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1. Introduction. LetE/Q be a modular elliptic curve of conductorN , and letp
be a prime of split multiplicative reduction forE. WriteCp for a fixed completion of
an algebraic closure ofQp. Tate’s theory ofp-adic uniformization of elliptic curves
yields a rigid-analytic, Gal(Cp/Qp)-equivariant uniformization of theCp-points of
E:

0→ qZ→ C×p
	Tate−−−−→ E(Cp)→ 0,(1)

whereq ∈ pZp is thep-adic period ofE.
Mazur, Tate, and Teitelbaum conjectured in [MTT] that the cyclotomicp-adicL-

function ofE/Q vanishes at the central point to order one greater than that of its
classical counterpart. Furthermore, they proposed a formula for the leading coefficient
of such ap-adicL-function. In the special case where the analytic rank ofE(Q)

is zero, they predicted that the ratio of the special value of the first derivative of
the cyclotomicp-adicL-function and the algebraic part of the special value of the
complexL-function ofE/Q is equal to the quantity

logp(q)

ordp(q)
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(where logp is Iwasawa’s cyclotomic logarithm), which is defined purely in terms
of thep-adic uniformization ofE. Greenberg and Stevens [GS] gave a proof of this
special case. See also the work of Boichut [Boi] in the case of analytic rank one.
The article [BD1] formulates an analogue of the conjectures of [MTT] in which

the cyclotomicZp-extension ofQ is replaced by the anticyclotomicZp-extension of
an imaginary quadratic fieldK. Whenp is split inK and the sign of the functional
equation ofL(E/K,s) is+1, this conjecture relates the first derivative of the anticy-
clotomicp-adicL-function ofE to the anticyclotomic logarithm of thep-adic period
of E. The present paper supplies a proof of this conjecture. Our proof is based on the
theory ofp-adic uniformization of Shimura curves.
More precisely, assume thatK is an imaginary quadratic field with(disc(K),N)=

1 such that
(i) p is split inK;
(ii) E is semistable at the rational primes that divideN and are inert inK;
(iii) the number of these rational primes is odd.

The complexL-functionL(E/K,s) of E overK has a functional equation and an
analytic continuation to the whole complex plane. Under our assumptions, the sign of
the functional equation ofL(E/K,s) is +1 (cf. [GZ, p. 71]), and henceL(E/K,s)

vanishes to even order ats = 1.
Fix a positive integerc prime toN , and let� be the order ofK of conductorc.

LetHn be the ring class field ofK of conductorcpn, with n ≥ 0, and letH∞ be the
union of theHn. By class field theory, the Galois group Gal(H∞/H0) is identified
with �×\(�K ⊗Zp)×/Z×p � Zp×Z/((p−1)/u)Z, with u := (1/2)#�×. Moreover,
Gal(H0/K) is identified with the Picard group Pic(�). Set

Gn :=Gal(Hn/K), G∞ :=Gal(H∞/K).

Thus,G∞ is isomorphic to the product ofZp by a finite abelian group. Choose a
primep of K abovep. IdentifyKp with Qp, and let

recp :Q×p →G∞

be the reciprocity map of local class field theory. Define the integral completed group
ring ofG∞ to be

Z[[G∞]] := lim←
n

Z[Gn],

where the inverse limit is taken with respect to the natural projections of group rings.
In Section 3, we recall the construction explained in [BD1, Sec. 2.7] of an element

�p(E/K) ∈ Z[[G∞]]
attached to(E,H∞/K), which interpolates the special valuesL(E/K,χ,1) of
L(E/K,s) twisted by finite-order characters ofG∞. The construction of thisp-adic
L-function is based on the ideas of Gross [Gr] and a generalization due to Daghigh
[Dag]. We show that�p(E/K) belongs to the augmentation idealI of Z[[G∞]]. Let
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�′p(E/K) be the natural image of�p(E/K) in I/I2=G∞. The element�′p(E/K)

should be viewed as the first derivative of�p(E/K) at the central point.
Let f =∑

n≥1anqn be the newform attached toE, and let

�f := 4π2
∫∫

�/�0(N)

|f (τ)|2dτ ∧ i dτ̄

be the Petersson inner product off with itself. We assume thatE is the strong Weil
curve for the Shimura curve parametrization defined in Section 4. Setd := disc(�),
and letnf be the positive integer defined later in this introduction and specified further
in Section 2. Our main result (stated in a special case: see Theorem 6.4 for the general
statement) is the following.

Theorem 1.1. Suppose thatc = 1. The equality (up to sign)

�′p(E/K)= recp(q)

ordp(q)

√
L(E/K,1)�−1f ·d1/2u2nf

holds inI/I2⊗Q.
For the convenience of the reader, we now briefly sketch the strategy of the proof

of Theorem 1.1.
Write the conductorN of E aspN+N−, whereN+ (respectively,N−) is divisible

only by primes that are split (respectively, inert) inK. Under our assumptions,N−
has an odd number of prime factors, andpN− is squarefree. Denote byB the definite
quaternion algebra overQ of discriminantN−, and fix an Eichler orderR of B of
level N+p. Let � be the subgroup of elements ofQ×p \R[1/p]× whose norm has
evenp-adic valuation, and set� := Hom(�,Z). The module� is a free abelian
group and is equipped with the action of a Hecke algebraT attached to modular
forms of levelN that are new atN−p. In Section 2, we also define a canonical free
quotient�sp of �, which is stable for the action ofT and is such that the image ofT
in End(�sp) corresponds to modular forms that are split multiplicative atp. Let πf
be the idempotent ofT⊗Q associated withf , and letnf be a positive integer such
thatηf := nf πf belongs toT. Denote by�f the submodule of� on whichT acts
via the character

φf : T→ Z, Tn �→ an

defined byf . By themultiplicity-one theorem, themodule�f is isomorphic toZ. The
operatorηf yields a map (denoted in the same way by an abuse of notation)ηf : �→
�f , which factors through�sp. We define an element�p(�sp/K) ∈ �sp⊗Z[[G∞]],
such that (up to sign)

(ηf ⊗ id)
(
�p

(
�sp/K

))= cp ·�p(E/K),

wherecp := ordp(q). We recall that the derivative�′p(E/K) of �p(E/K) belongs
to �f ⊗G∞ =G∞.
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On the other hand, the module� is related to the theory ofp-adic uniformization
of Shimura curves. Let� be the indefinite quaternion algebra of discriminantpN−,
and let� be an Eichler order of� of levelN+. WriteX for the Shimura curve over
Q associated with� (see Section 4), and writeJ for the jacobian ofX. A theorem
of Cherednik (see [C]), combined with the theory of jacobians of Mumford curves
(see [GvdP]), yields a rigid-analytic uniformization

0→#→ �⊗C×p 	−→ J (Cp)→ 0,(2)

where# is the lattice ofp-adic periods ofJ . The Tate uniformization (1) is obtained
from the sequence (2) by applying the operatorηf to the Hecke modules�⊗C×p and
J (Cp) of (2). In particular, thep-adic periodq of E can be viewed as an element of
the module�f ⊗C×p , and in fact one checks that it belongs to�f ⊗Q×p =Q×p . An
explicit calculation ofp-adic periods, combined with a formula forL(E/K,1) given
in [Gr] and [Dag], proves Theorem 1.1.
A similar strategy was used in [BD2], whenp is inert inK and the sign of the

functional equation ofL(E/K,s) is−1, to obtain ap-adic analytic construction of a
Heegner point in terms of the first derivative of an anticyclotomicp-adicL-function.
It is worth observing that an analogous strategy has not (yet) been proven to work

in the case of the cyclotomicZp-extension ofQ. The difficulty is that of relating in a
natural way the construction of the cyclotomicp-adicL-function, which is defined in
terms of modular symbols, to thep-adic uniformization of Shimura curves. Schneider
[Sch] has proposed the definition of ap-adicL-function based on the notion, which
stems directly from the theory ofp-adic uniformization, of rigid-analytic modular
symbol. Klingenberg [Kl] has proven an exceptional zero formula similar to Theorem
1.1 for this rigid-analyticp-adicL-function. However, the relation (if any) between
Schneider’sp-adicL-function and the cyclotomicp-adicL-function considered in
[MTT] is at present mysterious.
The reader is also referred to Teitelbaum’s paper [T], where the theory ofp-adic

uniformization of Shimura curves is used to formulate analogues of the conjectures
of [MTT] for cyclotomic p-adic L-functions attached to modular forms of higher
weight.
The proof by Greenberg and Stevens [GS] of the cyclotomic “exceptional zero”

formula of [MTT] follows a completely different strategy from the one of this paper,
and is based on Hida’s theory ofp-adic families of modular forms.
Finally, let us mention that Kato, Kurihara, and Tsuji [KKT] recently announced

more general results on the conjectures of [MTT], which make use of an Euler system
constructed by Kato from modular units in towers of modular function fields.

