,)) —>0

|

d ate
0 A Cx - E(Cp) —>0

is Hecke-equivariant and commutes up to sign.

Proof. The rightmost square in the above diagram is a consequence of Proposition
4.3, combined with Theorem 4.1 and the fact tlfais split-multiplicative atp. In
order to obtain the leftmost square, it is enough to prove that the kernetgf is
equal toA/. Note that the targe€x = N/ @ Cx of the mapy; ®id is naturally a
submodule of¥' ® C*, since the quotient of’ by N/ is torsion free. By definition,
E(C,) may similarly be viewed as an abelian subvariety$of ). It follows that
d1ate can be described as the restrictiordofo (C;. In particular, ke(®ate) is equal

to ANCJ. In turn, this last module is equal /.

CoroLLARY 4.5, The integerc, = |(ef,ef)| (introduced in Lemma 3.3) is equal
tocp.

Proof. Working through the definition of the maps in the diagram of Proposition
4.4 shows thale’, e ] is equal tog*L. The claim follows from Proposition 4.2.

5. p-adic Shintani cycles and special values of complei-functions. Let Pp =
(Ro,&0) (mod B*) be a Gross point of conducter The point Py determines g-
adic cyclec(Pp) € I' in the following way. By strong approximation, we may assume
that the representativigRo, &o) for Pp is such that the oriented ordeRryp[1/p] and
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R[1/p] are equal. Thust induces an embedding 6f1/p] into R[1/p], which we
still denote by&g. The image by of a fundamentap-unit in O[1/p], having norm
of even p-adic valuation, determines an element= y (Pp) of I". This element is
well defined up to conjugation and up to inversion, and up to multiplication by the
image of torsion elements 6f<.

More explicitly, write k for the order ofo}, in Pic(0) (whereoy, is as in Lemma
3.1), and sep* = (v) with v € 0. Let: be 1 (respectively, 2) i is even (respectively,
odd). Theny is the image otp(v)* in T.

Definition. The p-adic Shintani cycle = c¢(Pg) attached taPy is the natural image
ofyinT.

'i'/his terminology is justified in Remark 5.4 below. Observe it well defined
up to sign.

Denote byZ[€(%9)]spthe maximal torsion-free quotient 4{€(9)]/(w+1) Z[€(9)],
wherew is any element of', —T". Recall the elemeri}; € T defined in the proof of
Lemma 3.3, mapping tg, by the natural projectiofff — T. The next lemma relates
the p-adic cyclec to the image inV'sp of the Gross poini.

LemmMa 5.1 The natural images iZ[€(9)]sp of c and ), .5 1 Pg are equal. In
particular, n ¢ is equal to the image of_, .5 t (77 Pg) in Z[€(9)].

Proof. (In order to visualize the geometric content of this proof, the reader may
find it helpful to refer to Figure 1 in Section 3.) SBt:= a,’;Po, fori =0,...,k—1.
By Lemma 3.1(1) and the definition of the action@f on the Bruhat-Tits tree, we
can fix representative@;, &y) for the Gross point®; so that theg; are consecutive
oriented edges df . With notation as at the beginning of this sectionlete I'y be
the image o&p(v). Thus,y = . Call vg the origin ofep. If « = 1, the even vertex
of the edger;_1 is equal toyvp. If « = 2, that is,y; belongs tal'y — T, then

€0, .-+ €k—1,V+€0, .-+, V+€k—1

is a sequence of consecutive oriented edges, and the even vepte}af is equal
to yvo. Note that)__ .+ ¢ P§ is equal inZ[%(%r)] toeg+e1+---+ex—1if t=1and
equal to

eoter+---+er1+yreotyrert- - +yiéio1
if : = 2. Denote by; the unoriented edge &f corresponding t@;, and letw be any
element ofl";. —T'". By the definition of the bijectior of Lemma 2.2, the following
equalities hold irZ[€(9)]:

K_l(50+"'+zk—1) =egtwer+--+er—2twer—1 if t=1,

Kk (@0t E1+ vt yrlrt -+ ypéio1) = eo+wer -
+er—1+w(yyeo)+ (yre) +-Fw(yper—1) if =2
Projecting the right-hand sides of the above equalities[#(9)]sp, and taking into
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account the fact thab acts as—1 on this module, gives in both cases pgathy vo).

