p-adic periods, p-adic L-functions and the p-adic uniformization of Shimura curves

Massimo Bertolini¹ Henri Darmon²

Contents

1 Introduction	. 1
2 Definite quaternion algebras and graphs	. 4
3 The <i>p</i> -adic <i>L</i> -function \ldots	. 8
4 The theory of <i>p</i> -adic uniformization of Shimura curves	14
5 <i>p</i> -adic Shintani cycles and special values of complex <i>L</i> -functions	17
6 <i>p</i> -adic Shintani cycles and derivatives of <i>p</i> -adic <i>L</i> -functions	19
7 Proof of theorem 6.1	22
References	30
References	30

1 Introduction

Let E/\mathbb{Q} be a modular elliptic curve of conductor N, and let p be a prime of split multiplicative reduction for E. Write \mathbb{C}_p for a fixed completion of an algebraic closure of \mathbb{Q}_p . Tate's theory of p-adic uniformization of elliptic curves yields a rigid-analytic, $\operatorname{Gal}(\mathbb{C}_p/\mathbb{Q}_p)$ -equivariant uniformization of the \mathbb{C}_p -points of E

(1)
$$0 \to q^{\mathbb{Z}} \to \mathbb{C}_p^{\times} \xrightarrow{\Phi_{\text{Tate}}} E(\mathbb{C}_p) \to 0,$$

where $q \in p\mathbb{Z}_p$ is the *p*-adic period of *E*.

Mazur, Tate and Teitelbaum conjectured in [MTT] that the cyclotomic *p*-adic L-function of E/\mathbb{Q} vanishes at the central point to order one greater than that of its classical counterpart. Furthermore, they proposed a formula for the leading coefficient of such a *p*-adic *L*-function. In the special case where the analytic rank of $E(\mathbb{Q})$ is zero, they predicted that the ratio of the special value of the first derivative of the cyclotomic *p*-adic *L*-function and the algebraic part of the special value of the complex *L*-function of E/\mathbb{Q} is equal to the quantity

$$\frac{\log_p(q)}{\operatorname{ord}_p(q)}$$

¹Partially supported by GNSAGA (C.N.R.); M.U.R.S.T., progetto nazionale "Geometria algebrica"; Human Capital and Mobility Programme of the European Community, under contract ERBCH RXCT940557.

²Partially supported by grants from FCAR, NSERC and by an Alfred P. Sloan research award.

(where \log_p is Iwasawa's cyclotomic logarithm), which is defined purely in terms of the *p*-adic uniformization of *E*. Greenberg and Stevens [GS] gave a proof of this special case. See also the work of Boichut [Boi] in the case of analytic rank one.

The article [BD1] formulates an analogue of the conjectures of [MTT] in which the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} is replaced by the anticyclotomic \mathbb{Z}_p -extension of an imaginary quadratic field K. When p is split in K and the sign of the functional equation of L(E/K, s) is +1, this conjecture relates the first derivative of the anticyclotomic p-adic L-function of E to the anticyclotomic logarithm of the p-adic period of E. The present paper supplies a proof of this conjecture. Our proof is based on the theory of p-adic uniformization of Shimura curves.

More precisely, assume that K is an imaginary quadratic field with $(\operatorname{disc}(K), N) = 1$ such that:

- (i) p is split in K;
- (ii) E is semistable at the rational primes which divide N and are inert in K;
- (iii) the number of these rational primes is odd.

The complex L-function L(E/K, s) of E over K has a functional equation and an analytic continuation to the whole complex plane. Under our assumptions, the sign of the functional equation of L(E/K, s) is +1 (cf. [GZ], p. 71), and hence L(E/K, s) vanishes to even order at s = 1.

Fix a positive integer c prime to N, and let \mathcal{O} be the order of K of conductor c. Let H_n be the ring class field of K of conductor cp^n , with $n \ge 0$, and let H_∞ be the union of the H_n . By class field theory, the Galois group $\operatorname{Gal}(H_\infty/H_0)$ is identified with $\mathcal{O}^{\times} \setminus (\mathcal{O}_K \otimes \mathbb{Z}_p)^{\times} / \mathbb{Z}_p^{\times} \simeq \mathbb{Z}_p \times \mathbb{Z}/((p-1)/u)\mathbb{Z}$, with $u := \frac{1}{2} \# \mathcal{O}^{\times}$. Moreover, $\operatorname{Gal}(H_0/K)$ is identified with the Picard group $\operatorname{Pic}(\mathcal{O})$. Set

$$\mathbf{G}_n := \operatorname{Gal}(H_n/K), \quad \mathbf{G}_\infty := \operatorname{Gal}(H_\infty/K).$$

Thus, \mathbf{G}_{∞} is isomorphic to the product of \mathbb{Z}_p by a finite abelian group. Choose a prime \mathfrak{p} of K above p. Identify $K_{\mathfrak{p}}$ with \mathbb{Q}_p , and let

$$\operatorname{rec}_p: \mathbb{Q}_p^{\times} \to \mathbf{G}_{\infty}$$

be the reciprocity map of local class field theory. Define the integral completed group ring of \mathbf{G}_{∞} to be

$$\mathbb{Z}\llbracket \mathbf{G}_{\infty} \rrbracket := \lim_{\stackrel{\leftarrow}{n}} \mathbb{Z}[\mathbf{G}_n],$$

where the inverse limit is taken with respect to the natural projections of group rings.

In section 3, we recall the construction explained in [BD1], section 2.7 of an element

$$\mathcal{L}_p(E/K) \in \mathbb{Z}\llbracket \mathbf{G}_{\infty} \rrbracket$$

attached to $(E, H_{\infty}/K)$, which interpolates the special values $L(E/K, \chi, 1)$ of L(E/K, s) twisted by finite order characters of \mathbf{G}_{∞} . The construction of this *p*-adic *L*-function is based on the ideas of Gross [Gr] and a generalization due to Daghigh [Dag]. We will show that $\mathcal{L}_p(E/K)$ belongs to the augmentation ideal *I* of $\mathbb{Z}[\![\mathbf{G}_{\infty}]\!]$. Let $\mathcal{L}'_p(E/K)$ be the natural image of $\mathcal{L}_p(E/K)$ in $I/I^2 = \mathbf{G}_{\infty}$. The element $\mathcal{L}'_p(E/K)$ should be viewed as the first derivative of $\mathcal{L}_p(E/K)$ at the central point.

Let $f = \sum_{n>1} a_n q^n$ be the newform attached to E, and let

$$\Omega_f := 4\pi^2 \iint_{\mathcal{H}/\Gamma_0(N)} |f(\tau)|^2 d\tau \wedge i d\bar{\tau}$$

be the Petersson inner product of f with itself. We assume that E is the strong Weil curve for the Shimura curve parametrization defined in section 4. Set $d := \operatorname{disc}(\mathcal{O})$, and let n_f be the positive integer defined later in this introduction, and specified further in section 2. Our main result (stated in a special case: see theorem 6.4 for the general statement) is the following.

Theorem 1.1

Suppose that c = 1. The equality (up to sign)

$$\mathcal{L}'_p(E/K) = \frac{\operatorname{rec}_p(q)}{\operatorname{ord}_p(q)} \sqrt{L(E/K, 1)\Omega_f^{-1} \cdot d^{\frac{1}{2}} u^2 n_f}$$

holds in $I/I^2 \otimes \mathbb{Q}$.

For the convenience of the reader, we now briefly sketch the strategy of the proof of theorem 1.1.

Write the conductor N of E as pN^+N^- , where N^+ , resp. N^- is divisible only by primes which are split, resp. inert in K. Under our assumptions, N^- has an odd number of prime factors, and pN^- is squarefree. Denote by B the definite quaternion algebra over \mathbb{Q} of discriminant N^- , and fix an Eichler order R of B of level N^+p . Let Γ be the subgroup of elements of $\mathbb{Q}_p^{\times} \setminus R[\frac{1}{p}]^{\times}$ whose norm has even p-adic valuation, and set $\mathcal{N} := \operatorname{Hom}(\Gamma, \mathbb{Z})$. The module \mathcal{N} is a free abelian group, and is equipped with the action of a Hecke algebra \mathbb{T} attached to modular forms of level N which are new at N^-p . In section 2, we will also define a canonical free quotient $\mathcal{N}_{\rm sp}$ of \mathcal{N} , which is stable for the action of \mathbb{T} and is such that the image of \mathbb{T} in $\operatorname{End}(\mathcal{N}_{\rm sp})$ corresponds to modular forms which are split multiplicative at p. Let π_f be the idempotent of $\mathbb{T} \otimes \mathbb{Q}$ associated with f, and let n_f be a positive integer such that $\eta_f := n_f \pi_f$ belongs to \mathbb{T} . Denote by \mathcal{N}^f the submodule of \mathcal{N} on which \mathbb{T} acts via the character

$$\phi_f: \mathbb{T} \to \mathbb{Z}, \quad T_n \mapsto a_n$$

defined by f. By the multiplicity-one theorem, the module \mathcal{N}^f is isomorphic to \mathbb{Z} . The operator η_f yields a map (denoted in the same way by an abuse of notation) $\eta_f : \mathcal{N} \to \mathcal{N}^f$, which factors through \mathcal{N}_{sp} . We will define an element $\mathcal{L}_p(\mathcal{N}_{sp}/K) \in \mathcal{N}_{sp} \otimes \mathbb{Z}[\![\mathbf{G}_{\infty}]\!]$, such that (up to sign)

$$(\eta_f \otimes \mathrm{id})(\mathcal{L}_p(\mathcal{N}_{\mathrm{sp}}/K)) = c_p \cdot \mathcal{L}_p(E/K),$$

where $c_p := \operatorname{ord}_p(q)$. Recall that the derivative $\mathcal{L}'_p(E/K)$ of $\mathcal{L}_p(E/K)$ belongs to $\mathcal{N}^f \otimes \mathbf{G}_{\infty} = \mathbf{G}_{\infty}$.

On the other hand, the module \mathcal{N} is related to the theory of *p*-adic uniformization of Shimura curves. Let \mathcal{B} be the indefinite quaternion algebra of discriminant pN^- , and let \mathcal{R} be an Eichler order of \mathcal{B} of level N^+ . Write X for the Shimura curve over \mathbb{Q} associated with \mathcal{R} (see section 4), and J for the jacobian of X. A theorem of Cerednik ([Cer]), combined with the theory of jacobians of Mumford curves ([GVdP]), yields a rigid-analytic uniformization

(2)
$$0 \to \Lambda \to \mathcal{N} \otimes \mathbb{C}_p^{\times} \xrightarrow{\Phi} J(\mathbb{C}_p) \to 0,$$

where Λ is the lattice of *p*-adic periods of *J*. The Tate uniformization (1) is obtained from the sequence (2) by applying the operator η_f to the Hecke modules $\mathcal{N} \otimes \mathbb{C}_p^{\times}$ and $J(\mathbb{C}_p)$ of (2). In particular, the *p*-adic period *q* of *E* can be viewed as an element of the module $\mathcal{N}^f \otimes \mathbb{C}_p^{\times}$, and in fact one checks it belongs to $\mathcal{N}^f \otimes \mathbb{Q}_p^{\times} = \mathbb{Q}_p^{\times}$. An explicit calculation of *p*-adic periods, combined with a formula for L(E/K, 1) given in [Gr] and [Dag], will prove theorem 1.1.

A similar strategy was used in [BD2], when p is inert in K and the sign of the functional equation of L(E/K, s) is -1, to obtain a p-adic analytic construction of a Heegner point in terms of the first derivative of an anticyclotomic p-adic L-function.

It is worth observing that an analogous strategy has not (yet) proven to work in the case of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . The difficulty is that of relating in a natural way the construction of the cyclotomic *p*-adic *L*-function, which is defined in terms of modular symbols, to the *p*-adic uniformization of Shimura curves. P. Schneider [Sch] has proposed the definition of a *p*-adic *L*-function based on the notion, which stems directly from the theory of *p*-adic uniformization, of rigid-analytic modular symbol. C. Klingenberg [Kl] has proven an exceptional zero formula similar to theorem 1.1 for this rigid-analytic *p*-adic *L*-function. However, the relation (if any) between Schneider's *p*-adic *L*-function and the cyclotomic *p*-adic *L*-function considered in [MTT] is at present mysterious.

The reader is also referred to Teitelbaum's paper [T], where the theory of p-adic uniformization of Shimura curves is used to formulate analogues of the conjectures of [MTT] for cyclotomic p-adic L-functions attached to modular forms of higher weight.

The proof by Greenberg and Stevens [GS] of the cyclotomic "exceptional zero" formula of [MTT] follows a completely different strategy from the one of this paper, and is based on Hida's theory of p-adic families of modular forms.

Finally, let us mention that Kato, Kurihara and Tsuji [KKT] have recently announced more general results on the conjectures of [MTT], which make use of an Euler System constructed by Kato from modular units in towers of modular function fields.

