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1 Introduction

Let E/Q be a modular elliptic curve of conductor N , and let p be a prime of
split multiplicative reduction for E. Write Cp for a fixed completion of an algebraic
closure of Qp. Tate’s theory of p-adic uniformization of elliptic curves yields a
rigid-analytic, Gal(Cp/Qp)-equivariant uniformization of the Cp-points of E

(1) 0 → qZ → C×
p

ΦTate−→ E(Cp) → 0,

where q ∈ pZp is the p-adic period of E.
Mazur, Tate and Teitelbaum conjectured in [MTT] that the cyclotomic p-adic

L-function of E/Q vanishes at the central point to order one greater than that
of its classical counterpart. Furthermore, they proposed a formula for the leading
coefficient of such a p-adic L-function. In the special case where the analytic rank of
E(Q) is zero, they predicted that the ratio of the special value of the first derivative
of the cyclotomic p-adic L-function and the algebraic part of the special value of
the complex L-function of E/Q is equal to the quantity

logp(q)

ordp(q)
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(where logp is Iwasawa’s cyclotomic logarithm), which is defined purely in terms of
the p-adic uniformization of E. Greenberg and Stevens [GS] gave a proof of this
special case. See also the work of Boichut [Boi] in the case of analytic rank one.

The article [BD1] formulates an analogue of the conjectures of [MTT] in which
the cyclotomic Zp-extension of Q is replaced by the anticyclotomic Zp-extension
of an imaginary quadratic field K. When p is split in K and the sign of the
functional equation of L(E/K, s) is +1, this conjecture relates the first derivative
of the anticyclotomic p-adic L-function of E to the anticyclotomic logarithm of the
p-adic period of E. The present paper supplies a proof of this conjecture. Our
proof is based on the theory of p-adic uniformization of Shimura curves.
More precisely, assume thatK is an imaginary quadratic field with (disc(K), N) = 1
such that:

(i) p is split in K;

(ii) E is semistable at the rational primes which divide N and are inert in K;

(iii) the number of these rational primes is odd.

The complex L-function L(E/K, s) of E over K has a functional equation and an
analytic continuation to the whole complex plane. Under our assumptions, the sign
of the functional equation of L(E/K, s) is +1 (cf. [GZ], p. 71), and hence L(E/K, s)
vanishes to even order at s = 1.

Fix a positive integer c prime to N , and let O be the order of K of conductor c.
Let Hn be the ring class field of K of conductor cpn, with n ≥ 0, and let H∞ be the
union of the Hn. By class field theory, the Galois group Gal(H∞/H0) is identified
with O×\(OK ⊗ Zp)

×/Z×
p ' Zp × Z/((p − 1)/u)Z, with u := 1

2#O×. Moreover,
Gal(H0/K) is identified with the Picard group Pic(O). Set

Gn := Gal(Hn/K), G∞ := Gal(H∞/K).

Thus, G∞ is isomorphic to the product of Zp by a finite abelian group. Choose a
prime p of K above p. Identify Kp with Qp, and let

recp : Q×
p → G∞

be the reciprocity map of local class field theory. Define the integral completed
group ring of G∞ to be

Z[[G∞]] := lim
←

n

Z[Gn],

where the inverse limit is taken with respect to the natural projections of group
rings.

In section 3, we recall the construction explained in [BD1], section 2.7 of an
element

Lp(E/K) ∈ Z[[G∞]]

attached to (E,H∞/K), which interpolates the special values L(E/K, χ, 1) of
L(E/K, s) twisted by finite order characters of G∞. The construction of this p-adic
L-function is based on the ideas of Gross [Gr] and a generalization due to Daghigh
[Dag]. We will show that Lp(E/K) belongs to the augmentation ideal I of Z[[G∞]].
Let L′

p(E/K) be the natural image of Lp(E/K) in I/I2 = G∞. The element
L′

p(E/K) should be viewed as the first derivative of Lp(E/K) at the central point.
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Let f =
∑

n≥1 anq
n be the newform attached to E, and let

Ωf := 4π2

∫∫

H/Γ0(N)

|f(τ)|2dτ ∧ idτ̄

be the Petersson inner product of f with itself. We assume that E is the strong Weil
curve for the Shimura curve parametrization defined in section 4. Set d := disc(O),
and let nf be the positive integer defined later in this introduction, and specified
further in section 2. Our main result (stated in a special case: see theorem 6.4 for
the general statement) is the following.

Theorem 1.1
Suppose that c = 1. The equality (up to sign)

L′
p(E/K) =

recp(q)

ordp(q)

√

L(E/K, 1)Ω−1
f · d 1

2u2nf

holds in I/I2 ⊗ Q.

For the convenience of the reader, we now briefly sketch the strategy of the proof
of theorem 1.1.

Write the conductor N of E as pN+N−, where N+, resp. N− is divisible only
by primes which are split, resp. inert in K. Under our assumptions, N− has an
odd number of prime factors, and pN− is squarefree. Denote by B the definite
quaternion algebra over Q of discriminant N−, and fix an Eichler order R of B of
level N+p. Let Γ be the subgroup of elements of Q×

p \R[ 1
p
]× whose norm has even

p-adic valuation, and set N := Hom(Γ,Z). The module N is a free abelian group,
and is equipped with the action of a Hecke algebra T attached to modular forms
of level N which are new at N−p. In section 2, we will also define a canonical free
quotient Nsp of N , which is stable for the action of T and is such that the image
of T in End(Nsp) corresponds to modular forms which are split multiplicative at
p. Let πf be the idempotent of T ⊗ Q associated with f , and let nf be a positive
integer such that ηf := nfπf belongs to T. Denote by N f the submodule of N on
which T acts via the character

φf : T → Z, Tn 7→ an

defined by f . By the multiplicity-one theorem, the module N f is isomorphic to Z.
The operator ηf yields a map (denoted in the same way by an abuse of notation)
ηf : N → N f , which factors through Nsp. We will define an element Lp(Nsp/K) ∈
Nsp ⊗ Z[[G∞]], such that (up to sign)

(ηf ⊗ id)(Lp(Nsp/K)) = cp · Lp(E/K),

where cp := ordp(q). Recall that the derivative L′
p(E/K) of Lp(E/K) belongs to

N f ⊗ G∞ = G∞.
On the other hand, the module N is related to the theory of p-adic uniformization

of Shimura curves. Let B be the indefinite quaternion algebra of discriminant pN−,
and let R be an Eichler order of B of level N+. Write X for the Shimura curve
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over Q associated with R (see section 4), and J for the jacobian of X. A theorem
of Cerednik ([Cer]), combined with the theory of jacobians of Mumford curves
([GVdP]), yields a rigid-analytic uniformization

(2) 0 → Λ → N ⊗ C×
p

Φ−→ J(Cp) → 0,

where Λ is the lattice of p-adic periods of J . The Tate uniformization (1) is obtained
from the sequence (2) by applying the operator ηf to the Hecke modules N ⊗ C×

p

and J(Cp) of (2). In particular, the p-adic period q of E can be viewed as an element
of the module N f ⊗ C×

p , and in fact one checks it belongs to N f ⊗ Q×
p = Q×

p . An
explicit calculation of p-adic periods, combined with a formula for L(E/K, 1) given
in [Gr] and [Dag], will prove theorem 1.1.

A similar strategy was used in [BD2], when p is inert in K and the sign of the
functional equation of L(E/K, s) is −1, to obtain a p-adic analytic construction of a
Heegner point in terms of the first derivative of an anticyclotomic p-adic L-function.

It is worth observing that an analogous strategy has not (yet) proven to work in
the case of the cyclotomic Zp-extension of Q. The difficulty is that of relating in a
natural way the construction of the cyclotomic p-adic L-function, which is defined
in terms of modular symbols, to the p-adic uniformization of Shimura curves. P.
Schneider [Sch] has proposed the definition of a p-adic L-function based on the no-
tion, which stems directly from the theory of p-adic uniformization, of rigid-analytic
modular symbol. C. Klingenberg [Kl] has proven an exceptional zero formula sim-
ilar to theorem 1.1 for this rigid-analytic p-adic L-function. However, the relation
(if any) between Schneider’s p-adic L-function and the cyclotomic p-adic L-function
considered in [MTT] is at present mysterious.

The reader is also referred to Teitelbaum’s paper [T], where the theory of p-adic
uniformization of Shimura curves is used to formulate analogues of the conjectures
of [MTT] for cyclotomic p-adic L-functions attached to modular forms of higher
weight.

The proof by Greenberg and Stevens [GS] of the cyclotomic “exceptional zero”
formula of [MTT] follows a completely different strategy from the one of this paper,
and is based on Hida’s theory of p-adic families of modular forms.

Finally, let us mention that Kato, Kurihara and Tsuji [KKT] have recently an-
nounced more general results on the conjectures of [MTT], which make use of an
Euler System constructed by Kato from modular units in towers of modular func-
tion fields.

2 Definite quaternion algebras and graphs
Keep the notations and assumptions of the introduction. In particular, recall

that K is an imaginary quadratic field, and B is a definite quaternion algebra of
discriminant N−. Given a rational prime `, and orders O of K and S of B, set

K` := K ⊗ Z`, B` := B ⊗ Z`, O` := O ⊗ Z`, S` := S ⊗ Z`.

