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Let E/Q be a modular elliptic curve of conductor N , and let p be a
prime number. In [MTT], Mazur, Tate and Teitelbaum formulate a p-adic
analogue of the conjecture of Birch and Swinnerton-Dyer, relating the p-
adic L-function of E/Q to certain arithmetic invariants of E, such as the
order of its Shafarevich-Tate group, the rank of its Mordell-Weil group, and
a regulator made from the canonical p-adic height pairing.

An intriguing and unexpected feature of their study is the phenomenon
of “exceptional zeroes” that have no counterpart in the classical setting,
and arise purely from the p-adic interpolation process. This phenomenon
occurs only when E has split multiplicative reduction at p. In that case, the
authors of [MTT] are led to conjecture that the order of vanishing of the
p-adic L-function Lp(E/Q, s) is exactly one more than that of its complex
counterpart, and that the difference between the classical and p-adic special
values at s = 1 is accounted for by a somewhat mysterious factor (which
they call the L-invariant)

L =
log q

ordpq
,

where q is Tate’s p-adic period associated to E.
The p-adic L-function in [MTT] is defined (building on the work of Manin-

Vishik and Amice-Velu) as a p-adic Mellin transform of a measure on the
group Gal(Q(µp∞)/Q) = Z∗p taking values in the module H1(E(C), Z). This
measure is constructed from so-called modular symbols. For more details on
this construction, see [MTT].

Now, let K be a quadratic imaginary field of discriminant D, and let
K∞ be the compositum of all the ring class fields Kn of conductor pn, which
contains the anticyclotomic Zp-extension of K. By making a slight general-
ization of the constructions explained in [GZ] and [Gr2], we show how to as-
sociate to the data (N, K, p) a “Heegner distribution” on G∞ = Gal(K∞/K)
with values in Pic(X). Here X is a Shimura curve corresponding to a (defi-
nite or indefinite) quaternion algebra, whose definition depends on the data
(N, K, p).

The Heegner distribution behaves formally like the p-adic L-function con-
structed from modular symbols. In particular it interpolates special values
– or, sometimes, first derivatives – of the complex L-function L(E/K,χ, s)
at s = 1, twisted by characters χ of G∞. It seems natural to formulate
generalizations of the Mazur-Tate-Teitelbaum conjectures for these Heegner
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distributions. We show that the “exceptional zero” phenomena also occur in
the context of Heegner distributions, and that they lead to new insights into
the arithmetic behaviour of Heegner points on Shimura curves.

Following Mazur, Tate and Teitelbaum, we say that we are in an excep-
tional case if E/K has split multiplicative reduction at a prime above p. Let
Kp = K ⊗ Qp, and Kn,p = Kn ⊗ Qp. In the exceptional case the p-adic
analytic uniformization of Tate:

ΦTate : Gm/Kp
−→ E/Kp

plays a key role in the formulation of the conjectures.
We say that we are in the split (resp. non-split) exceptional case if p||N

is split (resp. inert) in K/Q. The split exceptional case resembles the excep-
tional zero situation studied by Mazur, Tate and Teitelbaum: in that case
our conjecture expresses the p-adic periods of E in terms of the derivatives of
the anti-cyclotomic p-adic L-function. The non-split exceptional case seems
to have no direct analogue in the setting studied in [MTT], and offers the
most surprises. For the convenience of the reader we will spend the rest of
the introduction summarizing the main features of the non-split exceptional
case.

The first unusual phenomenon that occurs in this setting is that the sign
ε in the functional equation for the classical L-function L(E/K, s), and the
sign for the twisted L-function L(E/K, χ, s), where χ is a ramified character
of finite order of G∞, are opposite. The shape of the conjecture depends on
the sign ε.

If ε = 1, then L(E/K,χ, 1) = 0 whenever χ is a ramified character
of G∞. The Birch Swinnerton-Dyer conjecture leads one to expect that
the Mordell-Weil group E(K∞) ⊗ Qp/Zp has corank at least one over the
Iwasawa algebra Zp[[G∞]] (i.e., its Pontryagin dual has rank at least one over
Zp[[G∞]]). In this case one expects a systematic supply of algebraic points
over the anticyclotomic tower. Indeed, a norm-compatible system of points
Pn ∈ E(Kn) can be obtained by a Heegner point construction, and it can be
shown that these points satisfy

NormKn/K(Pn) = 0, (1)

where the trace is taken on the Mordell-Weil group E(Kn). Let P̃n ∈ K∗n,p

be elements such that ΦTate(P̃n) = Pn. Then, by equation (1), the element
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Qn = NormKn,p/Kp(P̃n) of K∗p is a power of the Tate period q, and logq(Qn)
is an integer which is well defined mod (p + 1)pn (i.e., does not depend on
the choice of lift P̃n). Our conjecture predicts that

logq(Qn)2 ?
=

{
0 if #E(Q) = ∞,
#III(E/K)m2/#E(Q)2 (mod (p + 1)pn) otherwise,

where m is an integer related to the bad reduction of E/K. Combining this
with the classical Birch and Swinnerton-Dyer conjecture suggests a direct
relation between the quantity logq(Qn)2 and the special value L(E/K, 1).
Indeed in [BD4] we prove the formula:

logq(Qn)2 =
L(E/K, 1)

√
D

Ω
δ (mod (p + 1)pn), (2)

where Ω =
∫

E(C)
ω∧ω̄ is the complex period attached to E and δ is a non-zero

rational number which measures the difference between the degrees of the
modular curve and a certain Shimura curve parametrization of E. The proof
uses a mild generalization of a formula of Gross [Gr2] for the special value
L(E/K, 1), and a precise recipe of Edixhoven [Ed] for the natural projection
map to the group of connected components of the Néron models of Jacobians
of Shimura curves. Equation (2) can be viewed simultaneously as an analogue
of the Gross-Zagier formula [GZ] in a rigid analytic setting, and of a theorem
of Greenberg-Stevens [GS] in an anticyclotomic setting. It can be used to
prove the implication (for curves having a prime of multiplicative reduction):

L(E/Q, 1) 6= 0 implies E(Q) finite.

This statement was originally proved (for all modular elliptic curves) by
Kolyvagin, building on the Gross-Zagier formula [GZ], and on non-vanishing
results of Bump-Friedberg-Hoffstein [BFH] and Murty-Murty [MM]. Our
proof does not appeal to the rather involved calculations of [GZ], but only to
the simpler formula of [Gr2]. Furthermore, it does not require non-vanishing
results for derivatives of L-series1.

1The formula (2) and its proof also carry over, mutatis mutandis, to the more general
context of eigenforms f of weight 2 and trivial Nebentypus character, and yields a proof
of the implication L(f, 1) 6= 0 ⇒ Af (Q) is finite, where Af is the abelian variety in J0(N)
“cut out” by f . Such an implication (for prime conductor) plays a key role in Merel’s
recent proof [Me] of the uniform boundedness conjecture.
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Kolyvagin’s approach required the choice of an auxiliary imaginary qua-
dratic field K for which L(E/K, 1) = 0 and L′(E/K, 1) 6= 0. Our approach
works directly with a field K for which L(E/K, 1) 6= 0. If K is such a field,
ρ : Gal(L/K) −→ C∗ is an anticyclotomic character of K of conductor prime
to N , and (E(L)⊗C)ρ is the ρ-eigenspace of Gal(L/K) acting on the Mordell-
Weil group E(L) ⊗ C, then a twisted form of equation (2) combined with
a direct generalization of Kolyvagin’s argument explained in [BD1], yield a
proof of the new result

L(E/K, ρ, 1) 6= 0 ⇒ dimC(E(L)⊗ C)ρ = 0, (3)

for semistable elliptic curves over Q. We can then establish (assuming an
analytic non-vanishing hypothesis) that the Mordell-Weil groups E(L∞) are
finitely generated, for certain anticyclotomic Z`-extensions of K. The meth-
ods of [B2], building directly on Kolyvagin’s theory, allowed one to exhibit
pairs (E, L∞) for which E(L∞) ⊗ Q`/Z` could be proved to be of corank 1
over the Iwasawa algebra Z`[[Gal(L∞/K)]]. The proof of formulas (2) and
(3) and the above arithmetic applications are given in [BD4].

When ε = −1, our conjecture predicts a p-adic analytic construction of a
rational point on E(K) in terms of the special values of the p-adic L-function
Lp(E/K)2. In fact, it suggests a precise recipe for computing the Heegner
divisor class in the Jacobian of a Shimura curve associated to an indefinite
quaternion algebra B ramified at p. In that case the Shimura curve is a Mum-
ford curve and its Jacobian has purely toric reduction at p. We express the
Heegner class as the image, via the Cerednik-Drinfeld p-adic uniformization
map, of a p-adic limit of “special points” generalizing those defined in [Gr2],
which belong to another Shimura curve related to the definite quaternion
algebra obtained from B by Cerednik’s interchange of invariants. We give
a precise statement, and numerical evidence for the conjecture, in sec. 5.3.
The calculations of this section suggest a reasonably practical, purely p-adic
analytic algorithm for computing Heegner points arising from Shimura curve
parametrizations, in terms of derivatives of p-adic L-functions. A proof of the
main formula (conj. 5.6) of sec. 5.3 will be given in [BD5]. The main ingredi-
ents in this proof are the Cerednik-Drinfeld theory of p-adic uniformization

2This conjecture has the same flavour as a construction of Karl Rubin [Ru] for curves
with complex multiplication. However, the settings are quite disjoint, since complex multi-
plication curves have integral j-invariants. It would be interesting to fit these two formulae
into a common picture. In this connection, see also [PR]
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of Shimura curves, and an explicit description of the p-adic Abel-Jacobi map
for Mumford curves in terms of automorphy factors of p-adic theta-functions.

The first section of this paper contains a brief review of background mate-
rial on quaternion algebras and Shimura curves. The second section explains
the construction of Heegner points and the p-adic L function associated to
certain Heegner distributions (which enters in the “left hand side” of our
Birch Swinnerton-Dyer type conjecture) based on a mild generalization of
ideas of Gross, Mazur, and others. The third section is devoted to the “right
hand side”: it introduces the p-adic regulator3 associated to the extended
Mordell-Weil group. The fourth section puts the two previous sections to-
gether and formulates the p-adic analogue of the Birch Swinnerton-Dyer con-
jecture. Finally, section 5 makes explicit some special cases and applications
of our conjecture, and summarizes the evidence that we have gathered in
their support.

1 Shimura curves

1.1 Quaternion algebras

We briefly recall some basic facts on the arithmetic of quaternion algebras
over Q. A good reference for this material, where all the results stated here
are proved, often in greater generality, is [Vi].

Let Ẑ :=
∏

` 6=∞ Z` be the profinite completion of Z and let Q̂ = Ẑ ⊗ Q
denote the ring of finite adèles. Let B be a quaternion algebra over Q: it is a
central simple algebra of rank 4, satisfying B ⊗ C ' M2(C). For each place
` of Q (including ` = ∞), we let B` = B ⊗ Q`, and let B̂ = B ⊗ Q̂ be the
“adèlization” of B. If B` is isomorphic to the split algebra ' M2(Q`), we say
that B is split at `, and that it is ramified otherwise. In the latter case B` is
isomorphic to the (unique, up to isomorphism) quaternion division algebra
over Q`. By Hilbert’s reciprocity law – due, in this special case, to Lagrange

3In the anti-cyclotomic situation, degeneracies in the height pairings tend to cause extra
vanishing of a type not experienced in the original Mazur-Tate-Teitelbaum setting, where a
conjecture of Schneider predicts that the p-adic height is always non degenerate. In certain
cases, our regulator can vanish. A more satisfying definition of the p-adic regulator in the
anticyclotomic context might build on the theory of “derived p-adic heights” developed
elsewhere by the authors [BD3]. To lighten the exposition, we have avoided the machinery
of derived heights.
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– the set S of ramified places of B (possibly including ∞) is finite and has
even cardinality. Conversely, given any set S of places of even cardinality,
there is a unique quaternion algebra ramified exactly at the places of S. Let
N− be the product of all the finite primes in S. We say that B is indefinite
if B∞ = B ⊗ R is isomorphic to M2(R), i.e., B is split at ∞, and that it is
definite if B∞ is isomorphic to the algebra of Hamilton quaternions, i.e,. B
is ramified at ∞.

For each ` /∈ S, choose an isomorphism φ` : B` −→ M2(Q`). The order
R` = φ−1

` (M2(Z`)) is a maximal order of B` which depends on the choice of
φ`. If ` is in S, then B` has a unique maximal order R` ([Vi], p. 34, lemme
1.5). Define the global order R = R1,N− by

R = B ∩
∏

`

R`,

(where we have identified B with a subalgebra of B̂ by the diagonal em-
bedding). The order R is a maximal order of B. (Note that its definition
depends on the choice of the isomorphisms φ`.) More generally, if N+ is a
(square-free) integer prime to the elements of S, we define an Eichler order
RN+,N− of level N+ by

RN+,N− =

{
x ∈ R | φ`(x) ≡

(
∗ ∗
0 ∗

)
(mod `) for all `|N+

}
,

and write R̂N+,N− = RN+,N− ⊗ Ẑ =
∏

(RN+,N− ⊗ Z`).
A left ideal I ⊂ RN+,N− is an additive subgroup of RN+,N− which is

stable under left multiplication by elements of RN+,N− , and is of rank 4 as a
Z-module.