2 Definite quaternion algebras and graphs

Keep the notations and assumptions of the introduction. In particular, recall that K is an imaginary quadratic field, and B is a definite quaternion algebra of discriminant N^- . Given a rational prime ℓ , and orders O of K and S of B, set

$$K_{\ell} := K \otimes \mathbb{Z}_{\ell}, \quad B_{\ell} := B \otimes \mathbb{Z}_{\ell}, \quad O_{\ell} := O \otimes \mathbb{Z}_{\ell}, \quad S_{\ell} := S \otimes \mathbb{Z}_{\ell}.$$

Denote by $\hat{\mathbb{Z}} = \prod \mathbb{Z}_{\ell}$ the profinite completion of \mathbb{Z} . Set

$$\hat{K} := K \otimes \hat{\mathbb{Z}}, \quad \hat{B} := B \otimes \hat{\mathbb{Z}}, \quad \hat{O} := O \otimes \hat{\mathbb{Z}} = \prod O_{\ell}, \quad \hat{S} := S \otimes \hat{\mathbb{Z}} = \prod S_{\ell}$$

Fix an Eichler order R of B of level N^+p . Equip R with an orientation, i.e., a collection of algebra homomorphisms

$$\mathfrak{o}_{\ell}^{+}: R \to \mathbb{Z}/\ell^{n}\mathbb{Z}, \qquad \ell^{n} \| N^{+}p,$$
$$\mathfrak{o}_{\ell}^{-}: R \to \mathbb{F}_{\ell^{2}}, \qquad \ell \mid N^{-}.$$

The group \hat{B}^{\times} acts transitively (on the right) on the set of Eichler orders of level N^+p by the rule

$$S * \hat{b} := (\hat{b}^{-1}\hat{S}\hat{b}) \cap B.$$

The orientation on R induces an orientation on $R * \hat{b}$, and the stabilizer of the oriented order R is equal to $\mathbb{Q}^{\times}\hat{R}^{\times}$. This sets up a bijection between the set of oriented Eichler orders of level N^+p and the coset space $\mathbb{Q}^{\times}\hat{R}^{\times}\setminus\hat{B}^{\times}$. Likewise, there is a bijection between the set of oriented Eicher orders of level N^+p modulo conjugation by B^{\times} and the double coset space

$$\hat{R}^{\times} \backslash \hat{B}^{\times} / B^{\times}$$

Set $\Gamma_+ := \mathbb{Q}_p^{\times} \setminus R[\frac{1}{p}]^{\times}$ and, as in the introduction, let Γ be the image in Γ_+ of the elements in $R[\frac{1}{p}]^{\times}$ whose reduced norm has even *p*-adic valuation.

Lemma 2.1

 Γ has index 2 in Γ_+ .

Proof. See [BD2], lemma 1.5.

Let \mathcal{T} be the Bruhat-Tits tree associated with the local algebra B_p . The set of vertices $\mathcal{V}(\mathcal{T})$ of \mathcal{T} is equal to the set of maximal orders in B_p . The set $\vec{\mathcal{E}}(\mathcal{T})$ of oriented edges of \mathcal{T} is equal to the set of oriented Eichler orders of level p in B_p . Thus, $\vec{\mathcal{E}}(\mathcal{T})$ can be identified with the coset space $\mathbb{Q}_p^{\times} R_p^{\times} \setminus B_p^{\times}$, by mapping $b_p \in B_p^{\times}$ to $R_p * b_p = b_p^{-1} R_p b_p$. Similarly, if \underline{R}_p is a maximal order in B_p containing R_p , we will identify $\mathcal{V}(\mathcal{T})$ with the coset space $\mathbb{Q}_p^{\times} \underline{R}_p^{\times} \setminus B_p^{\times}$. Define the graphs

$$\mathcal{G} := \mathcal{T}/\Gamma, \qquad \mathcal{G}_+ := \mathcal{T}/\Gamma_+.$$

By strong approximation ([Vi], p. 61), there is an identification

$$\vec{\mathcal{E}}(\mathcal{G}_+) = \hat{R}^{\times} \backslash \hat{B}^{\times} / B^{\times}$$

of the set of oriented edges of \mathcal{G}_+ with the set of conjugacy classes of oriented Eichler orders of level N^+p .

Fixing a vertex v_0 of \mathcal{T} gives rise to an orientation of \mathcal{T} in the following way. A vertex of \mathcal{T} is called *even*, resp. *odd* if it has even, resp. odd distance from v_0 . The direction of an edge is said to be positive if it goes from the even to the odd vertex. Since Γ sends even vertices to even ones, and odd vertices to odd ones, the orientation of \mathcal{T} induces an orientation of \mathcal{G} . Define a map

$$\kappa: \mathcal{E}(\mathcal{G}) \to \vec{\mathcal{E}}(\mathcal{G}_+)$$

from the set of edges of \mathcal{G} to the set of oriented edges of \mathcal{G}_+ , by mapping an edge $\{v, v'\} \pmod{\Gamma}$ of \mathcal{G} , where v and v' are vertices of \mathcal{T} and we assume that v is even, to the oriented edge $(v, v') \pmod{\Gamma_+}$ of \mathcal{G}_+ .

Lemma 2.2

The map κ is a bijection.

Proof. Suppose that $(v, v') \pmod{\Gamma_+} = (u, u') \pmod{\Gamma_+}$. Thus, there is $\gamma \in \Gamma_+$ such that $\gamma v = u$ and $\gamma v' = u'$. If v and u are both even, γ must belong to Γ , and this proves the injectivity of κ . As for surjectivity, $(v, v') \pmod{\Gamma_+}$ is the image by κ of $\{v, v'\} \pmod{\Gamma}$ if v is even, and of $\{wv, wv'\} \pmod{\Gamma}$, where w is any element of $\Gamma_+ - \Gamma$, if v is odd.

Given two vertices v and v' of \mathcal{T} , write $\operatorname{path}(v, v')$ for the natural image in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ of the unique geodesic on \mathcal{T} joining v with v'. For example, if v and v' are even vertices joined by 4 consecutive edges e_1, e_2, e_3, e_4 , by our convention for orienting the edges of \mathcal{T} , $\operatorname{path}(v, v')$ is the image in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ of $e_1 - e_2 + e_3 - e_4$.

There is a coboundary map

$$\partial^* : \mathbb{Z}[\mathcal{V}(\mathcal{G})] \to \mathbb{Z}[\mathcal{E}(\mathcal{G})],$$

which maps the image in $\mathcal{V}(\mathcal{G})$ of an odd, resp. even vertex v of \mathcal{T} to the image in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ of the formal sum of the edges of \mathcal{T} emanating from v, resp. the opposite of this sum. There is also a boundary map

$$\partial_* : \mathbb{Z}[\mathcal{E}(\mathcal{G})] \to \mathbb{Z}[\mathcal{V}(\mathcal{G})],$$

which maps an edge e to the difference v'-v of its vertices, where v is the even vertex and v' is the odd vertex of e. The integral homology, resp. the integral cohomology of the graph \mathcal{G} is defined by $H_1(\mathcal{G}, \mathbb{Z}) = \ker(\partial_*)$, resp. $H^1(\mathcal{G}, \mathbb{Z}) = \operatorname{coker}(\partial^*)$.

Let

$$\langle \ , \ \rangle : \mathbb{Z}[\mathcal{E}(\mathcal{G})] imes \mathbb{Z}[\mathcal{E}(\mathcal{G})] o \mathbb{Z}$$

be the pairing on $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ defined by the rule $\langle e_i, e_j \rangle := \omega_{e_i} \delta_{ij}$, where the e_i are the elements of the standard basis of $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ and ω_{e_i} is the order of the stabilizer in Γ of a lift of e_i to \mathcal{T} . Likewise, let

$$\langle\!\langle \ , \ \rangle\!\rangle : \mathbb{Z}[\mathcal{V}(\mathcal{G})] \times \mathbb{Z}[\mathcal{V}(\mathcal{G})] \to \mathbb{Z}$$

be the pairing on $\mathbb{Z}[\mathcal{V}(\mathcal{G})]$ defined by $\langle\!\langle v_i, v_j \rangle\!\rangle := \omega_{v_i} \delta_{ij}$, where the v_i are the elements of the standard basis of $\mathbb{Z}[\mathcal{V}(\mathcal{G})]$ and ω_{v_i} is the order of the stabilizer in Γ of a lift of v_i to \mathcal{T} .

We use the notation \mathcal{M} to indicate the module $H^1(\mathcal{G},\mathbb{Z})$. Let $\overline{\Gamma}$ be the maximal torsion-free abelian quotient of Γ . As in the introduction, write \mathcal{N} for $\operatorname{Hom}(\overline{\Gamma},\mathbb{Z})$. Given an element $\gamma \in \Gamma$, denote by $\overline{\gamma}$ the natural image of γ in $\overline{\Gamma}$.

Lemma 2.3

(i) The map from $\overline{\Gamma}$ to $H_1(\mathcal{G}, \mathbb{Z})$ which sends $\overline{\gamma} \in \overline{\Gamma}$ to the cycle path $(v_0, \gamma v_0)$, where v_0 is any vertex of \mathcal{G} and γ is any lift of $\overline{\gamma}$ to Γ , is an isomorphism.

(ii) The map from \mathcal{M} to \mathcal{N} which sends $m \in \mathcal{M}$ to the homomorphism

 $\bar{\gamma} \mapsto \langle \operatorname{path}(v_0, \gamma v_0), m \rangle$

is injective and has finite cokernel.

Proof (sketch). Part (i) is proved in [Se]. Part (ii) follows from part (i), and from the fact that the maps ∂^* and ∂_* are adjoint with respect to the pairings defined above.

Write \mathcal{M}_{sp} for the maximal torsion-free quotient of $\mathcal{M}/(w+1)\mathcal{M}$, with $w \in \Gamma_+ - \Gamma$. By part (i) of lemma 2.3, the action of $w \in \Gamma_+ - \Gamma$ on $H_1(\mathcal{G}, \mathbb{Z})$ induces an action of w on \mathcal{N} . Write \mathcal{N}_{sp} for the maximal torsion-free quotient of $\mathcal{N}/(w+1)\mathcal{N}$. We have an induced map from \mathcal{M}_{sp} to \mathcal{N}_{sp} , which is injective and has finite cokernel.

The module $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ is equipped with the natural action of an algebra \mathbb{T} generated over \mathbb{Z} by the Hecke correspondences T_{ℓ} for $\ell \nmid N$ and U_{ℓ} for $\ell \mid N$, coming from its double coset description: see [BD1], sec. 1.5. The module $H_1(\mathcal{G},\mathbb{Z})$ is stable under the action of $\tilde{\mathbb{T}}$. Hence, by part (i) of lemma 2.3, the algebra $\tilde{\mathbb{T}}$ also acts on the modules \mathcal{N} and \mathcal{N}_{sp} . Let \mathbb{T} and \mathbb{T}_{sp} denote the image of $\tilde{\mathbb{T}}$ in End(\mathcal{N}) and End(\mathcal{N}_{sp}), respectively. Thus, there are natural surjections $\tilde{\mathbb{T}} \to \mathbb{T} \to \mathbb{T}_{sp}$. By an abuse of notation, we will denote by T_{ℓ} and U_{ℓ} also the natural images in \mathbb{T} and \mathbb{T}_{sp} of T_{ℓ} and U_{ℓ} .

The next proposition clarifies the relation between the modules \mathcal{N} and \mathcal{N}_{sp} and the theory of modular forms.

Proposition 2.4

Let ϕ be an algebra homomorphism from \mathbb{T} , resp. \mathbb{T}_{sp} to \mathbb{C} , and let $a_n := \phi(T_n)$. Then, the a_n are the Fourier coefficients of a normalized eigenform of level N, which is new at N^-p , resp. is new at N^-p and is split multiplicative at p. Conversely, any such modular form arises as above from a character of \mathbb{T} , resp. \mathbb{T}_{sp} .

Proof. Eichler's trace formula identifies the Hecke-module $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ with a space of modular forms of level N which are new at N^- . Moreover, the algebra \mathbb{T} can also be viewed as the Hecke algebra of the module \mathcal{M} defined above, and proposition 1.4 of [BD2] shows that \mathcal{M} is equal to the "p-new" quotient of $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$. This proves the statement of proposition 2.4 concerning characters of \mathbb{T} . The abelian variety associated to a p-new modular form f is split multiplicative at p if and only if $U_p f = f$. Moreover, the Atkin-Lehner involution at p acts on a p-new modular form as $-U_p$, and acts on \mathcal{M} as Γ_+/Γ . This concludes the proof of proposition 2.4.

Modular parametrizations, I

We now make a specific choice of the operator η_f (where f is the newform of level N attached to E) considered in the introduction, that will be used in formulating the results in the sequel of the paper.

As stated in lemma 2.3, $\overline{\Gamma}$ can be identified with the homology group $H_1(\mathcal{G}, \mathbb{Z}) \subset \mathbb{Z}[\mathcal{E}(\mathcal{G})]$. Thus, when convenient, we will tacitly view elements of $\overline{\Gamma}$ as contained

in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$. The restriction of the pairing on $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ defined above to $\overline{\Gamma}$ yields the monodromy pairing (denoted in the same way by an abuse of notation)

$$\langle , \rangle : \overline{\Gamma} \times \overline{\Gamma} \to \mathbb{Z}.$$

Let $\mathbb{Z}[\mathcal{E}(\mathcal{G})]^f$, resp. $\overline{\Gamma}^f$ be the submodule of $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$, resp. $\overline{\Gamma}$ on which $\tilde{\mathbb{T}}$, resp. \mathbb{T} acts via the character associated with f. Note that the quotient of $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ by $\overline{\Gamma}$ is torsion-free, and thus there is a canonical identification $\mathbb{Z}[\mathcal{E}(\mathcal{G})]^f = \overline{\Gamma}^f$. Let e^f be a generator of $\overline{\Gamma}^f \simeq \mathbb{Z}$.

Define the "modular parametrizations"

$$\pi_*: \overline{\Gamma} \to \overline{\Gamma}^f, \qquad \pi^*: \overline{\Gamma}^f \to \overline{\Gamma}$$

by $\pi_*(e) := \langle e, e^f \rangle e^f$ and $\pi^*(e^f) := e^f$. Since

$$(\pi^* \circ \pi_*)^2 = \langle e^f, e^f \rangle (\pi^* \circ \pi_*),$$

we obtain that $\pi^* \circ \pi_*$ is equal to $\langle e^f, e^f \rangle \pi_f$, where π_f is the idempotent of $\mathbb{T} \otimes \mathbb{Q}$ associated with f. From now on, we will assume that the operator η_f is defined by

$$\eta_f := \pi^* \circ \pi_*,$$

so that the integer n_f is equal to $\langle e^f, e^f \rangle$.

As observed in the introduction, the operator η_f induces a map $\mathcal{N} \to \mathbb{Z}$, which is well-defined up to sign. Since f has split multiplicative reduction at p, this map factors through a map $\mathcal{N}_{sp} \to \mathbb{Z}$. By an abuse of notation, we will indicate by η_f both the above maps.

Remark 2.5

The module $\overline{\Gamma}$ can be identified with the character group associated with the reduction modulo p of $\operatorname{Pic}^{0}(X)$, where X is the Shimura curve considered in the introduction. As will be explained in section 4, the map $\pi^* \circ \pi_*$ on $\overline{\Gamma}$ is induced by functoriality from a modular parametrization $\operatorname{Pic}^{0}(X) \to E$.

