NOTE ON A POLYNOMIAL OF EMMA LEHMER

HENRI DARMON

ABSTRACT. Recently, Emma Lehmer constructed a parametric family of units in real quintic fields of prime conductor $p=t^4+5t^3+15t^2+25t+25$ as translates of Gaussian periods. Later, Schoof and Washington showed that these units were fundamental units. In this note, we observe that Lehmer's family comes from the covering of modular curves $X_1(25) \rightarrow X_0(25)$. This gives a conceptual explanation for the existence of Lehmer's units: they are modular units (which have been studied extensively). By relating Lehmer's construction with ours, one finds expressions for certain Gauss sums as values of modular units on $X_1(25)$.

1. Lehmer's polynomial

Throughout the discussion, we fix a choice $\{\zeta_n\}$ of primitive *n*th roots of unity for each n, say by $\zeta_n = e^{2\pi i/n}$.

I et

(1)
$$P_5(Y, T) = Y^5 + T^2Y^4 - 2(T^3 + 3T^2 + 5T + 5)Y^3 + (T^4 + 5T^3 + 11T^2 + 15T + 5)Y^2 + (T^3 + 4T^2 + 10T + 10)Y + 1$$

be the quintic polynomial constructed in [5]. The discriminant of $P_5(Y, T)$, viewed as a polynomial in Y with coefficients in $\mathbf{Q}(T)$, is

$$D(T) = (T^3 + 5T^2 + 10T + 7)^2 (T^4 + 5T^3 + 15T^2 + 25T + 25)^4.$$

The projective curve C in \mathbf{P}_2 defined by the affine equation (1) has three nodal singularities whose T-coordinates are the roots of the first factor of D(T). The points (y, t), where t is a root of the second factor, are branch points for the covering of C onto the T-line.

As shown in [5], the polynomial $P_5(Y, T)$ defines a regular Galois extension of $\mathbf{Q}(T)$ with Galois group $\mathbf{Z}/5\mathbf{Z}$. By the analysis above, it is ramified at the four conjugate points $T = -\sqrt{5}\zeta_5$, $\sqrt{5}\zeta_5^2$, $-\sqrt{5}\zeta_5^{-1}$, $\sqrt{5}\zeta_5^{-2}$, the zeros of the

©1991 American Mathematical Society 0025-5718/91 \$1.00 + \$.25 per page

Received September 18, 1989; revised February 12, 1990, March 22, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11F11, 11R20, 11R32, 11Y40, 12F10.

Partially supported by a Doctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

minimal polynomial

$$T^4 + 5T^3 + 15T^2 + 25T + 25$$
.

(Here $\sqrt{5}$ denotes the positive square root.) If $t \in \mathbb{Z}$ is chosen so that

$$p = t^4 + 5t^3 + 15t^2 + 25t + 25$$

is prime (hence, in particular, $p \equiv 1 \mod 5$), then the roots r_1, \ldots, r_5 of $P_5(Y, t)$ are translates of Gaussian periods:

$$r_i = (t/5)\eta_i + [(t/5) - t^2]/5$$

where $\eta_j = \sum_{x \in \Gamma_j} \zeta_p^x$ and Γ_j denotes the jth coset of $(\mathbf{Z}/p\mathbf{Z})^{*5}$ in $(\mathbf{Z}/p\mathbf{Z})^*$.

Since C admits a five-to-one map to P_1 , which is totally ramified at four points, the geometric genus of C is 4 by the Riemann-Hurwitz theorem. On the other hand, C is realized as a plane curve of degree d = 6, and its arithmetic genus is (d-1)(d-2)/2 = 10. Let C' denote the normalization of C; it is a smooth projective curve of genus 4. The covering $C' \to \mathbf{P}_1$ defines a Galois covering of P_1 with Galois group $\mathbb{Z}/5\mathbb{Z}$, and has the following properties:

- 1. It is ramified only over the four closed points in $R = \{-\sqrt{5}\zeta_5, \sqrt{5}\zeta_5^2,$ $-\sqrt{5}\zeta_5^{-1}\,,\,\sqrt{5}\zeta_5^{-2}\}\,.$ 2. The closed points of the fiber above $\infty\in\mathbf{P}_1$ are rational.

Proposition 1.1. Properties 1 and 2 determine the covering C' uniquely up to **O**-isomorphism.

Proof. Let $(\mathbf{P}_1 - R)$ be the projective line with the points of R removed, viewed as a curve over **Q**. The space $V = H_{et}^{1}(\mathbf{P}_{1} - R, \mathbf{Z}/5\mathbf{Z})$ is a vector space of dimension 3 over \mathbf{F}_5 , and is endowed with a natural action of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$. In fact, one has

$$V = H_{et}^{1}(\mathbf{P}_{1} - R, \mu_{5}) \otimes \mu_{5}^{-1},$$

where μ_5 denotes the group scheme of 5th roots of unity. By Kummer theory, $H_{et}^1(\mathbf{P}_1 - R, \mu_5)$ is identified with the subspace of $\overline{\mathbf{Q}}(T)^*/\overline{\mathbf{Q}}(T)^{*5}$ spanned by the elements

$$\begin{array}{ll} (T+\zeta_5\sqrt{5})/(T-\zeta_5^2\sqrt{5})\,, & (T-\zeta_5^2\sqrt{5})/(T+\zeta_5^{-1}\sqrt{5})\,, \\ (T+\zeta_5^{-1}\sqrt{5})/(T-\zeta_5^{-2}\sqrt{5})\,, & (T-\zeta_5^{-2}\sqrt{5})/(T+\zeta_5\sqrt{5})\,, \end{array}$$