2. Definite quaternion algebras and graphs.We keep the notation and assump-
tions of the introduction. In particular, we recall thatK is an imaginary quadratic field
andB is a definite quaternion algebra of discriminantN−. Given a rational prime$,
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and ordersO of K andS of B, set

K$ :=K⊗Z$, B$ := B⊗Z$, O$ :=O⊗Z$, S$ := S⊗Z$.
Denote byẐ=∏

Z$ the profinite completion ofZ. Set

K̂ :=K⊗ Ẑ, B̂ := B⊗ Ẑ, Ô :=O⊗ Ẑ=
∏

O$, Ŝ := S⊗ Ẑ=
∏

S$.

Fix an Eichler orderR of B of level N+p. EquipR with an orientation, that is, a
collection of algebra homomorphisms

o+$ : R→ Z/$nZ, $n‖N+p,

o−$ : R→ F$2, $ |N−.
The groupB̂× acts transitively (on the right) on the set of Eichler orders of level
N+p by the rule

S ∗ b̂ := (
b̂−1Ŝb̂

)∩B.
The orientation onR induces an orientation onR∗ b̂, and the stabilizer of the oriented
orderR is equal toQ×R̂×. This sets up a bijection between the set of oriented Eichler
orders of levelN+p and the coset spaceQ×R̂×\B̂×. Likewise, there is a bijection
between the set of oriented Eicher orders of levelN+p modulo conjugation byB×
and the double coset space

R̂×\B̂×/B×.
Set�+ :=Q×p \R[1/p]× and, as in the introduction, let� be the image in�+ of the
elements inR[1/p]× whose reduced norm has evenp-adic valuation.

Lemma 2.1. � has index2 in �+.

Proof. See [BD2, Lemma 1.5].

Let � be theBruhat-Tits treeassociated with the local algebraBp. The set of
vertices�(�) of � is equal to the set of maximal orders inBp. The set�	(�) of
oriented edges of� is equal to the set of oriented Eichler orders of levelp in Bp.
Thus,�	(�) can be identified with the coset spaceQ×p R×p \B×p , by mappingbp ∈ B×p
to Rp ∗bp = b−1p Rpbp. Similarly, if Rp is a maximal order inBp containingRp, we
identify �(�) with the coset spaceQ×p R×p \B×p . Define the graphs


 := �/�, 
+ := �/�+.

By strong approximation (see [Vi, p. 61]), there is an identification

�	(

+

)= R̂×\B̂×/B×
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of the set of oriented edges of
+ with the set of conjugacy classes of oriented Eichler
orders of levelN+p.
Fixing a vertexv0 of � gives rise to an orientation of� in the following way. A

vertex of� is calledeven(respectively,odd) if it has even (respectively, odd) distance
from v0. The direction of an edge is said to be positive if it goes from the even to the
odd vertex. Since� sends even vertices to even ones, and odd vertices to odd ones,
the orientation of� induces an orientation of
. Define a map

κ : 	(
)→ �	(

+

)
from the set of edges of
 to the set of oriented edges of
+, by mapping an edge
{v,v′} (mod�) of 
, wherev andv′ are vertices of� and we assume thatv is even,
to the oriented edge(v,v′) (mod�+) of 
+.

Lemma 2.2. The mapκ is a bijection.

Proof. Suppose that(v,v′) (mod�+)= (u,u′) (mod�+). Thus, there isγ ∈ �+
such thatγ v = u andγ v′ = u′. If v andu are both even,γ must belong to�, and this
proves the injectivity ofκ. As for surjectivity,(v,v′) (mod�+) is the image byκ of
{v,v′} (mod�) if v is even, and of{wv,wv′} (mod�), wherew is any element of
�+−�, if v is odd.

Given two verticesv andv′ of �, write path(v,v′) for the natural image inZ[	(
)]
of the unique geodesic on� joiningv with v′. For example, ifv andv′ are even vertices
joined by four consecutive edgese1, e2, e3, e4, by our convention for orienting the
edges of�, path(v,v′) is the image inZ[	(
)] of e1−e2+e3−e4.
There is a coboundary map

∂∗ : Z[�(
)] → Z[	(
)],
which maps the image in�(
) of an odd (respectively, even) vertexv of � to the
image inZ[	(
)] of the formal sum of the edges of� emanating fromv (respectively,
the opposite of this sum). There is also a boundary map

∂∗ : Z[	(
)] → Z[�(
)],
which maps an edgee to the differencev′ − v of its vertices, wherev is the even
vertex andv′ is the odd vertex ofe. The integral homology (respectively, the in-
tegral cohomology) of the graph
 is defined byH1(
,Z) = ker(∂∗) (respectively,
H 1(
,Z)= coker(∂∗)).
Let

〈 , 〉 : Z[	(
)]×Z[	(
)] → Z

be the pairing onZ[	(
)] defined by the rule〈ei,ej 〉 := ωei δij , where theei are the
elements of the standard basis ofZ[	(
)] andωei is the order of the stabilizer in�
of a lift of ei to �. Likewise, let

〈〈 , 〉〉 : Z[�(
)]×Z[�(
)] → Z
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be the pairing onZ[�(
)] defined by〈〈vi,vj 〉〉 := ωvi δij ,where thevi are the elements
of the standard basis ofZ[�(
)] andωvi is the order of the stabilizer in� of a lift of
vi to �.
We use the notation� to indicate the moduleH 1(
,Z). Let �̄ be the maximal

torsion-free abelian quotient of�. As in the introduction, write� for Hom(�̄,Z).
Given an elementγ ∈ �, denote byγ̄ the natural image ofγ in �̄.

Lemma 2.3. (i) The map from�̄ to H1(
,Z) that sendsγ̄ ∈ �̄ to the cycle
path(v0,γ v0), wherev0 is any vertex of
 and γ is any lift of γ̄ to �, is an iso-
morphism.
(ii) The map from� to� that sendsm ∈� to the homomorphism

γ̄ �→ 〈path(v0,γ v0),m〉
is injective and has finite cokernel.

Proof (Sketch). Part (i) is proved in [Se]. Part (ii) follows from part (i) and from
the fact that the maps∂∗ and∂∗ are adjoint with respect to the pairings defined above.

Write�sp for the maximal torsion-free quotient of�/(w+1)�, withw ∈ �+−�.
By part (i) of Lemma 2.3, the action ofw ∈ �+−� onH1(
,Z) induces an action
of w on�. Write�sp for the maximal torsion-free quotient of�/(w+1)�. We have
an induced map from�sp to �sp that is injective and has finite cokernel.

The moduleZ[	(
)] is equipped with the natural action of an algebraT̃ generated
overZ by the Hecke correspondencesT$ for $ � N andU$ for $ |N , coming from its
double coset description: see [BD1, Sec. 1.5]. ThemoduleH1(
,Z) is stable under the
action ofT̃. Hence, by part (i) of Lemma 2.3, the algebraT̃ also acts on themodules�

and�sp. LetT andTsp denote the image of̃T in End(�) and End(�sp), respectively.

Thus, there are natural surjectionsT̃→ T→ Tsp. By an abuse of notation, we denote
by T$ andU$ also the natural images inT andTsp of T$ andU$ .
The next proposition clarifies the relation between the modules� and�sp and the

theory of modular forms.

Proposition 2.4. Letφ be an algebra homomorphism fromT (respectively,Tsp)
to C, and letan := φ(Tn). Then, thean are the Fourier coefficients of a normalized
eigenform of levelN , which is new atN−p (respectively, is new atN−p and is
split multiplicative atp). Conversely, any such modular form arises as above from a
character ofT (respectively,Tsp).

Proof. Eichler’s trace formula identifies the Hecke-moduleZ[	(
)] with a space
of modular forms of levelN that are new atN−. Moreover, the algebraT can also
be viewed as the Hecke algebra of the module� defined above, and Proposition 1.4
of [BD2] shows that� is equal to the “p-new” quotient ofZ[	(
)]. This proves
the statement of Proposition 2.4 concerning characters ofT. The abelian variety
associated to ap-new modular formf is split multiplicative atp if and only if
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Upf = f . Moreover, the Atkin-Lehner involution atp acts on ap-new modular form
as−Up, and acts on� as�+/�. This concludes the proof of Proposition 2.4.

Modular parametrizations, I.We now make a specific choice of the operatorηf
(wheref is the newform of levelN attached toE) considered in the introduction. It
is used in formulating the results in the sequel of the paper.
As stated in Lemma 2.3,̄� can be identified with the homology groupH1(
,Z)⊂

Z[	(
)]. Thus, when convenient, we tacitly view elements of�̄ as contained in
Z[	(
)]. The restriction of the pairing onZ[	(
)] defined above tō� yields the
monodromy pairing(denoted in the same way by an abuse of notation)

〈 , 〉 : �̄× �̄→ Z.