3 The p-adic L-function

Let \mathcal{O}_n denote the order of K of conductor cp^n , $n \geq 0$. (We will usually write \mathcal{O} instead of \mathcal{O}_0 .) Equip the orders \mathcal{O}_n with compatible orientations, i.e., with compatible algebra homomorphisms

$$\mathfrak{d}_{\ell}^{+}: \mathcal{O}_{n} \to \mathbb{Z}/\ell^{m}\mathbb{Z}, \qquad \ell^{m} \| N^{+}p$$

 $\mathfrak{d}_{\ell}^{-}: \mathcal{O}_{n} \to \mathbb{F}_{\ell^{2}}, \qquad \ell \mid N^{-}.$

An algebra homomorphism of \mathcal{O}_n into an oriented Eichler order S of level N^+p is called an oriented optimal embedding if it respects the orientation on \mathcal{O}_n and on S, and does not extend to an embedding of a larger order into S. Consider pairs (R_{ξ}, ξ) , where R_{ξ} is an oriented Eichler order of level N^+p and ξ is an element of Hom(K, B) which restricts to an oriented optimal embedding of \mathcal{O}_n into R_{ξ} . A Gross point of conductor cp^n $(n \ge 0)$ is a pair as above, taken modulo the action of B^{\times} .

By our previous remarks, a Gross point can be viewed naturally as an element of the double coset space

$$W := (\hat{R}^{\times} \setminus \hat{B}^{\times} \times \operatorname{Hom}(K, B)) / B^{\times}.$$

(See [Gr], sec. 3 for more details.) Strong approximation gives the identification

$$W = (\vec{\mathcal{E}}(\mathcal{T}) \times \operatorname{Hom}(K, B)) / \Gamma_+$$

By lemma 2.2, there is a natural map of \mathbb{Z} -modules $\mathbb{Z}[W] \to \mathbb{Z}[\mathcal{E}(\mathcal{G})]$, where $\mathbb{Z}[W]$ is the module of finite formal \mathbb{Z} -linear combinations of elements of W. The Hecke algebra $\tilde{\mathbb{T}}$ of $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ acts naturally also on $\mathbb{Z}[W]$ (see [BD1], sec. 1.5), in such a way that the above map is $\tilde{\mathbb{T}}$ -equivariant.

The group $\mathbf{G}_n = \operatorname{Pic}(\mathcal{O}_n) = \hat{\mathcal{O}}_n^{\times} \setminus \hat{K}^{\times} / K^{\times}$ acts simply transitively on the Gross points of conductor cp^n by the rule

$$\sigma(R_{\xi},\xi) := (R_{\xi} * \hat{\xi}(\sigma)^{-1},\xi),$$

where $\hat{\xi}$ denotes the extension of ξ to a map from \hat{K} to \hat{B} .

Now, fix a Gross point $P_0 = (R_0, \xi_0) \pmod{B^{\times}}$ of conductor c. By the above identification, P_0 corresponds to a pair $(\vec{e}_0, \xi_0) \in \vec{\mathcal{E}}(\mathcal{T}) \times \operatorname{Hom}(K, B)$, modulo the action of Γ_+ . As above, the origin v_0 of \vec{e}_0 determines an orientation of \mathcal{T} . Let \vec{e} be one of the p oriented edges of \mathcal{T} originating from \vec{e}_0 . All the Gross points corresponding to pairs (\vec{e}, ξ_0) as above have conductor cp, except for one, which has conductor c. Fix an end

$$(\vec{e}_0, \vec{e}_1, \ldots, \vec{e}_n, \ldots),$$

such that (\vec{e}_1, ξ_0) defines a Gross point of conductor cp. Then, (\vec{e}_n, ξ_0) defines a Gross point P_n of conductor cp^n , for all $n \ge 0$.

Denote by Norm_{H_{n+1}/H_n} the norm operator $\sum_{q \in \text{Gal}(H_{n+1}/H_n)} g$.

Lemma 3.1 1) Let $u = \frac{1}{2} \# \mathcal{O}^{\times}$. The equality

$$U_p P_0 = u \operatorname{Norm}_{H_1/H_0} P_1 + \sigma_{\mathfrak{p}} P_0$$

holds in $\mathbb{Z}[W]$ for a prime \mathfrak{p} above p, where $\sigma_{\mathfrak{p}} \in \operatorname{Gal}(H_0/K)$ denotes the image of \mathfrak{p} by the Artin map.

2) For $n \geq 1$,

$$U_p P_n = \operatorname{Norm}_{H_{n+1}/H_n} P_{n+1}$$

Proof. It follows from the definition of the operator U_p (see [BD1], sec. 1.5) and the action of $\text{Pic}(\mathcal{O}_n)$ on the Gross points.

The picture below, drawn in the case p = 2, illustrates geometrically the relation between the Galois action and the action of the Hecke correspondence U_p . By lemma 2.3, the natural map from $\mathbb{Z}[W]$ to $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$ induces maps from $\mathbb{Z}[W]$ to the modules \mathcal{N} and \mathcal{N}_{sp} . These maps are Hecke-equivariant.

The Gross points P_n give rise to a *p*-adic distribution on \mathbf{G}_{∞} with values in the module \mathcal{N}_{sp} as follows. Given $g \in \mathbf{G}_n$, denote by e_n^g the natural image of P_n^g in \mathcal{N}_{sp} . For $n \geq 0$, define the truncated *p*-adic *L*-function

$$\mathcal{L}_{p,n}(\mathcal{N}_{\mathrm{sp}}/K) := \sum_{g \in \mathbf{G}_n} e_n^g \cdot g^{-1} \in \mathcal{N}_{\mathrm{sp}} \otimes \mathbb{Z}[\mathbf{G}_n].$$

Note that $\mathcal{L}_{p,n}(\mathcal{N}_{sp}/K)$ is well-defined up to multiplication by elements of \mathbf{G}_n .

For $n \ge 1$, let $\nu_n : \mathbb{Z}[\mathbf{G}_n] \to \mathbb{Z}[\mathbf{G}_{n-1}]$ be the natural projection of groups rings.

Lemma 3.2

1) The equality

$$\nu_1(\mathcal{L}_{p,1}(\mathcal{N}_{\mathrm{sp}}/K)) = u^{-1}(1-\sigma_{\mathfrak{p}})\mathcal{L}_{p,0}(\mathcal{N}_{\mathrm{sp}}/K)$$

holds in $\mathcal{N}_{sp} \otimes \mathbb{Z}[\mathbf{G}_0]$. 2) For $n \geq 2$, the equality

$$\nu_n(\mathcal{L}_{p,n}(\mathcal{N}_{\mathrm{sp}}/K)) = \mathcal{L}_{p,n-1}(\mathcal{N}_{\mathrm{sp}}/K)$$

holds in $\mathcal{N}_{sp} \otimes \mathbb{Z}[\mathbf{G}_{n-1}].$

Proof. By proposition 2.4, the operator U_p acts as +1 on \mathcal{N}_{sp} . The claim follows from lemma 3.1 and the fact that \mathcal{N}_{sp} is torsion-free.

Define the *p*-adic *L*-function attached to \mathcal{N}_{sp} to be

$$\mathcal{L}_p(\mathcal{N}_{\mathrm{sp}}/K) := \lim_{\stackrel{\leftarrow}{n}} \mathcal{L}_{p,n}(\mathcal{N}_{\mathrm{sp}}/K) \in \mathcal{N}_{\mathrm{sp}} \otimes \mathbb{Z}[\![\mathbf{G}_{\infty}]\!].$$

We now define the *p*-adic *L*-function attached to *E*. Observe that the maximal quotient $\bar{\Gamma}_f$ of $\bar{\Gamma}$ on which \mathbb{T} acts via the character associated with *f* is isomorphic to \mathbb{Z} . Let e_f be a generator of $\bar{\Gamma}_f$. The monodromy pairing on $\bar{\Gamma}$ induces a \mathbb{Z} -valued pairing on $\bar{\Gamma}^f \times \bar{\Gamma}_f$. Write \hat{c}_p for the positive integer $|\langle e^f, e_f \rangle|$.

Lemma 3.3

The element $(\eta_f \otimes \mathrm{id})(\mathcal{L}_p(\mathcal{N}_{\mathrm{sp}}/K)) \in \mathbb{Z}\llbracket \mathbf{G}_{\infty} \rrbracket$ is divisible by \hat{c}_p .

Proof. Consider the maps

$$\tilde{\pi}_* : \mathbb{Z}[\mathcal{E}(\mathcal{G})] \to \mathbb{Z}[\mathcal{E}(\mathcal{G})]^f, \qquad \tilde{\pi}^* : \mathbb{Z}[\mathcal{E}(\mathcal{G})]^f \to \mathbb{Z}[\mathcal{E}(\mathcal{G})]$$

defined by $\tilde{\pi}_*(e) := \langle e, e^f \rangle e^f$ and $\tilde{\pi}^*(e^f) := e^f$. (The modular parametrizations π_* and π^* introduced in section 2 are obtained from these maps by restriction.) Hence, $\tilde{\eta}_f := \tilde{\pi}^* \circ \tilde{\pi}_*$ is an element of $\tilde{\mathbb{T}}$, equal to $\langle e^f, e^f \rangle \tilde{\pi}_f$, where $\tilde{\pi}_f$ is the idempotent in $\tilde{\mathbb{T}} \otimes \mathbb{Q}$ associated with f. We have a commutative diagram

$$\begin{aligned} \mathbb{Z}[\mathcal{E}(\mathcal{G})] & \longrightarrow & \mathcal{N} \\ & \tilde{\eta}_f \downarrow & & \eta_f \downarrow \\ & \mathbb{Z}[\mathcal{E}(\mathcal{G})]^f & \longrightarrow & \mathcal{N}^f, \end{aligned}$$

where the upper horizontal map is defined in lemma 2.3, and the lower horizontal map is the restriction of the upper one. Note that \mathcal{N}^f is equal to $\operatorname{Hom}(\bar{\Gamma}_f, \mathbb{Z})$, and therefore is generated by the homomorphism $e_f \mapsto 1$. With our choices of generators for $\mathbb{Z}[\mathcal{E}(\mathcal{G})]^f$ and \mathcal{N}^f , the lower map of the above diagram is described as multiplication by the integer $\langle e^f, e_f \rangle$. The proof of lemma 3.2 also shows that mapping the Gross points of conductor cp^n to $\mathbb{Z}[\mathcal{E}(\mathcal{G})]^f$ by the map $\tilde{\eta}_f$ yields a *p*-adic distribution in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]^f \otimes \mathbb{Z}[\![\mathbf{G}_\infty]\!]$. By the above diagram, the image of this distribution in $\mathcal{N}^f \otimes \mathbb{Z}[\![\mathbf{G}_\infty]\!]$ is equal to $(\eta_f \otimes \operatorname{id})(\mathcal{L}_p(\mathcal{N}_{\mathrm{sp}}/K))$. This proves the lemma.

Remark 3.4 In section 4, we will show that the integers \hat{c}_p and c_p are equal.

Define the p-adic L-function attached to E to be

$$\mathcal{L}_p(E/K) = \hat{c}_p^{-1}(\eta_f \otimes \mathrm{id})(\mathcal{L}_p(\mathcal{N}_{\mathrm{sp}}/K)) \in \mathbb{Z}\llbracket \mathbf{G}_{\infty} \rrbracket.$$

Observe that $\mathcal{L}_p(\mathcal{N}_{sp}/K)$ and $\mathcal{L}_p(E/K)$ are well-defined up to multiplication by elements of \mathbf{G}_{∞} .

Recall the quantities Ω_f and d defined in the introduction.

Theorem 3.5

Let $\chi : \mathbf{G}_{\infty} \to \mathbb{C}^{\times}$ be a finite order character of conductor cp^n , with $n \ge 1$. Then the equality

$$|\chi(\mathcal{L}_p(E/K))|^2 = \frac{L(E/K,\chi,1)}{\Omega_f} \sqrt{d} \cdot (n_f u)^2$$

holds.

Proof. See [Gr], [Dag], and [BD1], section 2.10.

Remark 3.6

1) Theorem 3.5 suggests that $\mathcal{L}_p(E/K)$ should really be viewed as the square root of a *p*-adic *L*-function, and hence we should define the anticyclotomic *p*-adic *L*-function of *E* to be $\mathcal{L}_p(E/K) \otimes \mathcal{L}_p(E/K)^*$, where * denotes the involution of $\mathbb{Z}[\![\mathbf{G}_\infty]\!]$ given on group-like elements by $g \mapsto g^{-1}$. See section 2.7 of [BD1] for more details. 2) More generally, the *p*-adic *L*-function $\mathcal{L}_p(\mathcal{N}_{sp}/K)$ interpolates special values of

2) More generally, the *p*-adic *L*-function $\mathcal{L}_p(\mathcal{N}_{sp}/K)$ interpolates special values of the complex *L*-series attached to the modular forms on \mathbb{T}_{sp} (described in proposition 2.4).

Let $\sigma_{\mathfrak{p}}$ be as in lemma 3.1. Denote by H the subextension of H_0 which is fixed by $\sigma_{\mathfrak{p}}$, and set

$$G_n := \operatorname{Gal}(H_n/H), \qquad G_\infty := \operatorname{Gal}(H_\infty/H),$$

 $\Sigma := \operatorname{Gal}(H_0/H) = G_0, \qquad \Delta := \operatorname{Gal}(H/K).$

Note the exact sequences of Galois groups

$$0 \to G_n \to \mathbf{G}_n \to \Delta \to 0,$$
$$0 \to G_\infty \to \mathbf{G}_\infty \to \Delta \to 0.$$

The group Δ is naturally identified with the Picard group $\operatorname{Pic}(\mathcal{O}[\frac{1}{p}])$, and G_{∞} is equal to the image of the reciprocity map $\operatorname{rec}_p : \mathbb{Q}_p^{\times} \to \mathbf{G}_{\infty}$ (where we have identified \mathbb{Q}_p^{\times} with $K_{\mathfrak{p}}^{\times}$). Let I be the kernel of the augmentation map $\mathbb{Z}[\![\mathbf{G}_{\infty}]\!] \to \mathbb{Z}$, and let I_{Δ} be the kernel of the augmentation map $\mathbb{Z}[\![\mathbf{G}_{\infty}]\!] \to \mathbb{Z}[\Delta]$.