Two left ideals I and J are said to be in the same class if there exists
α in B∗ such that Iα = J. The set of left ideal classes admits an adelic
interpretation as the set of double cosets

R̂∗N+,N−\B̂∗/B∗.

(Cf. [Vi], p. 87.) The number of such left ideal classes depends very much
on whether B is definite or indefinite.

Proposition 1.1 .
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1. If B is an indefinite quaternion algebra, then #(R̂∗N+,N−\B̂∗/B∗) = 1.

2. If B is a definite quaternion algebra, then #(R̂∗N+,N−\B̂∗/B∗) < ∞.

Proof: This is a direct consequence of “strong approximation” ([Vi], p. 61,
théorème 4.3, and p. 89, corollaire 5.7 (1)).

In all cases we let h(RN+,N−) denote the number of left ideal classes for
RN+,N− ; it is called the class number of RN+,N− . Unlike the case for Dedekind
domains, the left ideal classes do not form a group; also, the class number
can be expressed by a simple closed formula, which shows in particular that
its size is roughly N/12 in the definite case, where N = N+N−, and N− is
the product of the primes in S. (Cf. [Vi], p. 146, proposition 3.2.)

Orientations: If ` divides N+, then there are exactly two distinct surjective
algebra homomorphisms RN+,N− ⊗ F` −→ F`. If ` divides N−, then there
are exactly two distinct algebra homomorphisms RN+,N− ⊗ F` −→ F`2 . We
fix a choice of such algebra homomorphisms

o+
` : RN+,N− ⊗ F` −→ F`, o−` : RN+,N− ⊗ F` −→ F`2 .

The data o+
` (with `|N+) and o−` (with `|N−) is called an orientation for

RN+,N− , and the order RN+,N− equipped with this extra structure is some-
times called an oriented Eichler order. (Cf. [Ro].)

1.2 Homogeneous spaces

We define a homogenous space P on which the group B∗ acts. This definition
depends in an essential way on whether B is indefinite or definite.

Case 1: B is indefinite. We set

P = P1(C)− P1(R) = C− R.

The isomorphism φ∞ identifies B∗∞ with GL2(R); we let B∗ act on P via the
natural action of GL2(R) on P by fractional linear transformations.

We observe (and this will be important for later constructions) that P
can be identified with the set of algebra homomorphisms Hom(C, B∞) in a
natural way. For, any f ∈ Hom(C, B∞) gives rise to a group action of C∗ on
P. There are exactly two fixed points P+ and P− in P for this action. We
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order P+ and P− so that the induced action of C∗ on the complex cotangent
space T ∗P+(P) (resp. T ∗P−(P)) is via the character z 7→ z̄/z (resp. z 7→ z/z̄).
The reader will check that this can always be done. To each f ∈ Hom(C, B∞)
we associate the fixed point P+ ∈ P. This sets up a bijection

Hom(C, B∞)
'−→ P.

Case 2: B is definite. We let P denote the conic (curve of genus 0) defined
over Q by:

P(K) = {x ∈ B ⊗K | Norm(x) = trace(x) = 0},

for all Q-algebras K. The group B∗ acts naturally on P by conjugation, and
this action is algebraic and defined over Q. In fact, we have Aut(P) = B∗

canonically, as algebraic groups over Q.
Exactly as in case 1, we identify Hom(C, B∞) with P(C). In fact, if K is

a quadratic imaginary field, then P(K) becomes identified with Hom(K, B),
using the obvious recipe. For more details, see [Gr2], p. 131.

1.3 Shimura curves

Basic Reference: [Ro]. We recall the definition of the Shimura curves that
we will use. For a nice treatment of this material (in a more general setting)
the reader may consult [Ro].

Let N = N+N− be a square free integer. Let B be the quaternion algebra
ramified exactly at the primes dividing N−, together with ∞, if N− has an
odd number of prime factors. Let RN+,N− be the Eichler order defined as
above. We associate to this data the open Shimura curve YN+,N− , as follows:

YN+,N− = R̂∗N+,N−\(B̂∗ × P)/B∗.

Using the remarks of sec. 1.2, we note that YN+N− can also be identified with
the space

YN+,N− = R̂∗N+,N−\(B̂∗ × Hom(C, B∞))/B∗,

where the action of B∗ on Hom(C, B∞) is by conjugation.
Although we have strived through our notations to make the definitions

appear uniform, the nature of YN+,N− depends greatly on whether the algebra
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B is indefinite or definite (i.e., on whether the integer N− has an even or an
odd number of prime divisors). We treat each case in turn.

Case 1: B is indefinite. The group Γ = φ∞(R∗N+,N−) is a discrete subgroup of
GL2(R). (The matrices in Γ have determinant 1 or −1.) It follows directly
from prop. 1.1 that

YN+,N− ' P/Γ ' H/Γ+,

whereH is the classical upper half plane and Γ+ is the subgroup of matrices in
Γ of determinant 1. This gives an analytic description of the curves YN+,N− .
It is a deep fact due to Shimura that these curves can actually be defined
over Q.

If B = M2(Q) is the usual matrix algebra (so that N− = 1), the curve
YN,1 is equal to H/Γ0(N), the classical open modular curve of level N which
can be compactified by adjoining a finite set of cusps. Let XN,1 (= X0(N))
denote the compactified curve. If B is a division algebra, (i.e., N− 6= 1), then
YN+,N− is already compact and we write XN+,N− = YN+,N− .

Case 2: B is definite. In this case the fact that XN+,N− := YN+,N− is a
complete algebraic curve defined over Q is built into the definitions. More
precisely, let n = h(RN+,N−) be the class number of RN+,N− , and choose

representatives g1, . . . , gn for the double coset space R̂∗N+,N−\B̂∗/B∗. The

groups Γi = (g−1
i R̂∗N+,N−gi ∩B∗)/〈±1〉 are finite subgroups of B∗/〈±1〉, and

the curves Yi = P/Γi are curves of genus 0 defined over Q (i.e., conics). The
curve XN+,N− is expressed as a finite disjoint union of these curves of genus
0:

XN+,N− =
n⋃

i=1

Yi.

For more details on this construction, see [Gr2] and [Ro].
We will call the Shimura curve XN+,N− definite or indefinite depending

on whether the associated quaternion algebra is definite or indefinite.

1.4 Jacobians and height parings

Let JN+,N− := Pic(XN+,N−) be the group of divisor classes on the curve
XN+,N− .
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Case 1: B is indefinite. In that case JN+,N− is an extension of Z by an abelian
variety of dimension g ' N/12. We define JN+,N−(L) in the obvious way, for
any number field L; it is a finitely generated abelian group, by the Mordel-
Weil theorem. By Néron’s theory [Ne], the group JN+,N−(L) is equipped with
the (normalized) Néron-Tate canonical height which takes values in R and
is positive definite and non degenerate on JN+,N−(L)/torsion. We denote by
〈P, Q〉 the Néron-Tate height of points P , Q in JN+,N−(L).

Case 2: B is definite. Then JN+,N− is isomorphic to the lattice of elements
in

Ze1 + Ze2 + · · ·+ Zen,

where ei corresponds to the class in Pic(XN+,N−) generated by a single point
supported on the ith component Yi = P/Γi.

Let wi = #Γi. Following [Gr2], we define a symmetric positive definite
inner product on JN+,N− by the rule

〈ei, ej〉 = wiδij.

Unlike the indefinite case, this pairing takes values in Z, and defines a natural
injection

JN+,N− −→ Jdual
N+,N− ,

where the dual here means Z-dual.

1.5 Hecke Operators

Since Q has class number 1, we have Q∗Ẑ∗ = Q̂∗. Hence the curve YN+,N−

can be written as
(R̂∗N+,N−\B̂∗/Q̂∗ × P)/B∗.

The space (R̂∗N+,N−\B̂∗/Q̂∗) is the product of local spaces

((RN+,N− ⊗ Z`)
∗\B∗` /Q∗`).

The Hecke operators T`: When ` does not divide N , then

((RN+,N− ⊗ Z`)
∗\B∗` /Q∗`) ' PGL2(Z`)\PGL2(Q`)

is the Bruhat-Tits tree of PGL2(Q`), whose vertices correspond to similarity
classes of rank two Z`-lattices in Q2

` . It is a homogenous tree of degree ` + 1;
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more precisely, if g ∈ PGL2(Z`)\PGL2(Q`) is a vertex, its ` + 1 neighbours
g0, . . . , g`−1, g∞ are given by the formulae

gi =

(
1 i
0 `

)
g, i = 0, · · · , `− 1, g∞ =

(
` 0
0 1

)
g.

The tree of PGL2(Q`) is equipped with a correspondence T` of degree ` + 1
sending a vertex g to the formal sum of its ` + 1 neighbours in the tree:

T`(g) =
`−1∑
i=0

gi + g∞.

(Note that the values of the elements gi and g∞ depend on the choice of
representative for g, but that the collection {g0, . . . , g`−1, g∞} does not.)

One extends the correspondence to the product tree (R̂∗N+,N−\B̂∗/Q̂∗).
Since right multiplication by B acts by isometries on the tree, T` naturally
gives rise to a well-defined correspondence on the curve XN+,N− .

The Hecke operator Up: If p divides N+, then

((RN+,N− ⊗ Zp)
∗\B∗p/Q∗p) ' Γ0(p)\PGL2(Qp)

can be identified with the set of edges on the Bruhat-Tits tree of PGL2(Qp).
This set is equipped with a correspondence Up of degree p sending an edge g
to the formal sum of the p other edges emanating from its target:

Up(g) =

p−1∑
i=0

gi,

where the gi are defined in the same way as for the Hecke operator T`.

The Atkin Lehner involutions W+
p : If p divides N+, then the space

((RN+,N− ⊗ Zp)
∗\B∗p/Q∗p) ' Γ0(p)\PGL2(Qp)

is equipped with the standard involution

g 7→
(

0 1
p 0

)
g.
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This involution gives rise in a natural way to an involution on XN+,N− , which
we call W+

p .

The Atkin Lehner involutions W−
p : If p divides N−, then the space

((RN+,N− ⊗ Zp)
∗\B∗p/Q∗p)

consists of exactly two elements. Let W−
p be the (only) non-trivial involution

on this set. This involution gives rise in a natural way to an involution on
XN+,N− , which we call W−

p .
Given any factorization N = N+N−, we let TN+,N− be the ring of Hecke

operators acting as endomorphisms of JN+,N− . It is generated by the opera-
tors T`, with (`, N) = 1, together with the involutions W+

p , with p|N+ and
W−

p , with p|N−.

1.6 The Jacquet-Langlands correspondence

Let f be a normalized newform on Γ0(N), with Fourier expansion

f =
∑

anq
n.

Such a newform is an eigenform for the Hecke operators T` and the Atkin
Lehner involutions W+

p (p|N) acting on S2(X0(N)), and we have

T`f = a`f, W+
p f = −apf.

Let Kf be the field generated by the Fourier coefficients an and let Of be its
ring of integers.

The form f gives rise to an algebra homomorphism

φf : TN,1 −→ Of ,

satisfying φf (T`) = a`, and φf (W
+
p ) = −ap.

The result of Jacquet-Langlands [JL] establishing a correspondence be-
tween forms on GL2 and on quaternion algebras, can be formulated in our
context as follows:

Theorem 1.2 (Jacquet-Langlands) For any factorization N = N+N−,
there is an algebra homomorphism φf : TN+,N− −→ Of , satisfying

φf (T`) = a`, φf (W
+
p ) = −ap if p|N+, φf (W

−
p ) = ap if p|N−.

14



Note the slight abuse of notation, in denoting the various homomorphisms
associated to f by the same letter φf . In general the context will make it
clear which algebra of Hecke operators we are working with.

1.7 The Cerednik-Drinfeld uniformization

If N+N− = N is a factorization of N , and if p divides N+, then there are
two degeneracy maps

ν1, ν2 : XN+,N− −→ XN+/p,N− .

The map ν1 is induced by the natural projection, and ν2 = ν1W
+
p . These

induce maps by Pic (i.e., contravariant) functoriality (which we call ν∗1 and
ν∗2) from JN+/p,N− to JN+,N− . Define Jp−new

N+,N− by the exact sequence

0 −→ JN+/p,N− ⊕ JN+/p,N−
ν∗1⊕ν∗2−→ JN+,N− −→ Jp−new

N+,N− −→ 0.

Suppose that XN+,N− corresponds to an indefinite quaternion algebra, and let
p be a prime dividing N−. In that case, the curve (XN+,N−)/Qp is a Mumford
curve: the special fiber of its mod p reduction is a finite union of copies of P1

intersecting transversally in certain points. By Mumford’s theory [G-VdP]
the curve XN+,N− has a p-adic uniformization expressing it as a quotient of
the p-adic upper half plane by the action of a discrete subgroup Γ.