Let Z[	(
)]f (respectively,�̄f ) be the submodule ofZ[	(
)] (respectively,�̄) on
which T̃ (respectively,T) acts via the character associated withf . Note that the
quotient ofZ[	(
)] by �̄ is torsion free, and thus there is a canonical identification
Z[	(
)]f = �̄f . Let ef be a generator of̄�f � Z.
Define the “modular parametrizations”

π∗ : �̄→ �̄f , π∗ : �̄f → �̄

by π∗(e) := 〈e,ef 〉ef andπ∗(ef ) := ef . Since(
π∗ ◦π∗

)2= 〈
ef ,ef

〉(
π∗ ◦π∗

)
,

we obtain thatπ∗ ◦π∗ is equal to〈ef ,ef 〉πf , whereπf is the idempotent ofT⊗Q
associated withf . From now on, we assume that the operatorηf is defined by

ηf := π∗ ◦π∗,
so that the integernf is equal to〈ef ,ef 〉.
As observed in the introduction, the operatorηf induces a map� → Z, which

is well defined up to sign. Sincef has split multiplicative reduction atp, this map
factors through a map�sp→ Z. By an abuse of notation, we indicate both of the
above maps byηf .

Remark 2.5. The module�̄ can be identified with the character group associated
with the reduction modulop of Pic0(X), whereX is the Shimura curve considered
in the introduction. As is explained in Section 4, the mapπ∗ ◦π∗ on �̄ is induced by
functoriality from a modular parametrization Pic0(X)→ E.

3. Thep-adicL-function. Let�n denote the order ofK of conductorcpn, n≥ 0.
(We usually write� instead of�0.) Equip the orders�n with compatible orientations,
that is, with compatible algebra homomorphisms

d+$ : �n→ Z/$mZ, $m‖N+p,
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d−$ : �n→ F$2, $ |N−.
An algebra homomorphism of�n into an oriented Eichler orderS of level N+p
is called anoriented optimal embeddingif it respects the orientation on�n and on
S, and does not extend to an embedding of a larger order intoS. Consider pairs
(Rξ ,ξ), whereRξ is an oriented Eichler order of levelN+p andξ is an element of
Hom(K,B) that restricts to an oriented optimal embedding of�n into Rξ . A Gross
point of conductorcpn (n≥ 0) is a pair as above, taken modulo the action ofB×.
By our previous remarks, a Gross point can be viewed naturally as an element of

the double coset space

W := (
R̂×\B̂××Hom(K,B)

)
/B×.

(See [Gr, Sec. 3] for more details.) Strong approximation gives the identification

W = (�	(�)×Hom(K,B)
)
/�+.

By Lemma 2.2, there is a natural map ofZ-modulesZ[W ] → Z[	(
)], whereZ[W ]
is the module of finite formalZ-linear combinations of elements ofW . The Hecke
algebraT̃ of Z[	(
)] acts naturally also onZ[W ] (see [BD1, Sec. 1.5]), in such a
way that the above map is̃T-equivariant.
The groupGn = Pic(�n) = �̂×n \K̂×/K× acts simply transitively on the Gross

points of conductorcpn by the rule

σ
(
Rξ ,ξ

) := (
Rξ ∗ ξ̂ (σ )−1,ξ

)
,

whereξ̂ denotes the extension ofξ to a map fromK̂ to B̂.
Now, fix a Gross pointP0 = (R0,ξ0) (modB×) of conductorc. By the above

identification,P0 corresponds to a pair(�e0,ξ0) ∈ �	(�)×Hom(K,B), modulo the
action of �+. As above, the originv0 of �e0 determines an orientation of�. Let
�e be one of thep oriented edges of� originating from �e0. All the Gross points
corresponding to pairs(�e,ξ0) as above have conductorcp, except for one, which has
conductorc. Fix an end (�e0, �e1, . . . , �en, . . .)
such that(�e1,ξ0) defines a Gross point of conductorcp. Then,(�en,ξ0) defines a Gross
pointPn of conductorcpn, for all n≥ 0.
Denote by NormHn+1/Hn the norm operator

∑
g∈Gal(Hn+1/Hn)

g.

Lemma 3.1. (1) Letu= (1/2)#�×. The equality

UpP0= uNormH1/H0P1+σpP0

holds inZ[W ] for a primep abovep, whereσp ∈ Gal(H0/K) denotes the image of
p by the Artin map.
(2) For n≥ 1,

UpPn = NormHn+1/Hn Pn+1.



314 BERTOLINI AND DARMON

Proof. The proof follows from the definition of the operatorUp (see [BD1, Sec.
1.5]) and the action of Pic(�n) on the Gross points.

Figure 1, drawn in the case wherep = 2, illustrates geometrically the relation
between the Galois action and the action of the Hecke correspondenceUp.

�e3

�e2

�e1
�e0

v0

σp�e0σ 2
p �e0

Figure 1

By Lemma 2.3, the natural map fromZ[W ] to Z[	(
)] induces maps fromZ[W ]
to the modules� and�sp. These maps are Hecke-equivariant.
The Gross pointsPn give rise to ap-adic distribution onG∞ with values in the

module�sp as follows. Giveng ∈Gn, denote byegn the natural image ofPg
n in �sp.

For n≥ 0, define the truncatedp-adicL-function

�p,n

(
�sp/K

) := ∑
g∈Gn

e
g
n ·g−1 ∈ �sp⊗Z[Gn].

Note that�p,n(�sp/K) is well defined up to multiplication by elements ofGn.
For n≥ 1, letνn : Z[Gn] → Z[Gn−1] be the natural projection of groups rings.
Lemma 3.2. (1) The equality

ν1
(
�p,1

(
�sp/K

))= u−1
(
1−σp

)
�p,0

(
�sp/K

)
holds in�sp⊗Z[G0].
(2) For n≥ 2, the equality

νn
(
�p,n

(
�sp/K

))= �p,n−1
(
�sp/K

)
holds in�sp⊗Z[Gn−1].



p-ADIC PERIODS ANDp-ADIC L-FUNCTIONS 315

Proof. By Proposition 2.4, the operatorUp acts as+1 on�sp. The claim follows
from Lemma 3.1 and the fact that�sp is torsion free.

Define thep-adicL-function attached to�sp to be

�p

(
�sp/K

) := lim←
n

�p,n

(
�sp/K

) ∈ �sp⊗Z[[G∞]].

Wenowdefine thep-adicL-function attached toE. Observe that themaximal quotient
�̄f of �̄ on whichT acts via the character associated withf is isomorphic toZ. Let
ef be a generator of̄�f . The monodromy pairing on̄� induces aZ-valued pairing
on �̄f × �̄f . Write ĉp for the positive integer|〈ef ,ef 〉|.

Lemma 3.3. The element(ηf ⊗ id)(�p(�sp/K)) ∈ Z[[G∞]] is divisible byĉp.
Proof. Consider the maps

π̃∗ : Z[	(
)] → Z[	(
)]f , π̃∗ : Z[	(
)]f → Z[	(
)]
defined byπ̃∗(e) := 〈e,ef 〉ef andπ̃∗(ef ) := ef . (The modular parametrizationsπ∗
andπ∗ introduced in Section 2 are obtained from these maps by restriction.) Hence,
η̃f := π̃∗ ◦ π̃∗ is an element of̃T, equal to〈ef ,ef 〉π̃f , whereπ̃f is the idempotent
in T̃⊗Q associated withf . We have a commutative diagram

Z[	(
)]
η̃f

��

�� �

ηf

��
Z[	(
)]f �� �f ,

where the upper horizontal map is defined in Lemma 2.3, and the lower horizontal map
is the restriction of the upper one. Note that�f is equal to Hom(�̄f ,Z) and therefore
is generated by the homomorphismef �→ 1. With our choices of generators for
Z[	(
)]f and�f , the lower map of the above diagram is described as multiplication
by the integer〈ef ,ef 〉. The proof of Lemma 3.2 also shows that mapping the Gross
points of conductorcpn to Z[	(
)]f by the mapη̃f yields ap-adic distribution
in Z[	(
)]f ⊗ Z[[G∞]]. By the above diagram, the image of this distribution in
�f ⊗Z[[G∞]] is equal to(ηf ⊗ id)(�p(�sp/K)). This proves the lemma.

Remark 3.4. In Section 4, we show that the integersĉp andcp are equal.

Define thep-adicL-function attached toE to be

�p(E/K)= ĉ−1p (ηf ⊗ id)
(
�p(�sp/K)

) ∈ Z[[G∞]].
Observe that�p(�sp/K) and�p(E/K) are well defined up to multiplication by
elements ofG∞.
Recall the quantities�f andd defined in the introduction.
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Theorem 3.5. Let χ : G∞ → C× be a finite-order character of conductorcpn,
with n≥ 1. Then the equality

∣∣χ(
�p(E/K)

)∣∣2= L(E/K,χ,1)

�f

√
d ·(nf u)2

holds.

Proof. See [Gr], [Dag], and [BD1, Sec. 2.10].