Lemma 3.7

i) L_p(N_{sp}/K) belongs to N_{sp} ⊗ I_Δ.
ii) L_p(E/K) belongs to I_Δ.

Proof. There are canonical isomorphisms

$$\mathbb{Z}\llbracket \mathbf{G}_{\infty} \rrbracket / I_{\Delta} = \mathbb{Z}[\mathbf{G}_n] / I_{\Delta,n} = \mathbb{Z}[\Delta]$$

where $I_{\Delta,n}$ is the natural image of I_{Δ} in $\mathbb{Z}[\mathbf{G}_n]$. By lemma 3.2, the image of $\mathcal{L}_p(\mathcal{N}_{sp}/K)$ in $\mathcal{N}_{sp} \otimes (\mathbb{Z}[\![\mathbf{G}_\infty]\!]/I_{\Delta})$ is equal to the image of $\mathcal{L}_{p,1}(\mathcal{N}_{sp}/K)$ in $\mathcal{N}_{sp} \otimes (\mathbb{Z}[\![\mathbf{G}_1]]/I_{\Delta,1}) = \mathcal{N}_{sp} \otimes \mathbb{Z}[\Delta]$. The first part of the lemma now follows from lemma 3.2, 1). The second part follows directly from the first.

Since I_{Δ} is contained in I, the element $\mathcal{L}_p(\mathcal{N}_{sp}/K)$ belongs to $\mathcal{N}_{sp} \otimes I$ and $\mathcal{L}_p(E/K)$ belongs to I. Denote by

$$\mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/K), \qquad \mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/H)$$

the natural image of $\mathcal{L}_p(\mathcal{N}_{\rm sp}/K)$ in $\mathcal{N}_{\rm sp} \otimes I/I^2 = \mathcal{N}_{\rm sp} \otimes \mathbf{G}_{\infty}$ and $\mathcal{N}_{\rm sp} \otimes I_{\Delta}/I_{\Delta}^2 = \mathcal{N}_{\rm sp} \otimes \mathbb{Z}[\Delta] \otimes G_{\infty}$, respectively. Likewise, let

$$\mathcal{L}'_p(E/K), \qquad \mathcal{L}'_p(E/H)$$

be the natural image of $\mathcal{L}_p(E/K)$ in $I/I^2 = \mathbf{G}_{\infty}$ and $I_{\Delta}/I_{\Delta}^2 = \mathbb{Z}[\Delta] \otimes G_{\infty}$, respectively. The above elements should be viewed as derivatives of *p*-adic *L*-functions at the central point.

In order to carry out the calculations of the next sections, it is useful to observe that the derivatives $\mathcal{L}'_p(\mathcal{N}_{sp}/K)$ and $\mathcal{L}'_p(\mathcal{N}_{sp}/H)$ can be expressed in terms of the derivatives of certain partial *p*-adic *L*-functions. Set $h := \#(\Delta)$. Fix Gross points of conductor *c*

$$P_0 = P_0^1, \dots, P_0^h,$$

corresponding to pairs (R_0^i, ξ_0^i) , i = 1, ..., h, which are representatives for the Σ -orbits of the Gross points of conductor c. Writing $[P_0^i]$ for the Σ -orbit of P_0^i , let δ_i be the element of Δ such that

$$[\delta_i P_0^1] = [P_0^i].$$

Suppose that P_0^i corresponds to a pair $(\vec{e}_0(i), \xi_0^i) \in \vec{\mathcal{E}}(\mathcal{T}) \times \text{Hom}(K, B)$, modulo the action of Γ_+ . Fix ends

$$(\vec{e}_0(i), \vec{e}_1(i), \ldots, \vec{e}_n(i), \ldots)$$

such that $(\vec{e}_1(i), \xi_0^i)$ defines a Gross point of conductor cp. Thus, $(\vec{e}_n(i), \xi_0^i)$ defines a Gross point P_n^i of conductor cp^n , for all $n \ge 0$. For $g \in G_n$, let $e_n(i)^g$ denote the natural image of $(P_n^i)^g$ in \mathcal{N}_{sp} . Let

$$\mathcal{L}_{p,n}(\mathcal{N}_{\mathrm{sp}}/H, P_0^i) := \sum_{g \in G_n} e_n(i)^g \cdot g^{-1} \in \mathcal{N}_{\mathrm{sp}} \otimes \mathbb{Z}[G_n].$$

The proof of lemma 3.2 also shows that the elements $\mathcal{L}_{p,n}(\mathcal{N}_{sp}/H, P_0^i)$ are compatible under the maps induced by the natural projections of group rings. Thus, we may define the partial *p*-adic *L*-function attached to \mathcal{N}_{sp} and P_0^i to be

$$\mathcal{L}_p(\mathcal{N}_{\mathrm{sp}}/H, P_0^i) := \lim_{\stackrel{\leftarrow}{n}} \mathcal{L}_{p,n}(\mathcal{N}_{\mathrm{sp}}/H, P_0^i) \in \mathcal{N}_{\mathrm{sp}} \otimes \mathbb{Z}\llbracket G_{\infty} \rrbracket.$$

Observe that $\mathcal{L}_p(\mathcal{N}_{sp}/H, P_0^i)$ depends only on the Σ -orbit of P_0^i , up to multiplication by elements of G_{∞} .

Let I_H be the kernel of the augmentation map $\mathbb{Z}\llbracket G_{\infty} \rrbracket \to \mathbb{Z}$. Like in the proof of lemma 3.7, one checks that $\mathcal{L}_p(\mathcal{N}_{sp}/H, P_0^i)$ belongs to I_H . Write $\mathcal{L}'_p(\mathcal{N}_{sp}/H, P_0^i)$ for the natural image of $\mathcal{L}_p(\mathcal{N}_{sp}/H, P_0^i)$ in $\mathcal{N}_{sp} \otimes I_H/I_H^2 = \mathcal{N}_{sp} \otimes G_{\infty}$. Thus,

$$\mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/H, P_0^i) = \lim_{\stackrel{\leftarrow}{n}} \mathcal{L}'_{p,n}(\mathcal{N}_{\mathrm{sp}}/H, P_0^i),$$

where

(3)
$$\mathcal{L}'_{p,n}(\mathcal{N}_{\mathrm{sp}}/H, P_0^i) = \sum_{g \in G_n} e_n(i)^g \otimes g^{-1}.$$

We obtain directly:

Lemma 3.8

i)

$$\mathcal{L}'_p(\mathcal{N}_{\rm sp}/K) = \sum_{i=1}^h \mathcal{L}'_p(\mathcal{N}_{\rm sp}/H, P_0^i).$$

ii)

$$\mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/H) = \sum_{i=1}^h \mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/H, P_0^i) \cdot \delta_i^{-1}.$$

4 The theory of p-adic uniformization of Shimura curves

For more details on the results stated in this section, the reader is referred to [BC], [Cer], [Dr], [GVdP] and [BD2].

Let \mathcal{B} be the indefinite quaternion algebra over \mathbb{Q} of discriminant N^-p , and let \mathcal{R} be an Eichler order of \mathcal{B} of level N^+ . Denote by X the Shimura curve over \mathbb{Q} associated with the order \mathcal{R} . We refer the reader to [BC] and [BD2], section 4 for the definition of X via moduli. Here we content ourselves with recalling Cerednik's theorem, which describes a rigid-analytic uniformization of X. Write

$$\mathcal{H}_p := \mathbb{C}_p - \mathbb{Q}_p$$

for the *p*-adic upper half plane. The group $\operatorname{GL}_2(\mathbb{Q}_p)$ acts (on the left) on \mathcal{H}_p by linear fractional transformations. Thus, fixing an isomorphism

$$\psi: B_p \to M_2(\mathbb{Q}_p)$$

induces an action of Γ on \mathcal{H}_p . This action is discontinuous, and the rigid-analytic quotient $\Gamma \setminus \mathcal{H}_p$ defines the \mathbb{C}_p -points of a non-singular curve \mathcal{X} over \mathbb{Q}_p . The curves X and \mathcal{X} are equipped with the action of Hecke algebras \mathbb{T}_X and $\mathbb{T}_{\mathcal{X}}$, respectively ([BC], [BD1]).

By lemma 2.1, the action of Γ_+/Γ induces an involution W of \mathcal{X} . Let \mathbb{Q}_{p^2} be the unique unramified quadratic extension of \mathbb{Q}_p contained in \mathbb{C}_p , and let τ be the generator of $\operatorname{Gal}(\mathbb{Q}_{p^2}/\mathbb{Q}_p)$. Denote by $\natural \in H^1(\langle \tau \rangle, \operatorname{Aut}(\mathcal{X}))$ the class of the cocycle mapping τ to W, and write \mathcal{X}^{\natural} for the curve over \mathbb{Q}_p obtained by twisting \mathcal{X} by \natural .

Theorem 4.1 (Cerednik)

There is a Hecke-equivariant isomorphism $X \simeq \mathcal{X}^{\natural}$ of curves over \mathbb{Q}_p . In particular, X and \mathcal{X} are isomorphic over \mathbb{Q}_{p^2} .

Proof. See [Cer], [Dr], [BC].

Building on theorem 4.1, the results in [GVdP] yield a rigid-analytic description of the jacobian of X. If $D = P_1 + \cdots + P_r - Q_1 - \cdots - Q_r \in \text{Div}^0(\mathcal{H}_p)$ is a divisor of degree zero on \mathcal{H}_p , define the theta function

$$\vartheta(z;D) = \prod_{\epsilon \in \Gamma} \frac{(z - \epsilon P_1) \cdots (z - \epsilon P_r)}{(z - \epsilon Q_1) \cdots (z - \epsilon Q_r)} .$$

Write $\bar{\delta}$ for the natural image in $\bar{\Gamma}$ of an element δ of Γ . For all δ in Γ , the above theta function satisfies the functional equation

$$\vartheta(\delta z; D) = \phi_D(\bar{\delta})\vartheta(z; D),$$

where ϕ_D is an element of $\operatorname{Hom}(\bar{\Gamma}, \mathbb{C}_p^{\times}) = \mathcal{N} \otimes \mathbb{C}_p^{\times}$ which does not depend on z. For $\gamma \in \Gamma$, the number $\phi_{(\gamma z)-(z)}(\bar{\delta})$ does not depend on the choice of $z \in \mathcal{H}_p$, and depends only on the image of γ in $\bar{\Gamma}$. This gives rise to a pairing

$$[,]: \overline{\Gamma} \times \overline{\Gamma} \to \mathbb{Q}_p^{\times}.$$

The pairing [,] is bilinear and symmetric. The next proposition explains the relation between [,] and the monodromy pairing $\langle , \rangle : \overline{\Gamma} \times \overline{\Gamma} \to \mathbb{Z}$ defined in section 2.

Proposition 4.2

The pairings \langle , \rangle and $\operatorname{ord}_p \circ [,]$ are equal.

Proof. See [M], th. 7.6.

It follows that $\operatorname{ord}_p \circ [,]$ is positive definite, so that themap

$$j: \overline{\Gamma} \to \mathcal{N} \otimes \mathbb{Q}_p^{\times}$$

induced by [,] is injective and has discrete image. Set $\Lambda := j(\Gamma)$. Given a divisor D of degree zero on $\mathcal{X}(\mathbb{C}_p) = \Gamma \setminus \mathcal{H}_p$, let \tilde{D} denote an arbitrary lift to a degree zero divisor on \mathcal{H}_p . The automorphy factor $\phi_{\tilde{D}}$ depends on the choice of the lift \tilde{D} , but

its image in $(\mathcal{N} \otimes \mathbb{C}_p^{\times})/\Lambda$ depends only on D. Thus, the assignment $D \mapsto \phi_{\tilde{D}}$ gives a well-defined map from $\operatorname{Div}^0(\mathcal{X}(\mathbb{C}_p))$ to $(\mathcal{N} \otimes \mathbb{C}_p^{\times})/\Lambda$.

Proposition 4.3

The map $\operatorname{Div}^{0}(\mathcal{X}(\mathbb{C}_{p})) \to (\mathcal{N} \otimes \mathbb{C}_{p}^{\times})/\Lambda$ defined above is trivial on the group of principal divisors, and induces a Hecke-equivariant isomorphism from the \mathbb{C}_{p} -points of the jacobian \mathcal{J} of \mathcal{X} to $(\mathcal{N} \otimes \mathbb{C}_{p}^{\times})/\Lambda$.

Proof. See [GVdP], VI.2 and VIII.4, and also [BC], ch. III.

Let

$$\Phi: \mathcal{N} \otimes \mathbb{C}_p^{\times} \to \mathcal{J}(\mathbb{C}_p)$$

stand for the map induced by (the inverse of) the isomorphism defined in proposition 4.3.

Modular parametrizations, II

The map $\eta_f : \mathcal{N} \to \mathbb{Z}$ defined in section 2 induces a map

$$\eta_f \otimes \mathrm{id} : \mathcal{N} \otimes \mathbb{C}_p^{\times} \to \mathbb{C}_p^{\times}$$

The Jacquet-Langlands correspondence [JL] implies that the quotient abelian variety $\eta_f J$ is an elliptic curve \mathbb{Q} -isogenous to E. From now on, we assume that $E = \eta_f J$ is the strong Weil curve for the parametrization by the Shimura curve X. By an abuse of notation, we denote by η_f also the surjective map

$$J(\mathbb{C}_p) \to E(\mathbb{C}_p)$$

induced by η_f .

Let Λ^f be the submodule of Λ on which \mathbb{T} acts via the character ϕ_f .

Proposition 4.4

The kernel $q^{\mathbb{Z}}$ of Φ_{Tate} is canonically equal to the module Λ^f , and the following diagram

is Hecke-equivariant and commutes up to sign.