The theory of Cerednik-Drinfeld (cf. for example [BC], especially ch. III)
gives an explicit description of this p-adic uniformization. More precisely, let
N+
∗ = N+p, and N−∗ = N−/p, so that N = N+

∗ N−∗ is another factorization
of N . Let RN+

∗ ,N−
∗

be the Eichler order defined as in sec. 1.1, and let Γ be the

group of elements in (RN+
∗ ,N−

∗
[1
p
])∗ whose reduced norm is an even power of

p. The group Γ acts properly discontinuously on the p-adic upper half plane
Hp := P1(Cp)− P1(Qp), and the quotient Hp/Γ is a Mumford curve defined
over Qp. Let Kp be the unique unramified quadratic extension of Qp, and let
X ′N+,N− be the curve over Qp obtained by twisting XN+,N− by the cocycle in

H1(Gal(Kp/Qp), Aut(XN+,N−)) which sends the generator of Gal(Kp/Qp) to
the Atkin Lehner involution W−

p . Then we have:

Theorem 1.3 (Cerednik, Drinfeld) The curves X ′N+,N− and Hp/Γ are
isomorphic over Qp. In particular, the curves XN+,N− and Hp/Γ are iso-
morphic over Kp.
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It follows from the general theory [G-VdP] that the Jacobian JN+,N−/Kp is
purely toric at p and admits a uniformization by the p-adic torus Hom(Γ, K∗p).
In [BD5] we will describe a natural Hecke-equivariant map

Γab −→ Jp−new,dual

N+
∗ ,N−

∗
,

where the dual in the superscript means Z-dual. Combining these two re-
marks, we obtain:

Corollary 1.4 There is a canonical, Hecke equivariant, p-adic analytic uni-
formization

ΦCD : (Jp−new

N+
∗ ,N−

∗
)⊗K∗p −→ (JN+,N−)/Kp .

Note that the curve XN+
∗ ,N−

∗
corresponds to a definite quaternion algebra, so

that its Picard group JN+
∗ ,N−

∗
is a finitely generated free Z-module.

1.8 Signs

We define the Fricke involution WN+,N− on XN+,N− by

WN+,N− =
∏
p|N+

W+
p

∏
p|N−

W−
p .

We will also have a use for the involutions W ′
N+,N− , whose definition depends

on a fixed prime p, and is given by

W ′
N+,N− = WN+,N− , if p does not divide N,

W ′
N+,N− = WN+/p,N− , if p divides N+,

W ′
N+,N− = WN+,N−/p, if p divides N−.

Let φf be the map from the Hecke ring TN+,N− to Z associated to f , defined in
sec. 1.6. Let wN+,N− = φf (WN+,N−) be the eigenvalue of the Fricke involution
WN+,N− acting on the f -isotypic component of JN+,N− , and let w′N+,N− be
the eigenvalue of the involution W ′

N+,N− . As a shorthand notation we let w =
φf (WN,1), and w′ = φf (W

′
N,1) be the signs of these Atkin-Lehner involutions

acting on the modular form f on X0(N). (Where now φf is defines on TN,1.)
It follows from thm. 1.2 of sec. 1.6 that w′

N+
∗ ,N−

∗
= (−1)#{`|N ′}w′.
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1.9 Elliptic curves and modular parametrizations

Let E be an elliptic curve of square-free conductor N , and let

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

be its minimal Weierstrass model over Q.
Thanks to the fundamental work of Wiles [Wi] and Taylor-Wiles [TW],

we now know that E is modular, i.e., there is a parametrization

πE : X0(N) −→ E.

This map induces maps πE∗ : JN,1 −→ E and π∗E : E −→ JN,1 by Albanese
and Pic functoriality respectively. The pullback of a Néron differential on
E is a multiple of a normalized newform f which is an eigenform for all the
Hecke operators.

More generally, if XN+,N− is a Shimura curve associated to an indefinite
quaternion algebra, then the Jacquet-Langlands correspondence explained in
sec. 1.6, combined with the Eichler-Shimura theory and the isogeny conjec-
ture proved by Serre in this case, implies the existence of maps πE∗ and π∗E
(which by abuse of notation we also denote by the same letters, relying on
the context to make it clear which Shimura curve we are working with):

πE∗ : JN+,N− −→ E, π∗E : E −→ JN+,N− ,

which are dual to each other. Of course, the map πE∗ is not uniquely defined,
since it can always be composed with an isogeny of E. We say that E is a
strong Weil curve, and that πE∗ is a strong Weil parametrization, relative
to the Shimura curve XN+,N− , if the map πE∗ has connected kernel (or,
equivalently, if π∗E is injective, so that E is a sub-abelian variety of JN+,N−). If
E is a strong Weil curve, then the map πE∗ is well-defined, up to composition
by −1.

At the cost of replacing E by an isogenous curve, we will always assume
from now on that E is the strong Weil curve associated to XN+,N− , and that
πE∗ is a strong Weil parametrization.

If XN+,N− corresponds to a definite quaternion algebra, then we let Jf
N+,N−

be the sublattice of JN+,N− on which TN+,N− acts via the homomorphism φf

of sec. 1.6. By the multiplicity 1 theorem, Jf
N+,N− is a Z-module of rank 1;
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let vf be a generator of this Z-module, and define πE∗ : JN+,N− −→ Z and
π∗E : Z −→ JN+,N− by the formulae

πE∗(D) = 〈D, vf〉, π∗E(1) = vf ,

where the pairing here is the one introduced in sec. 1.4. Note that there is
an ambiguity of sign in the definition of πE∗ and π∗E.

1.10 The extended Mordell-Weil group

Suppose that p divides N , so that E has (split or non-split) multiplicative
reduction at p. Let M be any finite extension of K, and let Mp = M ⊗Qp =
⊕Mp, where the sum is taken over all primes of M lying above p. Define

M ′
p = ⊕pMp,

where the sum now is taken over all primes p for which E/Mp has split
multiplicative reduction. If there are such primes, then we have the Tate
analytic uniformization:

ΦTate : (M ′
p)
∗ −→ E(M ′

p).

We define the extended Mordell-Weil group

E†(M) = {(P̃ , P ) such that P ∈ E(M), P̃ ∈ (M ′
p)
∗, and ΦTate(P̃ ) = P}.

In other words, a point in E†(M) is an M -rational point P of E(M), together
with a distinguished lift, P̃ , of P to (M ′

p)
∗. Often, we will simply use the

letter P to denote a point in E†(M), keeping in mind that this point P comes
equipped with a distinguished choice of lift P̃ .

If there are no primes of M above p at which E has split multiplicative
reduction (e.g., if p does not divide N) then by convention we set E†(M) :=
E(M).

Action of complex conjugation:
Let z 7→ z̄ be the complex conjugation acting on Kp = K⊗Qp. We define an
action of complex conjugation τ on E†(K) which extends the Galois action
on E(K), as follows:
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1. If E/Qp has good ordinary or split multiplicative reduction at p, then
the action of τ is induced from the natural action of complex conjugation on
E(K) and K∗p , i.e.,

τ((z, P )) = (z̄, τP )

This action is well-defined and consistent, because the Tate parametrization
ΦTate is defined over Qp.
2. If E/Qp has non-split multiplicative reduction, and p is inert in K/Q,
then we make τ act on E†(K) by the rule

τ((z, P )) = (z̄−1, τP ).

One checks that this defines an action of τ on E†(K) also. The twisting in
the action of τ is necessary in this case because the Tate parametrization is
not defined over Qp (cf. [Si1], ch. V).

Let r be the rank of the Mordell-Weil group E(K), and let r̃ be the rank
of the extended Mordell-Weil group E†(K).The vector spaces E(K)⊗Qp and
E†(K) ⊗ Qp can be decomposed into + and − eigenspaces for this action.
Let r+ and r− denote the ranks of (E(K)⊗Q)+ and (E(K)⊗Q)−, and let
r̃+ and r̃− denote the analogous ranks for E†(K), so that

r = r+ + r−, r̃ = r̃+ + r̃−.

We recall the relation between r and r̃:

The non-exceptional case: r̃ = r, r̃+ = r+, r̃− = r−.

The split exceptional case: r̃ = r + 2, r̃+ = r+ + 1, r̃− = r− + 1.

The non-split exceptional case:

r̃ = r + 1,

{
r̃+ = r+ + 1, r̃− = r− if ap = 1,
r̃+ = r+, r̃− = r− + 1 if ap = −1.

1.11 Examples

We now discuss some examples that will be used in the numerical verifications
of sec. 5.

The curves X0(14) and X7,2:
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Let E = X0(14) be the modular curve of level 14. It is an elliptic curve given
in minimal Weierstrass form by the equation

y2 + xy + y = x3 + 4x− 6.

The maps πE∗ and π∗E are the identity maps.
We now turn to the study of the curve X7,2 associated to an Eichler order

of level 7 in the algebra of (rational) Hamilton quaternions B = Q + Qi +
Qj + Qk. Let R be Hurwitz’s ring of integral quaternions:

R = Z + Zi + Zj + Zω,

where ω = 1+i+j+k
2

. Hurwitz showed that R is the unique maximal order in
B up to conjugacy, and that every left R-ideal is principal.

Fix an embedding φ7 = φ of B7 into M2(Q7) which has the property that
φ−1(M2(Z7)) = R⊗ Z7. For our calculations, we will take

φ(i) =
(

0 1
−1 0

)
, φ(j) =

(
ρ ρ + 1

ρ + 1 −ρ

)
, φ(k) =

(
ρ + 1 −ρ
−ρ −ρ− 1

)
,

where ρ = limn−→∞ 27n
is a primitive cube root of unity in Z7. We define

the Eichler order R7,2 and the curve X7,2 as in sec. 1.1 and sec. 1.3.

Lemma 1.5 The curve X7,2 has two components Y1 and Y2, which are iso-
morphic to P/Γi, where Γ1 and Γ2 are subgroups of R∗/〈±1〉 of order 3, and
P is the conic associated to B as in sec. 1.2.

Proof: The components of X7,2 are indexed by elements (g`) (with g` ∈ B∗` )

in the double coset space R̂∗7,2\B̂∗/B∗. Without loss of generality, we may
assume that g` belongs to R∗` , since R has class number 1. The idèle (g`)
is then uniquely represented by the element φ(g7) in the coset space (R7,2 ⊗
Z7)

∗\GL2(Z7)/φ(R∗). The space (R7,2 ⊗ Z7)
∗\GL2(Z7) can be identified

with P1(F7) via the map γ 7→ γ−1(∞). The group R∗ is a group of order
24, generated by i, j, and ω, and φ(R∗) acts on P1(F7) in the obvious way.
This action breaks P1(F7) into two orbits, {∞, 0, 2, 3} and {1, 4, 5, 6}, and
the stabilizers Γ1 and Γ2 of each orbit element are of order 3 in R∗/{±1}. So
if P = (g`)× y, with g` ∈ R∗` , we have:

P ∈
{

Y1 if φ(g−1
7 )(∞) = 0, 2, 3, or ∞,

Y2 if φ(g−1
7 )(∞) = 1, 4, 5, or 6.
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Let e1 and e2 be the divisor classes generated by a single point supported on
each component. Then J7,2 = Ze1 + Ze2, and, following sec. 1.4, the inner
product on J7,2 is defined as

〈e1, e2〉 = 0, 〈e1, e1〉 = 〈e2, e2〉 = 3.

The Hecke operator T3 acts on e1, e2 by

T3e1 = e1 + 3e2, T3e2 = 3e1 + e2.

By diagonalizing the operator T3, one finds that the vectors

veis = e1 + e2, v1 = e1 − e2,

give an eigenbasis for J7,2 under the Hecke action. If p 6= 2, 7 is prime, then
the eigenvalue of Tp acting on veis is p + 1; the vector veis corresponds to
an Eisenstein series of weight 2. The eigenvalues of Tp acting on v1 are the
Fourier coefficients ap of the unique cusp form on X0(14).

The curves X0(26) and X13,2:
The curve X0(26) is a curve of genus 2. There are two isogeny classes of ellip-
tic curves of conductor 26, which are labelled 26A and 26B in the Antwerp
tables; their minimal Weierstrass equations are

26A : y2 + xy + y = x3 − 5x− 8, 26B : y2 + xy + y = x3 − x2 − 3x + 3.

Now we analyze the curve X13,2 corresponding to an Eichler order of level
13 in the algebra of rational Hamilton quaternions. Let R denote as before
the Hurwitz order. The embedding φ = φ13 of R in M2(Z13), given by the
rule

φ(i) =
(

0 1
−1 0

)
, φ(j) =

(
ρ ρ + 1

ρ + 1 −ρ

)
, φ(k) =

(
ρ + 1 −ρ
−ρ −ρ− 1

)
,

where ρ = limn−→∞ 313n
is a primitive cube root of unity in Z13, can be used

to define the Eichler order R13,2 and the curve X13,2, as before.

Lemma 1.6 The curve X13,2 has three components Y1, Y2, and Y3, which
are isomorphic to P/Γi, where Γ1, Γ2 and Γ3 are subgroups of R∗/〈±1〉 of
orders 3, 3 and 2 respectively, and P is the conic associated to B.
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Proof: This proceeds exactly as for lemma 1.5. The components of X13,2 are
indexed by elements in the double coset space:

R̂∗13,2\B̂∗/B∗ = R̂∗13,2\R̂∗/R∗ = (R13,2 ⊗ Z13)
∗\GL2(Z13)/φ(R∗)

= P1(F13)/φ(R∗).