Denote by Ẑ =
∏

Z` the profinite completion of Z. Set

K̂ := K ⊗ Ẑ, B̂ := B ⊗ Ẑ, Ô := O ⊗ Ẑ =
∏

O`, Ŝ := S ⊗ Ẑ =
∏

S`.
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Fix an Eichler order R of B of level N+p. Equip R with an orientation, i.e., a
collection of algebra homomorphisms

o
+
` : R→ Z/`nZ, `n‖N+p,

o
−
` : R→ F`2 , ` | N−.

The group B̂× acts transitively (on the right) on the set of Eichler orders of level
N+p by the rule

S ∗ b̂ := (b̂−1Ŝb̂) ∩ B.

The orientation on R induces an orientation on R ∗ b̂, and the stabilizer of the
oriented order R is equal to Q×R̂×. This sets up a bijection between the set of
oriented Eichler orders of level N+p and the coset space Q×R̂×\B̂×. Likewise,
there is a bijection between the set of oriented Eicher orders of level N+p modulo
conjugation by B× and the double coset space

R̂×\B̂×/B×.

Set Γ+ := Q×
p \R[ 1

p
]× and, as in the introduction, let Γ be the image in Γ+ of the

elements in R[ 1
p
]× whose reduced norm has even p-adic valuation.

Lemma 2.1
Γ has index 2 in Γ+.

Proof. See [BD2], lemma 1.5.

Let T be the Bruhat-Tits tree associated with the local algebra Bp. The set of

vertices V(T ) of T is equal to the set of maximal orders in Bp. The set ~E(T ) of
oriented edges of T is equal to the set of oriented Eichler orders of level p in Bp.

Thus, ~E(T ) can be identified with the coset space Q×
p R

×
p \B×

p , by mapping bp ∈ B×
p

to Rp ∗ bp = b−1
p Rpbp. Similarly, if Rp is a maximal order in Bp containing Rp, we

will identify V(T ) with the coset space Q×
p R

×
p \B×

p . Define the graphs

G := T /Γ, G+ := T /Γ+.

By strong approximation ([Vi], p. 61), there is an identification

~E(G+) = R̂×\B̂×/B×

of the set of oriented edges of G+ with the set of conjugacy classes of oriented
Eichler orders of level N+p.

Fixing a vertex v0 of T gives rise to an orientation of T in the following way.
A vertex of T is called even, resp. odd if it has even, resp. odd distance from v0.
The direction of an edge is said to be positive if it goes from the even to the odd
vertex. Since Γ sends even vertices to even ones, and odd vertices to odd ones, the
orientation of T induces an orientation of G. Define a map

κ : E(G) → ~E(G+)
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from the set of edges of G to the set of oriented edges of G+, by mapping an edge
{v, v′} (mod Γ) of G, where v and v′ are vertices of T and we assume that v is
even, to the oriented edge (v, v′) (mod Γ+) of G+.

Lemma 2.2
The map κ is a bijection.

Proof. Suppose that (v, v′) (mod Γ+) = (u, u′) (mod Γ+). Thus, there is γ ∈ Γ+

such that γv = u and γv′ = u′. If v and u are both even, γ must belong to Γ, and
this proves the injectivity of κ. As for surjectivity, (v, v′) (mod Γ+) is the image
by κ of {v, v′} (mod Γ) if v is even, and of {wv,wv′} (mod Γ), where w is any
element of Γ+ − Γ, if v is odd.

Given two vertices v and v′ of T , write path(v, v′) for the natural image in Z[E(G)]
of the unique geodesic on T joining v with v′. For example, if v and v′ are even
vertices joined by 4 consecutive edges e1, e2, e3, e4, by our convention for orienting
the edges of T , path(v, v′) is the image in Z[E(G)] of e1 − e2 + e3 − e4.

There is a coboundary map

∂∗ : Z[V(G)] → Z[E(G)],

which maps the image in V(G) of an odd, resp. even vertex v of T to the image in
Z[E(G)] of the formal sum of the edges of T emanating from v, resp. the opposite
of this sum. There is also a boundary map

∂∗ : Z[E(G)] → Z[V(G)],

which maps an edge e to the difference v′−v of its vertices, where v is the even vertex
and v′ is the odd vertex of e. The integral homology, resp. the integral cohomology
of the graph G is defined by H1(G,Z) = ker(∂∗), resp. H1(G,Z) = coker(∂∗).

Let

〈 , 〉 : Z[E(G)] × Z[E(G)] → Z

be the pairing on Z[E(G)] defined by the rule 〈ei, ej〉 := ωei
δij , where the ei are the

elements of the standard basis of Z[E(G)] and ωei
is the order of the stabilizer in Γ

of a lift of ei to T . Likewise, let

〈〈 , 〉〉 : Z[V(G)] × Z[V(G)] → Z

be the pairing on Z[V(G)] defined by 〈〈vi, vj〉〉 := ωvi
δij ,where the vi are the elements

of the standard basis of Z[V(G)] and ωvi
is the order of the stabilizer in Γ of a lift

of vi to T .
We use the notation M to indicate the module H1(G,Z). Let Γ̄ be the maximal

torsion-free abelian quotient of Γ. As in the introduction, write N for Hom(Γ̄,Z).
Given an element γ ∈ Γ, denote by γ̄ the natural image of γ in Γ̄.

Lemma 2.3
(i) The map from Γ̄ to H1(G,Z) which sends γ̄ ∈ Γ̄ to the cycle path(v0, γv0), where
v0 is any vertex of G and γ is any lift of γ̄ to Γ, is an isomorphism.
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(ii) The map from M to N which sends m ∈ M to the homomorphism

γ̄ 7→ 〈path(v0, γv0),m〉

is injective and has finite cokernel.

Proof (sketch). Part (i) is proved in [Se]. Part (ii) follows from part (i), and from
the fact that the maps ∂∗ and ∂∗ are adjoint with respect to the pairings defined
above.

Write Msp for the maximal torsion-free quotient of M/(w+1)M, with w ∈ Γ+−Γ.
By part (i) of lemma 2.3, the action of w ∈ Γ+ − Γ on H1(G,Z) induces an action
of w on N . Write Nsp for the maximal torsion-free quotient of N /(w + 1)N . We
have an induced map from Msp to Nsp, which is injective and has finite cokernel.

The module Z[E(G)] is equipped with the natural action of an algebra T̃ generated
over Z by the Hecke correspondences T` for ` - N and U` for ` | N , coming from
its double coset description: see [BD1], sec. 1.5. The module H1(G,Z) is stable

under the action of T̃. Hence, by part (i) of lemma 2.3, the algebra T̃ also acts

on the modules N and Nsp. Let T and Tsp denote the image of T̃ in End(N ) and

End(Nsp), respectively. Thus, there are natural surjections T̃ → T → Tsp. By an
abuse of notation, we will denote by T` and U` also the natural images in T and
Tsp of T` and U` .

The next proposition clarifies the relation between the modules N and Nsp and
the theory of modular forms.

Proposition 2.4
Let φ be an algebra homomorphism from T, resp. Tsp to C, and let an := φ(Tn).
Then, the an are the Fourier coefficients of a normalized eigenform of level N , which
is new at N−p, resp. is new at N−p and is split multiplicative at p. Conversely,
any such modular form arises as above from a character of T, resp. Tsp.

Proof. Eichler’s trace formula identifies the Hecke-module Z[E(G)] with a space of
modular forms of level N which are new at N−. Moreover, the algebra T can also
be viewed as the Hecke algebra of the module M defined above, and proposition
1.4 of [BD2] shows that M is equal to the “p-new” quotient of Z[E(G)]. This proves
the statement of proposition 2.4 concerning characters of T. The abelian variety
associated to a p-new modular form f is split multiplicative at p if and only if
Upf = f . Moreover, the Atkin-Lehner involution at p acts on a p-new modular
form as −Up, and acts on M as Γ+/Γ. This concludes the proof of proposition 2.4.

Modular parametrizations, I
We now make a specific choice of the operator ηf (where f is the newform of level

N attached to E) considered in the introduction, that will be used in formulating
the results in the sequel of the paper.

As stated in lemma 2.3, Γ̄ can be identified with the homology group H1(G,Z) ⊂
Z[E(G)]. Thus, when convenient, we will tacitly view elements of Γ̄ as contained
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in Z[E(G)]. The restriction of the pairing on Z[E(G)] defined above to Γ̄ yields the
monodromy pairing (denoted in the same way by an abuse of notation)

〈 , 〉 : Γ̄ × Γ̄ → Z.

Let Z[E(G)]f , resp. Γ̄f be the submodule of Z[E(G)], resp. Γ̄ on which T̃, resp. T
acts via the character associated with f . Note that the quotient of Z[E(G)] by Γ̄ is
torsion-free, and thus there is a canonical identification Z[E(G)]f = Γ̄f . Let ef be
a generator of Γ̄f ' Z.