Proof. The right-most square in the above diagram is a consequence of proposition 4.3, combined with theorem 4.1 and the fact that f is split-multiplicative at p. In order to obtain the left-most square, it is enough to prove that the kernel of Φ_{Tate} is equal to Λ^f . Note that the target $\mathbb{C}_p^{\times} = \mathcal{N}^f \otimes \mathbb{C}_p^{\times}$ of the map $\eta_f \otimes \text{id}$ is naturally a submodule of $\mathcal{N} \otimes \mathbb{C}_p^{\times}$, since the quotient of \mathcal{N} by \mathcal{N}^f is torsion-free. By definition, $E(\mathbb{C}_p)$ may similarly be viewed as an abelian subvariety of $\mathcal{J}(\mathbb{C}_p)$. It follows that Φ_{Tate} can be described as the restriction of Φ to \mathbb{C}_p^{\times} . In particular, ker(Φ_{Tate}) is equal to $\Lambda \cap \mathbb{C}_p^{\times}$. In turn, this last module is equal to Λ^f .

Corollary 4.5

The integer $\hat{c}_p = |\langle e^f, e_f \rangle|$ (introduced in lemma 3.3) is equal to c_p .

Proof. Working through the definition of the maps in the diagram of proposition 4.4 shows that $[e^f, e_f]$ is equal to $q^{\pm 1}$. The claim follows from proposition 4.2.

5 p-adic Shintani cycles and special values of complex Lfunctions

Let $P_0 = (R_0, \xi_0) \pmod{B^{\times}}$ be a Gross point of conductor c. The point P_0 determines a p-adic cycle $\mathfrak{c}(P_0) \in \overline{\Gamma}$ in the following way. By strong approximation, we may assume that the representative (R_0, ξ_0) for P_0 is such that the oriented orders $R_0[\frac{1}{p}]$ and $R[\frac{1}{p}]$ are equal. Thus, ξ_0 induces an embedding of $\mathcal{O}[\frac{1}{p}]$ into $R[\frac{1}{p}]$, which we still denote by ξ_0 . The image by ξ_0 of a fundamental p-unit in $\mathcal{O}[\frac{1}{p}]$ having norm of even p-adic valuation determines an element $\gamma = \gamma(P_0)$ of Γ . This element is well-defined up to conjugation and up to inversion, and up to multiplication by the image of torsion elements of \mathcal{O}^{\times} .

More explicitly, write k for the order of $\sigma_{\mathfrak{p}}$ in $\operatorname{Pic}(\mathcal{O})$ (where $\sigma_{\mathfrak{p}}$ is as in lemma 3.1), and set $\mathfrak{p}^k = (v)$ with $v \in \mathcal{O}$. Let ι be 1, resp. 2 if k is even, resp. odd. Then γ is the image of $\xi_0(v)^{\iota}$ in Γ .

Definition. The *p*-adic Shintani cycle $\mathfrak{c} = \mathfrak{c}(P_0)$ attached to P_0 is the natural image of γ in $\overline{\Gamma}$.

This terminology is justified in the remark 5.4 below. Observe that \mathfrak{c} is well-defined up to sign.

Denote by $\mathbb{Z}[\mathcal{E}(\mathcal{G})]_{sp}$ the maximal torsion-free quotient of $\mathbb{Z}[\mathcal{E}(\mathcal{G})]/(w+1)\mathbb{Z}[\mathcal{E}(\mathcal{G})]$, where w is any element of $\Gamma_+ - \Gamma$. Recall the element $\tilde{\eta}_f \in \tilde{\mathbb{T}}$ defined in the proof of lemma 3.3, mapping to η_f by the natural projection $\tilde{\mathbb{T}} \to \mathbb{T}$. The next lemma relates the *p*-adic cycle \mathfrak{c} to the image in \mathcal{N}_{sp} of the Gross point P_0 .

Lemma 5.1

The natural images in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]_{sp}$ of \mathfrak{c} and $\sum_{\sigma \in \Sigma} \iota P_0^{\sigma}$ are equal. In particular, $\eta_f \mathfrak{c}$ is equal to the image of $\sum_{\sigma \in \Sigma} \iota(\tilde{\eta}_f P_0^{\sigma})$ in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$.

Proof. (In order to visualize the geometric content of this proof, the reader may find it helpful to refer to the picture in section 3.) Set $P_i := \sigma_p^i P_0$, for $i = 0, \ldots, k - 1$. By part 1 of lemma 3.1 and the definition of the action of U_p on the Bruhat-Tits tree, we can fix representatives (\vec{e}_i, ξ_0) for the Gross points P_i so that the \vec{e}_i are consecutive oriented edges of \mathcal{T} . With notations as at the beginning of this section, let $\gamma_+ \in \Gamma_+$ be the image of $\xi_0(v)$. Thus, $\gamma = \gamma_+^{\iota}$. Call v_0 the origin of \vec{e}_0 . If $\iota = 1$, the even vertex of the edge \vec{e}_{k-1} is equal to γv_0 . If $\iota = 2$, i.e., γ_+ belongs to $\Gamma_+ - \Gamma$, then

$$\vec{e}_0,\ldots,\vec{e}_{k-1},\gamma_+\vec{e}_0,\ldots,\gamma_+\vec{e}_{k-1}$$

is a sequence of consecutive oriented edges, and the even vertex of $\gamma_+ \vec{v}_{k-1}$ is equal to γv_0 . Note that $\sum_{\sigma \in \Sigma} \iota P_0^{\sigma}$ is equal in $\mathbb{Z}[\vec{\mathcal{E}}(\mathcal{G}_+)]$ to $\vec{e}_0 + \vec{e}_1 + \ldots + \vec{e}_{k-1}$ if $\iota = 1$, and to

$$\vec{e}_0 + \vec{e}_1 + \ldots + \vec{e}_{k-1} + \gamma_+ \vec{e}_0 + \gamma_+ \vec{e}_1 + \ldots + \gamma_+ \vec{e}_{k-1}$$

if $\iota = 2$. Denote by e_i the unoriented edge of \mathcal{T} corresponding to $\vec{e_i}$, and let w be any element of $\Gamma_+ - \Gamma$. By definition of the bijection κ of lemma 2.2, the following equalities hold in $\mathbb{Z}[\mathcal{E}(\mathcal{G})]$:

$$\kappa^{-1}(\vec{e}_0 + \ldots + \vec{e}_{k-1}) = e_0 + we_1 + \ldots + e_{k-2} + we_{k-1}$$
 if $\iota = 1$,

$$\kappa^{-1}(\vec{e}_0 + \dots + \vec{e}_{k-1} + \gamma_+ \vec{e}_0 + \gamma_+ \vec{e}_1 + \dots + \gamma_+ \vec{e}_{k-1})) = e_0 + we_1 + \dots + e_{k-1} + w(\gamma_+ e_0) + (\gamma_+ e_1) + \dots + w(\gamma_+ e_{k-1}) \quad \text{if } \iota = 2.$$

Projecting the right hand sides of the above equalities to $\mathbb{Z}[\mathcal{E}(\mathcal{G})]_{sp}$, and keeping into account that w acts as -1 on this module, gives in both cases $path(v_0, \gamma v_0)$.

The next proposition elucidates the relation between the *p*-adic Shintani cycle defined above and the special values of the complex *L*-function of E/K. Following the notations of section 3, fix Gross points $P_0 = P_0^1, \ldots, P_0^h$ which are representatives for the Σ -orbits of the Gross points of conductor *c*, and list the elements of Δ so that $[\delta_i P_0^1] = [P_0^i]$, where $[P_0^i]$ denotes the Σ -orbit of P_0^i . As above, the Gross point P_0^i determines a *p*-adic Shintani cycle $\mathfrak{c}_i \in \overline{\Gamma}$, with $\mathfrak{c}_1 = \mathfrak{c}$. Given a complex character $\chi : \Delta \to \mathbb{C}^{\times}$ of Δ , set

$$\mathfrak{c}_{H} := \sum_{i=1}^{h} \mathfrak{c}_{i} \otimes \delta_{i}^{-1} \in \overline{\Gamma} \otimes \mathbb{Z}[\Delta],$$
$$\mathfrak{c}_{K,\chi} := \chi(\mathfrak{c}_{H}) = \sum_{i=1}^{h} \mathfrak{c}_{i} \otimes \chi(\delta_{i})^{-1} \in \overline{\Gamma} \otimes \mathbb{Z}[\chi].$$

If χ is the trivial character, we will also write \mathfrak{c}_K as a shorthand for $\mathfrak{c}_{K,\chi}$. Extend the pairing \langle , \rangle on $\overline{\Gamma}$ to a hermitian pairing on $\overline{\Gamma} \otimes \mathbb{Z}[\chi]$.

Proposition 5.2

Suppose that χ is primitive. The following equality holds:

$$\langle \eta_f \mathfrak{c}_{K,\chi}, \mathfrak{c}_{K,\chi} \rangle = \frac{L(E/K,\chi,1)}{\Omega_f} \sqrt{d} \cdot (\iota u)^2 \cdot n_f.$$

Proof. In view of lemma 5.1, this is simply a restatement of the results of [Gr] and [Dag].

Recall the maps $j: \overline{\Gamma} \to \mathcal{N} \otimes \mathbb{Q}_p^{\times}$ and $\eta_f \otimes \mathrm{id}: \mathcal{N} \otimes \mathbb{C}_p^{\times} \to \mathbb{C}_p^{\times}$ defined in section 4. By an abuse of notation, we denote in the same way the maps obtained by extending scalars to $\mathbb{Z}[\chi]$.

Corollary 5.3

The equality

$$(\eta_f \otimes \mathrm{id})(j(\mathfrak{c}_{K,\chi})) = q \otimes
ho$$

holds in $\mathbb{Q}_p^{\times} \otimes \mathbb{Z}[\chi]$, where $\rho \in \mathbb{Z}[\chi]$ satisfies

$$|\rho|^2 = \frac{L(E/K, \chi, 1)}{\Omega_f} \sqrt{d} \cdot (\iota u)^2 \cdot n_f.$$

Proof. By proposition 4.4 combined with the definition of η_f given in section 2, ρ is equal to $\langle \mathfrak{c}_{K,\chi}, e^f \rangle \in \mathbb{Z}[\chi]$. Hence

$$\begin{aligned} |\rho|^2 &= \langle \mathfrak{c}_{K,\chi}, e^f \rangle \langle e^f, \mathfrak{c}_{K,\chi} \rangle \\ &= \langle \eta_f \mathfrak{c}_{K,\chi}, \mathfrak{c}_{K,\chi} \rangle. \end{aligned}$$

The claim follows from proposition 5.2.

Remark 5.4

Let F be a real quadratic field and let $\psi: F \to M_2(\mathbb{Q})$ be an embedding. Assume that ψ maps the ring of integers \mathcal{O}_F to the Eichler order $M_0(N)$ of integral matrices with lower left entry divisible by N. Since the homology group $H_1(X_0(N), \mathbb{Z})$ can be identified with the maximal torsion-free abelian quotient of $\Gamma_0(N)$, the image by ψ of a fundamental unit in \mathcal{O}_F of norm 1 determines an integral homology cycle $\mathfrak{s} \in H_1(X_0(N), \mathbb{Z})$. Shintani [Sh] proved that the cycle \mathfrak{s} encodes the special values of the classical *L*-series over *F* attached to newforms on $X_0(N)$. In light of proposition 5.2, the element \mathfrak{c} can be viewed as a *p*-adic analogue of the cycle \mathfrak{s} .

6 p-adic Shintani cycles and derivatives of p-adic L-functions

Let P_0 be a Gross point of conductor c. In section 5, we attached to P_0 a p-adic cycle $\mathfrak{c} \in \overline{\Gamma}$, and proved in proposition 5.2 that \mathfrak{c} is related to the special values of the complex *L*-function of E/K. Our main result (theorem 6.1 below) shows that \mathfrak{c} is also related to the first derivative of the p-adic *L*-function defined in section 3. By combining these results we will obtain theorem 1.1.

Write j for the composite map

$$\bar{\Gamma} \xrightarrow{\jmath} \mathcal{N} \otimes \mathbb{Q}_p^{\times} \to \mathcal{N}_{\rm sp} \otimes \mathbb{Q}_p^{\times} \to \mathcal{N}_{\rm sp} \otimes G_{\infty},$$

where the second map is induced by the natural projection of \mathcal{N} onto \mathcal{N}_{sp} , and the third map is induced by $\operatorname{rec}_p : \mathbb{Q}_p^{\times} \to G_{\infty}$. Our main result is the following.

Theorem 6.1

The following equality holds up to sign in $\mathcal{N}_{sp} \otimes G_{\infty}$:

$$\mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/H, P_0)^{\iota} = j(\mathfrak{c}).$$

Recall the definition of the elements \mathfrak{c}_H and \mathfrak{c}_K given in section 5. By lemma 3.8, we obtain directly:

Corollary 6.2

(i) The following equality holds up to sign in $\mathcal{N}_{sp} \otimes \mathbb{Z}[\Delta] \otimes G_{\infty}$:

$$\mathcal{L}'_p(\mathcal{N}_{\rm sp}/H)^{\iota} = j(\mathfrak{c}_H).$$

(ii) The following equality holds up to sign in $\mathcal{N}_{sp} \otimes G_{\infty}$:

$$\mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/K)^\iota = \underline{j}(\mathfrak{c}_K).$$

By applying the operator η_f to both sides of the equalities of corollary 6.2, and using corollary 4.5 and the definitions of the *p*-adic *L*-functions attached to \mathcal{N}_{sp} and *E*, we find:

Corollary 6.3

(i) The following equality holds up to sign in $\mathbb{Z}[\Delta] \otimes G_{\infty}$:

$$c_p \mathcal{L}'_p (E/H)^{\iota} = j(\eta_f \mathfrak{c}_H).$$

(ii) The following equality holds up to sign in G_{∞} :

$$c_p \mathcal{L}'_p (E/K)^{\iota} = \underline{j}(\eta_f \mathfrak{c}_K).$$

Proof of theorem 1.1 Combine corollary 6.3 with corollary 5.3.

By combining corollary 6.3 with corollary 5.3, we also obtain the following generalization of theorem 1.1. Let $\mathcal{L}'_p(E/K,\chi)$ stand for the element $\chi(\mathcal{L}'_p(E/H))$ of $G_{\infty} \otimes \mathbb{Z}[\chi]$.