The action of φ(R∗) breaks P1(F13) into three orbits,

{∞, 0, 4, 3}, {1, 7, 11, 12}, and {2, 5, 6, 8, 9, 10},

and the stabilizers Γ1, Γ2 and Γ3 of each orbit element are of order 3, 3, and
2 respectively in R∗/〈±1〉. So if P = (g`)× y, with g` ∈ R∗` , we have:

P ∈


Y1 if φ(g−1

13 )(∞) = ∞, 0, 3, or 4,
Y2 if φ(g−1

13 )(∞) = 1, 7, 11, or 12,
Y3 if φ(g−1

13 )(∞) = 2, 5, 6, 8, 9, or 10.

Let e1, e2 and e3 be the divisor classes in J13,2 generated by a single point
supported on each component Y1, Y2 and Y3. Then J13,2 = Ze1 + Ze2 + Ze3,
and the inner product on J13,2 is defined as

〈ei, ej〉 = wiδij, w1 = w2 = 3, w3 = 2.

The Hecke operator T3 acts on J13,2 by

T3(e1) = e1 + 3e3, T3(e2) = e2 + 3e3, T3(e3) = 2e1 + 2e2.

Diagonalizing T3 decomposes J13,2 into a sum of three distinct eigenspaces
spanned by the vectors

veis = 2e1 + 2e2 + 3e3, v1 = e1 − e2, v2 = e1 + e2 − 2e3.

If p 6= 2, 13 is prime, then the eigenvalues of Tp on veis are p + 1, so that veis

corresponds to an Eisenstein series of weight 2. The Hecke eigenvalues for v1

(resp. v2) are the Fourier coefficients of the form of weight 2 corresponding
to the curve 26A (resp. 26B).
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2 Heegner Points

2.1 Definition

Let K be a quadratic imaginary field, satisfying (Disc(K), N) = 1, and let
ε : (Z/DZ)∗ −→ ±1 be the associated primitive Dirichlet character. There
is a natural map from Hom(K, B) to Hom(C, B∞) given by extension of
scalars. We say that a point P ∈ XN+,N− is a Heegner point associated

to K if P ∈ R̂∗N+,N−\(B̂∗ × Hom(C, B∞))/B∗ is the image of an element

(g × f) ∈ R̂∗N+,N−\(B̂∗ × Hom(K, B))/B∗ by the natural inclusion. We will
often describe Heegner points by writing down a representative (g × f) in
B̂∗ × Hom(K, B).

Let O be a (not necessarily maximal) order of K. If OK = Z[ω] is the
maximal order of K, then O = Z[cω], where c is a positive integer called the
conductor of O. We say that P = (g × f) is a Heegner point of conductor c
associated to K, or is a Heegner point associated to O, if

f(K) ∩ g−1R̂N+,N−g = f(O).

We let HN+,N−(K, c) = HN+,N−(O) denote the set of Heegner points of con-
ductor c on XN+,N− . We call f an optimal embedding of O into the Eichler or-

der B∩gR̂N+,N−g−1. The Heegner points of conductor c in HN+,N−(K, c) thus
correspond to (conjugacy classes of) optimal embeddings of O into RN+,N− .

2.2 Orientations and the Heegner condition

Orientations: Let P = g × f be a Heegner point of conductor c. For each `
dividing N+ the map κ+

` = o+
` ◦gfg−1 gives a surjective Z`-algebra homomor-

phism from O⊗Z` to F`. Likewise, if ` divides N−, the map κ−` = o−` ◦gfg−1

gives a surjective Z`-algebra homomorphism from O ⊗ Z` to F`2 . We call
the set of maps {κ+

l , κ−l } the orientation of O induced from the orientation
{o+

` , o−` } of RN+,N− . Each Heegner point of conductor c gives rise to an
associated orientation of O.

The Heegner condition: Define a factorization of the square-free integer N ,
N = N+N−, by setting

N+ =
∏

ε(`)=1

`, N− =
∏

ε(`)=−1

`.
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Fix a conductor c. The following lemma explains the significance of the
factorization N+N− of N associated to K.

Lemma 2.1 Let M+M− be an arbitrary factorization of N , and suppose
that c is prime to N . Then the set HM+,M−(K, c) is non-empty if and only
if (M+, M−) = (N+, N−).

Sketch of proof: Suppose that HM+,M−(K, c) is non-empty. A Heegner point
in HM+,M−(K, c) gives rise to an orientation κ+

` : O −→ F`, (with ` dividing
M+) and κ−` : O −→ F`2 (with ` dividing M−). It follows that all ` dividing
M+ are split in K/Q, and that all ` dividing M− are inert in K/Q, so that
(M+, M−) = (N+, N−). Conversely, if (M+, M−) = (N+, N−), the theory of
local embeddings (cf. [Gr2], or [Vi]) shows that HM+,M−(K, c) is non-empty.

Lemma 2.1 shows that the Heegner points associated to an order of K of
conductor c prime to N always belong to precisely one Shimura curve XN+,N−

of level N = N+N−. Hence, we can use without ambiguity the notation
HN(K, c) to denote HN+,N−(K, c), where N+N− is the only factorization of
N for which HN+,N−(K, c) is non-empty. We will adopt this notation from
now on.

In our conjectures, we will also be studying Heegner points of conductor
cpn, where (c, NpD) = 1 and p is a prime which is not necessarily prime to
N . (In fact, the case p|N will be of particular interest to us.) Given any
prime p, we define

N+
∗ = N+, N−∗ = N−, if (p, N−) = 1,

N+
∗ = N+p, N−∗ = N−/p, if p|N−.

Note that, if p divides N−, this factorization is the same one as was defined
in sec. 1.7.

Lemma 2.2 Let M+M− be an arbitrary factorization of N . Then the set
HM+,M−(K, cpn) (n ≥ 1) is non-empty if and only if (M+, M−) = (N+

∗ , N−∗ ).

The proof proceeds similarly as for lemma 2.1. For details see [Vi].
As before, we can write HN(K, cpn) to denote HN+

∗ ,N−
∗
(K, cpn), since the

data (K, cpn) determines the factorization N+
∗ N−∗ without ambiguity. Note

that, when p divides N−, the sets HN(K, c) and HN(K, cpn) are defined on
different Shimura curves corresponding to quaternion algebras which have
opposite ramification types at ∞. Moreover, if XN+,N− corresponds to an
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indefinite quaternion algebra, then XN+
∗ ,N−

∗
is the curve whose Jacobian ap-

pears in the statement of the Cerednik-Drinfeld theorem of sec. 1.7.

Definition 2.3 We say that the pair (E, K) corresponds to a definite (resp.
indefinite) case if the curve XN+

∗ ,N−
∗

is associated to a definite (resp. indefi-
nite) quaternion algebra.

2.3 The action of Pic(O)

Let O be the order of K of conductor c, as in the previous section, but do
not assume that c is prime to N . Let Pic(O) = Ô∗\K̂∗/K∗ be the Picard
group of O.

If f belongs to Hom(K, B), let f̂ ∈ Hom(K̂, B̂) be the homomorphism
deduced from f by extension of scalars. The set HN(K, c) of all Heegner
points (g × f) of conductor c is endowed with a natural action of Pic(O) by
the rule:

σ(g × f) = (gf̂(σ)× f). (4)

The reader will check that this action is well-defined and free (cf. [Gr2], sec.
3), and that

Lemma 2.4 The action of Pic(O) preserves the orientations on the Heegner
points defined in sec. 2.2

Proof: This follows from a direct calculation.
Suppose now for simplicity that c is prime to NDisc(K), and that p is a

prime not dividing cDisc(K) (but which may divide N).
The action (4) can be used to compute the exact number of Heegner

points of conductor c (resp. cpn) on XN+,N− (resp. XN+
∗ ,N−

∗
) as in [Gr2].

Suppose that N is a product of t primes. Let h denote the cardinality of
Pic(O), and let u = 1

2
#O∗. (In particular, u = 1 unless c = 1 and K = Q(i)

or Q(
√
−3).) Let On denote the order of K of conductor cpn. Note that if

n ≥ 1, then #Pic(On) = hu−1pn−1(p− ε(p)).

Lemma 2.5 .

1. There are exactly 2th Heegner points of conductor c on XN+,N−, if
(N+, N−) is the factorization satisfying the Heegner condition of sec.
2.2.
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2. If n ≥ 1, then there are exactly 2thu−1pn−1(p− ε(p)) Heegner points of
conductor cpn on XN+

∗ ,N−
∗
, if (N+

∗ , N−∗ ) is the factorization satisfying
the Heegner condition of sec. 2.2.

Proof (sketch): In case 1, let W be the Atkin-Lehner group 〈W+
` , W−

` 〉 of
order 2t generated by all the Atkin-Lehner involutions W+

` with `|N+ and
W−

` with `|N−. One can see by a direct calculation that the involution W+
`

or W−
` sends a Heegner point P to one with the oposite orientation at `, (and

the same orientation at all the other primes dividing N). In fact, it can be
shown (cf. [Vi], or [Gr2]) that the group Pic(O)×W acts simply transitively
on the set HN(K, c) of Heegner points, and that the orbits of Heegner points
under the action of Pic(O) correspond exactly to sets of Heegner points with
a given orientation. A similar proof works, mutatis mutandis, for HN(K, cpn),
where O is replaced by On, the order of conductor cpn in K. For details see
[Vi], cor. 5.12, p. 94.

Class field theory: Let Gn = Pic(On). This group can be identified by class
field theory with the Galois group of a certain abelian extension of K: the
ring class field of K of conductor cpn. Let Kn denote this field extension,
so that Gn = Gal(Kn/K). The group Gal(Kn/K0) is canonically isomorphic
to O∗\(OK ⊗ Z/pnZ)∗/(Z/pnZ)∗, and G0

∞ = Gal(K∞/K0) is isomorphic to
O∗\(OK ⊗ Zp)

∗/Z∗p.

Heegner points on indefinite Shimura curves: If XN+,N− (resp. XN+
∗ ,N−

∗
) is

associated to an indefinite quaternion algebra, then the definition of the
Heegner points in HN(K, c) (resp. HN(K, cpn)) given in sec. 2.1 is purely
analytic. It is a remarkable fact, which follows from the theory of complex
multiplication, that the points in HN(K, c) (resp. HN(K, cpn)) are actually
defined over the field K0 (resp. Kn). The action of Pic(O) on HN(K, c) which
was defined above corresponds, via the identification of class field theory, to
the Galois action on the set of Heegner points. This is the content of the
Shimura reciprocity law.

Heegner points on definite Shimura curves: Here the theory of Heegner points
is considerably simpler and less deep. Suppose that X = XN+,N− (resp.
XN+

∗ ,N−
∗
) is associated to a definite quaternion algebra. Unlike Heegner points

in the indefinite case, the points in HN(K, c) (resp. HN(K, cpn)) are all de-
fined over K, by construction, and the action of Pic(O) (resp. Pic(On)) that
was defined above does not correspond to any Galois action.
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2.4 Formal properties

A compatible system of points: Let σ be a generator of Gal(Kn/Kn−1), and
write

NormKn/Kn−1 =
∑

σi

for the norm operator. If p 6 |N , then given P = (g × f) a Heegner point of
conductor cpn (n ≥ 1), the points

(g∞ × f), (gi × f), i = 0, . . . , p− 1

are a collection of p + 1 Heegner points, of which p are of conductor cpn+1,
and one is of conductor cpn−1. Let P̄ be this unique point of conductor
cpn−1. Likewise, if p|N (and hence, N+

∗ ), one defines a map HN(K, cpn) −→
HN(K, cpn−1), by letting P̄ be the unique point such that NormKn/Kn−1(P ) =
Up(P̄ ).

Choose points Pn ∈ HN(K, cpn) which are compatible under these maps:

P̄n+1 = Pn.

Behaviour of the Pn under norms: Recall that u denotes the order of the
finite group O∗/〈±1〉. (And thus, u = 1 if K 6= Q(i) or Q(

√
−3), or if

c > 1.) If p is split in K/Q, let p1 and p2 be the two distinct prime ideals
of K above p, and let σp1 and σp2 be the Frobenius elements in Gal(K̄/K)
corresponding to p1 and p2. We have the following norm relations in the
Picard groups JN+,N− of XN+,N− :

• If p does not divide N , then

NormKn+1/Kn(Pn+1) = TpPn − Pn−1, if n ≥ 1,

uNormK1/K0(P1) =

{
TpP0 if ε(p) = −1,

(Tp − σp1 − σp2)P0 if ε(p) = 1.

We denote by Jold
M+,M− the old subvariety of JM+,M− , which is the image of

the map
⊕q|M+JM+/q,M− ⊕ JM+/q,M− −→ JM+,M− ,

where the sum is taken over all primes q dividing M+, and the homomorphism
from JM+/q,M− ⊕ JM+/q,M− to JM+,M− is induced from the two natural maps
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obtained by Pic (contravariant) functoriality on the Picard groups from the
two degeneracy maps XM+,M− −→ XM+/q,M− .

• If p divides N (and hence N+
∗ ), then

NormKn+1/Kn(Pn+1) = UpPn, if n ≥ 1,

uNormK1/K0(P1) =

{
P0 ∈ Jold

N+
∗ ,N−

∗
if ε(p) = −1,

(Up − σ)P0, (σ ∈ Gal(K0/K)) if ε(p) = 1.