Remark 3.6. (1) Theorem 3.5 suggests that�p(E/K) should really be viewed as
the square root of ap-adicL-function, and hence we should define the anticyclotomic
p-adicL-function ofE to be�p(E/K)⊗�p(E/K)∗, where∗ denotes the involution
of Z[[G∞]] given on grouplike elements byg �→ g−1. See Section 2.7 of [BD1] for
more details.
(2) More generally, thep-adicL-function�p(�sp/K) interpolates special values of

the complexL-series attached to the modular forms onTsp (described in Proposition
2.4).
Let σp be as in Lemma 3.1. Denote byH the subextension ofH0 that is fixed by

σp, and set
Gn :=Gal(Hn/H), G∞ :=Gal(H∞/H),

: :=Gal(H0/H)=G0, ; :=Gal(H/K).

Note the exact sequences of Galois groups

0→Gn→Gn→;→ 0,

0→G∞→G∞→;→ 0.

The group; is naturally identified with the Picard group Pic(�[1/p]), andG∞ is
equal to the image of the reciprocity map recp :Q×p →G∞ (where we identifiedQ×p
with K×p ). Let I be the kernel of the augmentation mapZ[[G∞]]→ Z, and letI; be
the kernel of the augmentation mapZ[[G∞]]→ Z[;].

Lemma 3.7. (i) �p(�sp/K) belongs to�sp⊗I;.
(ii) �p(E/K) belongs toI;.

Proof. There are canonical isomorphisms

Z[[G∞]]/I; = Z[Gn]/I;,n = Z[;],
where I;,n is the natural image ofI; in Z[Gn]. By Lemma 3.2, the image of
�p(�sp/K) in �sp⊗ (Z[[G∞]]/I;) is equal to the image of�p,1(�sp/K) in �sp⊗
(Z[G1]/I;,1) = �sp⊗Z[;]. The first part of the lemma now follows from Lemma
3.2(1). The second part follows directly from the first.
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Since I; is contained inI , the element�p(�sp/K) belongs to�sp⊗ I and
�p(E/K) belongs toI . Denote by

�′p
(
�sp/K

)
, �′p

(
�sp/H

)
the natural image of�p(�sp/K) in �sp⊗ I/I2 = �sp⊗G∞ and�sp⊗ I;/I

2
; =

�sp⊗Z[;]⊗G∞, respectively. Likewise, let

�′p(E/K), �′p(E/H)

be the natural image of�p(E/K) in I/I2 =G∞ andI;/I2; = Z[;]⊗G∞, respec-
tively. The above elements should be viewed as derivatives ofp-adicL-functions at
the central point.
In order to carry out the calculations of the next sections, it is useful to observe

that the derivatives�′p(�sp/K) and�′p(�sp/H) can be expressed in terms of the
derivatives of certain partialp-adicL-functions. Seth := #(;). Fix Gross points of
conductorc,

P0= P 1
0 , . . . ,P

h
0 ,

corresponding to pairs(Ri
0,ξ

i
0), i = 1, . . . ,h, which are representatives for the:-

orbits of the Gross points of conductorc. Writing [P i
0] for the:-orbit of P i

0, let δi
be the element of; such that [

δiP
1
0

]= [
P i
0

]
.

Suppose thatP i
0 corresponds to a pair(�e0(i),ξ i0) ∈ �	(�)×Hom(K,B), modulo the

action of�+. Fix ends (�e0(i), �e1(i), . . . , �en(i), . . .)
such that(�e1(i),ξ i0) defines a Gross point of conductorcp. Thus,(�en(i),ξ i0) defines
a Gross pointP i

n of conductorcp
n, for all n ≥ 0. Forg ∈ Gn, let en(i)g denote the

natural image of(P i
n)

g in �sp. Let

�p,n

(
�sp/H,P i

0

) := ∑
g∈Gn

en(i)
g ·g−1 ∈ �sp⊗Z[Gn].

The proof of Lemma 3.2 also shows that the elements�p,n(�sp/H,P i
0) are compat-

ible under the maps induced by the natural projections of group rings. Thus, we may
define the partialp-adicL-function attached to�sp andP i

0 to be

�p

(
�sp/H,P i

0

) := lim←
n

�p,n

(
�sp/H,P i

0

) ∈ �sp⊗Z[[G∞]].

We observe that�p(�sp/H,P i
0) depends only on the:-orbit of P i

0, up to multipli-
cation by elements ofG∞.
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Let IH be the kernel of the augmentation mapZ[[G∞]]→ Z. Like in the proof of
Lemma 3.7, one checks that�p(�sp/H,P i

0) belongs toIH . Write �′p(�sp/H,P i
0)

for the natural image of�p(�sp/H,P i
0) in �sp⊗IH /I

2
H = �sp⊗G∞. Thus,

�′p
(
�sp/H,P i

0

)= lim←
n

�′p,n
(
�sp/H,P i

0

)
,

where

�′p,n
(
�sp/H,P i

0

)= ∑
g∈Gn

en(i)
g⊗g−1.(3)

We obtain the following lemma directly.

Lemma 3.8. (i)

�′p
(
�sp/K

)= h∑
i=1

�′p
(
�sp/H,P i

0

)
.

(ii)

�′p
(
�sp/H

)= h∑
i=1

�′p
(
�sp/H,P i

0

) ·δ−1i .

4. The theory of p-adic uniformization of Shimura curves. For more details
on the results stated in this section, the reader is referred to [BC], [C], [Dr], [GvdP],
and [BD2].
Let � be the indefinite quaternion algebra overQ of discriminantN−p, and let

� be an Eichler order of� of level N+. Denote byX the Shimura curve overQ
associated with the order�. We refer the reader to [BC] and [BD2, Sec. 4] for the
definition ofX via moduli. Here we content ourselves with recalling Cherednik’s
theorem, which describes a rigid-analytic uniformization ofX. Write

�p := Cp−Qp

for thep-adic upper half plane. The group GL2(Qp) acts (on the left) on�p by linear
fractional transformations. Thus, fixing an isomorphism

ψ : Bp→M2(Qp)

induces an action of� on �p. This action is discontinuous, and the rigid-analytic
quotient�\�p defines theCp-points of a nonsingular curve� overQp. The curves
X and� are equipped with the action of Hecke algebrasTX andT�, respectively
(see [BC], [BD1]).
By Lemma 2.1, the action of�+/� induces an involutionW of �. LetQp2 be

the unique unramified quadratic extension ofQp contained inCp, and letτ be the
generator of Gal(Qp2/Qp). Denote by? ∈H 1(〈τ 〉,Aut(�)) the class of the cocycle
mappingτ toW , and write�? for the curve overQp obtained by twisting� by ?.
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Theorem 4.1 (Cherednik). There is a Hecke-equivariant isomorphismX � �? of
curves overQp. In particular,X and� are isomorphic overQp2.

Proof. See [C], [Dr], [BC].

Building on Theorem 4.1, the results in [GvdP] yield a rigid-analytic description
of the jacobian ofX. If D = P1+·· ·+Pr−Q1−·· ·−Qr ∈ Div0(�p) is a divisor of
degree zero on�p, define the theta function

ϑ(z;D)=
∏
ε∈�

(z−εP1) · · ·(z−εPr)

(z−εQ1) · · ·(z−εQr)
.

Write δ̄ for the natural image in̄� of an elementδ of �. For all δ in �, the above
theta function satisfies the functional equation

ϑ(δz;D)= φD
(
δ̄
)
ϑ(z;D),

whereφD is an element of Hom(�̄,C×p ) = �⊗C×p that does not depend onz. For
γ ∈ �, the numberφ(γ z)−(z)(δ̄) does not depend on the choice ofz ∈�p and depends
only on the image ofγ in �̄. This gives rise to a pairing

[ , ] : �̄× �̄→Q×p .

The pairing[ , ] is bilinear and symmetric. The next proposition explains the relation
between[ , ] and the monodromy pairing〈 , 〉 : �̄× �̄→ Z defined in Section 2.

Proposition 4.2. The pairings〈 , 〉 andordp ◦[ , ] are equal.
Proof. See [M, Th. 7.6].

It follows that ordp ◦[ , ] is positive definite, so that the map
j : �̄→ �⊗Q×p

induced by[ , ] is injective and has discrete image. Set# := j (�̄). Given a divisor
D of degree-zero on�(Cp) = �\�p, let D̃ denote an arbitrary lift to a degree-zero
divisor on�p. The automorphy factorφ

D̃
depends on the choice of the lift̃D, but

its image in(�⊗C×p )/# depends only onD. Thus, the assignmentD �→ φ
D̃
gives a

well-defined map from Div0(�(Cp)) to (�⊗C×p )/#.
Proposition 4.3. The mapDiv0(�(Cp))→ (�⊗C×p )/# defined above is trivial

on the group of principal divisors and induces a Hecke-equivariant isomorphism from
theCp-points of the jacobian of � to (�⊗C×p )/#.
Proof. See [GvdP, VI.2 and VII.4] and also [BC, Ch. III].

Let
	 : �⊗C×p → 

(
Cp

)
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stand for the map induced by (the inverse of) the isomorphism defined in Proposition
4.3.