Theorem 6.4

Suppose that χ is primitive. The following equalities hold up to sign:

$$c_p \mathcal{L}'_p(E/K,\chi) = \operatorname{rec}_p(q) \otimes \rho$$
 in $G_\infty \otimes \mathbb{Z}[\frac{1}{2}][\chi]$

and

$$\mathcal{L}'_p(E/K,\chi) = \frac{\operatorname{rec}_p(q)}{\operatorname{ord}_p(q)} \otimes \rho \quad \text{in } G_\infty \otimes \mathbb{Q}[\chi],$$

where

$$|\rho|^2 = \frac{L(E/K, \chi, 1)}{\Omega_f} \cdot d^{\frac{1}{2}} u^2 n_f.$$

Corollary 6.5

The derivative $\mathcal{L}'_p(E/K,\chi)$ is non-zero in $G_{\infty} \otimes \mathbb{Q}[\chi]$ if and only if the classical special value $L(E/K,\chi,1)$ is non-zero.

Proof. By theorem 6.4, one is reduced to showing that $\operatorname{rec}_p(q)$ is a non-torsion element of G_{∞} , i.e., q^{p-1} does not belong to the kernel of the reciprocity map. But elements in this kernel are algebraic over \mathbb{Q} , and q is known to be transcendental by a result of Barré-Sirieix, Diaz, Gramain and Philibert [BSDGP].

Remark 6.6

Theorem 1.1 was conjectured in [BD1], section 5.1 in a slightly different form. We conclude this section by studying the compatibility of theorem 1.1 (and its generalization theorem 6.4) with the conjectures of [BD1]. For simplicity, assume throughout this remark that the elliptic curve E is semistable, so that N is squarefree, and that E is isolated in its isogeny class, so that the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the ℓ -torsion points of E is irreducible for all primes ℓ .

Let $p_1 \cdots p_n q_1 \cdots q_n$ be a prime factorization of the squarefree integer pN^- , with $p_1 = p$. Denote by X_1 the Shimura curve X, and by X_{n+1} the classical modular curve $X_0(N)$. For $i = 2, \ldots, n$, denote by X_i the Shimura curve associated with an Eichler order of level $N^+p_1 \cdots p_{i-1}q_1 \cdots q_{i-1}$ in the indefinite quaternion algebra of discriminant $p_i \cdots p_n q_i \cdots q_n$. Since E is modular, the Jacquet-Langlands correspondence [JL] implies that E is parametrized by the jacobian J_i of the curve X_i , $i = 1, \ldots, n+1$. Let

$$\phi_i: J_i \to E$$

be the strong Weil parametrization of E by J_i . Thus, the morphism ϕ_i has connected kernel, and its dual $\phi_i^{\vee} : E \to J_i$ is injective. The endomorphism $\phi_i \circ \phi_i^{\vee}$ of E is multiplication by an integer d_{X_i} , called the *degree* of the modular parametrization of E by the Shimura curve X_i .

If $\ell \mid N$, denote by c_{ℓ} the order of the group of connected components of E at ℓ .

Theorem 6.7 (Ribet-Takahashi)

Under our assumptions: i)

ii)

Proof. Part i) follows from theorem 1 of [RT]. Part ii) follows from section 2 of [RT]. The results of [RT] exclude the case where
$$N^+$$
 is prime, but a forthcoming paper of S. Takahashi will deal with this case as well.

 $\frac{d_{X_0(N)}}{d_X} = c_{p_1} \cdots c_{p_n} c_{q_1} \cdots c_{q_n};$

 $\langle e^f, e^f \rangle = d_X c_p$.

By combining theorem 6.7 with the relation $\Omega_f = d_{X_0(N)} \cdot \Omega_E$, where Ω_E is the complex period of E, we find that the formula of theorem 1.1 (and likewise for theorem 6.4) becomes

$$\mathcal{L}'_{p}(E/K) = \frac{\operatorname{rec}_{p}(q)}{\operatorname{ord}_{p}(q)} \sqrt{L(E/K, 1)\Omega_{E}^{-1} \cdot d^{\frac{1}{2}} u^{2} \prod_{\ell \mid N^{-}} c_{\ell}^{-1}},$$

which is the same as conjecture 5.3 of [BD1].

7 Proof of theorem 6.1

First, we give an explicit description of certain group actions on the *p*-adic upper half plane and on the Bruhat-Tits tree depending on our choice of a Gross point P_0 of conductor *c*. Then, we compute the value $j(\mathfrak{c})$, for \mathfrak{c} as in sections 5 and 6.

I Group actions on \mathcal{H}_p and \mathcal{T}

Let $K_p := K \otimes \mathbb{Q}_p$. Our choice of a prime \mathfrak{p} above p determines an identification of $K_p = K_{\mathfrak{p}} \times K_{\overline{\mathfrak{p}}}$ with $\mathbb{Q}_p \times \mathbb{Q}_p$.

As in section 5, choose a representative (R_0, ξ_0) for the Gross point P_0 such that $R_0[\frac{1}{p}]$ and $R[\frac{1}{p}]$ are equal. Let (\vec{e}_0, ξ_0) be a pair corresponding to P_0 , and denote by v_0 the origin of \vec{e}_0 . Set $R_{0,p} := R_0 \otimes \mathbb{Z}_p$, and let $\underline{R}_{0,p}$ be the maximal order of B_p corresponding to v_0 . Recall the isomorphism

$$\psi: B_p \to M_2(\mathbb{Q}_p)$$

fixed in section 4. We may, and will from now on, choose ψ so that:

- i) ψ maps $\underline{R}_{0,p}$ onto $M_2(\mathbb{Z}_p)$;
- ii) $\psi \circ \xi_0$ maps $(x, y) \in K_p = \mathbb{Q}_p \times \mathbb{Q}_p$ to the diagonal matrix $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$.

Condition i) allows us to identify $\mathcal{T} = \mathbb{Q}_p^{\times} \underline{R}_{0,p}^{\times} \setminus B_p^{\times}$ with $\mathrm{PGL}_2(\mathbb{Z}_p) \setminus \mathrm{PGL}_2(\mathbb{Q}_p)$. Viewing K_p^{\times} as a subgroup of $\mathrm{GL}_2(\mathbb{Q}_p)$ thanks to the embedding $\psi \circ \xi_0$ yields actions of K_p^{\times} on \mathcal{H}_p and on $\mathcal{T} = \mathrm{PGL}_2(\mathbb{Z}_p) \setminus \mathrm{PGL}_2(\mathbb{Q}_p)$, factoring through $K_p^{\times}/\mathbb{Q}_p^{\times}$. Identify this last group with \mathbb{Q}_p^{\times} by mapping a pair (x, y) modulo \mathbb{Q}_p^{\times} to xy^{-1} . Under this identification, an element x of \mathbb{Q}_p^{\times} acts on \mathcal{H}_p as multiplication by x, and on \mathcal{T} as conjugation by the matrix $\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$.

Recall the element $v \in \mathcal{O} \subset K_p^{\times}$ defined in section 5 by $\mathfrak{p}^k = (v)$. Identify as above v with an element \underline{w} of \mathbb{Q}_p^{\times} . Note that \underline{w} is equal to p^k times a p-adic unit. Set $\tilde{G}_{\infty} := \mathbb{Q}_p^{\times} = p^{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$. Define the quotients of \tilde{G}_{∞}

$$\tilde{\Sigma} := \mathbb{Q}_p^{\times} / \mathbb{Z}_p^{\times} = p^{\mathbb{Z}}, \qquad \tilde{G}_n := p^{\mathbb{Z}} \times (\mathbb{Z}_p / p^n \mathbb{Z}_p)^{\times}, \ n \ge 1.$$

To simplify slightly the computation, assume from now on that $\mathcal{O}^{\times} = \{\pm 1\}$. (If $\mathcal{O}^{\times} \neq \{\pm 1\}$, then K has discriminant -3 or -4, and the exact sequences below have to be modified to account for the non-trivial units of \mathcal{O} . The computations in this case follow closely those presented in the paper.) Class field theory yields the exact sequence

$$0 \to \langle \underline{w} \rangle \to \tilde{G}_{\infty} \xrightarrow{\operatorname{rec}_p} G_{\infty} \to 0,$$

and the induced sequences

 $0 \to \langle \underline{w} \rangle \to \tilde{\Sigma} \to \Sigma \to 0, \qquad 0 \to \langle \underline{w} \rangle \to \tilde{G}_n \to G_n \to 0.$

For $n \geq 0$, denote by $\mathbb{Z}_p^{(n)} \subset \tilde{G}_{\infty}$ the subgroup of elements of \mathbb{Z}_p^{\times} which are congruent to 1 modulo p^n .

Definition. We say that a vertex v of \mathcal{T} has level n, and write $\ell(v) = n$, if the stabilizer of v for the action of \tilde{G}_{∞} is equal to $\mathbb{Z}_p^{(n)}$. Likewise, we say that an edge e of \mathcal{T} has level n, and write $\ell(e) = n$, if the stabilizer of e for the action of \tilde{G}_{∞} is $\mathbb{Z}_p^{(n)}$.

Note that the group \tilde{G}_n ($\tilde{\Sigma}$ if n = 0) acts simply transitively on the vertices and edges of level n. By definition of the action of \tilde{G}_{∞} on \mathcal{T} , v_0 is a vertex of level 0. Thus, the set of vertices of level 0 is equal to the $\tilde{\Sigma}$ -orbit of v_0 . More generally, the set of vertices of level n can be described as the \tilde{G}_n -orbit of a vertex v_n , whose distance from v_0 is n and whose distance from all the other vertices in the orbit $\tilde{\Delta}v_0$ is > n.

By using the standard coordinate, identify $\mathbb{P}^1(\mathbb{C}_p)$ with $\mathbb{C}_p \cup \{\infty\}$ and \mathcal{H}_p with $\mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$. In particular, view 0 and ∞ as elements of $\mathbb{P}^1(\mathbb{Q}_p)$. Recall the element $\gamma = \gamma(P_0)$ of Γ defined in section 5. Since the reduced norm of γ has positive valuation, our choice of the isomorphism ψ yields

(4)
$$\lim_{n \to +\infty} \gamma^n z = 0, \qquad \lim_{n \to -\infty} \gamma^n z = \infty$$

for all $z \in \mathcal{H}_p$. Note also that 0 and ∞ are the fixed points for the action of G_{∞} on $\mathbb{P}^1(\mathbb{C}_p)$.

Let $\mathcal{H}_p(\mathbb{Q}_{p^2}) = \mathbb{Q}_{p^2} - \mathbb{Q}_p$ be the \mathbb{Q}_{p^2} -points of the *p*-adic upper half plane. Define the reduction map

$$r: \mathcal{H}_p(\mathbb{Q}_{p^2}) \to \mathcal{V}(\mathcal{T})$$

as follows. Given $z \in \mathcal{H}_p(\mathbb{Q}_{p^2})$, let \mathcal{Q}_z denote the stabilizer of z in $\mathrm{GL}_2(\mathbb{Q}_p)$, together with the zero matrix. Then \mathcal{Q}_z is a field isomorphic to \mathbb{Q}_{p^2} , and this gives rise to an embedding of \mathbb{Q}_{p^2} in $M_2(\mathbb{Q}_p)$ (well-defined up to an isomorphism of \mathbb{Q}_{p^2}). Write \mathbb{Z}_{p^2} for the ring of integers of \mathbb{Q}_{p^2} , and let S be the unique maximal order of $M_2(\mathbb{Q}_p)$ containing the image of \mathbb{Z}_{p^2} by the above embedding. We have r(z) = S. (See also [BD2], section 1.)

Lemma 7.1

1) The reduction map r is $\operatorname{GL}_2(\mathbb{Q}_p)$ -equivariant. In particular, r is equivariant for the group actions defined above.

2) Write $\mathbb{Z}_{p^2} = \mathbb{Z}_p \alpha + \mathbb{Z}_p$. We have $r^{-1}(v_0) = \mathbb{Z}_p^{\times} \alpha + \mathbb{Z}_p$.

3) If z_1 and z_2 are mapped by r to adjacent vertices of respective levels n and n+1, then $z_1 z_2^{-1} \equiv 1 \pmod{p^n}$.

Proof.

1) Let z be an element of $\mathcal{H}_p(\mathbb{Q}_{p^2})$, and let B be a matrix in $\mathrm{GL}_2(\mathbb{Q}_p)$. If $f : \mathbb{Q}_{p^2} \to M_2(\mathbb{Q}_p)$ is an embedding fixing z, then BfB^{-1} is an embedding fixing Bz. Suppose that S is the maximal ideal containing $f(\mathbb{Z}_{p^2})$. Then $BSB^{-1} = S * B^{-1}$ is the maximal ideal containing the image of \mathbb{Z}_{p^2} by BfB^{-1} . Thus, $r(Bz) = S * B^{-1}$, as was to be shown.

2) Suppose to fix ideas that p > 2. Then, we may assume that $\alpha = \sqrt{\nu}$, where the integer ν is not a squaremodulo p. (The case p = 2 can be dealt with in a similar way, for instance by taking $\alpha = (1 + \sqrt{-3})/2$.) A direct computation shows that

$$\mathcal{Q}_{\sqrt{\nu}} = \left\{ \begin{pmatrix} b & a\nu \\ a & b \end{pmatrix} : a, b \in \mathbb{Q}_p \right\}.$$

Mapping the above matrix to $a\sqrt{\nu} + b$ yields an isomorphism of $\mathcal{Q}_{\sqrt{\nu}}$ onto \mathbb{Q}_{p^2} . Thus, $r(\sqrt{\nu})$ is equal to $v_0 = M_2(\mathbb{Z}_p)$. Given $z = a\sqrt{\nu} + b \in \mathcal{H}_p(\mathbb{Q}_{p^2})$, we have $z = B\sqrt{\nu}$, where B is the matrix $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$. By part 1, $r(z) = BM_2(\mathbb{Z}_p)B^{-1}$.

But $BM_2(\mathbb{Z}_p)B^{-1} = M_2(\mathbb{Z}_p)$ if and only if B belongs to $GL_2(\mathbb{Z}_p)$, i.e., a belongs to \mathbb{Z}_p^{\times} .