Action of complex conjugation: Let WN+
∗ ,N−

∗
and W ′

N+
∗ ,N−

∗
be the Fricke invo-

lutions introduced in sec. 1.5 acting on XN+
∗ ,N−

∗
, and let Pn ∈ HN(K, cpn) be

a given Heegner point belonging to XN+
∗ ,N−

∗
. Consider the involution τ acting

on XN+
∗ ,N−

∗
by sending (g × f) to (g × f̄), where f̄(x) := f(x̄). If XN+

∗ ,N−
∗

corresponds to an indefinite quaternion algebra, then τ acts like complex
conjugation on the complex points of XN+

∗ ,N−
∗
. If XN+

∗ ,N−
∗

corresponds to a
definite quaternion algebra, then τ acts trivially on JN+

∗ ,N−
∗
.

Proposition 2.6 There exists γ ∈ Gn (depending on the choice of Pn) such
that

1. τ(P0) = γWN+,N−(P0), if n = 0.

2. τ(Pn) = γW ′
N+
∗ ,N−

∗
(Pn), if n > 0.

Proof: The reader may check that τ reverses all the orientations associated to
the Heegner point P0, for each ` dividing N . So does the involution WN+,N− .
Hence τ(P0) and WN+,N−(P0) belong to the same orbit under the action of
Pic(O). (See the discussion in the proof of lemma 2.5.) This proves 1. The
assertion 2 is proved similarly.

For more details, the reader may also wish to consult [Gr1].

2.5 Heegner points on elliptic curves

From now on, Kn denotes the ring class field of conductor cpn, and K∞ the
compositum of all these ring class fields. The Galois group G∞ of K∞ over
K is an extension of Gal(K0/K) = Pic(O) by the subgroup

G0
∞ = Gal(K∞/K0) = O∗\(OK ⊗ Zp)

∗/Z∗p.
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Denote also by Gn,m the Galois group of Kn over Km, if n > m. We define
the “Heegner point” yn associated to E by

yn = πE∗(Pn),

where πE∗ is the map defined in sec. 1.9. Thus, yn belongs to E(Kn) ⊂
E(K∞) if XN+

∗ ,N−
∗

corresponds to an indefinite quaternion algebra (the indefi-
nite case), and yn belongs to Z if XN+

∗ ,N−
∗

corresponds to a definite quaternion
algebra (the definite case). Let Z be the module E(K∞) in the indefinite
case, and the module Z in the definite case, and let Zp := Z ⊗ Zp. We also
write yσ

n := πE(P σ
n ) for all σ ∈ Gn, and define

NormKn/Kn−1(yn) :=
∑

σ∈Gn,n−1

yσ
n.

(In the indefinite case, when yn belongs to E(Kn), this is just the usual
trace.)

Regularized Heegner points: We make the crucial hypothesis from now on that
E is ordinary at p, i.e., the coefficient ap is not divisible by p (and hence, is
non-zero, if p > 3). We can then replace the Heegner points yn by certain
“regularized” Heegner points zn in Zp. This construction is introduced to
make the points norm-compatible.

Case 1: p does not divide N . Then the equations of sec. 2.4 tell us that

NormKn+1/Kn(yn+1) = apyn − yn−1, if n ≥ 1, (5)

uNormK1/K0(y1) =

{
apy0 if ε(p) = −1,

(ap − σp1 − σp2)y0 if ε(p) = 1.
(6)

Let α be the unit root of the polynomial x2 − apx + p, which exists since E
has good ordinary reduction. Define the regularized Heegner points zn ∈ Zp

by the rule

zn =
1

αn
yn −

1

αn+1
yn−1, if n ≥ 1,

z0 =

{
u−1(1− α−2)y0 if ε(p) = −1,

u−1(1− (σp1 + σp2)α
−1 + α−2)y0 if ε(p) = 1.
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Case 2: p divides N . Then the equations of sec. 2.4 tell us that

NormKn+1/Kn(yn+1) = apyn, if n ≥ 1, (7)

uNormK1/K0(y1) =

{
0 if ε(p) = −1,

(ap − σ)y0 if ε(p) = 1.
(8)

Let α = ap be the unit root of x2 − apx. Note that α = ±1 in this case.

zn =
1

αn
yn if n ≥ 1,

z0 =

{
0 if ε(p) = −1,

u−1(1− α−1σ)y0 if ε(p) = 1.

Note here that the regularized Heegner points zn actually belong to Z and
not just Zp.

Proposition 2.7 In all cases, the points zn ∈ Zp are norm-compatible, i.e.,∑
σ∈Gn+1,n

zσ
n+1 = zn.

Proof: A direct calculation.

2.6 Heegner points in the extended Mordell-Weil group

Let E†(Kn) denote the extended Mordell-Weil group which is defined in sec.
1.10. Thus E†(Kn) fits into an exact sequence

0 −→ Q −→ E†(Kn) −→ E(Kn) −→ 0,

where Q ⊂ (K0 ⊗Qp)
∗ is a discrete subgroup whose rank, t, is equal to:

a) Zero, if p does not divide N .
b) The number of primes of K0 above p, if p divides N−. This number is
always equal to [K0 : K].
c) The number of primes of K0 above p, if p divides N+ and E/Qp has split
multiplicative reduction.
d) The number of primes of even degree of K0 above p, if p divides N+ and
E/Qp has non-split multiplicative reduction.
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Suppose we are in the indefinite case, so that the regularized points zn belong
to E(Kn)⊗ Zp. Let z̃0

n be an arbitrary lift of zn to E†(Kn)⊗ Zp for each n.
Then, if m > n, the points NormKm/Kn(z̃0

m) are well-defined in E†(Kn)⊗Zp,
modulo pm−nQ, and form a Cauchy sequence. Hence, the limit

z̃n = lim
m−→∞

NormKm/Kn(z̃0
m)

exists in E†(Kn) ⊗ Zp. In the definite case, we make the convention that
z̃n := zn.
Remark: It will follow from the results of [BD4] that the points z̃n belong to
E†(Kn) ⊂ E†(Kn) ⊗ Zp when ε(N) = −1 and p|N− (i.e., in the indefinite,
non-split exceptional case). When ε(N) = −1 and p|N+ (in the indefinite,
split exceptional case), one does not expect such a rationality statement for
the points z̃n.

From prop. 2.7, it follows immediately that:

Corollary 2.8 In all cases, the points z̃n are norm-compatible, i.e.,∑
σ∈Gn+1,n

z̃σ
n+1 = z̃n.

2.7 The theta-elements and p-adic L-functions

If Z is any Z-module, we let as in the previous section Zp := Z ⊗ Zp.
Furthermore we denote by Zp[Gn] the induced module Zp ⊗ Z[Gn], and
by Zp[[G∞]] = lim← Zp[Gn] the completed group ring tensored with Zp,
where the inverse limit is taken with respect to the natural homomorphisms
Zp[Gn] −→ Zp[Gm] induced from the projections Gn −→ Gm for n ≥ m.

Using the regularized Heegner points z̃n introduced in the previous sec-
tion, we define the theta-elements

θn =
∑
σ∈Gn

(z̃σ
n) · σ−1 ∈ Zp[Gn].

(Recall that Zp = Zp in the definite case, and that Zp = E†(K∞) ⊗ Zp in
the indefinite case. Recall also that here we are assuming that the curve E
is ordinary at p.)
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Cor. 2.8 shows that the elements θn are compatible under the natural
projections νn+1,n : Zp[Gn+1] −→ Zp[Gn] induced by the homomorphisms
Gn+1 −→ Gn.

Hence, we can define

θ = θ∞ = lim
←

θn ∈ Zp[[G∞]].

Let x 7→ x∗ be the involution on Zp[Gn] induced by σ 7→ σ−1 on group-
like elements. Consider the tensor product of Zp[[G∞]] with itself, taken over
the ring Zp[[G∞]]. This is naturally isomorphic to Z⊗2

p [[G∞]]. We define the
“p-adic L-function” L in Z⊗2

p [[G∞]] by the formula

Ln = θn ⊗ θ∗n, L = lim
←
Ln,

where the product is taken formally.

2.8 Classical L-functions and parity conjectures

Let L(E/Q, s) =
∏

` 6|N(1−a``
−s + `1−2s)−1

∏
`|N(1−a``

−s)−1 be the complex

(Hasse-Weil) L-function of E over Q. By Wiles’s theorem this L-function is
the L-series of an eigenform f on Γ0(N), and the work of Hecke shows that
the function Λ(E/Q, s) = (2π)−sN s/2Γ(s)L(E/Q, s) extends to an entire
function and satisfies the functional equation

Λ(E/Q, s) = −wΛ(E/Q, 2− s),

where w is the eigenvalue of the Atkin-Lehner involution WN,1 acting on f
in S2(Γ0(N)).

Likewise, let

L(E/K, s) =
∏
v 6|N

(1− avNv−s + Nv1−2s)−1
∏
v|N

(1− avNv−s)−1,

where the product is taken over all finite places v of K. By defining

Λ(E/K, s) = (2π)−2sN s|D|sΓ(s)2L(E/K, s),

we find (cf. [GZ], p. 71) that L(E/K, s) satisfies the functional equation

Λ(E/K, s) = −ε(N)Λ(E/K, 2− s). (9)
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Note that the sign in the functional equation (9) is 1 if XN+,N− corresponds
to a definite quaternion algebra, and is −1 if XN+,N− corresponds to an
indefinite quaternion algebra.

Let E(K)+ and E(K)− be the + and − eigenspaces for complex conju-
gation acting on the Mordell-Weil groups E(K), let r+ and r− denote their
ranks over Z, and let r be the rank of E(K). The functional equations allow
us to predict the parity of the order of vanishing of L(E/K, s) and L(E/Q, s),
and hence the Birch Swinnerton-Dyer conjecture can be used to predict the
parities of r, r+ and r−.

Conjecture 2.9 1. If ε(N) = 1, then r is odd. More precisely, r+ is even
and r− is odd, if w = −1, and r+ is odd and r− is even, if w = 1.

2. If ε(N) = −1, then r is even. More precisely, r+ and r− are both even
if w = −1, and r+ and r− are both odd if w = 1.

More generally, let χ : Gn −→ C∗ be a complex valued character, and let
χ(θn) ∈ Zp ⊗ C be the natural image of θn by χ.

One also has the twisted L-function

L(E/K,χ, s) =
∏
v 6|N

(1−χ(v)avNv−s+χ2(v)Nv1−2s)−1
∏
v|N

(1−χ(v)avNv−s)−1,

which has a functional equation analogous to (9) relating its value at s and
2− s. The sign in this functional equation is −ε(N) as in formula (9) if χ is
unramified at p, and is −ε(N ′) otherwise, where N ′ is the prime-to p part of
N :

N ′ =

{
N/p if p|N,
N otherwise.

Note here that the sign in the functional equation is 1 if XN+
∗ ,N−

∗
corre-

sponds to a definite quaternion algebra, and is −1 if XN+
∗ ,N−

∗
corresponds to

an indefinite quaternion algebra. Notice also that the signs for L(E/K, s)
and L(E/K,χ, s) are the same, except in the case where p divides N and
ε(p) = −1 (i.e., in the non-split exceptional case), which is precisely the case
when XN+,N− and XN+

∗ ,N−
∗

are different Shimura curves, corresponding to
quaternion algebras with opposite ramification types at ∞.

The space (E(Kn)⊗ C) is a finite dimensional complex vector space en-
dowed with an action of the Galois group Gn. Let rχ be the dimension of
the χ-eigenspace (E(Kn)⊗C)χ for this action. The parity conjecture allows
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us to predict the parity of rχ. It is reasonable to expect that the values of
rχ are equal to 0 or 1 for almost all values of χ as χ varies over the anticy-
clotomic characters of all the Gn. The following is a slight generalization of
a conjecture of Mazur [Ma2]:

Conjecture 2.10 1. If ε(N ′) = 1, then E(K∞) ⊗ Qp/Zp has corank 1
over the Iwasawa algebra Zp[[G∞]].

2. If ε(N ′) = −1, then E(K∞) ⊗ Qp/Zp is of corank 0 over the Iwasawa
algebra Zp[[G∞]]. (I.e., E(K∞) is a finitely generated Z-module.)

2.9 Parity conjectures for the extended Mordell-Weil
group

Conjecture 2.9 immediately implies the following:

Conjecture 2.11 1. If ε(N ′) = 1, then r̃ is odd. More precisely, r̃+ is even
and r̃− is odd, if w′ = −1, and r̃+ is odd and r̃− is even, if w′ = 1.

2. If ε(N ′) = −1, then r̃ is even. More precisely, r̃+ and r̃− are both even
if w′ = −1, and r̃+ and r̃− are both odd if w′ = 1.

2.10 Relation with classical L-values

In this section we explain how θ and L ought to be related to special val-
ues of the classical L-functions L(E/K, χ, s). This section is intended for
motivation only, and will not be used elsewhere.