The next proposition elucidates the relation between pgkadic Shintani cycle
defined above and the special values of the compléunction of E/K . Following
the notation of Section 3, fix Gross poinks = Pol, o Pé’ that are representatives
for the X-orbits of the Gross points of conductgrand list the elements &f so that
[6: P31 = [P}], where[ P}] denotes thez-orbit of P;. As above, the Gross poilf,
determines g-adic Shintani cycle; € I, with ¢; = ¢. Given a complex character
x:A— C*of A, set

h
cyi= Y G ®8 e RZ[A]
i=1
h
ko= x(en) =) a®x ()t eT®ZIx].
i=1
If x is the trivial character, we also writg as a shorthand term fek , . Extend the
pairing (, ) onT to a hermitian pairing ofr ® Z[ x .

ProrosITION 5.2 Suppose thay is primitive. The following equality holds:

L(E/K,x,1)
<77fCK,Xy CK,)() = /Q—f\/g (tu)z-nf.

Proof. In view of Lemma 5.1, this is simply a restatement of the results of [Gr]
and [Dag].

Recall the mapg : ' — N®Q, andn;®id : N@C) — C defined in Section 4.
By abuse of notation, we denote the maps obtained by extending scalArg]tm
the same way.

CoroLLARY 5.3 The equality
(nyRid)(j (ck,x)) =q®p
holds inQ; ®Z[x], wherep € Z[x] satisfies

Qr \/E-(Lu)z-nf.

Proof. By Proposition 4.4 combined with the definitionpf given in Section 2,
p is equal to(ck ,,e') € Z[x]. Hence
1012 =(ck.y el Ve ek y)
= (”fCK,X’ CK,X)'

The claim follows from Proposition 5.2.
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Remark 5.4.Let F be a real quadratic field and lgt : F — M»2(Q) be an
embedding. Assume thdt maps the ring of integerSr to the Eichler ordeMo(N)
of integral matrices with lower-left entry divisible hy. Since the homology group
H1(Xo(N),Z) can be identified with the maximal torsion-free abelian quotient of
Co(N), the image by of a fundamental unit iz of norm 1 determines an integral
homology cycles € H1(Xo(N), Z). Shintani [Sh] proved that the cycleencodes
the special values of the classidalseries overF' attached to newforms oKo(N).
In light of Proposition 5.2, the elementcan be viewed as p-adic analogue of the
cycles.

6. p-adic Shintani cycles and derivatives ofp-adic L-functions. Let Py be a
Gross point of conductor. In Section 5, we attached tB a p-adic cyclec € T,
and proved in Proposition 5.2 thats related to the special values of the complex
L-function of E/K . Our main result (Theorem 6.1 below) shows thitalso related
to the first derivative of the-adic L-function defined in Section 3. By combining
these results, we obtain Theorem 1.1.

Write j for the composite map

r L%N@Q; —>Nsp®Q;< —> Nsp® Goo,

where the second map is induced by the natural projectioki ohto Nsp, and the
third map is induced by rec Q; — Goo. Our main result is the following.

THEOREM 6.1 The following equality holds up to sign isp® Goo:
', (Nsp/H, Po)" = j (o).

Recall the definition of the elementg andcx given in Section 5. By Lemma 3.8,
we obtain the following corollary directly.

CoroLLARY 6.2 (i) The following equality holds up to sign ¥gp® Z[A]® G oo:
%, (Nsp/ H)' = j(c)-

(if) The following equality holds up to sign Msp® G oo
L (Nsp/ K)' = j (cx).

By applying the operaton s to both sides of the equalities of Corollary 6.2, and
using Corollary 4.5 and the definitions of tpeadic L-functions attached t&'sp and
E, we find the following.

CoroLLARY 6.3 (i) The following equality holds up to sign F{A] ® G «:

cpifi,(E/H)‘ =l(nch).
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(ii) The following equality holds up to sign @:
cpL(E/K) = j(nsex).
Proof of Theorem 1.1.Combine Corollary 6.3 with Corollary 5.3.