3) Set $r(z_1) = v_1$ and $r(z_2) = v_2$. The edge joining v_1 to v_2 has level n + 1. Since $\tilde{G}_{\infty} = \mathbb{Q}_p^{\times}$ acts transitively on the edges of level n + 1, there is $g \in \mathbb{Q}_p^{\times}$ such that gv_1 and gv_2 have distance from v_0 equal to n and n + 1, respectively. With notations as in the proof of part 2 of this proposition, write $gz_i = a_i\sqrt{\nu}+b_i$, i = 1, 2, where $a_i, b_i \in \mathbb{Z}_p$, $gcd(a_i, b_i) = 1$, and $p^n \parallel a_1, p^{n+1} \parallel a_2$. Thus, the vertex gv_i is represented by the matrix

$$A_i = \begin{pmatrix} a_i & b_i \\ 0 & 1 \end{pmatrix}.$$

Our assumption on gv_1 and gv_2 implies that the column $\begin{pmatrix} b_2\\ 1 \end{pmatrix}$ of A_2 is a \mathbb{Z}_p -linear combination of the columns of A_1 . It follows that $b_1 \equiv b_2 \pmod{p^n}$, and hence

$$z_1 z_2^{-1} = g z_1 (g z_2)^{-1} \equiv 1 \pmod{p^n}.$$

II The calculation

Given $\delta \in \Gamma$, write as usual $\overline{\delta}$ for the natural image of δ in $\overline{\Gamma}$. We now compute explicitly the value of $j(\mathfrak{c})(\overline{\delta}) = [\mathfrak{c}, \overline{\delta}]$, for $\delta \in \Gamma$. We begin with the following lemma.

Lemma 7.2

Given $\delta \in \Gamma$, we have

$$j(\mathbf{c})(\bar{\delta}) = \prod_{\epsilon \in S} \frac{\epsilon \delta z_0}{\epsilon z_0} ,$$

where z_0 is any element in \mathcal{H}_p , and \mathcal{S} is any set of representatives for $\langle \gamma \rangle \backslash \Gamma$.

Proof. (Cf. [M], theorem 2.8.)

Let \mathcal{S}' be any set of representatives for $\Gamma/\langle \gamma \rangle$. In view of the formulae (4), for any z_0 and a in \mathcal{H}_p we have the chain of equalities

$$j(\mathfrak{c})(\bar{\delta}) = \prod_{\epsilon \in \Gamma} \frac{z_0 - \epsilon a}{z_0 - \epsilon \gamma a} \cdot \frac{\delta z_0 - \epsilon \gamma a}{\delta z_0 - \epsilon a}$$
$$= \prod_{\epsilon \in S'} \prod_{n=-\infty}^{+\infty} \frac{z_0 - \epsilon \gamma^n a}{z_0 - \epsilon \gamma^{n+1} a} \cdot \frac{\delta z_0 - \epsilon \gamma^{n+1} a}{\delta z_0 - \epsilon \gamma^n a}$$
$$= \prod_{\epsilon \in S'} \lim_{N \to +\infty} \frac{z_0 - \epsilon \gamma^{-N} a}{z_0 - \epsilon \gamma^{N+1} a} \cdot \frac{\delta z_0 - \epsilon \gamma^{N+1} a}{\delta z_0 - \epsilon \gamma^{-N} a}$$
$$= \prod_{\epsilon \in S'} \frac{z_0 - \epsilon \infty}{z_0 - \epsilon 0} \cdot \frac{\delta z_0 - \epsilon 0}{\delta z_0 - \epsilon \infty}$$
$$= \prod_{\epsilon \in S'} \frac{\epsilon^{-1} \delta z_0}{\epsilon^{-1} z_0} .$$

Note that $(\mathcal{S}')^{-1}$ is a set of representatives for $\langle \gamma \rangle \backslash \Gamma$, and any set of representatives for $\langle \gamma \rangle \backslash \Gamma$ can be obtained in this way. The claim follows.

Lemma 7.3

Let d be an edge of \mathcal{T} , let n be a positive integer, and let \mathcal{S} be a set of representatives for $\langle \gamma \rangle \backslash \Gamma$. Then the set $\{ \epsilon \in \mathcal{S} : \ell(\epsilon d) \leq n \}$ is finite.

Proof. If $\{\epsilon_i\}$ is a sequence of distinct elements of S such that $\ell(\epsilon_i d) \leq n$, we can find integers k_i such that $\gamma^{k_i} \epsilon_i d$ describes only finitely many edges. This contradicts the discreteness of Γ .

We say that two elements of $\overline{\Gamma}$ are *linearly independent* if they generate a rank two free abelian subgroup of $\overline{\Gamma}$.

Proposition 7.4

1) Suppose that \mathfrak{c} and $\overline{\delta}$ are linearly independent in $\overline{\Gamma}$. There exists a set \mathcal{S} of representatives for $\langle \gamma \rangle \backslash \Gamma$ such that if ϵ belongs to \mathcal{S} , then all the elements of the coset $\epsilon \langle \delta \rangle$ belong to \mathcal{S} .

2) There exists a set $S = S_0 \coprod S_1$ of representatives for $\langle \gamma \rangle \backslash \Gamma$ such that:

(i) the set S_0 contains a finite number of elements which are mapped by the isomorphism ψ to diagonal matrices of $PGL_2(\mathbb{Q}_p)$;

(ii) if ϵ belongs to S_1 , then all the elements of the coset $\epsilon \langle \gamma \rangle$ belong to S_1 .

Proof. (Cf. [M], lemma 2.7)

1) Consider a decomposition of Γ as disjoint union of double cosets

$$\Gamma = \prod_{\bar{\epsilon} \in \bar{\mathcal{S}}} \langle \gamma \rangle \bar{\epsilon} \langle \delta \rangle.$$

We claim that we may take S to be $\{\bar{\epsilon}\delta^m : \bar{\epsilon} \in \bar{S}, m \in \mathbb{Z}\}$. For, if $\bar{\epsilon}\delta^m = \gamma^r \bar{\epsilon}\delta^n$, we find $\delta^{m-n} = \bar{\epsilon}^{-1}\gamma^r \bar{\epsilon}$. Projecting this relation to $\bar{\Gamma}$ gives m = n.

2) Consider a decomposition of Γ as disjoint union of double cosets

$$\Gamma = \prod_{\bar{\epsilon} \in \bar{\mathcal{S}}} \langle \gamma \rangle \bar{\epsilon} \langle \gamma \rangle.$$

Define S_1 to be the set of elements of Γ of the form $\bar{\epsilon}\gamma^m$, $m \in \mathbb{Z}$, where $\bar{\epsilon} \in \bar{S}$ is such that $\langle \gamma \rangle \bar{\epsilon}\gamma^n \neq \langle \gamma \rangle \bar{\epsilon}\gamma^m$ whenever $m \neq n$. As for S_0 , we claim that it can be taken to be the set of elements $\bar{\epsilon} \in \bar{S}$ which do not satisfy the above condition. In such a case, there is a relation $\gamma^r \bar{\epsilon}\gamma^n = \bar{\epsilon}\gamma^m$ for integers r and $m \neq n$. Then, $\gamma^r = \bar{\epsilon}\gamma^{m-n}\bar{\epsilon}^{-1}$. By projecting this equality to $\bar{\Gamma}$, we see that m-n=r, and hence $\bar{\epsilon}$ and γ^r commute. Since γ^r is mapped by ψ to the diagonal matrix $\begin{pmatrix} \underline{w}^{\iota r} & 0 \\ 0 & 1 \end{pmatrix}$, where $\operatorname{ord}_p(\underline{w}) = k > 0$, a direct computation shows that $\bar{\epsilon}$ is also diagonal (and thus commutes with γ). Now consider the group of all the diagonal matrices in $\psi(\Gamma)$. Since Γ is discrete, this group is the product of a finite group by a cyclic group containing the group generated by γ . In conclusion, the set S_0 is finite, and

$$\prod_{\bar{\epsilon}\in\mathcal{S}_0}\langle\gamma\rangle\bar{\epsilon}\langle\gamma\rangle = \prod_{\bar{\epsilon}\in\mathcal{S}_0}\langle\gamma\rangle\bar{\epsilon}.$$

The claim follows.

In the computation of $j(\mathfrak{c})(\bar{\delta})$, we can assume that either

- (I) \mathfrak{c} and $\overline{\delta}$ are linearly independent, or
- (II) $\bar{\delta} = \mathfrak{c}$.

(In fact, if the rank of $\overline{\Gamma}$ is > 1, it is enough to consider elements as in the first case, since the linear map $j(\mathfrak{c})$ is completely determined by the values $j(\mathfrak{c})(\overline{\delta})$, for \mathfrak{c} and $\overline{\delta}$ linearly independent.) In the case (I), we use the notation $S_1 := S$, and the symbol S_1 will always refer to a choice of representatives for $\langle \gamma \rangle \backslash \Gamma$ as in part 1 of proposition 7.4. In the case (II), the symbol $S = S_0 \coprod S_1$ will stand for a choice of representatives as in part 2 of proposition 7.4.

Lemma 7.5

Let $\delta \in \Gamma$ be as in case (I) or (II) above. Then, the images in G_{∞} by the reciprocity map of $j(\mathfrak{c})(\bar{\delta})$ and $\prod_{\epsilon \in S_1} \epsilon \delta z_0 / \epsilon z_0$ are equal.

Proof. In the case (I) there is nothing to prove. In the case (II), proposition 7.4 combined with a direct computation shows that

$$\prod_{\epsilon \in \mathcal{S}_0} \frac{\epsilon \gamma z_0}{\epsilon z_0} = \underline{w}^{\iota \#(\mathcal{S}_0)}$$

Since \underline{w} is in the kernel of the reciprocity map, the claim follows.

By lemma 7.5, we are now reduced to compute the product $\prod_{\epsilon \in S_1} \epsilon \delta z_0 / \epsilon z_0$, with δ as in case (I) or (II).

We begin with some preliminary remarks. Fix an edge e of level equal to an odd integer n, having v as its vertex of level n. Moreover, assume that the distance of v from v_0 is also equal to n. Note that the image in \mathcal{M} of e is equal to the image in \mathcal{M} of a Gross point of conductor cp^n .

Given $\tilde{\sigma} \in \tilde{G}_n$, define $\mu_{\tilde{\sigma}}$ to be equal to 1, resp. -1 if $\tilde{\sigma}v$ has odd, resp. even distance from v_0 . If $\iota = 1$, observe that $\mu_{\tilde{\sigma}}$ depends only on the image $\bar{\sigma}$ of $\tilde{\sigma}$ in Σ under the projection induced by the reciprocity map; in this case, we write $\mu_{\bar{\sigma}}$ instead of $\mu_{\tilde{\sigma}}$. If $\iota = 2$, $\mu_{\tilde{\sigma}}$ is constant on the elements $\tilde{\sigma}$ which have the same image in Σ and *p*-adic valuation of the same parity; moreover, the values of $\mu_{\tilde{\sigma}}$ corresponding to different parities are opposite. In this case, if $\tilde{\sigma}$ projects in Σ to $\bar{\sigma}$ and $\operatorname{ord}_p(\tilde{\sigma})$ is even, we let $\mu_{\bar{\sigma}}$ stand for $\mu_{\tilde{\sigma}}$.

Given an edge d of \mathcal{T} , and $\tilde{\sigma} \in \tilde{G}_n$, write $\tilde{\sigma}e \equiv d$ if the edge $\tilde{\sigma}e$ is \mathcal{S}_1 -equivalent to d, and $\sigma e \approx d$ if the element σe of \mathcal{M} is Γ -equivalent to d. If $\iota = 1$, the relation $\tilde{\sigma}e \equiv d$ implies that $\sigma e \approx d$. If $\iota = 2$, $\tilde{\sigma}e \equiv d$ yields $\sigma e \approx d$ when $\operatorname{ord}_p(\tilde{\sigma})$ is even, and $\sigma e \approx wd$, with $w \in \Gamma_+ - \Gamma$, when $\operatorname{ord}_p(\tilde{\sigma})$ is odd.

Recall that ω_d denotes the order of the stabilizer in Γ of d.

Lemma 7.6

1) Suppose that $\iota = 1$. If the odd integer n is sufficiently large, the projection $\tilde{G}_n \to G_n$ induces a ω_d -to-1 map

$$\{\tilde{\sigma}\in \tilde{G}_n: \tilde{\sigma}e\equiv d\} \to \{\sigma\in G_n: \sigma e\approx d\}.$$

2) Suppose that $\iota = 2$. If the odd integer n is sufficiently large, the projection $\tilde{G}_n \to G_n$ induces ω_d -to-1 maps

$$\{\tilde{\sigma} \in G_n : \tilde{\sigma}e \equiv d, \operatorname{ord}_p(\tilde{\sigma}) \operatorname{even}\} \to \{\sigma \in G_n : \sigma e \approx d\}$$

and

$$\{\tilde{\sigma} \in \tilde{G}_n : \tilde{\sigma}e \equiv d, \operatorname{ord}_p(\tilde{\sigma}) \operatorname{odd}\} \to \{\sigma \in G_n : \sigma e \approx wd\}$$

Proof.

1) Suppose that $\tilde{\sigma}_1 e \equiv d$ and $\tilde{\sigma}_2 e \equiv d$, i.e., $\tilde{\sigma}_1 e = \epsilon_1 d$ and $\tilde{\sigma}_2 e = \epsilon_2 d$, for ϵ_1 and ϵ_2 in S_1 . If $\tilde{\sigma}_1$ and $\tilde{\sigma}_2$ have the same image in G_n , then $\tilde{\sigma}_1 = \underline{w}^r \tilde{\sigma}_2$ for $r \in \mathbb{Z}$, and hence $\gamma^r \epsilon_2 d = \epsilon_1 d$. If $r \neq 0$, i.e., $\tilde{\sigma}_1 \neq \tilde{\sigma}_2$ and $\epsilon_1 \neq \epsilon_2$, then $\gamma^r \epsilon_2 \epsilon_1^{-1}$ is a non-trivial element of the stabilizer in Γ of $\epsilon_1 d$, which is a group of cardinality ω_d . Conversely, if $\tilde{\sigma}_1 e = \epsilon_1 d$ for $\epsilon_1 \in S_1$ and if β is a non-trivial element of the stabilizer of $\epsilon_1 d$, we have $\tilde{\sigma}_1 e = \beta \epsilon_1 d$. Write $\beta \epsilon_1 = \gamma^r \epsilon_2$, $r \in \mathbb{Z}$, $\epsilon_2 \in S$. Then $\epsilon_1 \neq \epsilon_2$. Note that if n is large, then ϵ_2 belongs to S_1 . We obtain $\underline{w}^{-r} \tilde{\sigma}_1 e = \epsilon_2 d$. This concludes the proof of part 1.

