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Abstract

In [MT1], B. Mazur and J. Tate present a “refined conjecture of Birch and
Swinnerton-Dyer type” for a modular elliptic curve E. This conjecture re-
lates congruences for certain integral homology cycles on E(C) (the modular
symbols) to the arithmetic of E over Q. In this paper we formulate an anal-
ogous conjecture for E over suitable imaginary quadratic fields, in which the
role of the modular symbols is played by Heegner points. A large part of this
conjecture can be proved, thanks to the ideas of Kolyvagin on the Euler sys-
tem of Heegner points. In effect the main result of this paper can be viewed
as a generalization of Kolyvagin’s result relating the structure of the Selmer
group of E over K to the Heegner points defined in the Mordell-Weil groups
of E over ring class fields of K. An explicit application of our method to the
Galois module structure of Heegner points is given in section 2.2.

Acknowledgements: I wish to thank Massimo Bertolini with whom I have
had many fruitful discussions on the topics of this paper. I am also grateful to
my advisor Benedict Gross for guiding me towards this topic. This research
was funded in part by a Natural Sciences and Engineering Research Council of
Canada (NSERC) ’67 award, and by a Sloan doctoral dissertation fellowship.

1 Preliminaries

Let E be a modular elliptic curve. There is a morphism

φ : X0(N) −→ E

defined over Q, where N is the arithmetic conductor of E and X0(N) is
the algebraic curve which classifies pairs of elliptic curves related by a cyclic
N -isogeny.

The pull-back of a Néron differential ω on E is an eigenform f of weight
2 on X0(N) with Fourier expansion given by

φ∗(ω) = c(φ)
∞∑

n=1

anq
ndq/q, q = e2πiτ .

The Fourier expansion is normalized so that a1 = 1, and c(φ) is the Manin
constant associated to the modular parametrization φ. The Hasse-Weil L-
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function L(E/Q, s) can be identified with the L-series attached to f ,

L(f, s) =
∞∑

n=1

ann
−s.

From Hecke’s theory one knows that L(f, s) has an Euler product and a
functional equation relating its value at s to its value at 2− s. The parity of
the order of vanishing of the L-function at the central point s = 1 can be read
off from the functional equation. More precisely, let ε denote the eigenvalue
of the Atkin-Lehner involution wN acting on f . Then L(f, s) vanishes to odd
order at s = 1 if ε = 1, and to even order if ε = −1.

Fix a quadratic imaginary field K of discriminant D in which all primes
dividing N are split. If N = pe1

1 · · · pek
k , one may choose for each pi an ideal

Pi of K above it, and set

N = Pe1
1 · · ·P

ek
k .

Given a positive integer T which is relatively prime to ND, let OT denote
the order of K of conductor T . Because T is prime to N , the ideal OT ∩ N
is invertible, and the natural projection of complex tori

C/OT −→ C/(OT ∩N )−1

corresponds to a cyclic N -isogeny of elliptic curves. Hence it can be identified
with a point of X0(N). By the theory of complex multiplication, this point
is defined over KT , the ring class field of K of conductor T . Let α(T ) denote
the image of this point in E(KT ) by the modular parametrization φ.

2 Statement of the results

2.1 The conjecture of Mazur Tate type

Given a square-free integer S = l1 · · · lt prime to ND, write

GS = Gal(KS/K1), ΓS = Gal(KS/K).

Define the regularized Heegner points by the formulas

βS =
∑
T |S

µ(T )α(T ), βω
S =

∑
T |S

µ(T )ω(T )α(T ),
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where µ is the Möbius function, and ω is the quadratic Dirichlet character
associated to K. Let A(E, S) (resp. Aω(E, S)) denote the formal resolvent
associated to the Heegner point βS (resp. βω

S ):

A(E, S) :=
∑

σ∈ΓS

σβS ⊗ σ ∈ E(KS)⊗ Z[ΓS],

Aω(E, S) :=
∑

σ∈ΓS

σβω
S ⊗ σ−1 ∈ E(KS)⊗ Z[ΓS].

The role of the θ-element of [MT1] will be played by the element

θ
′
(E, S) := A(E, S)⊗Z[ΓS ] A(E, S)ω =

∑
σ,τ∈ΓS

σβS ⊗ τβω
S ⊗ στ−1;

it belongs to the triple tensor product E(KS)⊗2 ⊗ Z[ΓS].
For technical reasons it will be convenient to replace Z by a subring Z of

Q and view θ
′
(E, S) as belonging to E(KS)⊗2 ⊗ Z[ΓS] by extending scalars

from Z to Z. For the time being we make no assumptions on Z. Let I denote
the augmentation ideal in the group ring Z[ΓS], and let r denote the rank of
the Mordell-Weil group of E over K. We conjecture the following:

Conjecture 2.1 (order of vanishing) For any Z, the element θ
′
(E, S)

belongs to the subgroup E(KS)⊗2 ⊗ Ir−1 of E(KS)⊗2 ⊗ Z[ΓS].

Remarks:
1. This statement is analogous to the part of the Birch Swinnerton-Dyer con-
jecture which predicts that the order of vanishing of the complex L-function
of E over K is equal to r. Our conjecture involves r− 1, and not r, because
of the philosophy that θ

′
(E, S) should mirror the behavior of L

′
(E/K, s) at

s = 1. A justification for this philosophy is provided by the analytic formula
of Gross and Zagier [GZ]. More precisely, let h : E(KS)⊗2 −→ R be the
canonical Néron-Tate height over KS, and let χ : ΓS −→ C∗ be a complex
character of ΓS, extended by linearity to the group ring of Z[ΓS]. Combining
h and χ gives rise to a natural linear map:

h⊗ χ : E(KS)⊗2 ⊗ Z[ΓS] −→ C.

Theorem 2.2 (Gross Zagier) Suppose that S = 1 so that KS is the Hilbert
class field of K. Then

h⊗ χ(θ
′
(E, S)) = c(φ)2[KS : K]

√
Disc(K)

L
′
(E/K,χ, 1)∫∫
E(C) ω ∧ ω̄

4



2. Conjecture 2.1 is inspired by the refined conjectures of Birch Swinnerton-
Dyer type introduced by Mazur and Tate. For an explanation of these con-
jectures, the reader may consult the fundamental reference [MT1], or [D2].
It seems that such refined conjectures provide a congenial setting for the Eu-
ler Systems of Kolyvagin to express themselves: the properties of such Euler
systems (relations between special elements and arithmetic) are naturally for-
mulated as conjectures of Mazur Tate type. This program has been carried
out in the simpler case of cyclotomic units [D1], where one finds conjectural
formulas which are a slight generalization of those of Thaine [Th].

3. What of the original Mazur Tate conjectures? At present, still no proof
is known. What one might need in this case is a cyclotomic Euler system,
consisting in a compatible system of cohomology classes

cn,p ∈ H1(Q(µn), Tp(E)).

In a remarkable recent development, Kato [Ka] has succeeded in construct-
ing precisely such an Euler system, using elements in K2 of modular curves
constructed from Steinberg symbols of Siegel units. He has also succeeded
in relating his Euler system to the special values of the complex L-function
L(f, χ, 1) twisted by Dirichlet characters, and hence to modular symbols.
It seems possible that this work of Kato will shed light on the Mazur Tate
conjectures.

Assuming conjecture 2.1, we can project θ
′
(E, S) to an element θ̃

′
(E, S)

in the group E(KS)⊗2⊗ (Ir−1/Ir). This element plays the role of the leading
coefficient in the refined Birch and Swinnerton-Dyer conjecture. To make a
conjecture about its value, let

u =
1

2
#(O∗

K), τ = #E(K)tor.

Given a prime p dividing N , let mp denote the order of the group of connected
components in the special fiber at p for the Néron model of E over Spec(Z).
Let

m =
∏
p|N

mp.