Define the “modular parametrizations”

π∗ : Γ̄ → Γ̄f , π∗ : Γ̄f → Γ̄

by π∗(e) := 〈e, ef 〉ef and π∗(ef ) := ef . Since

(π∗ ◦ π∗)2 = 〈ef , ef 〉(π∗ ◦ π∗),

we obtain that π∗ ◦ π∗ is equal to 〈ef , ef 〉πf , where πf is the idempotent of T ⊗ Q
associated with f . From now on, we will assume that the operator ηf is defined by

ηf := π∗ ◦ π∗,

so that the integer nf is equal to 〈ef , ef 〉.
As observed in the introduction, the operator ηf induces a map N → Z, which

is well-defined up to sign. Since f has split multiplicative reduction at p, this map
factors through a map Nsp → Z. By an abuse of notation, we will indicate by ηf

both the above maps.

Remark 2.5
The module Γ̄ can be identified with the character group associated with the re-
duction modulo p of Pic0(X), where X is the Shimura curve considered in the
introduction. As will be explained in section 4, the map π∗ ◦ π∗ on Γ̄ is induced by
functoriality from a modular parametrization Pic0(X) → E.

3 The p-adic L-function

Let On denote the order of K of conductor cpn, n ≥ 0. (We will usually write
O instead of O0.) Equip the orders On with compatible orientations, i.e., with
compatible algebra homomorphisms

d
+
` : On → Z/`mZ, `m‖N+p,

d
−
` : On → F`2 , ` | N−.

An algebra homomorphism of On into an oriented Eichler order S of level N+p is
called an oriented optimal embedding if it respects the orientation on On and on
S, and does not extend to an embedding of a larger order into S. Consider pairs
(Rξ, ξ), where Rξ is an oriented Eichler order of level N+p and ξ is an element of
Hom(K,B) which restricts to an oriented optimal embedding of On into Rξ. A
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Gross point of conductor cpn (n ≥ 0) is a pair as above, taken modulo the action
of B×.

By our previous remarks, a Gross point can be viewed naturally as an element
of the double coset space

W := (R̂×\B̂× × Hom(K,B))/B×.

(See [Gr], sec. 3 for more details.) Strong approximation gives the identification

W = (~E(T ) × Hom(K,B))/Γ+.

By lemma 2.2, there is a natural map of Z-modules Z[W ] → Z[E(G)], where Z[W ]
is the module of finite formal Z-linear combinations of elements of W . The Hecke
algebra T̃ of Z[E(G)] acts naturally also on Z[W ] (see [BD1], sec. 1.5), in such a

way that the above map is T̃-equivariant.
The group Gn = Pic(On) = Ô×

n \K̂×/K× acts simply transitively on the Gross
points of conductor cpn by the rule

σ(Rξ, ξ) := (Rξ ∗ ξ̂(σ)−1, ξ),

where ξ̂ denotes the extension of ξ to a map from K̂ to B̂.
Now, fix a Gross point P0 = (R0, ξ0) (mod B×) of conductor c. By the above

identification, P0 corresponds to a pair (~e0, ξ0) ∈ ~E(T ) × Hom(K,B), modulo the
action of Γ+. As above, the origin v0 of ~e0 determines an orientation of T . Let
~e be one of the p oriented edges of T originating from ~e0. All the Gross points
corresponding to pairs (~e, ξ0) as above have conductor cp, except for one, which has
conductor c. Fix an end

(~e0, ~e1, . . . , ~en, . . .),

such that (~e1, ξ0) defines a Gross point of conductor cp. Then, (~en, ξ0) defines a
Gross point Pn of conductor cpn, for all n ≥ 0.

Denote by NormHn+1/Hn
the norm operator

∑

g∈Gal(Hn+1/Hn) g.

Lemma 3.1
1) Let u = 1

2#O×. The equality

UpP0 = uNormH1/H0
P1 + σpP0

holds in Z[W ] for a prime p above p, where σp ∈ Gal(H0/K) denotes the image of
p by the Artin map.

2) For n ≥ 1,
UpPn = NormHn+1/Hn

Pn+1.

Proof. It follows from the definition of the operator Up (see [BD1], sec. 1.5) and
the action of Pic(On) on the Gross points.

The picture below, drawn in the case p = 2, illustrates geometrically the relation
between the Galois action and the action of the Hecke correspondence Up.



10

By lemma 2.3, the natural map from Z[W ] to Z[E(G)] induces maps from Z[W ]
to the modules N and Nsp. These maps are Hecke-equivariant.

The Gross points Pn give rise to a p-adic distribution on G∞ with values in the
module Nsp as follows. Given g ∈ Gn, denote by eg

n the natural image of P g
n in

Nsp. For n ≥ 0, define the truncated p-adic L-function

Lp,n(Nsp/K) :=
∑

g∈Gn

eg
n · g−1 ∈ Nsp ⊗ Z[Gn].

Note that Lp,n(Nsp/K) is well-defined up to multiplication by elements of Gn.
For n ≥ 1, let νn : Z[Gn] → Z[Gn−1] be the natural projection of groups rings.

Lemma 3.2
1) The equality

ν1(Lp,1(Nsp/K)) = u−1(1 − σp)Lp,0(Nsp/K)

holds in Nsp ⊗ Z[G0].

2) For n ≥ 2, the equality

νn(Lp,n(Nsp/K)) = Lp,n−1(Nsp/K)

holds in Nsp ⊗ Z[Gn−1].

Proof. By proposition 2.4, the operator Up acts as +1 on Nsp. The claim follows
from lemma 3.1 and the fact that Nsp is torsion-free.

Define the p-adic L-function attached to Nsp to be

Lp(Nsp/K) := lim
←

n

Lp,n(Nsp/K) ∈ Nsp ⊗ Z[[G∞]].

We now define the p-adic L-function attached to E. Observe that the maximal
quotient Γ̄f of Γ̄ on which T acts via the character associated with f is isomorphic
to Z. Let ef be a generator of Γ̄f . The monodromy pairing on Γ̄ induces a Z-valued
pairing on Γ̄f × Γ̄f . Write ĉp for the positive integer |〈ef , ef 〉|.

Lemma 3.3
The element (ηf ⊗ id)(Lp(Nsp/K)) ∈ Z[[G∞]] is divisible by ĉp.

Proof. Consider the maps

π̃∗ : Z[E(G)] → Z[E(G)]f , π̃∗ : Z[E(G)]f → Z[E(G)]

defined by π̃∗(e) := 〈e, ef 〉ef and π̃∗(ef ) := ef . (The modular parametrizations π∗
and π∗ introduced in section 2 are obtained from these maps by restriction.) Hence,

η̃f := π̃∗ ◦ π̃∗ is an element of T̃, equal to 〈ef , ef 〉π̃f , where π̃f is the idempotent in

T̃ ⊗ Q associated with f . We have a commutative diagram

Z[E(G)] −−−−→ N
η̃f





y

ηf





y

Z[E(G)]f −−−−→ N f ,
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where the upper horizontal map is defined in lemma 2.3, and the lower horizontal
map is the restriction of the upper one. Note that N f is equal to Hom(Γ̄f ,Z),
and therefore is generated by the homomorphism ef 7→ 1. With our choices of
generators for Z[E(G)]f and N f , the lower map of the above diagram is described
as multiplication by the integer 〈ef , ef 〉. The proof of lemma 3.2 also shows that
mapping the Gross points of conductor cpn to Z[E(G)]f by the map η̃f yields a
p-adic distribution in Z[E(G)]f ⊗ Z[[G∞]]. By the above diagram, the image of this
distribution in N f ⊗ Z[[G∞]] is equal to (ηf ⊗ id)(Lp(Nsp/K)). This proves the
lemma.

Remark 3.4 In section 4, we will show that the integers ĉp and cp are equal.

Define the p-adic L-function attached to E to be

Lp(E/K) = ĉ−1
p (ηf ⊗ id)(Lp(Nsp/K)) ∈ Z[[G∞]].

Observe that Lp(Nsp/K) and Lp(E/K) are well-defined up to multiplication by
elements of G∞.

Recall the quantities Ωf and d defined in the introduction.

Theorem 3.5
Let χ : G∞ → C× be a finite order character of conductor cpn, with n ≥ 1. Then
the equality

|χ(Lp(E/K))|2 =
L(E/K, χ, 1)

Ωf

√
d · (nfu)

2

holds.

Proof. See [Gr], [Dag], and [BD1], section 2.10.

Remark 3.6
1) Theorem 3.5 suggests that Lp(E/K) should really be viewed as the square root of
a p-adic L-function, and hence we should define the anticyclotomic p-adic L-function
of E to be Lp(E/K)⊗Lp(E/K)∗, where ∗ denotes the involution of Z[[G∞]] given
on group-like elements by g 7→ g−1. See section 2.7 of [BD1] for more details.
2) More generally, the p-adic L-function Lp(Nsp/K) interpolates special values of
the complex L-series attached to the modular forms on Tsp (described in proposition
2.4).

Let σp be as in lemma 3.1. Denote by H the subextension of H0 which is fixed by
σp, and set

Gn := Gal(Hn/H), G∞ := Gal(H∞/H),

Σ := Gal(H0/H) = G0, ∆ := Gal(H/K).