Choose an embedding Zp −→ C, and let α denote, by abuse of notation,
the complex root of x2 − apx + p (or x2 − apx) which is the image of the
α ∈ Zp chosen previously, and let ᾱ denote the non-unit root. Suppose that
χ is a primitive character on Gn for some n. Define the local multiplier Lp(χ)
by the formula:

Lp(χ) =


α−n if n ≥ 1,

(1− α−2) if n = 0, ε(p) = −1,
(1− α−1χ(σp1))(1− α−1χ(σp2)) if n = 0, ε(p) = 1, p 6 |N,

(1− α−1χ(σ)) if n = 0, ε(p) = 1, p|N.
(10)

The embedding Zp −→ C gives rise to a natural linear map Z⊗2
p −→ C

induced by the normalized Néron-Tate height in the indefinite case (when
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Zp = E†(K∞)⊗Zp) and by multiplication in the definite case (when Zp = Zp).
Let LC ∈ C[[G∞]] be the element deduced from L by applying this map to
the coefficients. Then we have:

Conjecture 2.12 Let χ(LC) ∈ C be the element obtained by applying χ to
the element LC.

1. In the indefinite case,

χ(LC) = Lp(χ)2 · L′(E/K, χ, 1)

Ω
·
√

D ·
∏
`|N−

m−1
` ,

where D = Disc(O).

2. In the definite case,

χ(LC) = Lp(χ)2 · L(E/K,χ, 1)

Ω
·
√

D ·
∏
`|N−

m−1
` .

A number of cases of this conjecture have been established, thanks to the
work of Gross-Zagier [GZ] and Gross [Gr2].
Case 1: The indefinite case. In [GZ], the formula relating the heights
of Heegner points to derivatives of L-series at s = 1 is established when
XN+,N− = XN,1 = X0(N) is the modular curve of level N (i.e., when all
primes dividing the conductor N are split in K/Q), and when χ is an un-
ramified character of Gal(Kab/K) (i.e., when the conductor c that was fixed
in sec. 2.1 is equal to 1, so that K0 is the Hilbert class field of K, and when
χ factors through G0). However, it seems likely that the methods of Gross
and Zagier would extend to prove the general case. For more details, see the
discussion in [GZ], p. 130-133, and forthcoming work of Keating and Kudla.
Case 2: The definite case. Here, the formula has been proved, for forms of
weight 2 and prime conductor, and for unramified characters of K, by Gross
in [Gr2]. The methods of [Gr2] should extend to arbitrary levels.

Although the Gross-Zagier formulas are not completely worked out in the
generality in which we formulate them in conjecture 2.12, we mention this
conjecture for motivation only, and will not require the precise result at any
stage of our calculations.
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Conj. 2.12 suggests the following philosophy. When L is constructed
from Heegner points attached to an indefinite Shimura curve, then the ele-
ment LC is interpolating the special values of L′(E/K,χ, 1). When L comes
from a definite Shimura curve, then LC interpolates the special values of
L(E/K,χ, 1). Hence the “p-adic analytic” properties of L should be similar
to those of L′(E/K, s) (resp. L(E/K, s)) in the indefinite (resp. definite)
case, in a manner which is consistent with the classical Birch Swinnerton-
Dyer conjectures. This is the philosophy that has guided us in formulating
our conjectures of Mazur-Tate-Teitelbaum type.

2.11 Extra zeroes

Conjecture 2.12 predicts that χ(LC) is equal to zero when the L-functions
L(E/K,χ, 1) (resp. L′(E/K,χ, 1)) vanish in the definite (resp. indefinite)
cases or when the p-adic multiplier term Lp(χ) is equal to zero. This vanish-
ing of the p-adic multiplier term occurs if and only if n = 0, and

1. p divides N+, and ap = χ(Frobp), or

2. p divides N−.

In particular, if χ is the trivial character, then Lp(χ) vanishes precisely in
the following two situations:

1. In the split exceptional case, i.e., when p divides N+, and ap = 1.

2. In the non-split exceptional case, i.e., p divides N−.

2.12 The functional equation for θ

Let x 7→ x∗ be the involution on Zp[Gn] sending
∑

σ aσ ·σ to
∑

σ aσ ·σ−1. Let
x 7→ τx be the involution induced by complex conjugation on Zp. (Thus, τ
is the identity when Zp = Zp, and is complex conjugation on E(Kn)⊗ Zp in
the indefinite case.)

Proposition 2.13 There exists γ ∈ G∞ such that

τθ = w′
N+
∗ ,N−

∗
θ∗γ = ε(N ′)w′θ∗γ.
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Proof: Let n be greater than or equal to 1. Using the fact that τσ = σ−1τ
for all σ ∈ Gn, together with prop. 2.6, we have:

τθn = τ
∑
σ∈Gn

z̃σ
n · σ−1 =

∑
σ∈Gn

(τ z̃n)σ−1 · σ−1

=
∑

γnW
′
N+
∗ ,N−

∗
(z̃σ−1

n ) · σ−1 = w′
N+
∗ ,N−

∗
θ∗γn.

This proposition can be viewed as giving a “functional equation” for the
p-adic L-function corresponding to θ. We spell it out in the various special
cases:

Case 1: The definite case: In that case complex conjugation τ acts trivially
on Zp, and ε(N ′) = −1. Hence the functional equation becomes

θ = −w′θ∗ (mod G∞). (11)

Case 2: The indefinite case: In that case ε(N ′) = 1, so the functional equa-
tion becomes

τθ = w′θ∗ (mod G∞). (12)

Let In be the augmentation ideal in the group ring Zp[Gn]. We say that θn

vanishes to order ρ if θn belongs to Zp ⊗ Iρ
n, and that θ vanishes to order ρ

if θn vanishes to order ρ for all n. The order of vanishing of θ is the greatest
ρ such that θ vanishes to order ρ. If ρ is the order of vanishing of θ, we let θ̄
denote the projection of θ to Zp ⊗ Iρ/Iρ+1.

Lemma 2.14 In the indefinite case, θ̄ belongs to (E†(K∞)⊗ Iρ/Iρ+1)G∞.

This is readily checked.
As in the classical case, the functional equation allows us to deduce some

information about the parity of ρ and the nature of the leading term θ̄.

Corollary 2.15 Let ρ be the order of vanishing of θ.

1. In the definite case, ρ is even if w′ = −1, and ρ is odd if w′ = 1.

2. In the indefinite case, θ̄ belongs to the (−1)ρw′- eigenspace for complex
conjugation acting on (E†(K∞)⊗ Iρ/Iρ+1)G∞.
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Proof: Let ρ be the order of vanishing of θ, and let θ̄ be the image of θ in Zp⊗
Iρ/Iρ+1. The involution ∗ acts by multiplication by (−1)ρ on Z ⊗ (Iρ/Iρ+1).
In the definite case, equation (11) implies

θ̄ = −w′(−1)ρθ̄.

Since θ̄ is non-zero, we have −w′(−1)ρ = 1, which implies the parity state-
ment for ρ. In the indefinite case, equation (12) implies

tθ̄ = w′(−1)ρθ̄,

where t is the eigenvalue for τ acting on θ̄. Hence t = w′(−1)ρ.

3 The regulator term

3.1 p-adic heights

For the rest of this paper, assume to simplify matters that c = 1, so that
G∞ is an extension of the class group of K by G0

∞ = (O∗K)\(OK ⊗ Zp)
∗/Z∗p.

Let I be the augmentation ideal in the completed group ring Z[[G∞]]. The
map G∞ −→ I/I2 which sends g to (g− 1) identifies G∞ with I/I2. For any
place v of K, let recv : K∗v −→ I/I2 be the reciprocity law map of local class
field theory. Finally let

rec : A∗K −→ I/I2

be the reciprocity law map of global class field theory (where AK denotes the
ring of adèles of K).

Let E0(K) denote the subgroup of points of E(K) that reduce to the
connected component of the Néron model of E over Spec(Z) and let E†0(K)
denote the full inverse image of E0(K) in E†(K). Let P denote the set of
primes above p in K at which E has split multiplicative reduction (this set
has cardinality 0 in the non-exceptional case, 1 in the non-split exceptional
case, and 2 in the split exceptional case), and denote by ZP the set of maps
from P to Z. For each p ∈ P , let qp denote the Tate period for E at p.

There is an exact sequence

0 −→ ZP −→ E†0(K) −→ E0(K) −→ 0. (13)
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The map E†0(K) −→ E0(K) is the natural projection sending (P̃ , P ) to P ,
and the map from ZP to E†0(K) sends h ∈ ZP to the point (P̃ , P ) given by
P = 0 and

P̃ =
∏
p∈P

q
h(p)
p .

The exact sequence (13) has a natural splitting E0(K) −→ E†0(K) by sending
P to (P̃unit, P ) where P̃unit is a unit in K∗p at all places p of P . In this way

we can identify E†0(K) with ZP × E0(K).
We define bilinear pairings

〈 , 〉1 : E0(K)× E0(K) −→ I/I2,

〈 , 〉2 : ZP × E0(K) −→ (I/I2)⊗Qp,

〈 , 〉3 : ZP × ZP −→ (I/I2)⊗Qp,

as follows:

1. 〈P, P 〉1 = rec((αv)), where (αv) is an idèle in lim← Ô∗pn\K̂∗/K∗ defined by

αv = πmax(0,−ordv(x(Pv))
v , for v 6 |p, αv = σ2(P ), for v|p,

where σ is the p-adic σ-function (cf. [MTT], p. 30-33 or [MT1]), πv is a
uniformizer at v, and x(Pv) is the x coordinate of the point P , in the minimal
Weierstrass model for E over Kv.

2. 〈g, P 〉2 =
∑

p∈P g(p)ordp(qp)
−1recp(P̃unit).

3. 〈g, h〉3 =
∑

p∈P ordp(qp)
−1g(p)h(p)recp(qp).

Following [MTT], we combine the pairings 〈 , 〉1, 〈 , 〉2, and 〈 , 〉3 to
obtain the symmetric bilinear Mazur-Tate pairing on ZP × E0(K) = E†0(K)
with values in (I/I2) ⊗ Qp. Since the value group is divisible, and since

E†0(K) has finite index in E†(K), we can extend this pairing uniquely to a
pairing

〈 , 〉MTT : E†(K)× E†(K) −→ (I/I2)⊗Qp.

Let ε be a formal element satisfying ε2 = 0; following [Da2], §3.1, we set

〈P, Q〉 = 〈P, Q〉MTT + ε(P ⊗Q).
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This pairing takes values in the module M ⊗Qp, where

M = (I/I2)⊕ ε(E†(K)⊗2).

Behaviour under complex conjugation: If γ is any Galois automorphism, it
acts on E†(K) in the natural way (using the action of complex conjugation on
E†(K) that was defined in sec. 1.10) and acts on I/I2 = G∞ by conjugation.
The pairing 〈 , 〉MTT has the Galois-equivariance property:

〈γP, γQ〉MTT = 〈P, Q〉γMTT .

In particular, if γ = τ is complex conjugation, we find:

〈τP, τQ〉MTT = −〈P, Q〉MTT ,

since τ acts on I/I2 = G∞ as multiplication by −1.

Corollary 3.1 The subspaces E†(K)+ and E†(K)− are isotropic for the
Mazur-Tate pairing 〈 , 〉MTT .

3.2 The regulator

Let ΛM be the formal graded commutative algebra having M as module of
degree 1 elements. Thus,

ΛM = ⊕∞k=0Λ
(k)
M ,

Λ
(0)
M = Z, Λ

(k)
M = (Ik/Ik+1) ⊕ ε(Ik−1/Ik ⊗ E†(K)⊗2).

Given an r × r matrix with entries in M , its determinant can be defined to
be the obvious element in Λ

(r)
M .

Let P1, . . . , Pr̃ be a Z-basis for the group E†(K) modulo torsion, and let t
denote the index of the Z-module generated by P1, . . . , Pr̃ in the full extended
Mordell-Weil group E†(K). We define the regulator R by the formula

R =
1

t2
det(〈Pi, Pj〉) ∈ Λ

(r̃)
M ⊗Qp,

and we write
R = RMTT + εR′MTT .
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The notation is justified, as the reader will verify: the term RMTT is the
original Mazur-Tate regulator obtained by taking the determinant of the
p-adic pairing of Mazur and Tate, with the anticyclotomic p-adic height
replacing the cyclotomic height pairing. The term R′MTT can be thought
of as a “formal deformation” of the Mazur-Tate regulator. It belongs to
(I r̃−1/I r̃) ⊗ E†(K)⊗2 ⊗ Qp. We now give a more explicit description. Let
Rij be the (i, j)-th minor of the pairing matrix (〈Pi, Pj〉MTT )i,j≤r̃, in I r̃−1/I r̃.
Then we have:

R′MTT =
1

t2

r̃∑
i,j=1

(−1)i+jPi ⊗ Pj ⊗Rij.

For more details, see [Da1] and [Da2].

The regulator when r̃ is even: In that case, we have

Lemma 3.2 If r̃+ 6= r̃−, then the term RMTT vanishes, and so does R′MTT .

Proof: If r̃+ 6= r̃−, then the ranks of these spaces differ by at least 2. Hence
by cor. 3.1 E†(K) contains an isotropic subspace of rank > r̃/2. Therefore
the determinant of the pairing matrix (〈P, Q〉MTT ), and its (r̃− 1)× (r̃− 1)
minors, vanish.