Finally, let B denote the “Birch Swinnerton-Dyer constant”

B = c(φ) · u ·m ·
√

#III(E/K) · τ−1.
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It is conjectured (cf. [GZ], p. 311) that B is an integer and that, when
E(K)/E(K)tor is generated by a single element P , the following identity is
true in E(K)/E(K)tor:

TraceK1/K(α(1)) = ±BP. (1)

This conjecture follows by comparing the Gross Zagier formula with the
classical Birch and Swinnerton-Dyer conjecture.

Now we define a regulator term belonging to E(KS)⊗2 ⊗ (Ir−1/Ir). Let

ES(K) = ker
(
E(K) −→ (⊕v|SE(kv))

⊕
(⊕vE/E0(Kv))

)
,

and let JS be the order of the cokernel of this map. In [MT1], [MT2], Mazur
and Tate define a height pairing

〈 〉S : E(K)× ES(K) −→ I/I2.

(In fact, their height pairing takes values in GS, but we use here the isomor-
phism I/I2 ' GS.)

Suppose first that E(K) is free over Z, and let P1, . . . , Pr (resp. Q1, . . . , Qr)
denote integral bases for E(K) (resp. ES(K)) which induce compatible orien-
tations. The partial regulator Rij in Ir−1/Ir is defined to be the determinant
of the ijth minor of the pairing matrix (〈Pi, Qj〉S) with entries in I/I2. The
regulator RS is given by the formula

RS =
r∑

i,j=1

(−1)i+jPi ⊗Qj ⊗Rij. (2)

When E(K) is not free, one normalizes this definition as in [MT1], p. 735:
choose finite index subgroups A and B of E(K) and ES(K) which are free,
and define the regulator R(A, B) by picking bases P1, . . . , Pr and Q1, . . . , Qr

for A and B, and using the formula (2). If the multiplication by the product
of indexes j = [E(K) : A][ES(K) : B] induces an isomorphism on the abelian
group E(K)⊗2 ⊗ Ir−1/Ir, then one defines

RS = R(A, B)j−1.

This quantity, when it is defined, does not depend on the choice of A and B.
Furthermore, suitable A and B for which j is invertible exist, say, if r > 1
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and τ is prime to the order of ΓS, or if τ is invertible in the ring Z. From now
on to simplify we assume that Z contains Z[τ−1]. Under this assumption we
can state the main conjecture:

Conjecture 2.3 Assume that τ−1 ∈ Z. Then

1. The element θ
′
(E, S) belongs to E(KS)⊗2 ⊗ Ir−1.

2. The leading coefficient θ̃
′
(E, S) ∈ E(KS)⊗2 ⊗ (Ir−1/Ir) belongs to the

image of the natural map

t : E(K)⊗2 ⊗ (Ir−1/Ir) −→ E(KS)⊗2 ⊗ (Ir−1/Ir).

3. θ̃
′
(E, S) = t(c(φ)2 · u2 ·#III(E/K) · JSRS).

Remark:
1. When r = 1 and S = 1, we have:

J1R1 = m2τ−2P ⊗ P,

where P is a generator (modulo torsion) for E(K). Note that this equation
is true in E(K) ⊗ Z regardless of the choice of P , since τ is invertible in
Z. Hence conjecture 2.3 follows in this case from the conjectured equation
(1), which is itself a consequence of the classical Birch and Swinnerton-Dyer
conjecture.
2. The conjecture we have formulated is compatible under the norm from
KS to KT , when T is a divisor of S (cf. section 3.2). This is the motivation
for working with the regularized Heegner points.

We now state the main results of this paper which give evidence for
conjecture 2.3.

To do this we suppose that the following primes are invertible in Z:

1. The primes 2 and 3.

2. All primes p < (r − 1)/2.

3. All primes p such that Gal(Q(Ep∞)/Q) is not isomorphic to GL2(Zp).

4. All primes p which divide m.
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Note that assumption 3 forces τ to be invertible in Z. The set of primes
satisfying condition 3 (and hence, all four of the above) is a finite set if and
only if E has no complex multiplications, by a result of Serre [Se].

Complex conjugation acts on the Mordell-Weil group E(K). Let r+ and
R− denote the ranks of the + and − eigencomponents E(K)+ and E(K)−

of E(K) under this involution, and let

ρ = max(r+, r−)− 1, if r+ 6= r−,

ρ = r+ = r− = r/2, if r+ = r−.

Note that the order of vanishing of L(E/K, s) is odd; hence by the Birch
Swinnerton-Dyer conjecture, one expects that r is odd, so that r+ and r−

should have opposite parities and equality r+ = r− should never hold in our
situation.

Theorem 2.4 (Main result) Suppose that S is a product of primes which
are inert in K. Then θ

′
(E, S) belongs to the subgroup E(KS)⊗2 ⊗ I2ρ of

E(KS)⊗2 ⊗ Z[G].

Since 2ρ ≥ r−1 (with equality holding if and only if |r+− r−| = 1), theorem
2.4 implies part 1 of conjecture 2.3 about the order of vanishing, slightly
weakened because of the assumptions which were made on Z.

If |r+ − r−| > 1, then 2ρ > r − 1, and the theorem 2.4 proves more
than what is predicted by conjecture 2.3. Can one give a conceptual account
of this extra vanishing? At least one can show that when |r+ − r−| > 1,
the regulator term RS vanishes (cf. prop. 5.12). However, in that case, the
leading coefficient should be defined to be the projection of θ

′
(E, S) in the

group E(KS)⊗2 ⊗ (I2ρ/I2ρ+1). We were not able to supply a prediction,
even a conjectural one, for the value of this leading coefficient, except when
2ρ = r − 1.

Assume now that |r+ − r−| = 1. Given a prime p, let θ̃
′
(E, S)(p) denote

the reduction modulo p of θ̃
′
(E, S), i.e., the natural image of θ̃

′
(E, S) in the

group E(KS)⊗2⊗ (Ir−1/Ir)⊗Z/pZ. Let tp be the natural map induced by t,

tp : E(K)⊗2 ⊗ (Ir−1/Ir)⊗ Z/pZ −→ E(KS)⊗2 ⊗ (Ir−1/Ir)⊗ Z/pZ.

Note that the module (Ir−1/Ir) ⊗ Z/pZ is trivial unless p divides the order
of ΓS and p is not invertible in the ring Z. A p-descent argument establishes
the following:
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Theorem 2.5 .

1. θ̃
′
(E, S)(p) belongs to the image of tp.

2. If p divides #III(E/K)JS, then θ̃
′
(E, S)(p) = 0.

2.2 Application to the Galois module structure of Heeg-
ner points

In stating the following result, we do not strive for the greatest generality of
what can be shown by our methods, but only present an illustrative special
case.

An abelian extension L of K is said to be of dihedral type if it is normal
over Q and the involution τ in Gal(K/Q) acts on Gal(L/K) by τστ−1 = σ−1.
Let L be a dihedral type extension of K with Galois group G = Z/pZ, where
p is a prime which does not divide 6m, and satisfies

Gal(Q(Ep∞)/Q) = Aut(Tp(E)).

Assume that L is ramified only at primes of Q which are inert in K/Q.
Then L can be embedded in a ring class field of K, whose conductor over K
is a product of inert primes. Let L̃ denote the smallest such field, and let
α ∈ E(L) be the trace of the Heegner point in E(L̃) defined in section 1.
The Z[G]-module E(L) generated by α is a quotient of a free Z[G]-submodule
of rank 1 of E(L). The work of Kolyvagin tells us that the position of the
module E(L) in E(L) is strongly related to the arithmetic of E(L), a fact
which was foreshadowed by the analytic formula of Gross and Zagier.