Note the exact sequences of Galois groups

0 → Gn → Gn → ∆ → 0,

0 → G∞ → G∞ → ∆ → 0.
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The group ∆ is naturally identified with the Picard group Pic(O[ 1
p ]), and G∞ is

equal to the image of the reciprocity map recp : Q×
p → G∞ (where we have identified

Q×
p with K×

p ). Let I be the kernel of the augmentation map Z[[G∞]] → Z, and let
I∆ be the kernel of the augmentation map Z[[G∞]] → Z[∆].

Lemma 3.7
i) Lp(Nsp/K) belongs to Nsp ⊗ I∆.

ii) Lp(E/K) belongs to I∆.

Proof. There are canonical isomorphisms

Z[[G∞]]/I∆ = Z[Gn]/I∆,n = Z[∆],

where I∆,n is the natural image of I∆ in Z[Gn]. By lemma 3.2, the image of
Lp(Nsp/K) in Nsp ⊗ (Z[[G∞]]/I∆) is equal to the image of Lp,1(Nsp/K) in Nsp ⊗
(Z[G1]/I∆,1) = Nsp ⊗ Z[∆]. The first part of the lemma now follows from lemma
3.2, 1). The second part follows directly from the first.

Since I∆ is contained in I, the element Lp(Nsp/K) belongs to Nsp⊗I and Lp(E/K)
belongs to I. Denote by

L′
p(Nsp/K), L′

p(Nsp/H)

the natural image of Lp(Nsp/K) in Nsp ⊗ I/I2 = Nsp ⊗ G∞ and Nsp ⊗ I∆/I
2
∆ =

Nsp ⊗ Z[∆] ⊗G∞, respectively. Likewise, let

L′
p(E/K), L′

p(E/H)

be the natural image of Lp(E/K) in I/I2 = G∞ and I∆/I
2
∆ = Z[∆]⊗G∞, respec-

tively. The above elements should be viewed as derivatives of p-adic L-functions at
the central point.

In order to carry out the calculations of the next sections, it is useful to observe
that the derivatives L′

p(Nsp/K) and L′
p(Nsp/H) can be expressed in terms of the

derivatives of certain partial p-adic L-functions. Set h := #(∆). Fix Gross points
of conductor c

P0 = P 1
0 , . . . , P

h
0 ,

corresponding to pairs (Ri
0, ξ

i
0), i = 1, . . . , h, which are representatives for the Σ-

orbits of the Gross points of conductor c. Writing [P i
0] for the Σ-orbit of P i

0, let δi
be the element of ∆ such that

[δiP
1
0 ] = [P i

0].

Suppose that P i
0 corresponds to a pair (~e0(i), ξ

i
0) ∈ ~E(T )×Hom(K,B), modulo the

action of Γ+. Fix ends
(~e0(i), ~e1(i), . . . , ~en(i), . . .)

such that (~e1(i), ξ
i
0) defines a Gross point of conductor cp. Thus, (~en(i), ξi

0) defines
a Gross point P i

n of conductor cpn, for all n ≥ 0. For g ∈ Gn, let en(i)g denote the
natural image of (P i

n)g in Nsp. Let

Lp,n(Nsp/H, P
i
0) :=

∑

g∈Gn

en(i)g · g−1 ∈ Nsp ⊗ Z[Gn].
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The proof of lemma 3.2 also shows that the elements Lp,n(Nsp/H, P
i
0) are compat-

ible under the maps induced by the natural projections of group rings. Thus, we
may define the partial p-adic L-function attached to Nsp and P i

0 to be

Lp(Nsp/H, P
i
0) := lim

←

n

Lp,n(Nsp/H, P
i
0) ∈ Nsp ⊗ Z[[G∞]].

Observe that Lp(Nsp/H, P
i
0) depends only on the Σ-orbit of P i

0, up to multiplication
by elements of G∞.

Let IH be the kernel of the augmentation map Z[[G∞]] → Z. Like in the proof
of lemma 3.7, one checks that Lp(Nsp/H, P

i
0) belongs to IH . Write L′

p(Nsp/H, P
i
0)

for the natural image of Lp(Nsp/H, P
i
0) in Nsp ⊗ IH/I

2
H = Nsp ⊗G∞. Thus,

L′
p(Nsp/H, P

i
0) = lim

←

n

L′
p,n(Nsp/H, P

i
0),

where

(3) L′
p,n(Nsp/H, P

i
0) =

∑

g∈Gn

en(i)g ⊗ g−1.

We obtain directly:

Lemma 3.8
i)

L′
p(Nsp/K) =

h
∑

i=1

L′
p(Nsp/H, P

i
0).

ii)

L′
p(Nsp/H) =

h
∑

i=1

L′
p(Nsp/H, P

i
0) · δ−1

i .

4 The theory of p-adic uniformization of Shimura curves
For more details on the results stated in this section, the reader is referred to

[BC], [Cer], [Dr], [GVdP] and [BD2].
Let B be the indefinite quaternion algebra over Q of discriminant N−p, and let

R be an Eichler order of B of level N+. Denote by X the Shimura curve over Q
associated with the order R. We refer the reader to [BC] and [BD2], section 4 for
the definition of X via moduli. Here we content ourselves with recalling Cerednik’s
theorem, which describes a rigid-analytic uniformization of X. Write

Hp := Cp − Qp

for the p-adic upper half plane. The group GL2(Qp) acts (on the left) on Hp by
linear fractional transformations. Thus, fixing an isomorphism

ψ : Bp →M2(Qp)
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induces an action of Γ on Hp. This action is discontinuous, and the rigid-analytic
quotient Γ\Hp defines the Cp-points of a non-singular curve X over Qp. The curves
X and X are equipped with the action of Hecke algebras TX and TX , respectively
([BC], [BD1]).

By lemma 2.1, the action of Γ+/Γ induces an involution W of X . Let Qp2 be
the unique unramified quadratic extension of Qp contained in Cp, and let τ be the
generator of Gal(Qp2/Qp). Denote by \ ∈ H1(〈τ〉,Aut(X )) the class of the cocycle

mapping τ to W , and write X \ for the curve over Qp obtained by twisting X by \.

Theorem 4.1 (Cerednik)
There is a Hecke-equivariant isomorphism X ' X \ of curves over Qp. In particular,
X and X are isomorphic over Qp2 .

Proof. See [Cer], [Dr], [BC].

Building on theorem 4.1, the results in [GVdP] yield a rigid-analytic description of
the jacobian of X. If D = P1 + · · ·+ Pr −Q1 − · · · −Qr ∈ Div0(Hp) is a divisor of
degree zero on Hp, define the theta function

ϑ(z;D) =
∏

ε∈Γ

(z − εP1) · · · (z − εPr)

(z − εQ1) · · · (z − εQr)
.

Write δ̄ for the natural image in Γ̄ of an element δ of Γ. For all δ in Γ, the above
theta function satisfies the functional equation

ϑ(δz;D) = φD(δ̄)ϑ(z;D),

where φD is an element of Hom(Γ̄,C×
p ) = N ⊗ C×

p which does not depend on z.

For γ ∈ Γ, the number φ(γz)−(z)(δ̄) does not depend on the choice of z ∈ Hp, and

depends only on the image of γ in Γ̄. This gives rise to a pairing

[ , ] : Γ̄ × Γ̄ → Q×
p .

The pairing [ , ] is bilinear and symmetric. The next proposition explains the
relation between [ , ] and the monodromy pairing 〈 , 〉 : Γ̄ × Γ̄ → Z defined in
section 2.

Proposition 4.2
The pairings 〈 , 〉 and ordp ◦ [ , ] are equal.

Proof. See [M], th. 7.6.

It follows that ordp ◦ [ , ] is positive definite, so that themap

j : Γ̄ → N ⊗ Q×
p

induced by [ , ] is injective and has discrete image. Set Λ := j(Γ̄). Given a divisor

D of degree zero on X (Cp) = Γ\Hp, let D̃ denote an arbitrary lift to a degree zero

divisor on Hp. The automorphy factor φD̃ depends on the choice of the lift D̃, but
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its image in (N ⊗ C×
p )/Λ depends only on D. Thus, the assignment D 7→ φD̃ gives

a well-defined map from Div0(X (Cp)) to (N ⊗ C×
p )/Λ.

Proposition 4.3
The map Div0(X (Cp)) → (N ⊗ C×

p )/Λ defined above is trivial on the group of
principal divisors, and induces a Hecke-equivariant isomorphism from the Cp-points
of the jacobian J of X to (N ⊗ C×

p )/Λ.

Proof. See [GVdP], VI.2 and VIII.4, and also [BC], ch. III.

Let

Φ : N ⊗ C×
p → J (Cp)

stand for the map induced by (the inverse of) the isomorphism defined in proposi-
tion 4.3.

Modular parametrizations, II
The map ηf : N → Z defined in section 2 induces a map

ηf ⊗ id : N ⊗ C×
p → C×

p .