Let P+
1 , . . . P+

a be a basis for E†(K)+ modulo torsion, and let P−1 , . . . , P−b
be a basis for E†(K)− modulo torsion. Let t denote the index of the group
generated by these points in E†(K). A direct computation shows:

Lemma 3.3 If r̃+ = r̃−, then

RMTT = − 1

t2
det(〈P+

i , P−j 〉MTT )2.

Since the expression for RMTT is essentially a square, we set R
1/2
MTT :=

1
t
det(〈P+

i , P−j 〉MTT ) when r̃+ = r̃−, and R
1/2
MTT = 0 otherwise. Note that

R
1/2
MTT is only defined up to sign. The p-adic height pairing in the cyclo-

tomic setting is conjectured to be non-degenerate (cf. [MTT], p. 38). This
motivates the following:

Conjecture 3.4 The regulator R
1/2
MTT , and hence also RMTT , is always non-

zero when r̃+ = r̃−.

The regulator when r̃ is odd: In that case, we have
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Lemma 3.5 The term RMTT always vanishes. If |r̃+− r̃−| > 1, then R′MTT

also vanishes.

Proof: It is the same as for lemma 3.2.
We now give a more explicit description of the regulator R′MTT in the

case where |r̃+ − r̃−| = 1. Consider the pairing

(E†(K)⊗ Zp)
+ × (E†(K)⊗ Zp)

− −→ (I/I2)⊗Q

induced by 〈 , 〉MTT . Let P be an element of E†(K)⊗ Zp such that

1. P belongs to the largest eigenspace for complex conjugation, and be-
longs to the radical of the pairing 〈 , 〉MTT .

2. P is not divisible by p in E†(K)⊗ Zp.

Complete P to a basis (P, P+
1 , . . . , P+

s , P−1 , . . . , P−s ) of E†(K) ⊗ Zp, where
s = (r̃−1)/2, and the P±i belong to (E†(K)⊗Zp)

±. Assume furthermore that
the basis is chosen so that it is equivalent, by a transformation in GLr̃(Zp)
of determinant 1, to an integral basis for E†(K) modulo torsion. A direct
computation shows

Lemma 3.6 If |r̃+ − r̃−| = 1, then

R′MTT = − 1

t2
(P ⊗ P )⊗ det(〈P+

i , P−j 〉MTT )2.

Since the expression for R′MTT is essentially a square, we set

R
′1/2
MTT :=

1

t
P ⊗ det(〈P+

i , P−j 〉MTT )

when r̃+ and r̃− differ by at most 1, and set R
′1/2
MTT = 0 otherwise. The term

R
′1/2
MTT belongs to E†(K)⊗ (Is/Is+1)⊗Q, and is only well defined up to sign.

The following conjecture is a natural generalization of a conjecture of
Mazur [Ma3].

Conjecture 3.7 The pairing

(E†(K)⊗ Zp)
+ × (E†(K)⊗ Zp)

− −→ (I/I2)⊗Q

induced by 〈 , 〉MTT is either left or right non-degenerate.
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This conjecture implies that if |r̃+ − r̃−| = 1, the radical of the pairing is
of rank 1 over Zp, and belongs to the larger of the two eigenspaces under
complex conjugation. It implies also that the regulator R′MTT is always non-
zero when |r̃+ − r̃−| = 1.

We say that we are in an unbalanced case if |r̃+ − r̃−| > 1. In the
unbalanced case we always have R = 0.

4 The conjecture

4.1 Orders of vanishing

Conjecture 4.1 Let ρ be the exact order of vanishing of θ.

1. In the definite case, ρ is equal to max(r̃+, r̃−).

2. In the indefinite case, ρ is equal to max(r̃+, r̃−)− 1.

This conjecture may appear somewhat unmotivated. Evidence for it is given
in [B1], [B2], [Da1], [Da3], and [BD2].

Assume the parity conjecture. Then r̃ is even in the definite case and
2 max(r̃+, r̃−) ≥ r̃, with equality if and only if r̃+ = r̃−. In the indefinite
case, r̃ is odd and 2(max(r̃+, r̃−) − 1) ≥ r̃ − 1, with equality if and only if
|r̃+ − r̃−| = 1. Conjecture 4.1 can therefore be restated in terms of L in a
weaker form, but which may appear more natural in light of the conjecture
that will be made in sec. 4.2:

Conjecture 4.2 .

1. In the definite case, L vanishes to order at least r̃, and vanishes to
order exactly r̃ if and only if r̃+ = r̃−.

2. In the indefinite case, L vanishes to order at least r̃ − 1, and vanishes
to order exactly r̃ − 1 if and only if |r̃+ − r̃−| = 1.

4.2 The leading term

Motivated by conj. 4.2, define the leading coefficient L̄ to be the projection
of L to the value group I r̃/I r̃+1 in the definite case, and to Z⊗2 ⊗ I r̃−1/I r̃ =
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E†(K)⊗2⊗ (I r̃−1/I r̃) in the indefinite case. For each rational prime q, let mq

denote the number of connected components in the Néron model of E over
Fq, and let m =

∏
q|N+ mq.

The definite case: Then the parity conjecture 2.11 implies that r̃ is even, so
that r̃+ ≡ r̃− (mod 2). In that case, the regulator RMTT defined in sec. 3.2
belongs to (I r̃/I r̃+1)⊗Q.

Conjecture 4.3 The following equality holds in (I r̃/I r̃+1)⊗Q:

1. (Non-exceptional case):

L̄ = Lp(1)
2 ·#III(E/K) ·RMTT ·m2.

2. (Exceptional case):

L̄ = #III(E/K) ·RMTT ·m2.

Let s = r̃/2. We observe that the leading coefficient L̄ is essentially the
square of the element θ̄, the projection of θ to Is/Is+1. All the terms occuring
on the right of our conjectured formula are also squares, so it is natural to
reformulate conjecture 4.3 in terms of the square roots:

Conjecture 4.4 The following equality holds in (Is/Is+1)⊗Q:

1. (Non-exceptional case):

θ̄ = ±Lp(1) ·
√

#III(E/K) ·R1/2
MTT ·m.

2. (Exceptional case):

θ̄ = ±
√

#III(E/K) ·R1/2
MTT ·m.

The indefinite case: Suppose we are in the indefinite case. Then the parity
conjecture 2.11 implies that r̃ is odd, so that r̃+ 6≡ r̃− (mod 2). In that case,
the regulator RMTT is always zero, and the regulator R′MTT defined in sec.
3.2 belongs to E†(K)⊗2 ⊗ I r̃−1/I r̃ ⊗Q. The leading coefficient L̄ belongs to
E†(K∞)⊗2 ⊗ I r̃−1/I r̃.
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Conjecture 4.5 The following equality holds in E†(K)⊗2 ⊗ (I r̃−1/I r̃)⊗Q:

1. (Non-exceptional case):

L̄ = Lp(1)
2 ·#III(E/K) ·R′MTT ·m2.

2. (Exceptional case):

L̄ = #III(E/K) ·R′MTT ·m2.

Let s = (r̃ − 1)/2. We observe that the leading coefficient L̄ is essentially
the square of the element θ̄, the projection of θ to E†(K) ⊗ Is/Is+1. Hence
conj. 4.5 can also be reformulated in terms of square roots:

Conjecture 4.6 The following equality holds in E†(K)⊗2 ⊗ (Is/Is+1)⊗Q:

1. (Non-exceptional case):

θ̄ = ±Lp(1) ·
√

#III(E/K) ·R
′1/2
MTT ·m.

2. (Exceptional case):

θ̄ = ±
√

#III(E/K) ·R
′1/2
MTT ·m.

Remark on the unbalanced case: We say that the extended Mordell-Weil
group is unbalanced if |r̃+− r̃−| > 1. In that case, the regulator terms RMTT

and R′MTT are both 0. In harmony with this fact, conj. 4.1 predicts that L
vanishes to order strictly greater than r̃ (resp. r̃ − 1) in the definite (resp.
indefinite) case. Thus conj. 4.3 and 4.5 should reduce to the equality 0 = 0 in
the unbalanced case. This is not really very satisfying, and one would like an
interpretation of the projection of L to Z⊗I2ρ/I2ρ+1, where ρ is max(r̃+, r̃−)
in the definite case, and is max(r̃+, r̃−) − 1 in the indefinite case. Such an
interpretation has been proposed in the generic case, (under certain mild
technical assumptions), using the notion of derived p-adic height. (Cf. [BD2]
and [BD3].) It would be of interest to extend the formalism of derived heights
to cover exceptional zero situations.
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5 Applications and refinements

5.1 p-adic periods and p-adic L-functions

In this section, we restrict our attention to the split exceptional case, i.e., we
suppose that p divides N+ and that E has split multiplicative reduction over
Qp. We also assume that we are in the definite case, i.e., ε(N ′) = ε(N) = −1.

In this case, our conjecture predicts that we can recover the values of p-
adic periods from special values of the p-adic L-functions, in a manner quite
analogous to [MTT]. We describe precisely how, and present some numerical
evidence.

The curve XN+,N− = XN+
∗ ,N−

∗
is associated to a definite quaternion alge-

bra. Observe that the element L constructed in sec. 2.7 belongs to Z[[G∞]]
(and not just Zp[[G∞]] as in the non-exceptional case). Let now I ⊂ Z[[G∞]]
be the augmentation ideal of Z[[G∞]].

Lemma 5.1 The element θ belongs to I.

Proof: This follows from equation (8) in sec. 2.5, since ap = α is equal to 1
in our case.

We have the exact sequence

1 −→ Q −→ E†(K) −→ E(K) −→ 0,

where Q ⊂ K∗p is a Z-module of rank 2. Let us identify K∗p with the algebra
Q∗p×Q∗p by choosing an ordering of the two places of K above p. Then a basis
for the module Q is given by the elements (q, 1) and (1, q), where q ∈ Q∗p
denotes Tate’s p-adic period associated to E/Qp . Let recp : K∗p −→ I/I2(=
G∞) be the reciprocity law map of local class field theory.

Conjectures 2.9 and 2.11 predict that E(K) and E†(K) have even rank.
Let us suppose further that the rank of E(K) is 0, so that E(K) is finite of
order t.

Then the regulator RMTT becomes the determinant of the matrix with
entries in (I/I2)⊗Q:

RMTT =
1

t2
det

(
ordp(q)

−1recp(q, 1) 0
0 ordp(q)

−1recp(1, q)

)
.

Since recp(q, 1) = −recp(1, q), we find:

RMTT = −t−2ordp(q)
−2recp(q, 1)2, R

1/2
MTT = ±t−1ordp(q)

−1recp(q, 1).
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Conjecture 5.2 Suppose E(K) has rank zero, and let θ̄ be the projection of
θ to I/I2 = G∞.

1. The following equality holds in (I/I2)⊗Q:

θ̄ = ±
√

#III(E/K) ·m · t−1 · ordp(q)
−1 · recp(q, 1).

2. The following equality holds in (I/I2) = G∞:

t · ordp(q) · θ̄ = ±
√

#III(E/K) ·m · recp(q, 1).

Remark: Part 1 of the conjecture is merely a specialization of conj. 4.4. Part
2 of the conjecture is stronger, since the map (I/I2) −→ (I/I2) ⊗ Q has
a kernel of order (p − 1)/uK . Part 2 can be viewed as a “refinement” of
the p-adic conjecture analagous to the refinements proposed in [MT2]. This
refinement amounts to an extra congruence modulo (p − 1)/uK . In all of
our numerical verifications, we have always tested for the stronger refined
conjecture.

Combined with the classical Birch Swinnerton-Dyer conjecture, conj. 5.2
can be restated without explicitly making the hypothesis r = 0 in terms of
the classical L-function L(E/K, s) at s = 1, as follows:

Conjecture 5.3 Suppose we are in the split exceptional and definite case.
Let θ1 be the projection of θ to I/I2 ⊗Q. Then

θ1 = ordp(q)
−1 · recp(q, 1) ·

√
L(E/K, 1)D1/2Ω−1

∏
q|N−

m−1
q .

Of course, if L(E/K, 1) is equal to zero, then conj. 4.1 combined with the
classical Birch Swinnerton-Dyer conjecture implies that θ1 = 0, and the above
equality reduces to the statement 0 = 0. Conjecture 5.3 can be viewed as a
direct anti-cyclotomic analogue of the p-adic formula proved by Greenberg
and Stevens in the cyclotomic case [GS], together with the refinement proved
recently by de Shalit [de Sh]. It would be of interest to see if the methods of
[GS] and [de Sh] can be used to tackle the anti-cyclotomic formula of conj.
5.3.

Numerical verification:
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Examples with N = 14 and p = 7
Let K = Q(w), with w = 1+

√
−3

2
be the quadratic imaginary field of

discriminant −3. The prime 2 is inert in K and 7 is split, so that XN+,N− =
XN+

∗ ,N−
∗

= X7,2. The 7-adic Heegner distribution attached to the data N =
14, K, was computed up to level 75 using the programming package Pari.