Denote by E(L)C the complex representation of G attached to E(L), i.e.,
the image of E(L) ⊗C in E(L) ⊗C. Given a prime l 6= p, let E(L)l denote
the image of E(L) in E(L)⊗ F̄l, where F̄l is the algebraic closure of the finite
field Fl with l elements.

The representation E(L)C splits into a direct sum of eigencomponents
E(L)χ

C attached to complex characters χ of G. By applying the methods of
Kolyvagin one can show (cf. [BD]) that

if E(L)χ
C 6= 0 then dimC(E(L)⊗C)χ = 1.
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Likewise one has a decomposition of the representation E(L)l into eigencom-
ponents E(L)χ

l associated this time to F̄l-valued characters of G. From the
methods of Kolyvagin one expects (at least if l is large enough) that

if E(L)χ
l 6= 0 then dimF̄l

(Sell(E/L))χ = 1,

where Sell(E/L) is the l-Selmer group. Evidence for this is given in [BD].
In both cases the module of Heegner points tells us whether the ranks of

certain eigenspaces in Mordell Weil groups or l-Selmer groups are one or not.
The situation changes greatly when one considers the module E(L)p,

the image of E(L) in E(L) ⊗ Fp. This module no longer decomposes into
eigenspaces for the G-action, since the representation is a modular repre-
sentation: the group ring Fp[G] is isomorphic to the local ring Fp[ε]/(ε

p).
Let

r±p = dimFp Selp(E/K)±,

where the superscripts of + and − denote the + and − eigenspaces for the
action of complex conjugation on Selp(E/K). Let

ρp = max(r+
p , r−p )− 1, if r+

p 6= r−p ,

ρp = r+
p = r−p = rp/2, if r+

p = r−p .

Theorem 2.6 dimFp(E(L)p) ≤ p− ρp.

Thus the Fp-dimension of E(L)p reflects some quantitative information about
the rank of the p-Selmer group of E over K. This result leads to several
natural questions:
1. Is the bound of theorem 2.6 sharp? We can only provide a conjectural
answer when IIIp = 1 and when |r+

p − r−p | = 1 by relying on the philosophy
of conjecture 2.3.
2. What is the nature of the module of G-invariants (E(L)p)

G? This module
is necessarily non-trivial and one-dimensional if (E(L)p) is non-trivial. In
many cases one can show that it gives rise to elements in the Selmer group
Selp(E/K). Can one predict what these elements are?

The remainder of this paper is devoted to the proofs of theorems 2.4, 2.5,
and 2.6. In section 3 we state an explicit result about congruences for certain
combinations of Heegner points over ring class fields (theorem 3.15 of section
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3.3), and show that this result implies theorem 2.4. Section 4 is devoted to
the construction and study of certain cohomology classes made from Heegner
points which generalize those that were studied by Kolyvagin. Finally, the
section 5 is devoted to a proof of theorem 3.15.

3 Restatement of the results

3.1 Calculus of abelian group rings

Let G be a finite abelian group. Given an element σ of order nσ in G, define
the derivative operator in the group ring Z[G] by the formula:

Dk
σ =

nσ−1∑
i=0

(
i

k

)
σi.

If G = 〈σ〉 is cyclic, then D0
σ is the norm element in the group ring and D1

σ

is the derivative operator used by Kolyvagin.
One can decompose G as a product of cyclic groups

G = G1 × · · · ×Gt,

where the order ni of Gi is a multiple of the order nj of Gj whenever i < j.
This decomposition is not unique, but the orders ni are well-defined. Choose
a generator σi for each Gi, and view these generators as elements of G. Given
a multi-index k = (k1, . . . , kt) of integers, the partial derivative operator Dk

in the group ring Z[G] is defined to be

Dk = Dk1
σ1
· · ·Dkt

σt
.

Let M be a Z[G]-module, and let a be an element of M . We wish to
study the resolvent element∑

σ∈G

σa⊗ σ ∈ M ⊗Z Z[G].

The following gives a Taylor expansion formula for this resolvent element
around the augmentation ideal.
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Theorem 3.1 (Taylor formula)

θ =
∑
k

Dka⊗ (σ1 − 1)k1 · · · (σt − 1)kt ,

where the sum is taken over all t-tuples k = (k1, . . . , kt) of positive integers.

The proof is a routine computation, and we omit it. Observe that although
the sum is taken over an infinite set, all but finitely many of the terms are
zero: the partial derivative Dk vanishes once one of the ki is greater than ni.

Let p be a prime that is not invertible in Z. The natural inclusion of Q
in Qp induces a map Z −→ Zp. Let Ip denote the augmentation ideal in the
group ring Zp[G], and let θp denote the image of θ in M ⊗ Zp[G].

Lemma 3.2 The element θ belongs to M ⊗ Ir if and only if θp belongs to
M ⊗ Ir

p for all primes p which are not invertible in Z.

Proof: The successive quotients Ik/Ik+1 are finite abelian groups whose or-
ders are divisible only by the primes which are not invertible in Z. Since an
element in a finite abelian group is trivial if and only if it maps to zero in
each p-primary part of the group, the result follows.

Let εp : Zp[G] −→ Zp denote the augmentation map on the group ring.

Lemma 3.3 Assume that x and y belong to the group ring Zp[G] and that
the product xy belongs to Ir

p . If εp(y) is invertible in Zp, then x belongs to
Ir
p .

Proof: Multiplication by y induces an isomorphism on Ik
p /Ik+1

p for all k.

Lemma 3.4 If σ is of order prime to p, then (σ− 1) belongs to Ir
p for all r.

Proof: Let n be the order of σ. Then

0 = σn − 1 = n(σ − 1) +

(
n

2

)
(σ − 1)2 + · · ·+ (σ − 1)2.

The right-hand side is equal to

(σ − 1)

(
n +

(
n

2

)
(σ − 1) + · · ·+ (σ − 1)n

)
.

Since the second factor maps to n by εp, and n belongs to Z∗
p, the result

follows from lemma 3.3.
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Lemma 3.5 If the order of σ is q, a power of p, then q(σ−1) belongs to Ip
p .

Proof: As in the proof of lemma 3.4 one finds

q(σ − 1) +

(
q

2

)
(σ − 1)2 + · · ·+ (σ − 1)q = 0.

Hence

q(σ − 1)

(
1 +

(
q

2

)
/q(σ − 1) +

(
q

3

)
/q(σ − 1)2 + · · ·+

(
q

p− 1

)
/q(σ − 1)p−2

)

= −
(

q

p

)
(σ − 1)p + · · ·+ (σ − 1)q.

Applying lemma 3.3, one finds that q(σ − 1) belongs to Ip
p .

Lemma 3.6 Let q be the maximal power of p dividing the order of σ. Then
q(σ − 1) belongs to Ip

p .

Proof: Write σ = σ1σ2, where σ1 is of order q and σ2 is of order prime to p.
The result follows from the identity

(σ − 1) = (σ1 − 1)(σ2 − 1) + (σ1 − 1) + (σ2 − 1)

combined with lemmas 3.4 and 3.5.

Given k = (k1, . . . , kt), let

n(k) = gcd
ki>0

ni.

(Recall that the ni are the orders of the σi). Let np(k) denote the maximal
power of p dividing n(k).

Lemma 3.7 Suppose r ≤ p. The element θp belongs to Ir
p if for all t-tuples

k = (k1, . . . , kt) with k1 + · · · kt < r, we have

Dka ≡ 0 (mod np(k)).

Proof: This follows from the Taylor formula 3.1 together with lemma 3.6.

We say that an element a in a Z-module M is divisible by an integer n if
there exists a

′
in M with a = na

′
.
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Lemma 3.8 Suppose that all primes which are strictly less than r are in-
vertible in Z. Then the element θ in Z[G] belongs to Ir if

n(k) divides Dka for all k = (k1, . . . , kt) with k1 + · · ·+ kt < r.