2) The proof is exactly the same as that of part 1.

Let

$$path(v_0, \delta v_0) = d_1 - d_2 + \dots + d_{s-1} - d_s \in \mathbb{Z}[\mathcal{E}(\mathcal{T})]$$

(Note that s is even, since δ belongs to Γ .) Write $d_j = \{v_j^e, v_j^o\}$, where v_j^e is the even vertex of d_j , and v_j^o is the odd vertex of d_j . Note that we have

$$v_j^o = v_{j+1}^o$$
 for $j = 1, 3, \dots, s-1,$
 $v_j^e = v_{j+1}^e$ for $j = 2, 4, \dots, s-2,$
 $v_s^e = \delta v_1^e.$

Fix $z_0 \in \mathcal{H}_p(\mathbb{Q}_{p^2})$ such that $r(z_0) = v_0$. We may choose elements z_j^o and z_j^e in $\mathcal{H}_p(\mathbb{Q}_{p^2})$ such that $r(z_j^o) = v_j^o$, $r(z_j^e) = v_j^e$, and

$$z_j^o = z_{j+1}^o$$
 for $j = 1, 3, ..., s - 1$,
 $z_j^e = z_{j+1}^e$ for $j = 2, 4, ..., s - 2$,
 $z_1^e = z_0, \quad z_s^e = \delta z_0$.

Hence

$$(\epsilon z_1^o)(\epsilon z_2^o)^{-1}\cdots(\epsilon z_{s-1}^o)(\epsilon z_s^o)^{-1} = 1, \quad (\epsilon z_2^e)(\epsilon z_3^e)^{-1}\cdots(\epsilon z_{s-2}^e)(\epsilon z_{s-1}^e)^{-1} = 1,$$

so that

$$\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0} = \prod_{\epsilon \in \mathcal{S}_1} \left(\frac{\epsilon z_1^o}{\epsilon z_1^e} \right) \left(\frac{\epsilon z_2^o}{\epsilon z_2^e} \right)^{-1} \cdots \left(\frac{\epsilon z_s^o}{\epsilon z_s^e} \right)^{-1}$$

Fix a large odd integer n. For each $1 \leq j \leq s$, let $\mathcal{S}(j)$ be the set of elements ϵ in \mathcal{S}_1 such that ϵd_j has level $\leq n$. Lemma 7.3 shows that the sets $\mathcal{S}(j)$ are finite. By lemma 7.1, we have the congruence

(5)
$$\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0} \equiv \prod_{\epsilon \in \mathcal{S}(1)} \left(\frac{\epsilon z_1^o}{\epsilon z_1^e}\right) \prod_{\epsilon \in \mathcal{S}(2)} \left(\frac{\epsilon z_2^o}{\epsilon z_2^e}\right)^{-1} \cdots \prod_{\epsilon \in \mathcal{S}(s)} \left(\frac{\epsilon z_s^o}{\epsilon z_s^e}\right)^{-1} \pmod{p^n}.$$

Each of the factors in the right hand side of equation (5) can be broken up into three contributions:

$$\prod_{\mathcal{S}(j)} \frac{\epsilon z_j^o}{\epsilon z_j^e} = \prod_{\ell(\epsilon v_j^o) < n} \epsilon z_j^o \cdot \prod_{\ell(\epsilon v_j^e) < n} (\epsilon z_j^e)^{-1} \cdot \prod_{\ell(\epsilon d_j) = n} (\epsilon z_j^{\pi_j})^{\mu_j},$$

where $\pi_j = o$, resp. $\pi_j = e$ if the distance of the furthest vertex of ϵd_j from v_0 is odd, resp. even, and where we set $\mu_j = 1$ in the first case and $\mu_j = -1$ in the second case. By our choice of the set S_1 as in proposition 7.4, the first two factors in this last expression cancel out in the formula (5). Hence we obtain

$$\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0} \equiv \prod_{\ell(\epsilon d_1)=n} (\epsilon z_1^{\pi_1})^{\mu_1} \cdot \prod_{\ell(\epsilon d_2)=n} (\epsilon z_2^{\pi_2})^{-\mu_2} \cdots \prod_{\ell(\epsilon d_s)=n} (\epsilon z_s^{\pi_s})^{-\mu_s} \pmod{p^n}.$$

As in the remarks before lemma 7.6, let e be an edge of level n, such that its vertex v of level n has distance from v_0 also equal to n. Choose any $z \in \mathcal{H}_p(\mathbb{Q}_{p^2})$ with r(z) = v. Since \tilde{G}_n acts simply transitively on the set of edges of level n, lemma 7.1 gives

$$\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0} \equiv \prod_{\tilde{\sigma}e \equiv d_1} (\tilde{\sigma}z)^{\mu_{\tilde{\sigma}}} \cdot \prod_{\tilde{\sigma}e \equiv d_2} (\tilde{\sigma}z)^{-\mu_{\tilde{\sigma}}} \cdots \prod_{\tilde{\sigma}e \equiv d_s} (\tilde{\sigma}z)^{-\mu_{\tilde{\sigma}}} \pmod{p^n}.$$

By lemma 7.6, we obtain

ç

$$\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0} \equiv \prod_{\tilde{\sigma} e \equiv d_1} \tilde{\sigma}^{\mu_{\tilde{\sigma}}} \cdot \prod_{\tilde{\sigma} e \equiv d_2} \tilde{\sigma}^{-\mu_{\tilde{\sigma}}} \cdots \prod_{\tilde{\sigma} e \equiv d_s} \tilde{\sigma}^{-\mu_{\tilde{\sigma}}} \cdot (z^M) \pmod{p^n},$$

where

$$M = \begin{cases} \langle \operatorname{path}(v_0, \delta v_0), \sum_{\sigma \in G_n} \mu_{\bar{\sigma}} \sigma e \rangle & \text{if } \iota = 1 \\ \langle \operatorname{path}(v_0, \delta v_0), \sum_{\sigma \in G_n} (\mu_{\bar{\sigma}} - \mu_{\bar{\sigma}} w) \sigma e \rangle & \text{if } \iota = 2. \end{cases}$$

By lemma 2.3, the duality \langle , \rangle induces a pairing on $H_1(\mathcal{G}, \mathbb{Z}) \times \mathcal{M}$. In the case $\iota = 1$, one sees directly that $\sum_{\sigma \in G_n} \mu_{\bar{\sigma}} \sigma e$ has trivial image in \mathcal{M} , so that M is zero. Consider now the case $\iota = 2$. Since we are interested in computing $\underline{j}(\mathfrak{c})(\bar{\delta})$, we need only consider the image of the homomorphism $j(\mathfrak{c})$ in $\mathcal{N}_{sp} \otimes \mathbb{Q}_p^{\times}$. Thus, we may view the above pairing as being defined on $H_1(\mathcal{G}, \mathbb{Z})^- \times \mathcal{M}_{sp}$, where $H_1(\mathcal{G}, \mathbb{Z})^-$ indicates the "minus" eigenspace for the action of w on $H_1(\mathcal{G}, \mathbb{Z})$, and we may assume from now on that $\operatorname{path}(v_0, \delta v_0)$ belongs to $H_1(\mathcal{G}, \mathbb{Z})^-$. One checks that the image $\iota \sum_{\sigma \in G_n} \mu_{\bar{\sigma}} \sigma e$ in \mathcal{M}_{sp} of the element $\sum_{\sigma \in G_n} (\mu_{\bar{\sigma}} - w\mu_{\bar{\sigma}}) \sigma e$ is trivial, so that also in this case M is zero. Hence, in all cases

$$\prod_{\epsilon \in S_1} \frac{\epsilon \delta z_0}{\epsilon z_0} \equiv \prod_{\tilde{\sigma} e \equiv d_1} \tilde{\sigma}^{\mu_{\tilde{\sigma}}} \cdot \prod_{\tilde{\sigma} e \equiv d_2} \tilde{\sigma}^{-\mu_{\tilde{\sigma}}} \cdots \prod_{\tilde{\sigma} e \equiv d_s} \tilde{\sigma}^{-\mu_{\tilde{\sigma}}} \pmod{p^n}.$$

Let $\operatorname{rec}_{p,n} : \tilde{G}_{\infty} \to G_n$ be the composite of the reciprocity map with the natural projection of G_{∞} onto G_n . Suppose that $\iota = 1$. By lemma 7.6, the above relation yields the equality in G_n :

$$\operatorname{rec}_{p,n}\left(\prod_{\epsilon\in\mathcal{S}_1}\frac{\epsilon\partial z_0}{\epsilon z_0}\right) = \prod_{\sigma e\approx d_1} \sigma^{\omega_{d_1}\mu_{\bar{\sigma}}} \cdot \prod_{\sigma e\approx d_2} \sigma^{-\omega_{d_2}\mu_{\bar{\sigma}}} \cdots \prod_{\sigma e\approx d_s} \sigma^{-\omega_{d_s}\mu_{\bar{\sigma}}}.$$

Recall the derivative $\mathcal{L}'_{p,n}(\mathcal{N}_{sp}/H, P_0) \in \mathcal{N}_{sp} \otimes G_n$ defined in the formula (3) at the end of section 3. By the definition of the bijection κ of lemma 2.2, the right hand side of the above equality can be written as

$$\mathcal{L}'_{p,n}(\mathcal{N}_{\mathrm{sp}}/H, P_0)(\bar{\delta}) = \langle \operatorname{path}(v_0, \delta v_0), \sum_{g \in G_n} e_n(i)^g \otimes g^{-1} \rangle,$$

where, by an abuse of notation, $\sum_{g \in G_n} e_n(i)^g \otimes g^{-1}$ is viewed as an element of $\mathcal{M}_{sp} \otimes G_n$. When $\iota = 2$, a similar computation shows that

$$\iota \mathcal{L}'_{p,n}(\mathcal{N}_{\mathrm{sp}}/H, P_0)(\bar{\delta}) = \mathrm{rec}_{p,n}(\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0}).$$

By passing to the limit, one obtains in all cases

$$\iota \mathcal{L}'_p(\mathcal{N}_{\mathrm{sp}}/H, P_0)(\bar{\delta}) = \mathrm{rec}_p(\prod_{\epsilon \in \mathcal{S}_1} \frac{\epsilon \delta z_0}{\epsilon z_0}).$$

In other words, by definition of the map j,

$$\mathcal{L}'_p(\mathcal{N}_{\rm sp}/H, P_0)^{\iota} = \underline{j}(\mathfrak{c}),$$

as was to be shown.

References

[BC] J-F. Boutot, H. Carayol, Uniformization p-adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfeld, Astérisque 196-197 (1991) 45-158.

[**BD1**] M. Bertolini, H. Darmon, *Heegner points on Mumford-Tate curves*, Inv. Math. **126**, Fasc. 3 (1996) 413-453.

[**BD2**] M. Bertolini, H. Darmon, *Heegner points*, *p*-adic *L*-functions and the Cerednik-Drinfeld uniformization, Inv. Math., to appear.

[Boi] X. Boichut, On the Mazur-Tate-Teitelbaum p-adic conjecture for elliptic curves with bad reduction at p, in preparation.

[BSDGP] K. Barré-Sirieix, G. Diaz, F. Gramain, G. Philibert, Une preuve de la conjecture de Mahler-Manin, Inv. Math. 124 (1996) 1-9.

[Cer] I.V. Cerednik, Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotient, (in Russian) Math. Sbornik **100** (1976) 59-88. Transl. in Math. USSR. Sb. **29** (1976) 55-78.

[Dag] H. Daghigh, McGill University PhD thesis, in progress.

[**Dr**] V.G. Drinfeld, Coverings of p-adic symmetric regions, Funct. Anal. Appl. **10** (1976) 29-40.

[**Gr**] B.H. Gross, *Heights and special values of L-series*, CMS Conference Proceedings, H. Kisilevsky, J. Labute, Eds., **7** (1987).

[**GS**] R. Greenberg, G. Stevens, *p*-adic *L*-functions and *p*-adic periods of modular forms, Inv. Math. **111** (1993) 407-447.

[**GVdP**] L. Gerritzen, M. Van der Put, *Schottky groups and Mumford curves*, LNM 817, Springer, 1980.

[GZ] B.H. Gross, D. Zagier, *Heegner points and derivatives of L-series*, Inv. Math. 84 (1986) 225-320.

[Kl] C. Klingenberg, On p-adic L-functions on Mumford curves, In: p-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, B. Mazur and G. Stevens, eds., Contemporary Math. 165 (1991) 277-315.

[KKT] K. Kato, M. Kurihara, Tsuji, Forthcoming work.

[JL] H. Jacquet, R.P. Langlands, Automorphic forms on GL₂, LNM 114, Springer.

[M] Y.I. Manin, *p*-adic automorphic functions, J. Sov. Math. 5 (1976) 279-333.

[MTT] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Inv. Math. 84 (1986) 1-48.

[**RT**] K. Ribet, S. Takahashi, Parametrization of elliptic curves by Shimura curves and by classical modular curves, Proc. Nat. Acad. Sc. **94** (1997) 11110-11114.

[Sch] P. Schneider, *Rigid-analytic L-transforms*, In: Number Theory, Noordwijkerhout, LNM 1068, Springer, 1984.

[Sh] T. Shintani, On the construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975) 83-126.

[Se] J-P. Serre, Arbres, amalgames, SL_2 , Astérisque 46, Soc. Math. de France, 1977.

[**T**] J. Teitelbaum, Values of *p*-adic *L*-functions and a *p*-adic Poisson kernel, Inv. Math. **101** (1990) 395-410.

[Vi] M-F. Vigneras, Arithmétique des algèbres des quaternions, LNM 800, Springer.