By combining Corollary 6.3 with Corollary 5.3, we also obtain the following gen-
eralization of Theorem 1.1. Léf;(E/K, x) stand for the elemer)@(LP;)(E/H)) of
G ®Z[X]-

THEOREM 6.4 Suppose thaj is primitive. The following equalities hold up to
sign:

. 1
cpilf;(E/K, X)=rec,(g)®p INGxo®Z [5} [x]

and rec, (q)
/ _ q ;
LL(E/K, x) = ord, (@) ®p INGu®Q[x],

where LEIK. 4.1
|,0|2= M-dl/zuznf.
Qf

COROLLARY 6.5, The derivativec%;)(E/K, x) is nonzero inG ® Q[x] if and
only if the classical special value(E/K, x, 1) is nonzero.

Proof. By Theorem 6.4, one is reduced to showing that,(gg is a nontorsion
element ofG.; that is,q”~* does not belong to the kernel of the reciprocity map.
But elements in this kernel are algebraic o@grandg is known to be transcendental
by a result of Barré-Sirieix, Diaz, Gramain, and Philibert [B-SDGP].

Remark 6.6. Theorem 1.1 was conjectured in [BD1, Sec. 5.1]in a slightly different
form. We conclude this section by studying the compatibility of Theorem 1.1 (and its
generalization Theorem 6.4) with the conjectures of [BD1]. For simplicity, assume
throughout this remark that the elliptic curgeis semistable so tha&¥ is squarefree,
and thatE is isolated in its isogeny class so that the action of(@a(@) on the
¢-torsion points ofE is irreducible for all primed.

Let p1--- puq1--- g, be a prime factorization of the squarefree integdfr—, with
p1 = p. Denote byX; the Shimura curveX, and by X, 1 the classical modular
curve Xo(N). Fori = 2,...,n, denote byX; the Shimura curve associated with an
Eichler order of levelN T p1--- p;_1g1---gi—1 in the indefinite quaternion algebra
of discriminantp; --- pnq; - --q. Since E is modular, the Jacquet-Langlands corre-
spondence [JL] implies that is parametrized by the jacobiah of the curveX;,
i=1,...,n+1. Let

¢i:Ji— E

be thestrongWeil parametrization oE by J;. Thus, the morphism; has connected
kernel, and its duap,” : E — J; is injective. The endomorphisi; o ¢, of E is
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multiplication by an intege#ly, , called thedegreeof the modular parametrization of
E by the Shimura curve;.
If £| N, denote by, the order of the group of connected componentg it ¢.

THEOREM 6.7 (Ribet-Takahashi) Under our assumptions
0] p
Xo(N) .
;—X = Cp1° CpyCq1 " Cqy>

(ii)
<ef,ef> =dxcp.
Proof. Part (i) follows from Theorem 1 of [RT]. Part (ii) follows from Section 2
of [RT]. The results of [RT] exclude the case whe¥e is prime, but a forthcoming
paper of Takahashi will deal with this case as well.

By combining Theorem 6.7 with the relatia®d; = dx,v) - Q£, WhereQg is the
complex period ofE, we find that the formula of Theorem 1.1 (and likewise for
Theorem 6.4) becomes

’ _ rec,(q) -1 41/2,2 -1
§£p(E/K)——Ordp(q)\/L(E/K,l)QE d¥2y };[_ce :

which is the same as Conjecture 5.3 of [BD1].

7. Proof of Theorem 6.1. First, we give an explicit description of certain group
actions on thep-adic upper half plane and on the Bruhat-Tits tree depending on our
choice of a Gross poin®y of conductore. Then, we compute the valyéc), for ¢ as
in Sections 5 and 6. a

I. Group actions o1, andJ. LetK,:= K®Q,. Our choice of a prime above
p determines an identification &f , = Ky, x K with Q, x Q,,.

As in Section 5, choose a representaiiRg, &o) for the Gross pointPy such that
Ro[1/p] andR[1/p] are equal. Leteo, £0) be a pair corresponding #®y, and denote
by vg the origin ofég. SetRo,, := Ro®Z,, and Iet@o’p be the maximal order a8,
corresponding t@g. Recall the isomorphism

VB, —> Ma(Qp)

fixed in Section 4. We may, and do from now on, chogsso that
0 v mapsR,, , onto M>(Z);
(i) ¥ ofo maps(x,y) € K, = Q, x Q,, to the diagonal matrig 2).
Condition (i) allows us to identifyi = Q;gap\B; with PGLZ(Z,,)V\ PGL2(Q)).
Viewing K as a subgroup of GI(Q,) thanks to the embedding o & yields
actions ofK; on¥, and ong = PGL(Z,)\PGLx(Q),), factoring through(;/@;.
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Identify this last group witlQ ; by mapping a paitx, y) moduloQ; to xy~ L. Under
this identification, an elementof Q;; acts onj(;, as multiplication byx, and on7
as conjugation by the matri 9).

