
The equation x4 − y4 = zp

Henri Darmon

September 9, 2007

Let p be an odd prime. We consider the equation

x4 − y4 = zp, gcd(x, y) = 1. (1)

When p = 2, this equation was considered by Fermat, who used it to prove
his celebrated “last theorem” for exponent 4.

In [Po], Powell proved that this equation has no integer solutions with
p 6 |xyz (analogous to the “first case” of Fermat’s Last theorem) and proved
a similar (slightly weaker) result for the equation x4 + y4 = zp.

Terai and Osada [TO] and Cao [Ca] have extended this analysis to the
equations x4 + dy4 = zp and cx4 + dy4 = zp respectively, proving that there
are no first case solutions under certain assumptions.

The methods used by these authors involve factoring the left hand side of
the equations over the appropriate quadratic field, and are close in spirit to
the descent ideas which form the basis of Kummer’s work on Fermat’s Last
Theorem.

Recently, it has been observed that Fermat’s equation can be tackled
by different methods based on elliptic curves and the Galois representations
attached to them. Following work of Frey [Fr] and Serre [Sr2], Ribet [Ri]
showed that the celebrated conjecture of Shimura and Taniyama that ev-
ery elliptic curve is modular implies Fermat’s last theorem. Thanks to the
revolutionary work of Wiles, the Shimura Taniyama conjecture, previously
thought to be inaccessible, now seems within reach.

Our main result is:
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Theorem I: Suppose the Shimura-Taniyama conjecture is true, and let p ≥
11 be a prime. Then:

1. Equation (1) has no non-trivial solution if p = 1 mod 4.

2. Equation (1) has no non-trivial solution with z even.

Proof: Let p ≥ 11 be prime, and let

a4 − b4 = cp

be a solution to equation (1). If c is odd, assume without loss of generality
that a is odd and b is even (otherwise, interchange a and b and replace
c by −c). Factorizing the left hand side of a4 − b4 = cp, the assumption
gcd(a, b) = 1 forces the three factors

a + b, a− b, a2 + b2

to be pth powers up to powers of 2. Hence, so are the integers

A = (a + b)2 = a2 + 2ab + b2,

B = (a− b)2 = a2 − 2ab + b2,

C = a2 + b2,

which also satisfy the equation

A + B − 2C = 0.

This equation gives three integers that are “almost” p-th powers and sum up
to 0, and suggests considering the Frey curve

E : y2 = x(x + A)(x−B).

Expanding the right hand side, the equation for E becomes:

y2 = x3 + 4abx2 − (a2 − b2)2x.

The j-invariant and discriminant of E are:

j = 26 (a2 + 3b2)3(3a2 + b2)3

c2p(a2 − b2)2
, ∆ = 26c2p(a2 − b2)2.
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The conductor N of E can be computed using Tate’s Algorithm [Ta]; let Nl

denote the conductor of E at l, so that N =
∏

Nl. The calculation is divided
into two cases:

1. l 6= 2: Then E has good or semistable reduction at l; the conductor Nl = 1
if l does not divide c, and Nl = l if l divides c. In any case, ordl(∆) ≡ 0
(mod p), since a2 − b2 is a pth power up to powers of 2.
2. l = 2: If 2 divides c, then E is semi-stable and N2 = 2; if 2 does not divide
c, then N2 = 25.

Let ρ : Gal(Q̄/Q) −→ Aut (Ep) be the Galois representation associated
to the p-division points of E. By a result of Mazur [Mz], the representation
ρ is irreducible. By using the Tate curve to analyze the local behaviour of ρ
at the primes l of bad reduction for E (l 6= 2, p) one sees that ρ is unramified
outside of 2 and p, and is finite at p (cf. [Sr2]). Hence, the conductor N(ρ)
is a power of 2 which satisfies:

N(ρ) = 2 if 2|c,

N(ρ)|25 otherwise.

Assuming the Shimura Taniyama conjecture, the elliptic curve E corre-
sponds to a cusp form of weight 2 and level N . The “lowering the level”
result of Ribet [Ri] shows that ρ corresponds to a cusp form of weight 2 and
level N(ρ) mod p. But:

1. If c is even, such a cusp form cannot exist, because there are no modular
forms of weight 2 and level 2: the curve X0(2) has genus 0. This proves the
second part of theorem I.

2. If c is odd, then ρ corresponds to a modular form of weight 2 and level
dividing 32. There is a unique such form, of level 32, which corresponds
to the elliptic curve A = X0(32), with complex multiplication by Q(i). By
Chebotarev’s density theorem, it follows that

Ep ' Ap as Galois modules.

In particular, by the theory of complex multiplication, the Galois represen-
tation ρ maps to the normalizer of a Cartan subgroup of GL2(Fp), and the
restriction of ρ to Gal(Q̄/Q(i)) has abelian image. Furthermore, when p = 1
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(mod 4), then ρ maps to the normalizer of a split Cartan subgroup; hence
E has a rational subgroup of order p defined over Q(i); moreover all of its
points of order 2 are defined over Q(i). It follows from work of Mazur [Mz]
and Kamienny [Ka] (cf. cor. 1.7 of [Da]) that the denominator of j(E) is
divisible only by 2 or 3. Hence a4− b4 is a power of 3, and so is a2 + b2. This
can occur only if ab = 0, i.e., (a, b, c) is a trivial solution. This proves the
first statement in theorem I.

Remarks:
1. Observe that in the proof we could not rule out the existence of the curve
E, and had to obtain a contradiction in a more indirect manner. There is a
good reason for this: the curve A = X0(32) is precisely the curve that arises
from the trivial solution (1, 0, 1) to the equation x4 − y4 = zp.
2. When p = −1 mod 4, the image of ρ is the normalizer of a non-split Cartan
subgroup. This case seems more difficult to rule out using the “Eisenstein
descent” methods of Mazur and Kamienny, although one also expects it
cannot occur when p is large. More precisely, one expects that the image
of the Galois representation coming from a non-CM elliptic curve should be
the full GL2(Fp) when p is large enough (p > 19, perhaps?) A similar issue
arises in [Da] in the study of the equations xp + yp = z2 and xp + yp = z3.
3. A natural question is to analyze the equation x4 + y4 = zp (or even more
general variants such as x4 + cy4 = zp). This equation is quite different from
the previous one: x4 +y4 is irreducible over Q and only splits after adjoining
primitive 8th roots of unity. A promising approach in this case is to consider
the Galois representations arising from certain Q-curves, that are defined
over Q(i) and are 2-isogenous to their Galois conjugates. The methods used
in that case are more involved and will be treated in a seperate paper.
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