The Jacquet-Langlands correspondence [JL] implies that the quotient abelian va-
riety ηfJ is an elliptic curve Q-isogenous to E. From now on, we assume that
E = ηfJ is the strong Weil curve for the parametrization by the Shimura curve X.
By an abuse of notation, we denote by ηf also the surjective map

J(Cp) → E(Cp)

induced by ηf .

Let Λf be the submodule of Λ on which T acts via the character φf .

Proposition 4.4
The kernel qZ of ΦTate is canonically equal to the module Λf , and the following
diagram

0 −−−−→ Λ −−−−→ N ⊗ C×
p

Φ−−−−→ J (Cp) −−−−→ 0

ηf





y

ηf⊗id





y

ηf





y

0 −−−−→ Λf −−−−→ C×
p

ΦTate−−−−→ E(Cp) −−−−→ 0

is Hecke-equivariant and commutes up to sign.

Proof. The right-most square in the above diagram is a consequence of proposition
4.3, combined with theorem 4.1 and the fact that f is split-multiplicative at p. In
order to obtain the left-most square, it is enough to prove that the kernel of ΦTate is
equal to Λf . Note that the target C×

p = N f ⊗C×
p of the map ηf ⊗ id is naturally a

submodule of N ⊗C×
p , since the quotient of N by N f is torsion-free. By definition,

E(Cp) may similarly be viewed as an abelian subvariety of J (Cp). It follows that
ΦTate can be described as the restriction of Φ to C×

p . In particular, ker(ΦTate) is

equal to Λ ∩ C×
p . In turn, this last module is equal to Λf .
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Corollary 4.5
The integer ĉp = |〈ef , ef 〉| (introduced in lemma 3.3) is equal to cp.

Proof. Working through the definition of the maps in the diagram of proposition
4.4 shows that [ef , ef ] is equal to q±1. The claim follows from proposition 4.2.

5 p-adic Shintani cycles and special values of complex L-
functions

Let P0 = (R0, ξ0) (mod B×) be a Gross point of conductor c. The point P0

determines a p-adic cycle c(P0) ∈ Γ̄ in the following way. By strong approximation,
we may assume that the representative (R0, ξ0) for P0 is such that the oriented
orders R0[

1
p ] and R[ 1p ] are equal. Thus, ξ0 induces an embedding of O[ 1p ] into R[ 1p ],

which we still denote by ξ0. The image by ξ0 of a fundamental p-unit in O[ 1
p ] having

norm of even p-adic valuation determines an element γ = γ(P0) of Γ. This element
is well-defined up to conjugation and up to inversion, and up to multiplication by
the image of torsion elements of O×.

More explicitly, write k for the order of σp in Pic(O) (where σp is as in lemma
3.1), and set pk = (v) with v ∈ O. Let ι be 1, resp. 2 if k is even, resp. odd. Then
γ is the image of ξ0(v)

ι in Γ.

Definition. The p-adic Shintani cycle c = c(P0) attached to P0 is the natural image
of γ in Γ̄.

This terminology is justified in the remark 5.4 below. Observe that c is well-defined
up to sign.

Denote by Z[E(G)]sp the maximal torsion-free quotient of Z[E(G)]/(w+1)Z[E(G)],

where w is any element of Γ+ − Γ. Recall the element η̃f ∈ T̃ defined in the proof

of lemma 3.3, mapping to ηf by the natural projection T̃ → T. The next lemma
relates the p-adic cycle c to the image in Nsp of the Gross point P0.

Lemma 5.1
The natural images in Z[E(G)]sp of c and

∑

σ∈Σ ιP
σ
0 are equal. In particular, ηf c is

equal to the image of
∑

σ∈Σ ι(η̃fP
σ
0 ) in Z[E(G)].

Proof. (In order to visualize the geometric content of this proof, the reader may find
it helpful to refer to the picture in section 3.) Set Pi := σi

pP0, for i = 0, . . . , k − 1.
By part 1 of lemma 3.1 and the definition of the action of Up on the Bruhat-Tits
tree, we can fix representatives (~ei, ξ0) for the Gross points Pi so that the ~ei are
consecutive oriented edges of T . With notations as at the beginning of this section,
let γ+ ∈ Γ+ be the image of ξ0(v). Thus, γ = γι

+. Call v0 the origin of ~e0. If ι = 1,
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the even vertex of the edge ~ek−1 is equal to γv0. If ι = 2, i.e., γ+ belongs to Γ+−Γ,
then

~e0, . . . , ~ek−1, γ+~e0, . . . , γ+~ek−1

is a sequence of consecutive oriented edges, and the even vertex of γ+~vk−1 is equal

to γv0. Note that
∑

σ∈Σ ιP
σ
0 is equal in Z[~E(G+)] to ~e0 + ~e1 + . . .+ ~ek−1 if ι = 1,

and to

~e0 + ~e1 + . . .+ ~ek−1 + γ+~e0 + γ+~e1 + . . .+ γ+~ek−1

if ι = 2. Denote by ei the unoriented edge of T corresponding to ~ei, and let w be
any element of Γ+ − Γ. By definition of the bijection κ of lemma 2.2, the following
equalities hold in Z[E(G)]:

κ−1(~e0 + . . .+ ~ek−1) = e0 + we1 + . . .+ ek−2 + wek−1 if ι = 1,

κ−1(~e0 + . . .+ ~ek−1 + γ+~e0 + γ+~e1 + . . .+ γ+~ek−1)) = e0 + we1 + . . .

+ ek−1 + w(γ+e0) + (γ+e1) + . . .+ w(γ+ek−1) if ι = 2.

Projecting the right hand sides of the above equalities to Z[E(G)]sp, and keeping
into account that w acts as −1 on this module, gives in both cases path(v0, γv0).

The next proposition elucidates the relation between the p-adic Shintani cycle de-
fined above and the special values of the complex L-function of E/K. Following
the notations of section 3, fix Gross points P0 = P 1

0 , . . . , P
h
0 which are representa-

tives for the Σ-orbits of the Gross points of conductor c, and list the elements of
∆ so that [δiP

1
0 ] = [P i

0], where [P i
0] denotes the Σ-orbit of P i

0. As above, the Gross
point P i

0 determines a p-adic Shintani cycle ci ∈ Γ̄, with c1 = c. Given a complex
character χ : ∆ → C× of ∆, set

cH :=

h
∑

i=1

ci ⊗ δ−1
i ∈ Γ̄ ⊗ Z[∆],

cK,χ := χ(cH) =

h
∑

i=1

ci ⊗ χ(δi)
−1 ∈ Γ̄ ⊗ Z[χ].

If χ is the trivial character, we will also write cK as a shorthand for cK,χ. Extend
the pairing 〈 , 〉 on Γ̄ to a hermitian pairing on Γ̄ ⊗ Z[χ].

Proposition 5.2
Suppose that χ is primitive. The following equality holds:

〈ηf cK,χ, cK,χ〉 =
L(E/K, χ, 1)

Ωf

√
d · (ιu)2 · nf .

Proof. In view of lemma 5.1, this is simply a restatement of the results of [Gr] and
[Dag].
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Recall the maps j : Γ̄ → N ⊗ Q×
p and ηf ⊗ id : N ⊗ C×

p → C×
p defined in section

4. By an abuse of notation, we denote in the same way the maps obtained by
extending scalars to Z[χ].

Corollary 5.3
The equality

(ηf ⊗ id)(j(cK,χ)) = q ⊗ ρ

holds in Q×
p ⊗ Z[χ], where ρ ∈ Z[χ] satisfies

|ρ|2 =
L(E/K, χ, 1)

Ωf

√
d · (ιu)2 · nf .

Proof. By proposition 4.4 combined with the definition of ηf given in section 2, ρ
is equal to 〈cK,χ, e

f 〉 ∈ Z[χ]. Hence

|ρ|2 = 〈cK,χ, e
f 〉〈ef , cK,χ〉

= 〈ηf cK,χ, cK,χ〉.

The claim follows from proposition 5.2.

Remark 5.4
Let F be a real quadratic field and let ψ : F →M2(Q) be an embedding. Assume
that ψ maps the ring of integers OF to the Eichler order M0(N) of integral matrices
with lower left entry divisible by N . Since the homology group H1(X0(N),Z) can
be identified with the maximal torsion-free abelian quotient of Γ0(N), the image
by ψ of a fundamental unit in OF of norm 1 determines an integral homology
cycle s ∈ H1(X0(N),Z). Shintani [Sh] proved that the cycle s encodes the special
values of the classical L-series over F attached to newforms on X0(N). In light of
proposition 5.2, the element c can be viewed as a p-adic analogue of the cycle s.

6 p-adic Shintani cycles and derivatives of p-adic L-functions
Let P0 be a Gross point of conductor c. In section 5, we attached to P0 a p-adic

cycle c ∈ Γ̄, and proved in proposition 5.2 that c is related to the special values of
the complex L-function of E/K. Our main result (theorem 6.1 below) shows that
c is also related to the first derivative of the p-adic L-function defined in section 3.
By combining these results we will obtain theorem 1.1.