Recall the element € 0 C K defined in Section 5 by* = (v). Identify, as
above,v with an elementw of Q;. Note thatw is equal top* times ap-adic unit.
SetGo = Q= plx Z%. Define the quotients oF oo,

i:@;/z;:pz, Gn ::pZX(Zp/anp)X, nzl

To simplify slightly the computation, assume from now on that= {£1}. (If 6> £
{£1}, thenK has discriminant-3 or —4, and the exact sequences below have to be
modified to account for the nontrivial units 6f The computations in this case follow
closely those presented in the paper.) Class field theory yields the exact sequence

- rec,
0— (w) > Goo —> G —0

and the induced sequences
0— (w)—> X —> -0, 0—><w)—>én—>Gn—>0.

Forn > 0, denote b)ZfD”) C G the subgroup of elements d@f; that are congruent
to one modulop”.

Definition. We say that a vertex of J haslevel n, and write£(v) = n, if the
stabilizer ofv for the action ofG, is equal toZﬁ,"). Likewise, we say that an edge
e of I haslevel n, and writef(e) = n, if the stabilizer ofe for the action ofG  is
7. o

Note that the grous, (X if n = 0) acts simply transitively on the vertices and
edges of leveh. By definition of the action ofG+, on 7, vg is a vertex of level 0.
Thus, the set of vertices of level 0 is equal to @rbit of vg. More generally, the set
of vertices of leveh can be described as tl6&,-orbit of a vertexv, whose distance
from vg is n and whose distance from all the other vertices in the akbi is > n.

By using the standard coordinate, ident®}(C,) with C, U {co} and%,, with
P1(C,) — P1(Q)). In particular, view 0 ando as elements oP1(Q,). Recall the
elementy = y(Py) of I' defined in Section 5. Since the reduced normyohas
positive valuation, our choice of the isomorphignyields
4 lim y"z=0, lim y"z=o00

n—400 n——o0o
for all z € %,. Note also that 0 ando are the fixed points for the action Of -, 0N
PL(C,).

Let %,(Q,2) = Q,2 — Q) be theQ .-points of thep-adic upper half plane.

Define thereduction map
r: %,,(sz) — V(T)
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as follows. Givery € %p(sz), let2, denote the stabilizer afin GL2(Q,), together
with the zero matrix. TheR is a field isomorphic tCsz, and this gives rise to an
embedding ofQ 2 in M2(Q,) (well defined up to an isomorphism &} ,2). Write
sz for the ring of integers Osz, and letS be the unique maximal order 81>(Q )
containing the image df_’pz by the above embedding. We haue) = S. (See also
[BD2, Sec. 1].)

LeEmMA 7.1 (1) The reduction map is GL2(Q))-equivariant. In particulary is
equivariant for the group actions defined above.

(QWrite Z .2 = Z,a+7,. We have(vo) = Z5a +Z,,.

(3) If z1 and zz are mapped by to adjacent vertices of respective levelsand
n+1, thenziz,t =1 (mod p*).

Proof. (1) Letz be an element (ﬁfp(Q[,z), and letB be a matrix in G(Q)). If
Q2 — M2(Q)) is an embedding fixing, thenBf B~1 is an embedding fixing
Bz. Suppose thaf is the maximal ideal containing(Z ,2). ThenBSB~! = SxB~*
is the maximal ideal containing the image&f. by BfB~L1. Thus,r(Bz) = S*B1,
as was to be shown.

(2) Assume thap is greater than 2. Then, we may assume that /v, where
the integemw is not a square modulp. (The case wherg = 2 can be dealt with in a
similar way—for instance, by taking = (1++/—3)/2.) A direct computation shows

that
b av
o= |0 ) canen)

Mapping the above matrix t@,/v + b yields an isomorphism of ;5 ontoQ,.. Thus,
r(/v) is equal tovg = Ma(Z ). Givenz = a/v+b € #,(Q,2), we haver = B./v,
whereB is the matrix(4 4). By (1),

r(z) = BMa(Z,) B~

But BM»(Z,) Bt = M»(Z,) if and only if B belongs to Gk(Z ), that is,a belongs
toZ%.