Proof: Combine lemmas 3.2 and 3.7.

We conclude this section with a property of the derivatives Dk
σ that will

be useful later:

Lemma 3.9 If σ is of order n, then

(σ − 1)Dk
σ =

(
n

k

)
− σDk−1

σ .

This is proved by a straightforward computation.

3.2 Generalities on Heegner points

We give ourselves fixed embeddings Q̄ −→ C and Q̄ −→ Q̄p for every prime
p. Complex conjugation Frob∞ ∈ Gal(C/R) acts by Galois automorphisms
on any Galois extension of Q. Similarly, the Frobenius element at p, Frobp

acts on any Galois extension of Q which is unramified at p.
We recall some standard facts on Heegner points over ring class fields of

K. We do not strive for the greatest generality, but only state the results in
the form which we shall need in the proofs. A more thorough discussion can
be found in [Gr1] or [Gr4].

Let S be the set of square-free integers prime to ND which are products
of primes which are inert in K. For all T ∈ S we are given the following
data:

1. An abelian extension KT of K, the ring class field of K associated
to the order of conductor T . It is ramified only at the places of K
which lie above the primes dividing T . Thus K1 is the Hilbert class
field of K. One writes G = Gal(K1/K), GT = Gal(KT /K1) and ΓT =
Gal(KT /K).

2. The Heegner point α(T ) in E(KT ).
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Writing T = l1 · · · ls, the extension KT is a compositum of the fields Kli

which are linearly disjoint over K1. Hence there is a canonical direct product
decomposition

GT = Gl1 × · · · ×Gls

which gives inclusions GS ⊂ GT and ΓS ⊂ ΓT for all divisors S of T . We
will implicitly identify elements of GS with their images in GT . For any S
dividing T , the partial norm operator NS in the group ring Z[GT ] is defined
by

NS = NGS
=

∑
σ∈GS

σ.

For each prime l, choose a generator σl of Gl, and write Dk
l for the partial

derivative Dk
σl

. Thus D1
l is the derivative operator studied by Kolyvagin.

These operators act on the field KT and on the Mordell-Weil group E(KT )
in the natural way.

Given S ∈ S and l a prime in S which is prime to S, let λ denote a prime
of K above l and let σλ,S ∈ ΓS be the Frobenius automorphism associated
to λ.

Proposition 3.10 Nl(α(Sl)) = alα(S).

Proof: See [Gr4], p. 240, prop. 3.7.

Proposition 3.11 α(Sl) ≡ σλ,Sα(S) (mod λ
′
), where λ

′
is any prime of

KSl above λ.

Proof: See [Gr4], p. 240, prop. 3.7.

Propositions 3.10 and 3.11 make up the axioms of an Euler system for
Heegner points in the sense of Kolyvagin [Ko3].

The action of complex conjugation Frob∞ on the Heegner points is given
by the following proposition:

Proposition 3.12 Frob∞α(T ) = εσ0α(T ) + (torsion) for some σ0 ∈ ΓT .

(Recall that ε is the eigenvalue for the operator wN acting on f ; it is opposite
to the sign in the functional equation for L(f, s).)
Proof: See [Gr4], p. 243, prop. 5.3.
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We make a brief digression concerning the compatibility of conjecture 2.3
under norms. Writing T = Sl, let µl denote the map

µl : E(KT )⊗2 ⊗ Z[ΓT ] −→ E(KT )⊗2 ⊗ Z[ΓS]

induced by the homomorphism ΓT −→ ΓS.

Proposition 3.13 µl(θ̃
′
(E, T )) = #E(kl) · θ̃

′
(E, S), where kl = OK/lOK.

Proof: By prop. 3.10 combined with a direct computation, the behavior of
the regularized Heegner points βT and βω

T under norms is given by:

NlβT = (l + 1− al)βS, βω
T = (l + 1 + al)β

ω
S .

The result now follows from the formula

#E(kl) = (l + 1− al)(l + 1 + al).

On the other hand the naturality of the Mazur Tate pairing implies that

µl ◦ 〈 , 〉T = 〈 , 〉S

on E(K)× ET (K), so that

µl(JT RT ) = #E(kl) · JSRS.

Hence conjecture 2.3 is compatible with the map µl when l is inert in K/Q.
A similar compatibility can be shown when l is split in K/Q. Hence in
particular, conjecture 2.3 in the case r = 1 follows from the classical Birch
Swinnerton-Dyer conjecture, thanks to the formula of Gross and Zagier.

The compatibility under norms is the reason for using the regularized
Heegner points βS instead of the simpler points α(S) in the definition of
θ
′
(E, S).

3.3 A divisibility theorem for Heegner points

In this section, we state a theorem on congruences for certain combinations
of Heegner points over ring class fields. Using the results of sections 3.1 and
3.2, we show that it implies theorem 2.4.

Let q be a power of a prime p which is not invertible in the ring Z. Let

Lq = {l rational prime, Frobl = Frob∞ in K(µq)/Q}.
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Lemma 3.14 The prime l belongs to Lq if and only if it is inert in K/Q
and q divides l + 1.

Any finitely generated Z/qZ-module M can be decomposed as

M = (Z/qZ)rq(M) ×M
′
,

where the exponent of M
′

divides q strictly. The integer rq(M) does not
depend on the decomposition.

Let Selq(M) be the q-Selmer group for E/K which arises out of the de-
scent for the isogeny of multiplication by q. Complex conjugation Frob∞ acts
on Selq(M) and splits it into + and − eigenspaces since q is odd. Let r+

q and
r−q denote the values of rq(Selq(E/K)+) and rq(Selq(E/K)−) respectively.
Let

ρq = max(r+
q , r−q )− 1, if r+

q 6= r−q ,

ρq = r+
q = r−q = rq/2, if r+

q = r−q .

The class group C of K can be decomposed (non-canonically) as a product

C = C
′ × 〈ξ1〉 × · · · × 〈ξa〉,

where q does not divide the exponent of C
′
and each ξi is of order a power

of p which is greater or equal to q.

Given S = l1 · · · ls a product of distinct primes in Lq, let Dk be the partial
derivative operator in the group ring Z[ΓS] of the form:

Dk = NC′D
j1
ξ1
· · ·Dja

ξa
Dk1

l1
· · ·Dks

ls
,

where k = (j1, . . . , ja, k1, . . . , ks) is an (a + s)-tuple of positive integers. One
defines the support of Dk to be the integer S, its conductor S

′
to be the

product of the li with ki > 0, and its order to be k = j1+· · ·+ja+k1+· · ·+ks.
There is an obvious partial ordering on the set of partial derivatives with
support S. Given k

′
= (j

′
1, . . . , j

′
a, k

′
1, . . . , k

′
s), one says that D

k
′ is less than

Dk if

j
′

t ≤ jt, k
′

t ≤ kt ∀t.

Theorem 3.15 Let q be a power of a prime which is not invertible in Z. If
order(Dk) < ρq, then

Dkα(S) ≡ 0 (mod q).
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Claim 3.16 Theorem 3.15 implies theorem 2.4.

Proof: Let S = l1 · · · lt be a product of primes which are inert in K. Let Dk

be a partial derivative of support S and conductor S
′
which is of order < ρ.

We can write
Dk = D

′
NS/S′ ,

where D
′
has support S

′
. By proposition 3.10,

Dkα(S) = (
∏

l|S/S′
al)D

′
α(S

′
).

Fix a prime p which is not invertible in Z and let q be the largest power
of p dividing n(k). By definition all the primes dividing S

′
belong to Lq.