Write j for the composite map

Γ̄
j−→ N ⊗ Q×

p → Nsp ⊗ Q×
p → Nsp ⊗G∞,

where the second map is induced by the natural projection of N onto Nsp, and the
third map is induced by recp : Q×

p → G∞. Our main result is the following.

Theorem 6.1
The following equality holds up to sign in Nsp ⊗G∞:

L′
p(Nsp/H, P0)

ι = j(c).
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Recall the definition of the elements cH and cK given in section 5. By lemma 3.8,
we obtain directly:

Corollary 6.2
(i) The following equality holds up to sign in Nsp ⊗ Z[∆] ⊗G∞:

L′
p(Nsp/H)ι = j(cH).

(ii) The following equality holds up to sign in Nsp ⊗G∞:

L′
p(Nsp/K)ι = j(cK).

By applying the operator ηf to both sides of the equalities of corollary 6.2, and
using corollary 4.5 and the definitions of the p-adic L-functions attached to Nsp

and E , we find:

Corollary 6.3
(i) The following equality holds up to sign in Z[∆] ⊗G∞:

cpL′
p(E/H)ι = j(ηf cH).

(ii) The following equality holds up to sign in G∞:

cpL′
p(E/K)ι = j(ηf cK).

Proof of theorem 1.1
Combine corollary 6.3 with corollary 5.3.

By combining corollary 6.3 with corollary 5.3, we also obtain the following gen-
eralization of theorem 1.1. Let L′

p(E/K, χ) stand for the element χ(L′
p(E/H)) of

G∞ ⊗ Z[χ].

Theorem 6.4
Suppose that χ is primitive. The following equalities hold up to sign:

cpL′
p(E/K, χ) = recp(q) ⊗ ρ in G∞ ⊗ Z[

1

2
][χ]

and

L′
p(E/K, χ) =

recp(q)

ordp(q)
⊗ ρ in G∞ ⊗ Q[χ],

where

|ρ|2 =
L(E/K, χ, 1)

Ωf
· d 1

2u2nf .
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Corollary 6.5
The derivative L′

p(E/K, χ) is non-zero in G∞ ⊗ Q[χ] if and only if the classical
special value L(E/K, χ, 1) is non-zero.

Proof. By theorem 6.4, one is reduced to showing that recp(q) is a non-torsion
element of G∞, i.e., qp−1 does not belong to the kernel of the reciprocity map. But
elements in this kernel are algebraic over Q, and q is known to be transcendental
by a result of Barré-Sirieix, Diaz, Gramain and Philibert [BSDGP].

Remark 6.6
Theorem 1.1 was conjectured in [BD1], section 5.1 in a slightly different form.
We conclude this section by studying the compatibility of theorem 1.1 (and its
generalization theorem 6.4) with the conjectures of [BD1]. For simplicity, assume
throughout this remark that the elliptic curve E is semistable, so that N is square-
free, and that E is isolated in its isogeny class, so that the action of Gal(Q̄/Q) on
the `-torsion points of E is irreducible for all primes `.

Let p1 · · · pnq1 · · · qn be a prime factorization of the squarefree integer pN−, with
p1 = p. Denote by X1 the Shimura curve X, and by Xn+1 the classical modular
curve X0(N). For i = 2, . . . , n, denote by Xi the Shimura curve associated with an
Eichler order of level N+p1 · · · pi−1q1 · · · qi−1 in the indefinite quaternion algebra
of discriminant pi · · · pnqi · · · qn. Since E is modular, the Jacquet-Langlands corre-
spondence [JL] implies that E is parametrized by the jacobian Ji of the curve Xi,
i = 1, . . . , n+ 1. Let

φi : Ji → E

be the strong Weil parametrization of E by Ji. Thus, the morphism φi has con-
nected kernel, and its dual φ∨

i : E → Ji is injective. The endomorphism φi ◦φ∨i of E
is multiplication by an integer dXi

, called the degree of the modular parametrization
of E by the Shimura curve Xi.

If ` | N , denote by c` the order of the group of connected components of E at `.

Theorem 6.7 (Ribet-Takahashi)
Under our assumptions:

i)
dX0(N)

dX
= cp1

· · · cpn
cq1

· · · cqn
;

ii)

〈ef , ef 〉 = dXcp .

Proof. Part i) follows from theorem 1 of [RT]. Part ii) follows from section 2 of
[RT]. The results of [RT] exclude the case where N+ is prime, but a forthcoming
paper of S. Takahashi will deal with this case as well.

By combining theorem 6.7 with the relation Ωf = dX0(N) · ΩE , where ΩE is the
complex period of E, we find that the formula of theorem 1.1 (and likewise for
theorem 6.4) becomes

L′
p(E/K) =

recp(q)

ordp(q)

√

L(E/K, 1)Ω−1
E · d 1

2u2
∏

`|N−
c−1
` ,
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which is the same as conjecture 5.3 of [BD1].

7 Proof of theorem 6.1
First, we give an explicit description of certain group actions on the p-adic upper

half plane and on the Bruhat-Tits tree depending on our choice of a Gross point
P0 of conductor c. Then, we compute the value j(c), for c as in sections 5 and 6.

I Group actions on Hp and T
Let Kp := K⊗Qp. Our choice of a prime p above p determines an identification of
Kp = Kp ×Kp̄ with Qp × Qp.

As in section 5, choose a representative (R0, ξ0) for the Gross point P0 such that
R0[

1
p ] and R[ 1p ] are equal. Let (~e0, ξ0) be a pair corresponding to P0, and denote

by v0 the origin of ~e0. Set R0,p := R0 ⊗ Zp, and let R0,p be the maximal order of
Bp corresponding to v0. Recall the isomorphism

ψ : Bp →M2(Qp)

fixed in section 4. We may, and will from now on, choose ψ so that:

i) ψ maps R0,p onto M2(Zp);

ii) ψ ◦ ξ0 maps (x, y) ∈ Kp = Qp × Qp to the diagonal matrix

(

x 0
0 y

)

.

Condition i) allows us to identify T = Q×
p R

×
0,p\B×

p with PGL2(Zp)\PGL2(Qp).

Viewing K×
p as a subgroup of GL2(Qp) thanks to the embedding ψ ◦ ξ0 yields

actions of K×
p on Hp and on T = PGL2(Zp)\PGL2(Qp), factoring throughK×

p /Q
×
p .

Identify this last group with Q×
p by mapping a pair (x, y) modulo Q×

p to xy−1.

Under this identification, an element x of Q×
p acts on Hp as multiplication by x,

and on T as conjugation by the matrix

(

x 0
0 1

)

.

Recall the element v ∈ O ⊂ K×
p defined in section 5 by pk = (v). Identify as

above v with an element w of Q×
p . Note that w is equal to pk times a p-adic unit.

Set G̃∞ := Q×
p = pZ × Z×

p . Define the quotients of G̃∞

Σ̃ := Q×
p /Z

×
p = pZ, G̃n := pZ × (Zp/p

nZp)
×, n ≥ 1.

To simplify slightly the computation, assume from now on that O× = {±1}. (If
O× 6= {±1}, then K has discriminant −3 or −4, and the exact sequences below
have to be modified to account for the non-trivial units of O. The computations in
this case follow closely those presented in the paper.) Class field theory yields the
exact sequence

0 → 〈w〉 → G̃∞
recp−→ G∞ → 0,

and the induced sequences

0 → 〈w〉 → Σ̃ → Σ → 0, 0 → 〈w〉 → G̃n → Gn → 0.

For n ≥ 0, denote by Z
(n)
p ⊂ G̃∞ the subgroup of elements of Z×

p which are
congruent to 1 modulo pn.
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Definition. We say that a vertex v of T has level n, and write `(v) = n, if the

stabilizer of v for the action of G̃∞ is equal to Z
(n)
p . Likewise, we say that an edge

e of T has level n, and write `(e) = n, if the stabilizer of e for the action of G̃∞ is

Z
(n)
p .

Note that the group G̃n (Σ̃ if n = 0) acts simply transitively on the vertices and

edges of level n. By definition of the action of G̃∞ on T , v0 is a vertex of level 0.
Thus, the set of vertices of level 0 is equal to the Σ̃-orbit of v0. More generally,
the set of vertices of level n can be described as the G̃n-orbit of a vertex vn, whose
distance from v0 is n and whose distance from all the other vertices in the orbit
∆̃v0 is > n.

By using the standard coordinate, identify P1(Cp) with Cp ∪ {∞} and Hp with
P1(Cp) − P1(Qp). In particular, view 0 and ∞ as elements of P1(Qp). Recall the
element γ = γ(P0) of Γ defined in section 5. Since the reduced norm of γ has
positive valuation, our choice of the isomorphism ψ yields

(4) lim
n→+∞

γnz = 0, lim
n→−∞

γnz = ∞

for all z ∈ Hp. Note also that 0 and ∞ are the fixed points for the action of G̃∞
on P1(Cp).