(33 Setr(z1) = v1 andr(z2) = v2. The edge joining; to v2 has levek 4 1. Since
Goo = Q} acts transitively on the edges of levet-1, there isg € Q; such thagv,
andgv, have distance fromg equal tor andn + 1, respectively. With notation as in
the proof of (2) of this proposition, writez; = a;/v+b;,i = 1,2, wherea;, b; € Z,,,
ged(ai, b)) =1, andp” || a1, p"t1 || ap. Thus, the vertexw; is represented by the

matrix
o a; bi
= (3)

Our assumption ogv; and gv, implies that the columr(”f) of Ay is aZ,-linear
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combination of the columns of1. It follows thatb; = b» (mod p™), and hence

2125t = gz1(gz2) = 1(modp").

IIl. The calculation. Givens e I', write as usuab for the natural image of in T".
We now compute explicitly the value gf(c)(8) = [c, 8], for § € I'. We begin with
the following lemma.

LEMMA 7.2 Givens € I", we have
820

_ €
JjO®=11—,

€20
eed
wherezg is any element ir¥,, and¥ is any set of representatives for)\T".

Proof (Cf. [M, Th. 2.8)). Let¥ be any set of representatives 10f(y). In view
of the formulae (4), for anyo anda in ¥, we have the chain of equalities

j(c)(g) _ l_[ Z0—€a .8zo—€ya

z0—€ya d8zp—e€a

eel’
- _ n+i, _ n
eey’/n=7<>ozo €y"tla  Szo—ey"a
-N
a 8zo—eyVN
—1_[ lim 14 Y

N—+00 zo—eyN“a Sz0—€y~ Na

_ 1—[ z0—€00 8z0—€0
N z20—€0 d8zp—€o0

E /

_ 1—[ 1810

eey’

Note that(9") 1 is a set of representatives fgr)\I", and any set of representatives
for (y)\I' can be obtained in this way. The claim follows.

LeEmMMA 7.3 Letd be an edge off, letn be a positive integer, and 1ét be a set
of representatives fofy)\I'. Then the sefe € & : £(ed) < n} is finite.

Proof. If {¢;} is a sequence of distinct elementsso$uch that (¢;d) < n, we can
find integersk; such that/%i¢;d describes only finitely many edges. This contradicts
the discreteness df.

We say that two elements dfarelinearly independenif they generate a rank-two
free abelian subgroup af.

ProposiTION 7.4 (1) Suppose that and§ are linearly independent ift. There
exists a setf of representatives fofy)\I' such that ife belongs to¥, then all the
elements of the cosets) belong to¥.
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(2) There exists a sét = %o [ ¥1 of representatives fofy)\I" such that
(i) the set¥y contains a finite number of elements that are mapped by the
isomorphismy to diagonal matrices oPGL2(Q));
(i) if € belongs ta#1, then all the elements of the cogéy ) belong to¥;.

Proof (Cf. [M, Lemma 2.7]. (1) Consider a decomposition df as a disjoint
union of double cosets
r=]Jwe®.
écy
We claim that we may take to be{és™ : € € &, m € Z). For, if €™ = y"és", we
find 8"~ = é~1y7&. Projecting this relation t® givesm = n.
(2) Consider a decomposition bfas a disjoint union of double cosets

r=]Jwew).
3%

Define¥; to be the set of elements Bfof the forméy™, m € Z, whereé € & is such
that(y)ey" # (y)ey™ whenevem # n. As for ¥, we claim that it can be taken to
be the set of elementse ¥ that do not satisfy the above condition. In such a case,
there is a relationy’éy" = éy™ for integersr andm # n. Then,y” = éy™ "1,

By projecting this equality t&", we see thatz —n = r, and hencé andy” commute.

Sincey” is mapped byy to the diagonal matri><%r &’) where ord(w) =k > 0, a
direct computation shows thatis also diagonal (and thus commutes with Now
consider the group of all the diagonal matricegifl"). Sincel is discrete, this group

is the product of a finite group by a cyclic group containing the group generated by

y. In conclusion, the sefy is finite, and

[[mewy=1]we

eedoy €eSo

The claim follows.