Since ρ ≤ ρq, we can apply theorem 3.15 to conclude that D
′
α(S

′
) ≡ 0

(mod np(k)). Hence n(k) divides Dkα(S) whenever order(Dk) < ρ. By
lemma 3.8 it follows that the resolvent element

θS =
∑

σ∈ΓS

σα(S)⊗ σ ∈ E(KS)⊗ Z[ΓS]

belongs to E(KS)⊗ Iρ. Similarly the elements θT for all T dividing S belong
to E(KS)⊗ Iρ, as well as the elements θ∗T which are obtained by applying to
θT the involution sending σ ∈ ΓS to σ−1. The elements A(E, S) and A(E, S)ω

introduced in section 2.1 can be expressed as combinations of the θT and the
θ∗T over the integral group ring Z[ΓS]. Hence they belong to E(KS)⊗ Iρ as
well. Therefore

θ
′
(E, S) belongs to E(KS)⊗ I2ρ.

4 The Heegner cohomology classes

4.1 More on derivatives

Let q = pM be a power of a prime p which is not invertible in Z.

Lemma 4.1 .

1. (σl − 1)Dk
l =

(
l+1
k

)
− σlD

k−1
l .

18



2. For all 0 < k < p,

(σl − 1)Dk
l ≡ −σlD

k−1
l (mod q),

and a similar formula hold for the Dk
ξj
.

Proof: Part 1 is a restatement of lemma 3.9. For part 2, one uses the fact
that q divides l + 1 (lemma 3.14), and hence the binomial coefficient

(
l+1
k

)
.

The group Gal(KS/Q) is a semi-direct product of Gal(K/Q) = 〈Frob∞〉
with ΓS. Complex conjugation Frob∞ acts on ΓS by the formula:

Frob∞σFrob−1
∞ = σ−1.

Extending this action to the group ring Z/qZ[ΓS], one has the following
action of Frob∞ on Dk:

Lemma 4.2 Frob∞DkFrob−1
∞ = (−1)kDk + (lower order derivatives).

Proof: It suffices to show this for a partial derivative operator of the form
Dk

l . In this case, one has

Frob∞Dk
l Frob−1

∞ − (−1)kDk
l =

#Gl∑
i=0

f(i)σi
l , (3)

where f(i) =
(

#Gl−i
k

)
− (−1)k

(
i
k

)
. The function f(i) is the reduction mod

q of a polynomial with rational coefficients taking integral values at integral
arguments. Moreover the degree of f is strictly less than k. The Z-module of
all such polynomial functions is spanned by the

(
i
k
′

)
with k

′
< k. Hence the

left hand side of (3) can be expressed as an integral combination of partial
derivatives of lower order.

4.2 The Heegner cohomology classes

Fis a product S of primes in Lq, and let Dk be a fixed partial derivative in
the group ring Z[ΓS]. Define a set Lq,E of rational primes as follows:

Lq,E = {l rational prime | l 6 |NDp and Frobl = Frob∞ in K(Eq)/Q}.

Lemma 4.3 A prime l not dividing NDp belongs to Lq,E if and only if it
belongs to Lq and in addition q divides al.
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Proof: If l ∈ Lq,E, we have the equalities of the minimal polynomials of Frobl

and Frob∞ acting on Eq:

x2 − alx + l = x2 − 1 (mod q).

The lemma follows by equating coefficients of these two polynomials.

Lemma 4.4 If L is a solvable extension of Q, then Eq(L) = 0.

Proof: Suppose Ep(L) 6= 0. Since Gal(Q̄/Q) acts transitively on the p-
torsion in E, this implies that L contains all of the p-torsion points, which is
implossible since GL2(Z/pZ) is not solvable when p > 3.

Choose a prime l which satisfies the following condition:

l 6 |ND · p · S, Frobl = Frob∞ in KS(Eq)/Q.

Clearly this implies that l belongs to Lq,E. Let P denote the class of Dkα(S)
in E(KS)/qE(KS). Let T = Sl, and let P (l) denote the class of Dk ·D1

l α(T )
in E(KT )/qE(KT ). We make the following assumption:

Hypothesis 4.5 For all the partial derivatives D
′
which are strictly less than

DkD
1
l , the class of D

′
α(T ) is 0 in the group E(KT )/qE(KT ).

Under hypothesis 4.5, one has:

Lemma 4.6 The class of P (l) is fixed under the action of ΓT .

Proof: Let σ = σl for some l dividing T or σ = ξj for some j. Then

(1 − σ)DkD
1
l = D

′
, where D

′
is some partial derivative which is strictly less

than DkD
1
l , by lemma 4.1. Hence (1− σ)P (l) = 0, by hypothesis 4.5.

From lemma 4.4, the group Eq(KT ) is trivial and hence the following
sequence is exact:

0 −→ E(KT )
q−→ E(KT ) −→ E(KT )/qE(KT ) −→ 0.

Taking ΓT -invariants yields an exact cohomology sequence

0 −→ E(K)/qE(K) −→ (E(KT )/qE(KT ))ΓT δ−→ H1(ΓT , E(KT ))q.
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Let d(l) = δP (l). We will identify d(l) with its image by inflation in
H1(K, E)q.

The class d(l) is the global cohomology class which plays a key role in
Kolyvagin’s method. We now undertake to analyze its properties.

Behavior of the class d(l) under complex conjugation: Complex conjugation
Frob∞ acts on the group H1(K, E)q in the natural way. Let εk = (−1)k+1ε
be the parity of the order of Dk, times the sign in the functional equation.

Proposition 4.7 The class d(l) is in the εk–eigenspace for the action of
Frob∞.

Proof: By lemma 4.4, the group E(KT ) has no q-torsion, and hence the
torsion subgroup E(KT )tor is killed in E(KT )/qE(KT ). Hence by lemma
3.12 we have

Frob∞[α(T )] = εσ0[α(T )],

where [α(T )] denotes the image of α(T ) in E(KT )/qE(KT ). Combining
lemma 4.2 with the hypothesis 4.5 that all lower order partial derivatives of
α(T ) vanish, we find:

Frob∞P (l) = εkσ0P (l) = εkP (l).

The last equality follows from lemma 4.6. Since the map δ used to construct
the class d(l) from P (l) is equivariant with respect to the Galois actions, it
follows that d(l) is in the εk-eigenspace for Frob∞.

Local behavior of the class d(l): Given a place v of K, let d(l)v denote the
restriction of d(l) in H1(Kv, E)q. The prime l is inert in K/Q. Let λ be the
place of K above it. The prime λ splits completely in KS/K; choose a place
λ
′
of KS above λ. Finally, the extension KT /KS is completely ramified at

λ
′
; let λ

′′
denote the unique place of KT above λ

′
. The localization d(l)λ

belongs to

H1(Gal((KT )λ′′/Kλ), E((KT )λ′′ ))q = H1(Gl, E((KT )λ′′ )).

Fact 4.8 The choice of generator σl of Gl determines a canonical inclusion
of H1(Gl, E((KT )λ′′ ))q inside Eq(kλ).
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Proof: Since the kernel of the reduction map E((KT )λ′′ ) −→ E(kλ) is a
pro-l group, the group H1(Gl, E((KT )λ′′ ))q injects into H1(Gl, E(kλ))q =
hom(Gl, E(kλ))q. The latter group can be identified with E(kλ)q thanks to
the chosen generator σl of Gl.

Theorem 4.9 .

1. For all archimedean places and all places which do not divide l or the
conductor S

′
of Dk, the class d(l)v is equal to 0.

2. The image of d(l)λ in E(kλ)q is equal to

(l + 1)Frob∞ − al

q
P̃ ,

where P̃ is the reduction of P mod λ
′
.

Proof:

1. If v is archimedean, then Kv = C and E/Kv has trivial Galois cohomol-
ogy. Suppose now that v is a non-archimedean place not lying above S

′
l.