Let Hp(Qp2) = Qp2 −Qp be the Qp2 -points of the p-adic upper half plane. Define
the reduction map

r : Hp(Qp2) → V(T )

as follows. Given z ∈ Hp(Qp2), let Qz denote the stabilizer of z in GL2(Qp),
together with the zero matrix. Then Qz is a field isomorphic to Qp2 , and this gives
rise to an embedding of Qp2 in M2(Qp) (well-defined up to an isomorphism of Qp2).
Write Zp2 for the ring of integers of Qp2 , and let S be the unique maximal order of
M2(Qp) containing the image of Zp2 by the above embedding. We have r(z) = S.
(See also [BD2], section 1.)

Lemma 7.1
1) The reduction map r is GL2(Qp)-equivariant. In particular, r is equivariant for
the group actions defined above.

2) Write Zp2 = Zpα+ Zp. We have r−1(v0) = Z×
p α+ Zp.

3) If z1 and z2 are mapped by r to adjacent vertices of respective levels n and n+1,
then z1z

−1
2 ≡ 1 (mod pn).

Proof.
1) Let z be an element of Hp(Qp2), and let B be a matrix in GL2(Qp). If f :
Qp2 →M2(Qp) is an embedding fixing z, then BfB−1 is an embedding fixing Bz.
Suppose that S is the maximal ideal containing f(Zp2). Then BSB−1 = S ∗B−1 is
the maximal ideal containing the image of Zp2 by BfB−1. Thus, r(Bz) = S ∗B−1,
as was to be shown.
2) Suppose to fix ideas that p > 2. Then, we may assume that α =

√
ν, where the

integer ν is not a squaremodulo p. (The case p = 2 can be dealt with in a similar
way, for instance by taking α = (1 +

√
−3)/2.) A direct computation shows that

Q√
ν =

{(

b aν
a b

)

: a, b ∈ Qp

}

.
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Mapping the above matrix to a
√
ν + b yields an isomorphism of Q√

ν onto Qp2 .

Thus, r(
√
ν) is equal to v0 = M2(Zp). Given z = a

√
ν + b ∈ Hp(Qp2), we have

z = B
√
ν, where B is the matrix

(

a b
0 1

)

. By part 1,

r(z) = BM2(Zp)B
−1.

But BM2(Zp)B
−1 = M2(Zp) if and only if B belongs to GL2(Zp), i.e., a belongs

to Z×
p .

3) Set r(z1) = v1 and r(z2) = v2. The edge joining v1 to v2 has level n + 1.

Since G̃∞ = Q×
p acts transitively on the edges of level n+ 1, there is g ∈ Q×

p such
that gv1 and gv2 have distance from v0 equal to n and n + 1, respectively. With
notations as in the proof of part 2 of this proposition, write gzi = ai

√
ν+bi, i = 1, 2,

where ai, bi ∈ Zp, gcd(ai, bi) = 1, and pn ‖ a1, p
n+1 ‖ a2. Thus, the vertex gvi is

represented by the matrix

Ai =

(

ai bi
0 1

)

.

Our assumption on gv1 and gv2 implies that the column

(

b2
1

)

of A2 is a Zp-linear

combination of the columns of A1. It follows that b1 ≡ b2 (mod pn), and hence

z1z
−1
2 = gz1(gz2)

−1 ≡ 1 (mod pn).

II The calculation
Given δ ∈ Γ, write as usual δ̄ for the natural image of δ in Γ̄. We now compute
explicitly the value of j(c)(δ̄) = [c, δ̄], for δ ∈ Γ. We begin with the following lemma.

Lemma 7.2
Given δ ∈ Γ, we have

j(c)(δ̄) =
∏

ε∈S

εδz0
εz0

,

where z0 is any element in Hp, and S is any set of representatives for 〈γ〉\Γ.

Proof. (Cf. [M], theorem 2.8.)
Let S ′ be any set of representatives for Γ/〈γ〉. In view of the formulae (4), for any
z0 and a in Hp we have the chain of equalities

j(c)(δ̄) =
∏

ε∈Γ

z0 − εa

z0 − εγa
· δz0 − εγa

δz0 − εa

=
∏

ε∈S′

+∞
∏

n=−∞

z0 − εγna

z0 − εγn+1a
· δz0 − εγn+1a

δz0 − εγna

=
∏

ε∈S′
lim

N→+∞

z0 − εγ−Na

z0 − εγN+1a
· δz0 − εγN+1a

δz0 − εγ−Na

=
∏

ε∈S′

z0 − ε∞
z0 − ε0

· δz0 − ε0

δz0 − ε∞

=
∏

ε∈S′

ε−1δz0
ε−1z0

.
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Note that (S ′)−1 is a set of representatives for 〈γ〉\Γ, and any set of representatives
for 〈γ〉\Γ can be obtained in this way. The claim follows.

Lemma 7.3
Let d be an edge of T , let n be a positive integer, and let S be a set of representatives
for 〈γ〉\Γ. Then the set {ε ∈ S : `(εd) ≤ n} is finite.

Proof. If {εi} is a sequence of distinct elements of S such that `(εid) ≤ n, we can
find integers ki such that γkiεid describes only finitely many edges. This contradicts
the discreteness of Γ.

We say that two elements of Γ̄ are linearly independent if they generate a rank two
free abelian subgroup of Γ̄.

Proposition 7.4
1) Suppose that c and δ̄ are linearly independent in Γ̄. There exists a set S of
representatives for 〈γ〉\Γ such that if ε belongs to S, then all the elements of the
coset ε〈δ〉 belong to S.

2) There exists a set S = S0

∐S1 of representatives for 〈γ〉\Γ such that:

(i) the set S0 contains a finite number of elements which are mapped by the
isomorphism ψ to diagonal matrices of PGL2(Qp);

(ii) if ε belongs to S1, then all the elements of the coset ε〈γ〉 belong to S1.

Proof. (Cf. [M], lemma 2.7)
1) Consider a decomposition of Γ as disjoint union of double cosets

Γ =
∐

ε̄∈S̄
〈γ〉ε̄〈δ〉.

We claim that we may take S to be {ε̄δm : ε̄ ∈ S̄, m ∈ Z}. For, if ε̄δm = γr ε̄δn, we
find δm−n = ε̄−1γrε̄. Projecting this relation to Γ̄ gives m = n.

2) Consider a decomposition of Γ as disjoint union of double cosets

Γ =
∐

ε̄∈S̄
〈γ〉ε̄〈γ〉.

Define S1 to be the set of elements of Γ of the form ε̄γm, m ∈ Z, where ε̄ ∈ S̄ is
such that 〈γ〉ε̄γn 6= 〈γ〉ε̄γm whenever m 6= n. As for S0, we claim that it can be
taken to be the set of elements ε̄ ∈ S̄ which do not satisfy the above condition.
In such a case, there is a relation γrε̄γn = ε̄γm for integers r and m 6= n. Then,
γr = ε̄γm−nε̄−1. By projecting this equality to Γ̄, we see that m−n = r, and hence

ε̄ and γr commute. Since γr is mapped by ψ to the diagonal matrix

(

wιr 0
0 1

)

,

where ordp(w) = k > 0, a direct computation shows that ε̄ is also diagonal (and
thus commutes with γ). Now consider the group of all the diagonal matrices in
ψ(Γ). Since Γ is discrete, this group is the product of a finite group by a cyclic
group containing the group generated by γ. In conclusion, the set S0 is finite, and

∐

ε̄∈S0

〈γ〉ε̄〈γ〉 =
∐

ε̄∈S0

〈γ〉ε̄.
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The claim follows.

In the computation of j(c)(δ̄), we can assume that either

(I) c and δ̄ are linearly independent, or

(II) δ̄ = c.

(In fact, if the rank of Γ̄ is > 1, it is enough to consider elements as in the first
case, since the linear map j(c) is completely determined by the values j(c)(δ̄), for c

and δ̄ linearly independent.) In the case (I), we use the notation S1 := S, and the
symbol S1 will always refer to a choice of representatives for 〈γ〉\Γ as in part 1 of
proposition 7.4. In the case (II), the symbol S = S0

∐S1 will stand for a choice of
representatives as in part 2 of proposition 7.4.

Lemma 7.5
Let δ ∈ Γ be as in case (I) or (II) above. Then, the images in G∞ by the reciprocity
map of j(c)(δ̄) and

∏

ε∈S1
εδz0/εz0 are equal.

Proof. In the case (I) there is nothing to prove. In the case (II), proposition 7.4
combined with a direct computation shows that

∏

ε∈S0

εγz0
εz0

= wι#(S0).

Since w is in the kernel of the reciprocity map, the claim follows.

By lemma 7.5, we are now reduced to compute the product
∏

ε∈S1
εδz0/εz0, with δ

as in case (I) or (II).
We begin with some preliminary remarks. Fix an edge e of level equal to an odd

integer n, having v as its vertex of level n. Moreover, assume that the distance of
v from v0 is also equal to n. Note that the image in M of e is equal to the image
in M of a Gross point of conductor cpn.

Given σ̃ ∈ G̃n, define µσ̃ to be equal to 1, resp. −1 if σ̃v has odd, resp. even
distance from v0. If ι = 1, observe that µσ̃ depends only on the image σ̄ of σ̃ in
Σ under the projection induced by the reciprocity map; in this case, we write µσ̄

instead of µσ̃. If ι = 2, µσ̃ is constant on the elements σ̃ which have the same
image in Σ and p-adic valuation of the same parity; moreover, the values of µσ̃

corresponding to different parities are opposite. In this case, if σ̃ projects in Σ to
σ̄ and ordp(σ̃) is even, we let µσ̄ stand for µσ̃.