In the computation oz(c)(a_), we can assume that either

(I) cand$ are linearly independent; or

(n s=c.
(In fact, if the rank ofl" is greater than 1, it is enough to consider elements as in the
first case, since the linear majc) is completely determined by the valug&)(s),
for ¢ and$ linearly independent.) In case (1), we use the notaffan= &, and the
symbol¥; always refers to a choice of representatives(for\I" as in Proposition
7.4(1). In case (1), the symbét = ¥ [ [ &1 stands for a choice of representatives as
in Proposition 7.4(2).

LEmma 7.5 Letd € I be as in case (1) or (Il) above. Then, the imagessin by
the reciprocity map of (¢)(8) and ]_[66916&0/620 are equal.
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Proof. Incase (l), there is nothing to prove. In case (Il), Proposition 7.4 combined
with a direct computation shows that

€Y20

| | V20 _ y#o),
€

GESPO <0

Sincew is in the kernel of the reciprocity map, the claim follows.

By Lemma 7.5, we are now reduced to computing the profifict,. e5zo/ezo,
with § as in case (1) or ().

We begin with some preliminary remarks. Fix an edgaf level equal to an odd
integern, havingv as its vertex of levek. Moreover, assume that the distancevof
from v is also equal ta:. Note that the image it of e is equal to the image it
of a Gross point of conductep”.

Givené € G, defineu; to be equal to 1 (respectively1) if 5v has odd (respec-
tively, even) distance fromyg. If ¢ = 1, observe thati; depends only on the image
o of & in ¥ under the projection induced by the reciprocity map; in this case, we
write us instead ofus. If 1 = 2, thenu; is constant on the elemerdsthat have the
same image irE and p-adic valuation of the same parity; moreover, the values of
s corresponding to different parities are opposite. In this cagepifojects inX to
o and org, (o) is even, we lejus stand forpu;.

Given an edgel of 7, andé € G,, write 5¢ = d if the edgese is ¥1-equivalent
tod, andoe ~ d if the elementre of L is '-equivalent tod. If ¢« = 1, the relation
e =d implies thatoe ~ d. If 1 =2,6e =d yieldsoe ~ d when org,(¢) is even,
andoe ~ wd, withw € I'y —I", when org, () is odd.

Recall thatw,; denotes the order of the stabilizerlinof 4.

Lemma 7.6, (1) Suppose that= 1. If the odd integen is sufficiently large, the
projectionG, — G, induces aw;-t0-1 map

{5€(~;n:565d}—>{a€Gn:ae%d}.

_(2) Suppose that = 2. If the odd integem is sufficiently large, the projection
G, — G, inducesw,-to-1 maps

|6 €G,:6e=d, ord,(5) ever} — {0 € G, : 0e ~ d}

and
(6 €Gy:6e=d, ord,(5) odd — {0 € G, : oe ~ wd).

Proof. (1) Suppose thaiie = d andége = d; that is,61¢ = €1d andaore = €2d,
for €1 andez in ¥1. If 61 andéa» have the same image @G, theng1 = w’ 62 for
reZ,and hence’ead = e1d. If r £ 0, thatisg1 # 62 andey # e, theny’ezeil is
a nontrivial element of the stabilizer in of e1d, which is a group of cardinality,.

Conversely, ifo1e = e1d for €1 € 1 and if 8 is a nontrivial element of the stabilizer
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of €1d, we havecie = Beid. Write Be1 = y"ex, r € Z, €2 € &. Theneg # €. Note
that if n is large, thereo belongs taf1. We obtainw =" 61e = €2d. This concludes the
proof of part (1).

(2) The proof is exactly the same as that of part (1). Let

path(vo, dvo) = d1—da+- - +ds—1—ds € Z[€(T)].
(Note thats is even, sincé belongs tal'.) Write d; = {vj, v]”-}, wherevj is the even
vertex ofd;, andv is the odd vertex of/;. Note that we have
7_v?+1 forj=1,3,...,s—1,
V=i, forj=24,...5-2
vy = dvy.