By construction the class d(l)v is inflated from a class in H1(KS′ l/K, E)q.
Since the extension KS′ l is unramified at v, the class d(l)v comes from a
class in H1(Kunram

v /Kv, E)q. Let E0 denote the connected component of the
Néron model at v, and let Jv = E/E0. The group H1(Kunram

v /Kv, E
0) van-

ishes, (cf. [Mi] ch. I, prop. 3.8), and hence H1(Kunram
v /Kv, E)q injects into

H1(Kunram
v /Kv, Jv)q. By the assumption that q is not invertible in Z, we

know that q is prime to m and hence to the order of Jv. Hence the group
H1(Kunram

v /Kv, Jv)q is trivial, and the class d(l)v vanishes.

2. The image of d(l)λ in E(kλ) by the isomorphism defined above is the point

redλ′′

(
(σl − 1)P (l)

q

)
= redλ′′

(
(σl − 1)DlDkα(T )

q

)
,

where redλ′′ : E((KT )λ′′ ) −→ E(kλ) is the reduction map. But

(σl − 1)DlDkα(T ) = (l + 1−Nl)Dkα(T ) (by lemma 4.1)

= (l + 1)Dkα(T )− alDkα(S) (by prop. 3.10).

22



Hence,

redλ′′

(
(σl − 1)P (l)

q

)
= redλ′′

(
l + 1

q
Frob∞Dkα(S)− al

q
Dkα(S)

)
,

by prop. 3.11 combined with the fact that Frobλ′ = Frob∞. Since P̃ =
redλ′′ (Dkα(S)), the lemma is proved.

4.3 Tate duality

The cup product in cohomology combined with the Weil pairing

Eq ⊗ Eq −→ µq

give rise to an alternating pairing

H1(Kλ, Eq)×H1(Kλ, Eq) −→ H2(Kλ, µq) = Z/qZ.

(The identification H2(Kλ, µq) = Z/qZ is provided by the map

invλ : H2(Kλ, µq) −→ Z/qZ

of local class field theory.) It is a result of Tate that this local pairing is
non-degenerate (cf. [Mi], ch. I, cor. 2.3).

The local q-descent exact sequence

0 −→ E(Kλ)/qE(Kλ) −→ H1(Kλ, Eq) −→ H1(Kλ, E)q −→ 0

allows us to view E(Kλ)/qE(Kλ) as a submodule of H1(Kλ, Eq). This sub-
space is maximal isotropic for the local Tate pairing (cf. [Gr4], p. 247, prop.
7.5, or [Mi], ch. I, thm. 2.6.). Therfore one gets a perfect pairing

〈 , 〉 : E(Kλ)/qE(Kλ)×H1(Kλ, E)q −→ Z/qZ,

i.e., an isomorphism

H1(Kλ, E)q −→ (E(Kλ)/qE(Kλ))
∗. (4)

Here the superscript ∗ denotes Pontryagin dual, i.e., for a Z/qZ-module M ,

M∗ = hom(M,Z/qZ).
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By composing the dual of the natural map Selq(E/K) −→ E(Kλ)/qE(Kλ)
with the isomorphism (4), one obtains a map

φλ : H1(Kλ, E)q −→ Selq(E/K)∗.

Similarly, if S is any submodule of the Selmer group Selq(E/K), one obtains
by restriction a map H1(Kλ, E)q −→ S∗, which by abuse of notation we
denote by the same letter φλ. The map φλ commutes with the action of
complex conjugation on the modules H1(Kλ, Eq) and Selq(E/K), and hence
preserves the decomposition into eigenspaces of the modules.

We will be exploiting the cohomology class d(l) in the following way. Let
Selq(S

′
) ⊂ Selq(E/K) be the kernel of the map

Selq(E/K) −→ ⊕v|S′E(Kv)/qE(Kv).

Proposition 4.10 The local class d(l)λ is in the kernel of the map

φλ : H1(Kλ, E)εk
q −→ (Selq(S

′
)∗)εk .

Proof: Let s belong to Selq(S
′
), and let sλ denote its image in E(Kλ)/qE(Kλ).

We need to show that
〈sλ, d(l)λ〉 = 0.

Let d̃(l) denote a lift of d(l) to the group H1(K, Eq). The cup-product s∪d̃(l)
belongs to the global Brauer group H1(K, µq). By the definition of the local
pairing, we have: ∑

v

〈sv, d(l)v〉 =
∑
v

invv(s ∪ d̃(l)).

The latter sum is 0, by the reciprocity law of global class field theory. On the
other hand, if the place v does not divide S

′
λ, then d(l)v = 0, by theorem

4.9. If the place v divides S ′, then sv = 0, since s ∈ Selq(S
′
). Hence all of

the terms in the first sum are zero, with the possible exception of 〈sλ, d(l)λ〉.
It follows that 〈sλ, d(l)λ〉 = 0.

4.4 Application of the Chebotarev density theorem

We make the following hypotheses:
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Hypothesis 4.11 The point P = Dkα(S) is not the q–th power of a point
in E(KS).

Hypothesis 4.12 rq(Selq(S
′
)εk) ≥ 1.

Set F = KS(Eq). We start with a few cohomological lemmas.

Lemma 4.13 The fields KS and K(Eq) are linearly disjoint over K.

Proof: The intersection of the KS and K(Eq) is a subfield of K(Eq) which
is abelian over K and hence is contained in K(µq), since Gal(K(Eq)/K) =
GL2(Z/qZ). But KS ∩K(µq) = K, since S and q are relatively prime.

Lemma 4.14 Let (Z/qZ)2 be equipped with the natural action of GL2(Z/qZ).
Then

Hp(GL2(Z/qZ), (Z/qZ)2) = 0.

Proof: Let C ' (Z/qZ)∗ be the center of GL2(Z/qZ) consisting of the scalar
matrices. The Hochschild-Serre spectral sequence

Hp(PGL2(Z/qZ), Hq(C, (Z/qZ)2)) ⇒ Hp+q(GL2(Z/qZ), (Z/qZ)2)

shows that Hp(GL2(Z/qZ), (Z/qZ)2) = 0, since C has order prime to q, and
H0(C, (Z/qZ)2) = 0 (here we use the fact that q is odd).

Lemma 4.15 The restriction map H1(K,Eq) −→ H1(KS, Eq) is injective.

Proof: Its kernel is the group H1(KS/K, Eq(KS)) which is trivial since
Eq(KS) = 0 by lemma 4.13.

Lemma 4.16 The restriction map H1(KS, Eq) −→ H1(F, Eq) is injective.

Proof: By lemma 4.13, we have Gal(F/KS) = GL2(Z/qZ), and the kernel of
the restriction map is the group

H1(F/KS, Eq) = H1(GL2(Z/qZ), Eq).

This group is trivial by lemma 4.14, and the result follows.

Lemma 4.17 The restriction map H1(K, Eq) −→ H1(F, Eq) is injective.
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Proof: Combine lemmas 4.15 and 4.16.

Let l be a rational prime satisfying the condition

Condition 4.18 l 6 |ND · p · S, Frobl = Frob∞ in F/Q.

In this case, l is inert in K/Q. Let λ be the unique prime of K above l.
The prime λ splits completely in F/K. Choose a prime λF of F above it.
The residue field of F at λF is identified with kλ.

Proposition 4.19 There exists a prime l satisfying the condition 4.18 such
that

1. The image of P̃ in E(kλ)/qE(kλ) is non-zero.

2. The map Selq(S
′
)εk −→ (E(kλ)/qE(kλ))

εk is surjective.

Proof: By the hypothesis 4.11, the class P in E(KS)/qE(KS) is non-trivial.
Complex conjugation acts on E(KS)/qE(KS) in a natural way, and P can be
written uniquely as a sum of projections onto the + and − eigencomponents
for this action. At least one of these projections is non-trivial: call it P

′
.

The cohomology class in H1(KS, Eq) corresponding to P
′
is also non trivial;

hence, so is its restriction in H1(F, Eq), by lemma 4.16. Let ζ1 denote this
restriction.