Given an edge d of T , and σ̃ ∈ G̃n, write σ̃e ≡ d if the edge σ̃e is S1-equivalent
to d, and σe ≈ d if the element σe of M is Γ-equivalent to d. If ι = 1, the relation
σ̃e ≡ d implies that σe ≈ d. If ι = 2, σ̃e ≡ d yields σe ≈ d when ordp(σ̃) is even,
and σe ≈ wd, with w ∈ Γ+ − Γ, when ordp(σ̃) is odd.

Recall that ωd denotes the order of the stabilizer in Γ of d.

Lemma 7.6
1) Suppose that ι = 1. If the odd integer n is sufficiently large, the projection

G̃n → Gn induces a ωd-to-1 map

{σ̃ ∈ G̃n : σ̃e ≡ d} → {σ ∈ Gn : σe ≈ d}.
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2) Suppose that ι = 2. If the odd integer n is sufficiently large, the projection

G̃n → Gn induces ωd-to-1 maps

{σ̃ ∈ G̃n : σ̃e ≡ d, ordp(σ̃) even} → {σ ∈ Gn : σe ≈ d}

and
{σ̃ ∈ G̃n : σ̃e ≡ d, ordp(σ̃) odd} → {σ ∈ Gn : σe ≈ wd}.

Proof.
1) Suppose that σ̃1e ≡ d and σ̃2e ≡ d, i.e., σ̃1e = ε1d and σ̃2e = ε2d, for ε1 and ε2
in S1. If σ̃1 and σ̃2 have the same image in Gn, then σ̃1 = wrσ̃2 for r ∈ Z, and
hence γrε2d = ε1d. If r 6= 0, i.e., σ̃1 6= σ̃2 and ε1 6= ε2, then γrε2ε

−1
1 is a non-trivial

element of the stabilizer in Γ of ε1d, which is a group of cardinality ωd. Conversely,
if σ̃1e = ε1d for ε1 ∈ S1 and if β is a non-trivial element of the stabilizer of ε1d, we
have σ̃1e = βε1d. Write βε1 = γrε2, r ∈ Z, ε2 ∈ S. Then ε1 6= ε2. Note that if n is
large, then ε2 belongs to S1. We obtain w−rσ̃1e = ε2d. This concludes the proof of
part 1.

2) The proof is exactly the same as that of part 1.

Let
path(v0, δv0) = d1 − d2 + · · · + ds−1 − ds ∈ Z[E(T )].

(Note that s is even, since δ belongs to Γ.) Write dj = {ve
j , v

o
j }, where ve

j is the
even vertex of dj , and vo

j is the odd vertex of dj . Note that we have

vo
j = vo

j+1 for j = 1, 3, . . . , s− 1,

ve
j = ve

j+1 for j = 2, 4, . . . , s− 2,

ve
s = δve

1.

Fix z0 ∈ Hp(Qp2) such that r(z0) = v0. We may choose elements zo
j and ze

j in
Hp(Qp2) such that r(zo

j ) = vo
j , r(ze

j ) = ve
j , and

zo
j = zo

j+1 for j = 1, 3, . . . , s− 1,

ze
j = ze

j+1 for j = 2, 4, . . . , s− 2,

ze
1 = z0, ze

s = δz0.

Hence

(εzo
1)(εzo

2)−1 · · · (εzo
s−1)(εz

o
s)−1 = 1, (εze

2)(εz
e
3)

−1 · · · (εze
s−2)(εz

e
s−1)

−1 = 1,

so that
∏

ε∈S1

εδz0
εz0

=
∏

ε∈S1

(

εzo
1

εze
1

) (

εzo
2

εze
2

)−1

· · ·
(

εzo
s

εze
s

)−1

.

Fix a large odd integer n. For each 1 ≤ j ≤ s, let S(j) be the set of elements ε in
S1 such that εdj has level ≤ n. Lemma 7.3 shows that the sets S(j) are finite. By
lemma 7.1, we have the congruence

(5)
∏

ε∈S1

εδz0
εz0

≡
∏

ε∈S(1)

(

εzo
1

εze
1

)

∏

ε∈S(2)

(

εzo
2

εze
2

)−1

· · ·
∏

ε∈S(s)

(

εzo
s

εze
s

)−1

(mod pn).
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Each of the factors in the right hand side of equation (5) can be broken up into
three contributions:

∏

S(j)

εzo
j

εze
j

=
∏

`(εvo
j
)<n

εzo
j ·

∏

`(εve
j
)<n

(εze
j )−1 ·

∏

`(εdj)=n

(εz
πj

j )µj ,

where πj = o, resp. πj = e if the distance of the furthest vertex of εdj from v0
is odd, resp. even, and where we set µj = 1 in the first case and µj = −1 in the
second case. By our choice of the set S1 as in proposition 7.4, the first two factors
in this last expression cancel out in the formula (5). Hence we obtain

∏

ε∈S1

εδz0
εz0

≡
∏

`(εd1)=n

(εzπ1

1 )µ1 ·
∏

`(εd2)=n

(εzπ2

2 )−µ2 · · ·
∏

`(εds)=n

(εzπs
s )−µs (mod pn).

As in the remarks before lemma 7.6, let e be an edge of level n, such that its vertex
v of level n has distance from v0 also equal to n. Choose any z ∈ Hp(Qp2) with

r(z) = v. Since G̃n acts simply transitively on the set of edges of level n, lemma
7.1 gives

∏

ε∈S1

εδz0
εz0

≡
∏

σ̃e≡d1

(σ̃z)µσ̃ ·
∏

σ̃e≡d2

(σ̃z)−µσ̃ · · ·
∏

σ̃e≡ds

(σ̃z)−µσ̃ (mod pn).

By lemma 7.6, we obtain

∏

ε∈S1

εδz0
εz0

≡
∏

σ̃e≡d1

σ̃µσ̃ ·
∏

σ̃e≡d2

σ̃−µσ̃ · · ·
∏

σ̃e≡ds

σ̃−µσ̃ · (zM ) (mod pn),

where

M =

{ 〈path(v0, δv0),
∑

σ∈Gn
µσ̄σe〉 if ι = 1

〈path(v0, δv0),
∑

σ∈Gn
(µσ̄ − µσ̄w)σe〉 if ι = 2.

By lemma 2.3, the duality 〈 , 〉 induces a pairing on H1(G,Z) × M. In the case
ι = 1, one sees directly that

∑

σ∈Gn
µσ̄σe has trivial image in M, so that M is zero.

Consider now the case ι = 2. Since we are interested in computing j(c)(δ̄), we need

only consider the image of the homomorphism j(c) in Nsp ⊗ Q×
p . Thus, we may

view the above pairing as being defined on H1(G,Z)− × Msp, where H1(G,Z)−

indicates the “minus” eigenspace for the action of w on H1(G,Z), and we may
assume from now on that path(v0, δv0) belongs to H1(G,Z)−. One checks that the
image ι

∑

σ∈Gn
µσ̄σe in Msp of the element

∑

σ∈Gn
(µσ̄ −wµσ̄)σe is trivial, so that

also in this case M is zero. Hence, in all cases

∏

ε∈S1

εδz0
εz0

≡
∏

σ̃e≡d1

σ̃µσ̃ ·
∏

σ̃e≡d2

σ̃−µσ̃ · · ·
∏

σ̃e≡ds

σ̃−µσ̃ (mod pn).

Let recp,n : G̃∞ → Gn be the composite of the reciprocity map with the natural
projection of G∞ onto Gn. Suppose that ι = 1. By lemma 7.6, the above relation
yields the equality in Gn:

recp,n(
∏

ε∈S1

εδz0
εz0

) =
∏

σe≈d1

σωd1
µσ̄ ·

∏

σe≈d2

σ−ωd2
µσ̄ · · ·

∏

σe≈ds

σ−ωds µσ̄ .
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Recall the derivative L′
p,n(Nsp/H, P0) ∈ Nsp ⊗Gn defined in the formula (3) at the

end of section 3. By the definition of the bijection κ of lemma 2.2, the right hand
side of the above equality can be written as

L′
p,n(Nsp/H, P0)(δ̄) = 〈path(v0, δv0),

∑

g∈Gn

en(i)g ⊗ g−1〉,

where, by an abuse of notation,
∑

g∈Gn
en(i)g ⊗ g−1 is viewed as an element of

Msp ⊗Gn. When ι = 2, a similar computation shows that

ιL′
p,n(Nsp/H, P0)(δ̄) = recp,n(

∏

ε∈S1

εδz0
εz0

).

By passing to the limit, one obtains in all cases

ιL′
p(Nsp/H, P0)(δ̄) = recp(

∏

ε∈S1

εδz0
εz0

).

In other words, by definition of the map j,

L′
p(Nsp/H, P0)

ι = j(c),

as was to be shown.
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