Fix zo € % (Q 2) such thatr(zg) = vo. We may choose elemenz§ and zj. in
7 (Q 2) such tha’rr(z”) —v r(z )—v and

=2, forj=13...s-1
Z§=Z;+l forj=2,4,...,5s—2,
71 = zo0, 75 = 820.
Hence
-1 -1 -1 -1
(€x9)(ez3) - (ezf_g)(ez)) " =1 (ezp)(ezs) - (exfo)(exfy) =1,
so that
ct_ H(ea)(ﬁ)‘?..(ezﬁ)‘l
6691 e €z7) \ €25 €z¢ .

Fix a largeodd integern. For each Ik j <s, let ¥(j) be the set of elementsin ¥4
such thatkd; has level less than or equal to Lemma 7.3 shows that the sefs;)
are finite. By Lemma 7.1, we have the congruence

o

0 on -1 -1
(5) €020 _ 1_[ (%) 1_[ (%) 1_[ <ZZ> (modp™).
ee¥(2)

€ € €
ecY, <0 ees(1) 1 22 eed(s) S

Each of the factors in the right-hand side of equation (5) can be broken up into three
contributions:

€z’

[Tz= T1 e IT @™ [T @i

€75
S [(ev§)<n (Z(ev;’.)<n L(edj)=n

wherer; = o (respectivelyy; = e) if the distance of the furthest vertex ef; from
vo is odd (respectively, even) and where weget= 1 in the first case and; = -1
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in the second case. By our choice of the $gtas in Proposition 7.4, the first two
factors in this last expression cancel out in formula (5). Hence we obtain

FOS T e T ™ TT ()™ modph.

€
cedr 0 pledr)=n t(edp)=n (edy)=n

As in the remarks before Lemma 7.6, ebe an edge of level such that its vertex
v of level n has distance fromyg also equal to:. Choose any < %p(sz) with

r(z) = v. SinceG,, acts simply transitively on the set of edges of levelemma 7.1
gives

EESTZ(')OE l_[ (&z)ﬂa. l_[ (&Z)—Mé,,_ l_[ (52)_“5’(modp")_

32 ge=dy oe=dy Ge=ds

By Lemma 7.6, we obtain

l—[ 6520 l—[ 5 . 1—[ 5 Mo ... 1—[ & (zM)(modp™),

669’1 ge=dq Ge=dy ge=dy
where
_ | {path(vo, svo), ZaeGn Usoe) if c=1,
(path(vo, 8v0), Xy e, (Mo —How)oe) if L=2.

By Lemma 2.3, the duality , ) induces a pairing orH1(%, Z) x Jt. In the case
v =1, one sees directly that’, .; psoe has trivial image init, so thatM is zero.
Consider now the case= 2. Since we are interested in computil'l@)(S), we need
only consider the image of the homomorphigta) in Nsp® Q7. Thus, we may view
the above pairing as being defined Ba(9, Z)~ x Msp, Where H1(9, Z)~ indicates
the “minus” eigenspace for the actiomofon Hy (9, Z), and we may assume from now
on that patlivg, Svg) belongs taH1 (%4, Z)~. One checks that the imaggaeGn Usoe

in Jtsp of the elemend | (s —wus)oe is trivial, so that also in this case/ is
zero. Hence, in all cases,

1—[ 6610 5ha . l—[ &5 Mo ... 1_[ 6 "s (modp™).

669’1 ge=dy Ge=dy oe=dy

Let reg,, : Goo — G, be the composite of the reciprocity map with the natural
projection of G, onto G,,. Suppose that= 1. By Lemma 7.6, the above relation
yields the equality irG,;:

rec, , | | €820 | | NS | | o @G . | | o s o
’ €
eedq <0 ogerdy ogerdy oe~dy
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Recall the derivativéB;,n(Nsp/H, Po) € Nsp® G, defined in formula (3) at the end
of Section 3. By the definition of the bijectionof Lemma 2.2, the right-hand side
of the above equality can be written as

%!, »(Nsp/ H., Po)(5) = (pathivo, 8v0), Y | en(i)¥ @g™1),
8€Gy

where, by an abuse of notatioEgeGn en()8 ® g1 is viewed as an element of
Msp® G,,. Whent = 2, a similar computation shows that

. €820
&, (Nsp/H. Po) (8) =rec,n | |] o
669]1
By passing to the limit, one obtains in all cases
- 1)
(& (Nsp/H, Po)(8) =rec, | [] %

665"1

In other words, by definition of the maj

&, (Nsp/H. Po)" = j (),
as was to be shown.
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