By hypothesis 4.12, we may choose an element of order exactly q in
Selq(S

′
)εk , and the image ζ2 of this element in H1(F, Eq) is still of order

exactly q, by lemma 4.17.
Both ζ1 and ζ2 are homomorphisms from Gal(F ab/F ) into Eq. Let F̃ be

the smallest extension of F which is cut out by ζ1 and ζ2 and is Galois over
Q. Let U = Gal(F̃ /F ). There is an exact sequence

1 −→ Gal(F̃ /F ) −→ Gal(F̃ /KS) −→ Gal(F/KS) −→ 1
|| ||
U GL2(Z/qZ)

which determines a GL2(Z/qZ)-action on U . Similarly, complex conjugtion
Frob∞ acts on U by inner automorphisms. The cohomology classes ζ1, and
ζ2 are fixed under the action of GL2(Z/qZ) on hom(U,Eq), since they come
from classes in H1(KS, Eq) by inflation. Let U+ denote the subspace of
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U which is fixed by Frob∞. The class ζ1 belongs to a fixed eigenspace of
hom(U,Eq) for the action of Frob∞, by construction. The class ζ2 belongs
to the εk–eigenspace, since it comes from a class in Selq(S

′
)εk . Hence both

ζ1 and pM−1ζ2 are non-zero on U+. Otherwise, they would map U onto a
given eigenspace of Eq for the Frob∞-action, contradicting the GL2(Z/qZ)-
invariance of the image. Thus, we can find γ ∈ U+ such that

ζ1(γ) 6= 0, ζ2(γ) is of order exactly q.

Now choose l such that

Frobl = Frob∞γ in F̃ /Q,

where the equality is one of conjugacy classes in the group Gal(F̃ /Q). One
can find such a prime, by the Chebotarev density theorem. Clearly, l satisfies
the condition 4.18. In addition,

ζ1(FrobλF
) = ζ1(Frob2

l ) = ζ1(γ
Frob∞ · γ) = ζ1(γ

2) 6= 0.

Hence, P is not a q-th power in E(kλ)/qE(kλ), and condition 1 is satisfied.
By the same computation, one shows that ζ2(FrobλF

) is of order exactly q
in Eq, which implies that the image of ζ2 in H1(Kλ, Eq)

εk is itself of order
exactly q, so that condition 2 is satisfied as well, since

(E(Kλ)/qE(Kλ))
εk ' Z/qZ.

This proves the proposition.

5 Proof of the main results

5.1 Proof of theorem 3.15

Given a Z/qZ-module M , define rp(M) to be

rp(M) = dimFp(M ⊗ Fp).

Lemma 5.1 If 0 −→ A
′ −→ A

f−→ A
′′

is an exact sequence of Z/qZ-
modules, then

rq(A) ≤ rq(A
′
) + rp(A

′′
).
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Proof: We may assume without loss of generality that f is surjective. Let
N denote the image of ApM−1 in A

′′
. Because of the surjectivity assumption,

the module A
′′
/N is annihilated by p. There is a natural exact sequence of

Fp-vector spaces:

0 −→ pM−1A
′ −→ pM−1A −→ A

′′
/N

pM−1a 7→ f(a).

Hence
dimFp(p

M−1A) ≤ dimFp(p
M−1A

′
) + dimFp(A

′′
/N).

The lemma now follows from the fact that dimFp(p
M−1A) = rq(A) (and

likewise for A
′
) and from the inequality dimFp(A

′′
/N) ≤ rp(A

′′
).

Lemma 5.2 For any prime v of K which lies above a prime of Lq,

rp(E(Kv)/qE(Kv)
εk) ≤ 1.

Proof: We have

rp(E(Kv)/qE(Kv)) = rp(E(Kv)/pE(Kv)) = rp(E(kv)/pE(kv)),

because the norm of v is prime to p. Since E(kv) is a finite group, the
group E(kv)/pE(kv) is isomorphic to Ep(kv) which is at most 2 dimensional.
Moreover, we know that

#E(kv)
± = l + 1∓ al.

Since p divides l + 1, the order of E(kv) is divisible by p if and only if p
divides al, and then p divides the order of each eigenspace so that

rp(E(kv)/pE(kv)
±) = 1.

Let Dk be as in the previous section a partial derivative of order k with
support S and conductor S

′
, and let εk = (−1)k+1ε. Consider the modules

Selq(S
′
), A(S

′
) = ⊕v|S′E(Kv)/qE(Kv)

which fit into the exact sequence

0 −→ Selq(S
′
)± −→ Selq(E/K)± −→ A(S

′
)±.

Let Sel±q denote the plus and minus eigenspaces for the action of complex
conjugation on Selq(E/K).
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Theorem 5.3 If order(Dk) < rq(Selq(S
′
)εk) + rp(A(S

′
)εk), then

Dkα(S) ≡ 0 (mod q).

Proof: The weight of Dk is defined to be

wt(Dk) = order(Dk)−#{l|S such that l belongs to Lq,E }.

We will show theorem 5.3 by induction on wt(Dk).

Step 1: Case where wt(Dk) < 0. In that case, Dk contains a factor of the
form D0

l , with l ∈ Lq,E. But then, by proposition 3.10,

D0
l α(S) = al · α(S/l),

which is 0, since q divides al by lemma 4.3. Thus one always has Dkα(S) = 0,
without assuming any inequality for the order of Dk.

Step 2: Proof for wt(Dk) = w ≥ 0: We make the induction hypothesis that
theorem 5.3 holds in weight strictly less than w. We argue by contradiction,
assuming that P = Dkα(S) is non-zero but that

order(Dk) < rq(Selq(S
′
)εk) + rp(A(S

′
)εk).

Lemma 5.4 rq(Selq(S
′
)εk) > 0.

Proof: Otherwise we would have

order(Dk) < rp(A(S
′
)εk).

The right hand side in this inequality is less than or equal to the number of
primes dividing S

′
, by lemma 5.2, and thus cannot be greater than order(Dk).

Invoking proposition 4.19, we choose a prime l satisfying the conditions

Conditions 5.5 .

1. Frobl = Frob∞ in KS(Eq)/Q.

2. P̃ 6= 0 in E(kλ)/qE(kλ).
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3. The map Selq(S
′
)εk −→ (E(Kλ)/qE(Kλ))

εk is surjective (or, dually,
the map

φλ : H1(Kλ, E)εk
q −→ (Selq(S

′
)εk)∗

is injective).

The crucial observation is that the hypothesis 4.5 of section 4.2 is still
satisfied in our new setting.

Lemma 5.6 The partial derivative DkD
1
l satisfies the hypothesis 4.5 of sec-

tion 4.2.

Proof: Let D
′

be a partial derivative which is strictly less than DkD
1
l . We

assume without loss of generality that the order of D
′
is equal to k, the order

of Dk. Lemma 5.1, applied to the exact sequence

1 −→ Selq(S
′
l)εk −→ Selq(S

′
)εk −→ (E(Kλ)/qE(Kλ))

εk

shows that

rq(Selq(S
′
)εk) ≤ rq(Selq(S

′
l)εk) + rp(E(Kλ)/qE(Kλ)

εk)

= rq(A
′
(S

′
l)εk) + 1 (by lemma 5.2).

Also, by lemma 5.2,

rp(A(S
′
)εk) = rp(A(S

′
l)εk)− 1.

Combining these two inequalities, we find that

order(D
′
) = k < rq(Selq(S

′
l)εk) + rp(A(S

′
l)εk).

Since the support of D
′
is divisible by an extra prime in Lq,E,

wt(D
′
) < wt(Dk).

Thus we may apply the induction hypothesis to conclude that D
′
α(S) = 0.