Modular parametrizations, II.The mapηf : �→ Z defined in Section 2 induces
a map

ηf ⊗ id : �⊗C×p → C×p .
The Jacquet-Langlands correspondence [JL] implies that the quotient abelian variety
ηf J is an elliptic curveQ-isogenous toE. From now on, we assume thatE = ηf J

is thestrong Weil curvefor the parametrization by the Shimura curveX. By an abuse
of notation, we denote byηf also the surjective map

J
(
Cp

)→ E
(
Cp

)
induced byηf .
Let#f be the submodule of# on whichT acts via the characterφf .

Proposition 4.4. The kernelqZ of	Tate is canonically equal to the module#f ,
and the diagram

0 �� #

ηf

��

�� �⊗C×p
ηf⊗id

��

	 �� (Cp)

ηf

��

�� 0

0 �� #f �� C×p
	Tate �� E(Cp) �� 0

is Hecke-equivariant and commutes up to sign.

Proof. The rightmost square in the above diagram is a consequence of Proposition
4.3, combined with Theorem 4.1 and the fact thatf is split-multiplicative atp. In
order to obtain the leftmost square, it is enough to prove that the kernel of	Tate is
equal to#f . Note that the targetC×p = �f ⊗C×p of the mapηf ⊗ id is naturally a
submodule of�⊗C×p , since the quotient of� by �f is torsion free. By definition,
E(Cp) may similarly be viewed as an abelian subvariety of(Cp). It follows that
	Tatecan be described as the restriction of	 toC×p . In particular, ker(	Tate) is equal
to#∩C×p . In turn, this last module is equal to#f .

Corollary 4.5. The integerĉp = |〈ef ,ef 〉| (introduced in Lemma 3.3) is equal
to cp.

Proof. Working through the definition of the maps in the diagram of Proposition
4.4 shows that[ef ,ef ] is equal toq±1. The claim follows from Proposition 4.2.

5. p-adic Shintani cycles and special values of complexL-functions. LetP0=
(R0,ξ0) (modB×) be a Gross point of conductorc. The pointP0 determines ap-
adic cyclec(P0) ∈ �̄ in the following way. By strong approximation, we may assume
that the representative(R0,ξ0) for P0 is such that the oriented ordersR0[1/p] and
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R[1/p] are equal. Thus,ξ0 induces an embedding of�[1/p] into R[1/p], which we
still denote byξ0. The image byξ0 of a fundamentalp-unit in �[1/p], having norm
of evenp-adic valuation, determines an elementγ = γ (P0) of �. This element is
well defined up to conjugation and up to inversion, and up to multiplication by the
image of torsion elements of�×.
More explicitly, write k for the order ofσp in Pic(�) (whereσp is as in Lemma

3.1), and setpk = (v) with v ∈ �. Let ι be 1 (respectively, 2) ifk is even (respectively,
odd). Thenγ is the image ofξ0(v)ι in �.

Definition. Thep-adic Shintani cyclec= c(P0) attached toP0 is the natural image
of γ in �̄.
This terminology is justified in Remark 5.4 below. Observe thatc is well defined

up to sign.
Denote byZ[	(
)]spthemaximal torsion-free quotient ofZ[	(
)]/(w+1)Z[	(
)],

wherew is any element of�+−�. Recall the element̃ηf ∈ T̃ defined in the proof of
Lemma 3.3, mapping toηf by the natural projectioñT→ T. The next lemma relates
thep-adic cyclec to the image in�sp of the Gross pointP0.

Lemma 5.1. The natural images inZ[	(
)]sp of c and∑
σ∈: ιP σ

0 are equal. In
particular, ηf c is equal to the image of

∑
σ∈: ι(η̃f P σ

0 ) in Z[	(
)].
Proof. (In order to visualize the geometric content of this proof, the reader may

find it helpful to refer to Figure 1 in Section 3.) SetPi := σ i
pP0, for i = 0, . . . ,k−1.

By Lemma 3.1(1) and the definition of the action ofUp on the Bruhat-Tits tree, we
can fix representatives(�ei,ξ0) for the Gross pointsPi so that the�ei are consecutive
oriented edges of�. With notation as at the beginning of this section, letγ+ ∈ �+ be
the image ofξ0(v). Thus,γ = γ ι+. Call v0 the origin of�e0. If ι = 1, the even vertex
of the edge�ek−1 is equal toγ v0. If ι= 2, that is,γ+ belongs to�+−�, then

�e0, . . . , �ek−1,γ+�e0, . . . ,γ+�ek−1
is a sequence of consecutive oriented edges, and the even vertex ofγ+�vk−1 is equal
to γ v0. Note that

∑
σ∈: ιP σ

0 is equal inZ[�	(
+)] to �e0+�e1+·· ·+�ek−1 if ι= 1 and
equal to

�e0+�e1+·· ·+ �ek−1+γ+�e0+γ+�e1+·· ·+γ+�ek−1
if ι= 2. Denote byei the unoriented edge of� corresponding to�ei , and letw be any
element of�+−�. By the definition of the bijectionκ of Lemma 2.2, the following
equalities hold inZ[	(
)]:

κ−1
(�e0+·· ·+ �ek−1)= e0+we1+·· ·+ek−2+wek−1 if ι= 1,

κ−1
(�e0+·· ·+ �ek−1+γ+�e0+γ+�e1+·· ·+γ+�ek−1

)= e0+we1+·· ·
+ek−1+w(γ+e0)+(γ+e1)+·· ·+w(γ+ek−1) if ι= 2.

Projecting the right-hand sides of the above equalities toZ[	(
)]sp, and taking into
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account the fact thatw acts as−1 on this module, gives in both cases path(v0,γ v0).

The next proposition elucidates the relation between thep-adic Shintani cycle
defined above and the special values of the complexL-function ofE/K. Following
the notation of Section 3, fix Gross pointsP0 = P 1

0 , . . . ,P
h
0 that are representatives

for the:-orbits of the Gross points of conductorc, and list the elements of; so that
[δiP 1

0 ] = [P i
0], where[P i

0] denotes the:-orbit of P i
0. As above, the Gross pointP i

0
determines ap-adic Shintani cycleci ∈ �̄, with c1 = c. Given a complex character
χ :;→ C× of ;, set

cH :=
h∑

i=1
ci⊗δ−1i ∈ �̄⊗Z[;],

cK,χ := χ(cH )=
h∑

i=1
ci⊗χ(δi)

−1 ∈ �̄⊗Z[χ ].

If χ is the trivial character, we also writecK as a shorthand term forcK,χ . Extend the
pairing〈 , 〉 on �̄ to a hermitian pairing on̄�⊗Z[χ ].

Proposition 5.2. Suppose thatχ is primitive. The following equality holds:

〈
ηf cK,χ ,cK,χ

〉= L(E/K,χ,1)

�f

√
d ·(ιu)2 ·nf .

Proof. In view of Lemma 5.1, this is simply a restatement of the results of [Gr]
and [Dag].

Recall the mapsj : �̄→ �⊗Q×p andηf ⊗ id : �⊗C×p → C×p defined in Section 4.
By abuse of notation, we denote the maps obtained by extending scalars toZ[χ ] in
the same way.

Corollary 5.3. The equality

(ηf ⊗ id)
(
j (cK,χ )

)= q⊗ρ

holds inQ×p ⊗Z[χ ], whereρ ∈ Z[χ ] satisfies

|ρ|2= L(E/K,χ,1)

�f

√
d ·(ιu)2 ·nf .

Proof. By Proposition 4.4 combined with the definition ofηf given in Section 2,
ρ is equal to〈cK,χ ,e

f 〉 ∈ Z[χ ]. Hence
|ρ|2= 〈

cK,χ ,e
f
〉 〈
ef ,cK,χ

〉
= 〈

ηf cK,χ ,cK,χ

〉
.

The claim follows from Proposition 5.2.
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Remark 5.4. Let F be a real quadratic field and letψ : F → M2(Q) be an
embedding. Assume thatψ maps the ring of integers�F to the Eichler orderM0(N)

of integral matrices with lower-left entry divisible byN . Since the homology group
H1(X0(N),Z) can be identified with the maximal torsion-free abelian quotient of
�0(N), the image byψ of a fundamental unit in�F of norm 1 determines an integral
homology cycles ∈ H1(X0(N),Z). Shintani [Sh] proved that the cycles encodes
the special values of the classicalL-series overF attached to newforms onX0(N).
In light of Proposition 5.2, the elementc can be viewed as ap-adic analogue of the
cycles.

6. p-adic Shintani cycles and derivatives ofp-adic L-functions. Let P0 be a
Gross point of conductorc. In Section 5, we attached toP0 a p-adic cyclec ∈ �̄,
and proved in Proposition 5.2 thatc is related to the special values of the complex
L-function ofE/K. Our main result (Theorem 6.1 below) shows thatc is also related
to the first derivative of thep-adicL-function defined in Section 3. By combining
these results, we obtain Theorem 1.1.
Write j for the composite map

�̄
j−→ �⊗Q×p → �sp⊗Q×p → �sp⊗G∞,

where the second map is induced by the natural projection of� onto�sp, and the
third map is induced by recp :Q×p →G∞. Our main result is the following.