The calculation yields an element θ in Z[G5],

θ =
2·74∑
i=1

aiσ
i

where σ is a generator of G5. Now, we verify that θ belongs to the augmen-
tation ideal I of Z[G5]. Using the identifications

I/I2 = G5 = (OK ⊗ Z/75Z)∗/(Z/75Z)∗〈ζ3〉,

we find

θ̄ =
2·74∏
i=1

σiai = (5 + w)−1983 = 8313 + 16456w

Let π = 2+w and π̄ = 3−w be elements of OK of norm 7 and let p = (2+w)
be one of the primes of OK above 7. Projecting θ̄ onto the minus-part for
complex conjugation, and working modulo p5, we find:

θ̄− := θ̄/τ θ̄ = 4073 (mod p5).

The 7-adic period of X0(14) is

q = 2700782 = 7874 · 73 (mod 78),

so that,
rec(q, 1) = rec(q · π−3, π̄−3) = 174 (mod p5).

By consuting the tables of [Ant], we find that

t = 18, ordp(q) = 3, m = 18.

(The only point that does not follow directly from the tables is that

E(Q(
√
−3))tors ' Z/6Z× Z/3Z.)
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Hence conj. 5.2 (assuming #III(E/K) = 1) predicts that

(θ̄−)±3 = 174 = recp(q, 1) (mod 75).

One checks that this is indeed the case, namely, (θ̄−)−3 = 174.
We have performed a similar calculation with the quadratic field of class

number one and discriminant D = −19 in which 2 is inert and 7 is split, with
a 7-adic precision of 7−5. The results are summarized in the following table.

D θ̄− (mod 75) q− = q · (π
π̄
)3 (mod 75) n, such that θ̄− = (q−)n

−3 12074 174 −1
3

−19 13145 13145 1

The curves X0(26) and X13,2

We did similar verifications with X0(26), working now with quadratic fields
of class number 1 in which 13 is split and 2 is inert. We recovered in this way
the 13-adic periods of the curve 26A, but not those of the curve 26B which
has non-split multiplicative reduction at 13. The results are summarized in
the following table.

D θ̄− (mod 134) q− = q · (π
π̄
)3 (mod 134) n, such that θ̄− = (q−)n

−3 14893 11656 1
3

−43 13798 13798 1

5.2 A rigid analytic Gross-Zagier formula, and Koly-
vagin’s descent

In this section we place ourselves in the non-split exceptional case, i.e., p|N
is inert in K, and hence p divides N−. Let q ∈ Q∗p be as before the Tate
period. Suppose also that we are in the indefinite case, i.e., that the curve
XN+

∗ ,N−
∗

corresponds to an indefinite quaternion algebra, so that θ belongs

to E†(K∞)[[G∞]]. In that case ε(N) = −1, so that the parity conjecture 2.9
predicts that E(K) has even rank.

Assume that E(K) has rank 0. Then E†(K) has rank 1, and is generated
by the Tate period q ∈ K∗p , modulo torsion. Hence the regulator on the
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extended Mordell-Weil group is just the formal expression

R′MTT =
1

t2
q ⊗ q in E†(K)⊗2 ⊗Q.

Conjecture 4.1 implies that L, and θ, vanish to order 0, and the leading term θ̄
is just the term NormK0/K(z̃0), where z̃0 is the Heegner point in the extended
Mordell-Weil group defined in sec. 2.5. Hence conjecture 4.6 implies:

Conjecture 5.4 If E(K) has rank zero, then

NormK0/K(z̃0) = q±
√

#III(E/K)mt−1

.

Let yn ∈ E(Kn) be the (“naive”) Heegner points defined in sec. 2.5, and let
ỹn ∈ K∗n,p be elements such that ΦTate(ỹn) = yn. Let zn = norm(ỹn). Then
zn is an integer power of the Tate period q ∈ K∗p , and the integer logq(zn) is
well defined modulo [Kn : K0] = (p + 1)u−1pn−1. Using the classical Birch
Swinnerton-Dyer conjecture, conjecture 5.4 above can be restated directly in
terms of the classical L-function L(E/K, s) at s = 1, as follows:

Conjecture 5.5

logq(zn)2 =
L(E/K, 1)

√
D

Ω

∏
q|N−

m−1
q (mod (p + 1)u−1pn−1).

This formula can be viewed as a rigid analytic version of the Gross-Zagier
formula, because it expresses special values of the classical L-function (which
perhaps ought to be thought of as the first derivative of the p-adic L-function)
in terms of Heegner points. The proof of a very closely related formula, and
the arithmetic applications that were mentioned in the introduction, are
given in [BD4].

5.3 p-adic analytic construction of rational points

In this section we examine again the non-split exceptional case, but this
time suppose that we are in the definite case, i.e., that the curve XN+

∗ ,N−
∗

corresponds to a definite quaternion algebra, so that θ belongs to the integral
group ring Z[[G∞]]. In that case the sign ε(N ′) = −1 and ε(N) = 1. Hence
the parity conjecture 2.9 predicts that E(K) has odd rank. Assume that
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E(K) has rank 1, and let P be a generator for its Mordell-Weil group modulo
torsion.

Then E†(K) has rank 2, and is generated (up to torsion) by the point
P and the Tate period q. We now compute the regulator on this extended
Mordell-Weil group. Since 〈q, q〉MTT = 〈P, P 〉MTT = 0 by cor. 3.1, the
regulator has the form

RMTT =
1

t2
det

(
0 ordp(q)

−1recp(P̃ )

ordp(q)
−1recp(P̃ ) 0

)
,

where recp : K∗p −→ (I/I2) is the reciprocity law map of local class field

theory, and P̃ is an arbitrary lift P to K∗p by the Tate parametrization.
(Note that recp factors through K∗p/Q∗p, and that q belongs to Q∗p, so that

the value of recp(P̃ ) does not depend on the choice of P̃ .) Note also that if
P belongs to E(Q) and E has split multiplicative reduction over Qp, or if
P belongs to E(K)− and E has non-split multiplicative reduction over Qp,
then recp(P̃ ) = 0 and RMTT = 0. These situations correspond to unbalanced
cases, where one of the eigenspaces in E†(K) for complex conjugation has
rank 0 and the other has rank 2. Otherwise,

RMTT = −t−2ordp(q)
−2recp(P̃ )2 ∈ (I2/I3)⊗Q,

R
1/2
MTT = ±t−1ordp(q)

−1recp(P̃ ).

Conjecture 4.4 can thus be reformulated as:

Conjecture 5.6 If E(K) has rank one, let P̃ be a lift to of a generator
P ∈ E(K) to K∗p .

1. The following identity holds in I/I2 ⊗Q:

θ̄ = ±
√

#III(E/K) ·m · t−1 · ordp(q)
−1 · recp(P̃ ).

2. (Refined conjecture): The following identity holds in I/I2:

t · ordp(q) · θ̄ = ±
√

#III(E/K) ·m · recp(P̃ ).
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It is of interest to reformulate the above conjecture directly in terms of the
Jacobians JN+,N− , as a relation between different Heegner point constructions
via the Cerednik-Drinfeld uniformization.

Let us relax for now the assumption that c = 1, and allow ourselves to
work over general ring class fields of conductor c, with (c, pND) = 1. We also
assume, to lighten notations, that D < −4 or that c > 1, so that O∗ = 〈±1〉.
We let θN+

∗ ,N−
∗
∈ Jp−new

N+
∗ ,N−

∗
[[G∞]] denote the element

θN+
∗ ,N−

∗
= lim

n−→∞

∑
σ∈Gn

P σ
n · σ−1,

where Pn ∈ Jp−new

N+
∗ ,N−

∗
is the Heegner class in JN+

∗ ,N−
∗

defined in sec. 2.4, pro-

jected onto Jp−new

N+
∗ ,N−

∗
. We let I denote the kernel of the map Z[[G∞]] −→ Z[G0]

induced from the natural projection G∞ −→ G0. Then we have

I/I2 = Z[G0]⊗G0
∞ = (K∗p/Q∗p)⊗ Z[G0].

From equation (8) of sec. 2.5, we have:

Lemma 5.7 The element θN+
∗ ,N−

∗
belongs to Jp−new

N+
∗ ,N−

∗
⊗ I.

Let θ̄N+
∗ ,N−

∗
be the projection of θN+

∗ ,N−
∗

to

Jp−new

N+
∗ ,N−

∗
⊗ (I/I2) = Jp−new

N+
∗ ,N−

∗
⊗ (K∗p/Q∗p)⊗ Z[G0].

Multiplication by (1 − τ) gives a map (K∗p/Q∗p) −→ (K∗p)1, where (K∗p)1

denotes the elements of K∗p of norm 1. Let θ̄−
N+
∗ ,N−

∗
be the element (1 −

τ)θ̄N+
∗ ,N−

∗
. This element belongs canonically to

Jp−new

N+
∗ ,N−

∗
⊗K∗p ⊗ Z[G0].

Let P0 ∈ JN+,N−(K0) be the Heegner point of conductor c, and let

θN+,N− =
∑
σ∈G0

P σ
0 · σ−1 ∈ JN+,N−(K0)⊗ Z[G0].

Choose a prime p of K0 above p, and let τ be the (unique) choice of complex
conjugation in Gal(K0/K) which fixes p. Let θ−N+,N− be the projection of

θN+,N− to the eigenspace where τ acts by the involution −W−
p , i.e.,

θ−N+,N− = (τ + W−
p )θN+,N− .
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We view the element θ−N+,N− as belonging to the group of local points

JN+,N−((K0)p)⊗ Z[G0] ' JN+,N−(Kp)⊗ Z[G0].

(Note that p splits completely in K0/K, and is inert in K/Q.)
Recall the Cerednik-Drinfeld uniformization defined in sec. 1.7. It gives

rise to a map

ΦCD : Jp−new

N+
∗ ,N−

∗
⊗K∗p ⊗ Z[G0] −→ JN+,N−(Kp)⊗ Z[G0].

Conjecture 5.8 There exists γ ∈ G0 such that

ΦCD(θ̄−
N+
∗ ,N−

∗
) = θ−N+,N−γ.

Note that the left hand side is constructed as a p-adic limit of Heegner points
on the Shimura curve XN+

∗ ,N−
∗

which corresponds to a definite quaternion
algebra. The right hand side is constructed from a genuine algebraic point
in JN+,N− defined over the ring class field K0. The above conjecture allows
one to compute directly, by a p-adic analytic process, a certain subgroup of
the Heegner points in JN+,N−(K0).

Numerical evidence
The curves X0(14) and X7,2: Let E be the elliptic curve X0(14). We have
tested our conjecture when N = 14 and p = 7, in a few cases where K is a
quadratic imaginary field in which both 2 and 7 are inert, so that

XN+,N− = X1,14, XN+
∗ ,N−

∗
= X7,2.

For example, let K = Q(w), with w = 1+
√
−11

2
. The 7-adic Heegner distri-

bution attached to the data N = 14, K, was computed up to level 75 using
the programming package Pari. This took about 90 minutes of computer
time on a Sparc workstation. (It is likely that the calculation could have
been carried out more quickly, as no special effort was made to render the
algorithms efficient.)

The calculation yields an element θ in Z[G5],

θ =
8·74∑
i=1

aiσ
i
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where σ is a generator of G5 = (OK ⊗ Z/75Z)∗/(Z/75Z)∗. Now, we verify
that θ belongs to the augmentation ideal I of Z[G5], and that

θ̄ =
8·74∏
i=1

σiai = 1544 + 5249w (mod 75, (Z/75Z)∗).

Let now z7 = θ̄/τ θ̄, where τ is complex conjugation. Applying the Tate
7-adic uniformization of E to the element z7 gives the point

ΦTate(z7) = (10696, 6528 + 9861w) (mod 75)

on E, with a 7-adic error of 7−5. A short inspection reveals that this point
is equal to the rational point

(7/11,−(41 + 116w)/121) ∈ E(K),

to within the specified 7-adic accuracy of 7−5. By consulting the Antwerp
tables [Ant], we find that the fudge factors in conj. 5.6 cancel out exactly in
this case, so that we expect (assuming that III(E/K) is trivial) that this
point is a generator of E(K) modulo torsion.

The curves X0(26) and X13,2

The quadratic imaginary field of smallest discriminant in which 2 and 13
are inert is again the field K = Q(w), with w = 1+

√
−11

2
. It is a field of

class number one. The 13-adic Heegner distribution attached to the data
X0(26), K, was computed up to level 133 using the programming package
Pari. We computed the θ-element for the two new forms of level 26 at once,
corresponding to the two strong Weil curves 26A and 26B of sec. 1.11. The
calculation yielded an element θ in Z[e1, e2, e3] ⊗ Z[G3]. We verified that
θA := π26A∗(θ) and θB := π26B∗(θ) both belong to the augmentation ideal of
Z[G3]: the image of θ by the augmentation map is a multiple of the Eisenstein
vector veis which is orthogonal to the cuspidal vectors v1 and v2.

We find that
θ̄A = 1596 + 2018w (mod I2),

using the canonical identification of I/I2 with G3.
Applying Tate’s 13-adic analytic parametrization, we get the point

(x, y) = (1995, 292 + 1814w) (mod 133),
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with a 13-adic precision of 13−3. A short inspection reveals that this point
is equal to the rational point

(−25/11, (180− 206w)/121) ∈ E(K),

to within the specified 13-adic accuracy.
The element θB belongs to I2, as follows from the functional equation for

θB explained in sec. 2.9. The image of θB in I2/I3 is non-zero, but we are at
a loss to supply even a conjectural interpretation for this leading term.
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