Because of this lemma, we can apply the construction of section 4.2, to
obtain a class d(l) in H1(K, E)q. Combining 1 and 2 of conditions 5.5 satisfied
by l with theorem 4.9, we find

d(l)λ 6= 0.
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By proposition 4.10, it follows that the map

φλ : H1(Kλ, E)εk
q −→ (Selq(S

′
)εk)∗

fails to be injective, contradicting the third of the conditions 5.5.

We now derive some consequences of the main result.

Corollary 5.7 If order(Dk) < rq(Selq(S
′
)−εk) + rp(A(S

′
)−εk)− 1, then

Dkα(S) ≡ 0 (mod q).

Proof: Suppose that P = Dkα(S) 6= 0 (mod q). Then, by proposition 4.19,
we can choose a prime l such that

1. Frobl = Frob∞ in KS(Eq)/Q.

2. P̃ 6= 0 in E(kλ)/qE(kλ).

We observe that the point DkD
1
l α(T ) = P (l) is non-zero in E(KT )/qE(KT ).

For, either there is a partial derivative D
′
strictly less than DkD

1
l such that

D
′
α(T ) is non-zero mod q, in which case DkD

1
l is also non-zero mod q by

lemma 4.1; or DkD
1
l satisfies the hypothesis 4.5, in which case we can apply

the general construction of section 4.2 to obtain a cohomology class d(l) in
H1(K, E)q. By theorem 4.9, this class is non-zero locally at λ, and hence a
fortiori globally. Hence the point P (l) from which it comes is non-zero as
well. By the assumption,

order(DkD
1
l ) < rq(Selq(S

′
)−εk) + rp(A(S

′
)−εk).

On the other hand,

rq(Selq(S
′
)−εk) + rp(A(S

′
)−εk) ≤ rq(Selq(S

′
l)−εk) + rp(A(S

′
l)−εk),

by the same calculation as in the proof of lemma 5.6. Combining the two
inequalities together, we find

order(DkD
1
l ) < rq(Selq(S

′
l)−εk) + rp(A(S

′
l)−εk).

Let k
′
= order(DkD

1
l ) = k + 1. Since (−1)k

′
= −εk, we can apply theorem

5.3 to conclude that DkD
1
l = 0 mod p, which is a contradiction.
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Corollary 5.8 .

1. If order(Dk) < rq(Selεk
q ), then Dkα(S) ≡ 0 (mod q).

2. If order(Dk) < rq(Sel−εk
q )− 1, then Dkα(S) ≡ 0 (mod q).

Proof: By lemma 5.1,

rq(Selεk
q ) ≤ rq(A

′
(S

′
)εk) + rp(A

′′
(S

′
)εk).

Hence part 1 follows from theorem 5.3. Part 2 of the corollary follows simi-
larly from corollary 5.7.

We finally come to the proof of theorem 3.15 whose statement we recall:

Theorem 3.15: Let q be a power of a prime which is not invertible in Z,
and let Dk be a partial derivative whose support S is a product of primes in
Lq. If order(Dk) < ρq, then

Dkα(S) ≡ 0 (mod q).

Proof: If the inequality is true, then either

order(Dk) < rq(Selεk
q ) or order(Dk) < rq(Sel−εk

q )− 1.

The result then follows from corollary 5.8.

5.2 Proof of theorem 2.5

We now turn to the proof of theorem 2.5. We assume that |r+ − r−| = 1, so
that 2ρ = r − 1. To study the leading coefficient θ̃

′
(E, S)(p), we must study

the images of the elements Dkα(S) in E(KS)/pE(KS), where Dk is a partial
derivative of order ρ and support S.

Part 2 of theorem 2.5 will follow from:

Proposition 5.9 If Dkα(S) 6= 0 mod p, then IIIp(E/K) = 0, and the map

Selp(E/K) −→ ⊕v|SE(Kv)/pE(Kv)

is surjective (i.e., JS ⊗ Fp = 0).

32



Proof: If Dkα(S) 6= 0 mod p, then by theorem 5.3 and corollary 5.7, we have:

ρ ≥ rp(Selp(S)εk) + rp(A(S)εk) ≥ rp(Selp(E/K)εk) ≥ rεk ,

ρ ≥ rp(Selp(S)−εk) + rp(A(S)−εk)− 1 ≥ rp(Selp(E/K)−εk)− 1 ≥ r−εk − 1.

Since 2ρ = r− 1, we have equalities everywhere, and hence IIIp(E/K) = 0.
Also, since rp(Selp(E/K)) = rp(Selp(S)) + rp(A(S)), the map

Selp(E/K) −→ A(S)

is surjective.
To show part 1, we must show that

Proposition 5.10 Dkα(S) is in the image of the natural map

E(K)/pE(K) −→ E(KS)/pE(KS).

Proof: Consider the exact sequence

0 −→ E(K)/pE(K) −→ E(KS)/pE(KS) −→ H1(K, E)p

(cf. section 4.2). Let P be the image of Dkα(S) in E(KS)/pE(KS), and let d
be the image of P in H1(K, E)p. The cohomology class d is the obstruction for
the point P to come from E(K)/pE(K); we want to show that it vanishes. By
theorem 4.9, the class d is trivial locally except possibly at the places dividing
S. Hence by the definition of the local Tate pairing and the reciprocity law of
global class field theory (cf. sec. 4.3), the image of d in ⊕v|SH1(Kv, E)p maps
to 0 in Selp(E/K)∗. But by prop. 5.9, the map Selp(E/K) −→ A(S)⊗Fp is
surjective, and hence dually the map

⊕v|SH1(Kv, E)p −→ Selp(E/K)∗

is injective. Therefore the class d is locally trivial everywhere; it belongs to
IIIp(E/K). By prop. 5.9, IIIp(E/K) = 0, and hence d = 0.

To conclude, we make some remarks concerning the Mazur Tate height
pairing

〈 , 〉S : E(K)× ES(K) −→ (I/I2),

where I denotes the augmentation ideal in the group ring Z[ΓS].
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Claim 5.11 If P ∈ E(K) and Q ∈ ES(K) belong to the same eigenspaces
for the action of complex conjugation, then 〈P, Q〉 = 0.

Proof: Let τ = Frob∞ denote complex conjugation. By the linearity of the
Mazur Tate pairing and the fact that P and Q belong to the same eigenspace
for τ , we have:

〈τP, τQ〉 = 〈P, Q〉.

On the other hand, the behavior of the Mazur Tate pairing under Galois
action (cf. [MT2], p. 216, (3.4.2)),

〈τP, τQ〉S = τ〈τP, Q〉Sτ−1 = −〈P, Q〉S,

and hence since I/I2 is of odd order, 〈P, Q〉S = 0.

Because of this claim, the pairing matrix has all of its (r − 1)× (r − 1)-
minors equal to 0 whenever |r+ − r−| > 1. Hence the regulator RS vanishes.
Since the leading coefficient θ̃

′
(E, S) is also zero in E(KS)⊗2 ⊗ Ir−1/Ir (be-

cause 2ρ > r − 1), we have shown:

Proposition 5.12 If |r+ − r−| > 1, then both the regulator RS and the
leading coefficient θ̃

′
(E, S) are zero in E(KS)⊗2⊗ (Ir−1/Ir), where I denotes

the augmentation ideal in the group ring Z[ΓS]. Hence conjecture 2.3 is true
in this case, after tensoring with Z.

5.3 Proof of theorem 2.6

We finish with the proof of theorem 2.6 (cf. section 2.2).

Theorem 2.6 dimFp(E(L)p) ≤ p− ρp.

Proof: Let σ be a generator for the group G, and let α be the Heegner point
in E(L). By applying lemma 4.1, one sees that the non-zero vectors among

D0
σα, D1

σα, . . . , Dp−1
σ α

give a basis for the vector space Ep over Fp. By theorem 3.15 the partial
derivatives of α of order < ρp are 0 mod p, and the result follows.
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