Theorem 6.1. The following equality holds up to sign in�sp⊗G∞:

�′p
(
�sp/H,P0

)ι = j(c).

Recall the definition of the elementscH andcK given in Section 5. By Lemma 3.8,
we obtain the following corollary directly.

Corollary 6.2. (i) The following equality holds up to sign in�sp⊗Z[;]⊗G∞:

�′p
(
�sp/H

)ι = j
(
cH

)
.

(ii) The following equality holds up to sign in�sp⊗G∞:

�′p
(
�sp/K

)ι = j
(
cK

)
.

By applying the operatorηf to both sides of the equalities of Corollary 6.2, and
using Corollary 4.5 and the definitions of thep-adicL-functions attached to�sp and
E, we find the following.

Corollary 6.3. (i) The following equality holds up to sign inZ[;]⊗G∞:

cp�′p(E/H)ι = j
(
ηf cH

)
.
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(ii) The following equality holds up to sign inG∞:

cp�′p(E/K)ι = j
(
ηf cK

)
.

Proof of Theorem 1.1.Combine Corollary 6.3 with Corollary 5.3.

By combining Corollary 6.3 with Corollary 5.3, we also obtain the following gen-
eralization of Theorem 1.1. Let�′p(E/K,χ) stand for the elementχ(�′p(E/H)) of
G∞⊗Z[χ ].

Theorem 6.4. Suppose thatχ is primitive. The following equalities hold up to
sign:

cp�′p(E/K,χ)= recp(q)⊗ρ in G∞⊗Z
[
1

2

]
[χ ]

and

�′p(E/K,χ)= recp(q)

ordp(q)
⊗ρ in G∞⊗Q[χ ],

where

|ρ|2= L(E/K,χ,1)

�f

·d1/2u2nf .

Corollary 6.5. The derivative�′p(E/K,χ) is nonzero inG∞⊗Q[χ ] if and
only if the classical special valueL(E/K,χ,1) is nonzero.

Proof. By Theorem 6.4, one is reduced to showing that recp(q) is a nontorsion
element ofG∞; that is,qp−1 does not belong to the kernel of the reciprocity map.
But elements in this kernel are algebraic overQ, andq is known to be transcendental
by a result of Barré-Sirieix, Diaz, Gramain, and Philibert [B-SDGP].

Remark 6.6. Theorem 1.1 was conjectured in [BD1, Sec. 5.1] in a slightly different
form. We conclude this section by studying the compatibility of Theorem 1.1 (and its
generalization Theorem 6.4) with the conjectures of [BD1]. For simplicity, assume
throughout this remark that the elliptic curveE is semistable so thatN is squarefree,
and thatE is isolated in its isogeny class so that the action of Gal(Q̄/Q) on the
$-torsion points ofE is irreducible for all primes$.
Let p1 · · ·pnq1 · · ·qn be a prime factorization of the squarefree integerpN−, with

p1 = p. Denote byX1 the Shimura curveX, and byXn+1 the classical modular
curveX0(N). For i = 2, . . . ,n, denote byXi the Shimura curve associated with an
Eichler order of levelN+p1 · · ·pi−1q1 · · ·qi−1 in the indefinite quaternion algebra
of discriminantpi · · ·pnqi · · ·qn. SinceE is modular, the Jacquet-Langlands corre-
spondence [JL] implies thatE is parametrized by the jacobianJi of the curveXi ,
i = 1, . . . ,n+1. Let

φi : Ji → E

be thestrongWeil parametrization ofE by Ji . Thus, the morphismφi has connected
kernel, and its dualφ∨i : E → Ji is injective. The endomorphismφi ◦ φ∨i of E is
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multiplication by an integerdXi
, called thedegreeof the modular parametrization of

E by the Shimura curveXi .
If $ |N , denote byc$ the order of the group of connected components ofE at $.

Theorem 6.7 (Ribet-Takahashi). Under our assumptions
(i)

dX0(N)

dX
= cp1 · · ·cpncq1 · · ·cqn;

(ii) 〈
ef ,ef

〉= dXcp.

Proof. Part (i) follows from Theorem 1 of [RT]. Part (ii) follows from Section 2
of [RT]. The results of [RT] exclude the case whereN+ is prime, but a forthcoming
paper of Takahashi will deal with this case as well.

By combining Theorem 6.7 with the relation�f = dX0(N) ·�E , where�E is the
complex period ofE, we find that the formula of Theorem 1.1 (and likewise for
Theorem 6.4) becomes

�′p(E/K)= recp(q)

ordp(q)

√
L(E/K,1)�−1E ·d1/2u2

∏
$|N−

c−1$ ,

which is the same as Conjecture 5.3 of [BD1].

7. Proof of Theorem 6.1. First, we give an explicit description of certain group
actions on thep-adic upper half plane and on the Bruhat-Tits tree depending on our
choice of a Gross pointP0 of conductorc. Then, we compute the valuej(c), for c as
in Sections 5 and 6.

I. Group actions on�p and�. LetKp :=K⊗Qp. Our choice of a primep above
p determines an identification ofKp =Kp×Kp̄ with Qp×Qp.
As in Section 5, choose a representative(R0,ξ0) for the Gross pointP0 such that

R0[1/p] andR[1/p] are equal. Let(�e0,ξ0) be a pair corresponding toP0, and denote
by v0 the origin of�e0. SetR0,p := R0⊗Zp, and letR0,p be the maximal order ofBp

corresponding tov0. Recall the isomorphism

ψ : Bp→M2(Qp)

fixed in Section 4. We may, and do from now on, chooseψ so that
(i) ψ mapsR0,p ontoM2(Zp);
(ii) ψ ◦ξ0 maps(x,y) ∈Kp =Qp×Qp to the diagonal matrix

(
x 0
0 y

)
.

Condition (i) allows us to identify�=Q×p R×0,p\B×p with PGL2(Zp)\PGL2(Qp).
Viewing K×p as a subgroup of GL2(Qp) thanks to the embeddingψ ◦ ξ0 yields
actions ofK×p on�p and on�= PGL2(Zp)\PGL2(Qp), factoring throughK×p /Q×p .
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Identify this last group withQ×p by mapping a pair(x,y)moduloQ×p to xy−1. Under
this identification, an elementx of Q×p acts on�p as multiplication byx, and on�

as conjugation by the matrix
(
x 0
0 1

)
.

Recall the elementv ∈ � ⊂ K×p defined in Section 5 bypk = (v). Identify, as
above,v with an elementw of Q×p . Note thatw is equal topk times ap-adic unit.

SetG̃∞ :=Q×p = pZ×Z×p . Define the quotients of̃G∞,
:̃ :=Q×p /Z×p = pZ, G̃n := pZ×(

Zp/pnZp
)×
, n≥ 1.

To simplify slightly the computation, assume from now on that�× = {±1}. (If �× &=
{±1}, thenK has discriminant−3 or−4, and the exact sequences below have to be
modified to account for the nontrivial units of�. The computations in this case follow
closely those presented in the paper.) Class field theory yields the exact sequence

0→ 〈w〉 → G̃∞
recp−−−→G∞→ 0

and the induced sequences

0→ 〈w〉 → :̃→:→ 0, 0→ 〈w〉 → G̃n→Gn→ 0.

For n ≥ 0, denote byZ(n)p ⊂ G̃∞ the subgroup of elements ofZ×p that are congruent
to one modulopn.

Definition. We say that a vertexv of � has level n, and write$(v) = n, if the
stabilizer ofv for the action ofG̃∞ is equal toZ(n)p . Likewise, we say that an edge
e of � haslevel n, and write$(e) = n, if the stabilizer ofe for the action ofG̃∞ is
Z(n)p .
Note that the group̃Gn (:̃ if n = 0) acts simply transitively on the vertices and

edges of leveln. By definition of the action ofG̃∞ on �, v0 is a vertex of level 0.
Thus, the set of vertices of level 0 is equal to the:̃-orbit of v0. More generally, the set
of vertices of leveln can be described as thẽGn-orbit of a vertexvn whose distance
from v0 is n and whose distance from all the other vertices in the orbit;̃v0 is> n.
By using the standard coordinate, identifyP1(Cp) with Cp ∪ {∞} and�p with

P1(Cp)−P1(Qp). In particular, view 0 and∞ as elements ofP1(Qp). Recall the
elementγ = γ (P0) of � defined in Section 5. Since the reduced norm ofγ has
positive valuation, our choice of the isomorphismψ yields

lim
n→+∞γ nz= 0, lim

n→−∞γ nz=∞(4)

for all z ∈ �p. Note also that 0 and∞ are the fixed points for the action of̃G∞ on
P1(Cp).
Let �p(Qp2) = Qp2 −Qp be theQp2-points of thep-adic upper half plane.

Define thereduction map
r :�p

(
Qp2

)→ �(�)
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as follows. Givenz ∈�p(Qp2), let�z denote the stabilizer ofz in GL2(Qp), together
with the zero matrix. Then�z is a field isomorphic toQp2, and this gives rise to an
embedding ofQp2 in M2(Qp) (well defined up to an isomorphism ofQp2). Write
Zp2 for the ring of integers ofQp2, and letS be the unique maximal order ofM2(Qp)

containing the image ofZp2 by the above embedding. We haver(z) = S. (See also
[BD2, Sec. 1].)

Lemma 7.1. (1) The reduction mapr isGL2(Qp)-equivariant. In particular,r is
equivariant for the group actions defined above.
(2)WriteZp2 = Zpα+Zp. We haver−1(v0)= Z×p α+Zp.
(3) If z1 and z2 are mapped byr to adjacent vertices of respective levelsn and

n+1, thenz1z
−1
2 ≡ 1 (mod pn).

Proof. (1) Letz be an element of�p(Qp2), and letB be a matrix in GL2(Qp). If
f :Qp2 →M2(Qp) is an embedding fixingz, thenBfB−1 is an embedding fixing
Bz. Suppose thatS is the maximal ideal containingf (Zp2). ThenBSB

−1= S ∗B−1
is the maximal ideal containing the image ofZp2 byBfB

−1. Thus,r(Bz)= S∗B−1,
as was to be shown.
(2) Assume thatp is greater than 2. Then, we may assume thatα = √ν, where

the integerν is not a square modulop. (The case wherep = 2 can be dealt with in a
similar way—for instance, by takingα = (1+√−3)/2.) A direct computation shows
that

�√ν =
{(

b aν

a b

)
: a,b ∈Qp

}
.

Mapping the above matrix toa
√
ν+b yields an isomorphism of�√ν ontoQp2. Thus,

r(
√
ν) is equal tov0=M2(Zp). Givenz= a

√
ν+b ∈�p(Qp2), we havez= B

√
ν,

whereB is the matrix
(
a b
0 1

)
. By (1),

r(z)= BM2(Zp)B−1.

ButBM2(Zp)B−1=M2(Zp) if and only ifB belongs to GL2(Zp), that is,a belongs
to Z×p .
(3) Setr(z1)= v1 andr(z2)= v2. The edge joiningv1 to v2 has leveln+1. Since

G̃∞ =Q×p acts transitively on the edges of leveln+1, there isg ∈Q×p such thatgv1
andgv2 have distance fromv0 equal ton andn+1, respectively. With notation as in
the proof of (2) of this proposition, writegzi = ai

√
ν+bi , i = 1,2, whereai,bi ∈ Zp,

gcd(ai,bi) = 1, andpn ‖ a1, pn+1 ‖ a2. Thus, the vertexgvi is represented by the
matrix

Ai =
(
ai bi
0 1

)
.

Our assumption ongv1 andgv2 implies that the column
(
b2
1

)
of A2 is aZp-linear
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combination of the columns ofA1. It follows thatb1≡ b2 (mod pn), and hence

z1z
−1
2 = gz1

(
gz2

)−1≡ 1
(
modpn

)
.

II. The calculation. Givenδ ∈ �, write as usual̄δ for the natural image ofδ in �̄.
We now compute explicitly the value ofj (c)(δ̄) = [c, δ̄], for δ ∈ �. We begin with
the following lemma.

Lemma 7.2. Givenδ ∈ �, we have
j (c)(δ̄)=

∏
ε∈�

εδz0

εz0
,

wherez0 is any element in�p, and� is any set of representatives for〈γ 〉\�.
Proof (Cf. [M, Th. 2.8]). Let �′ be any set of representatives for�/〈γ 〉. In view

of the formulae (4), for anyz0 anda in �p we have the chain of equalities

j (c)(δ̄)=
∏
ε∈�

z0−εa

z0−εγ a
· δz0−εγ a

δz0−εa

=
∏
ε∈�′

+∞∏
n=−∞

z0−εγ na

z0−εγ n+1a
· δz0−εγ n+1a
δz0−εγ na

=
∏
ε∈�′

lim
N→+∞

z0−εγ−Na
z0−εγ N+1a

· δz0−εγ N+1a
δz0−εγ−Na

=
∏
ε∈�′

z0−ε∞
z0−ε0

· δz0−ε0

δz0−ε∞

=
∏
ε∈�′

ε−1δz0
ε−1z0

.

Note that(�′)−1 is a set of representatives for〈γ 〉\�, and any set of representatives
for 〈γ 〉\� can be obtained in this way. The claim follows.

Lemma 7.3. Let d be an edge of�, let n be a positive integer, and let� be a set
of representatives for〈γ 〉\�. Then the set{ε ∈ � : $(εd)≤ n} is finite.
Proof. If {εi} is a sequence of distinct elements of� such that$(εid)≤ n, we can

find integerski such thatγ ki εid describes only finitely many edges. This contradicts
the discreteness of�.

We say that two elements of�̄ arelinearly independentif they generate a rank-two
free abelian subgroup of̄�.

Proposition 7.4. (1) Suppose thatc and δ̄ are linearly independent in̄�. There
exists a set� of representatives for〈γ 〉\� such that ifε belongs to�, then all the
elements of the cosetε〈δ〉 belong to�.
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(2) There exists a set� = �0
∐

�1 of representatives for〈γ 〉\� such that
(i) the set�0 contains a finite number of elements that are mapped by the

isomorphismψ to diagonal matrices ofPGL2(Qp);
(ii) if ε belongs to�1, then all the elements of the cosetε〈γ 〉 belong to�1.

Proof (Cf. [M, Lemma 2.7]). (1) Consider a decomposition of� as a disjoint
union of double cosets

� =
∐
ε̄∈�̄

〈γ 〉ε̄〈δ〉.

We claim that we may take� to be{ε̄δm : ε̄ ∈ �̄, m ∈ Z}. For, if ε̄δm = γ r ε̄δn, we
find δm−n = ε̄−1γ r ε̄. Projecting this relation tō� givesm= n.
(2) Consider a decomposition of� as a disjoint union of double cosets

� =
∐
ε̄∈�̄

〈γ 〉ε̄〈γ 〉.

Define�1 to be the set of elements of� of the formε̄γ m,m ∈ Z, whereε̄ ∈ �̄ is such
that 〈γ 〉ε̄γ n &= 〈γ 〉ε̄γ m wheneverm &= n. As for�0, we claim that it can be taken to
be the set of elements̄ε ∈ �̄ that do not satisfy the above condition. In such a case,
there is a relationγ r ε̄γ n = ε̄γ m for integersr andm &= n. Then,γ r = ε̄γ m−nε̄−1.
By projecting this equality tō�, we see thatm−n= r, and hencēε andγ r commute.

Sinceγ r is mapped byψ to the diagonal matrix
(
wιr 0
0 1

)
, where ordp(w)= k > 0, a

direct computation shows thatε̄ is also diagonal (and thus commutes withγ ). Now
consider the group of all the diagonal matrices inψ(�). Since� is discrete, this group
is the product of a finite group by a cyclic group containing the group generated by
γ . In conclusion, the set�0 is finite, and∐

ε̄∈�0

〈γ 〉ε̄〈γ 〉 =
∐
ε̄∈�0

〈γ 〉ε̄.

The claim follows.
In the computation ofj(c)(δ̄), we can assume that either

(I) c andδ̄ are linearly independent; or
(II) δ̄ = c.

(In fact, if the rank of�̄ is greater than 1, it is enough to consider elements as in the
first case, since the linear mapj (c) is completely determined by the valuesj (c)(δ̄),
for c and δ̄ linearly independent.) In case (I), we use the notation�1 := �, and the
symbol�1 always refers to a choice of representatives for〈γ 〉\� as in Proposition
7.4(1). In case (II), the symbol� = �0

∐
�1 stands for a choice of representatives as

in Proposition 7.4(2).

Lemma 7.5. Let δ ∈ � be as in case (I) or (II) above. Then, the images inG∞ by
the reciprocity map ofj (c)(δ̄) and

∏
ε∈�1

εδz0/εz0 are equal.
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Proof. In case (I), there is nothing to prove. In case (II), Proposition 7.4 combined
with a direct computation shows that∏

ε∈�0

εγ z0

εz0
= wι#(�0).

Sincew is in the kernel of the reciprocity map, the claim follows.

By Lemma 7.5, we are now reduced to computing the product
∏

ε∈�1
εδz0/εz0,

with δ as in case (I) or (II).
We begin with some preliminary remarks. Fix an edgee of level equal to an odd

integern, havingv as its vertex of leveln. Moreover, assume that the distance ofv

from v0 is also equal ton. Note that the image in� of e is equal to the image in�
of a Gross point of conductorcpn.
Givenσ̃ ∈ G̃n, defineµσ̃ to be equal to 1 (respectively,−1) if σ̃ v has odd (respec-

tively, even) distance fromv0. If ι = 1, observe thatµσ̃ depends only on the image
σ̄ of σ̃ in : under the projection induced by the reciprocity map; in this case, we
write µσ̄ instead ofµσ̃ . If ι= 2, thenµσ̃ is constant on the elementsσ̃ that have the
same image in: andp-adic valuation of the same parity; moreover, the values of
µσ̃ corresponding to different parities are opposite. In this case, ifσ̃ projects in: to
σ̄ and ordp(σ̃ ) is even, we letµσ̄ stand forµσ̃ .
Given an edged of �, andσ̃ ∈ G̃n, write σ̃ e ≡ d if the edgeσ̃ e is �1-equivalent

to d, andσe ≈ d if the elementσe of � is �-equivalent tod. If ι = 1, the relation
σ̃ e ≡ d implies thatσe ≈ d. If ι = 2, σ̃ e ≡ d yieldsσe ≈ d when ordp(σ̃ ) is even,
andσe ≈ wd, with w ∈ �+−�, when ordp(σ̃ ) is odd.
Recall thatωd denotes the order of the stabilizer in� of d.

Lemma 7.6. (1) Suppose thatι = 1. If the odd integern is sufficiently large, the
projectionG̃n→Gn induces aωd -to-1map{

σ̃ ∈ G̃n : σ̃ e ≡ d
}→ {σ ∈Gn : σe ≈ d}.

(2) Suppose thatι = 2. If the odd integern is sufficiently large, the projection
G̃n→Gn inducesωd -to-1maps{

σ̃ ∈ G̃n : σ̃ e ≡ d, ordp(σ̃ ) even
}→ {σ ∈Gn : σe ≈ d}

and
{σ̃ ∈ G̃n : σ̃ e ≡ d, ordp(σ̃ ) odd} → {σ ∈Gn : σe ≈ wd}.

Proof. (1) Suppose that̃σ1e ≡ d andσ̃2e ≡ d; that is,σ̃1e = ε1d andσ̃2e = ε2d,
for ε1 andε2 in �1. If σ̃1 and σ̃2 have the same image inGn, then σ̃1 = wrσ̃2 for
r ∈ Z, and henceγ rε2d = ε1d. If r &= 0, that is,σ̃1 &= σ̃2 andε1 &= ε2, thenγ rε2ε

−1
1 is

a nontrivial element of the stabilizer in� of ε1d, which is a group of cardinalityωd .
Conversely, ifσ̃1e = ε1d for ε1 ∈ �1 and ifβ is a nontrivial element of the stabilizer
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of ε1d, we haveσ̃1e = βε1d. Write βε1 = γ rε2, r ∈ Z, ε2 ∈ �. Thenε1 &= ε2. Note
that if n is large, thenε2 belongs to�1. We obtainw−r σ̃1e = ε2d. This concludes the
proof of part (1).
(2) The proof is exactly the same as that of part (1). Let

path(v0,δv0)= d1−d2+·· ·+ds−1−ds ∈ Z[	(�)].
(Note thats is even, sinceδ belongs to�.) Write dj = {vej ,voj }, wherevej is the even
vertex ofdj , andvoj is the odd vertex ofdj . Note that we have

voj = voj+1 for j = 1,3, . . . , s−1,

vej = vej+1 for j = 2,4, . . . , s−2,

ves = δve1.

Fix z0 ∈ �p(Qp2) such thatr(z0) = v0. We may choose elementszoj and zej in
�p(Qp2) such thatr(z

o
j )= voj , r(z

e
j )= vej , and

zoj = zoj+1 for j = 1,3, . . . , s−1,

zej = zej+1 for j = 2,4, . . . , s−2,

ze1= z0, zes = δz0.

Hence(
εzo1

)(
εzo2

)−1 · · ·(εzos−1)(εzos )−1= 1,
(
εze2

)(
εze3

)−1 · · ·(εzes−2)(εzes−1)−1= 1,

so that ∏
ε∈�1

εδz0

εz0
=

∏
ε∈�1

(
εzo1

εze1

)(
εzo2

εze2

)−1
· · ·

(
εzos

εzes

)−1
.

Fix a largeodd integern. For each 1≤ j ≤ s, let�(j) be the set of elementsε in �1

such thatεdj has level less than or equal ton. Lemma 7.3 shows that the sets�(j)
are finite. By Lemma 7.1, we have the congruence

∏
ε∈�1

εδz0

εz0
≡

∏
ε∈�(1)

(
εzo1

εze1

) ∏
ε∈�(2)

(
εzo2

εze2

)−1
· · ·

∏
ε∈�(s)

(
εzos

εzes

)−1
(modpn).(5)

Each of the factors in the right-hand side of equation (5) can be broken up into three
contributions:

∏
�(j)

εzoj

εzej
=

∏
$(εvoj )<n

εzoj ·
∏

$(εvej )<n

(εzej )
−1 ·

∏
$(εdj )=n

(εz
πj
j )µj ,

whereπj = o (respectively,πj = e) if the distance of the furthest vertex ofεdj from
v0 is odd (respectively, even) and where we setµj = 1 in the first case andµj =−1
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in the second case. By our choice of the set�1 as in Proposition 7.4, the first two
factors in this last expression cancel out in formula (5). Hence we obtain

∏
ε∈�1

εδz0

εz0
≡

∏
$(εd1)=n

(
εz

π1
1

)µ1 ·
∏

$(εd2)=n

(
εz

π2
2

)−µ2 · · ·
∏

$(εds)=n

(
εzπss

)−µs (modpn).

As in the remarks before Lemma 7.6, lete be an edge of leveln such that its vertex
v of level n has distance fromv0 also equal ton. Choose anyz ∈ �p(Qp2) with

r(z)= v. SinceG̃n acts simply transitively on the set of edges of leveln, Lemma 7.1
gives

∏
ε∈�1

εδz0

εz0
≡

∏
σ̃ e≡d1

(
σ̃ z

)µσ̃ ·
∏

σ̃ e≡d2

(
σ̃ z

)−µσ̃ · · ·
∏

σ̃ e≡ds

(
σ̃ z

)−µσ̃ (modpn).

By Lemma 7.6, we obtain

∏
ε∈�1

εδz0

εz0
≡

∏
σ̃ e≡d1

σ̃ µσ̃ ·
∏

σ̃ e≡d2
σ̃−µσ̃ · · ·

∏
σ̃ e≡ds

σ̃−µσ̃ ·(zM)
(modpn),

where

M =
{
〈path(v0,δv0),∑σ∈Gn

µσ̄ σe〉 if ι= 1,

〈path(v0,δv0),∑σ∈Gn
(µσ̄ −µσ̄w)σe〉 if ι= 2.

By Lemma 2.3, the duality〈 , 〉 induces a pairing onH1(
,Z)×�. In the case
ι = 1, one sees directly that

∑
σ∈Gn

µσ̄ σe has trivial image in�, so thatM is zero.
Consider now the caseι= 2. Since we are interested in computingj(c)(δ̄), we need
only consider the image of the homomorphismj (c) in �sp⊗Q×p . Thus, we may view
the above pairing as being defined onH1(
,Z)−×�sp, whereH1(
,Z)− indicates
the “minus” eigenspace for the action ofw onH1(
,Z), andwemay assume from now
on that path(v0,δv0) belongs toH1(
,Z)−. One checks that the imageι

∑
σ∈Gn

µσ̄ σe

in �sp of the element
∑

σ∈Gn
(µσ̄ −wµσ̄ )σe is trivial, so that also in this case,M is

zero. Hence, in all cases,

∏
ε∈�1

εδz0

εz0
≡

∏
σ̃ e≡d1

σ̃ µσ̃ ·
∏

σ̃ e≡d2
σ̃−µσ̃ · · ·

∏
σ̃ e≡ds

σ̃−µσ̃ (modpn).

Let recp,n : G̃∞ → Gn be the composite of the reciprocity map with the natural
projection ofG∞ ontoGn. Suppose thatι = 1. By Lemma 7.6, the above relation
yields the equality inGn:

recp,n


 ∏
ε∈�1

εδz0

εz0


= ∏

σe≈d1
σωd1µσ̄ ·

∏
σe≈d2

σ−ωd2µσ̄ · · ·
∏

σe≈ds
σ−ωds µσ̄ .
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Recall the derivative�′p,n(�sp/H,P0) ∈ �sp⊗Gn defined in formula (3) at the end
of Section 3. By the definition of the bijectionκ of Lemma 2.2, the right-hand side
of the above equality can be written as

�′p,n
(
�sp/H,P0

)(
δ̄
)= 〈path(v0,δv0), ∑

g∈Gn

en(i)
g⊗g−1〉,

where, by an abuse of notation,
∑

g∈Gn
en(i)

g ⊗ g−1 is viewed as an element of
�sp⊗Gn. Whenι= 2, a similar computation shows that

ι�′p,n
(
�sp/H,P0

)(
δ̄
)= recp,n


 ∏
ε∈�1

εδz0

εz0


 .

By passing to the limit, one obtains in all cases

ι�′p
(
�sp/H,P0

)(
δ̄
)= recp


 ∏
ε∈�1

εδz0

εz0


 .

In other words, by definition of the mapj ,

�′p
(
�sp/H,P0

)ι = j(c),

as was to be shown.
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