whose product is 1. Hence the action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H_{et}^1(\mathbb{P}_1 - R, \mu_5)$ factors through $\operatorname{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$, and is isomorphic to the regular representation of $Gal(\mathbf{Q}(\zeta_5)/\mathbf{Q})$ minus the trivial representation. It follows that V decomposes as a direct sum of three irreducible one-dimensional Galois representations,

$$V = V_0 \oplus V^{\omega} \oplus V^{\omega^2},$$

where V_0 is the trivial representation, and V^{ω} , V^{ω^2} denote one-dimensional spaces on which $Gal(\mathbf{Q}(\zeta_5)/\mathbf{Q})$ acts via the Teichmüller character ω and the square of the Teichmüller character ω^2 , respectively. In particular, V_0 is the unique one-dimensional subspace of V which is fixed by $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. But the cyclic quintic coverings of \mathbf{P}_1 which are Galois over \mathbf{Q} and unramified outside R correspond exactly to such subspaces. Hence, property 1 determines C' uniquely as a curve over $\overline{\mathbf{Q}}$. (Alternatively, one could use the "rigidity criterion" of Matzat, cf. [6, p. 368].) It is not hard to see that there is a unique rational form of the covering C' such that the closed points above $\infty \in \mathbf{P}_1$ are all rational (twisting this rational form by a cocycle c in $H^1(\mathbf{Q}, \operatorname{Aut}(C'/\mathbf{P}_1))$ will cause these points to be defined over the larger extension "cut out" by c). Thus, property 2 determines $C' \to \mathbf{P}_1$ up to \mathbf{Q} -isomorphism. \square

2. A modular covering interpretation of Lehmer's quintic

We assume in this section some basic facts about modular forms and the geometry of modular curves. A good reference for this material is [7].

Let $X_0(25)$ and $X_1(25)$ denote the modular curves of level 25, compactified by adjoining a finite set of cusps. The curve $X_0(25)$ is of genus 0 and is isomorphic to \mathbf{P}_1 over \mathbf{Q} . The covering $X_1(25) \to X_0(25)$ is Galois with Galois group canonically isomorphic to $G = (\mathbf{Z}/25\mathbf{Z})^*/\langle \pm 1 \rangle$. The quotient X of $X_1(25)$ by the involution $7 \in G$ gives a cyclic covering of $X_0(25)$ of degree 5.

Let $T_5 = \eta(z)/\eta(25z)$ and $F_5 = (\eta(z)/\eta(5z))^6$ be Hauptmoduls for $X_0(25)$ and $X_0(5)$, respectively. One has

$$F_5 = T_5^5 / (T_5^4 + 5T_5^3 + 15T_5^2 + 25T_5 + 25)$$
.

The curve $X_0(5)$ has two cusps C_1 and C_2 corresponding to the values $F_5=0$ and $F_5=\infty$, respectively. Hence, $X_0(25)$ has six cusps: a unique one lying above C_1 , corresponding to $T_5=0$; and five cusps above C_2 , given by $T_5=\infty$, $-\sqrt{5}\zeta_5$, $\sqrt{5}\zeta_5^2$, $-\sqrt{5}\zeta_5^{-1}$, $\sqrt{5}\zeta_5^{-2}$ (cf. [1]). The covering $X\to X_0(25)$ is ramified at the four nonrational cusps, and the fiber above the cusp $T_5=\infty$ is composed of rational points (cf. [1, p. 226]). By Proposition 1.1, X can be described by Lehmer's quintic; the zeros r_1,\ldots,r_5 of $P_5(Y,T_5)$ are modular functions on $X_1(25)$ (in fact, on X) with divisor supported at the P_i , where P_1,\ldots,P_5 are the closed points of X which lie above the cusp $T_5=\infty$ of $X_0(25)$. By using Hensel's lemma to solve explicitly the equation $P_5(Y,T_5)=0$, one obtains the following q-expansions for the r_i :

$$r_{1} = -q^{3} + q^{4} + q^{10} - q^{11} - q^{12} + q^{13} - q^{15} + q^{17} + \cdots,$$

$$r_{2} = q^{-1} + 1 + q^{6} + q^{7} - q^{10} - q^{11} + \cdots,$$

$$r_{3} = -q - q^{3} + q^{4} + q^{6} - q^{12} - q^{14} + q^{18} + q^{20} + \cdots,$$

$$r_{4} = -q^{-2} - q - q^{2} - q^{5} + q^{15} + q^{17} + q^{18} + \cdots,$$

$$r_{5} = q^{-1} + q^{5} + q^{7} - q^{8} - q^{12} + q^{13} - q^{14} + \cdots.$$

By [8, p. 548], the transformation

$$r \mapsto \frac{(T_5 + 2) + T_5 r - r^2}{1 + (T_5 + 2)r}$$

permutes the roots of $P(Y, T_5)$ cyclically; one can thus label the r_i in such a way that a generator of $\operatorname{Gal}(X/X_0(25)) \simeq \mathbb{Z}/5\mathbb{Z}$ sends r_i to r_{i+1} , where the subscripts are taken modulo 5. The five cusps of X lying above the cusp $T_5 = \infty$ are permuted cyclically by the Galois group of X over $X_0(25)$. By considering the q-expansions above, we may fix a labelling of the cusps P_1, \ldots, P_5 so that a generator of $\operatorname{Gal}(X/X_0(25))$ sends P_i to P_{i+1} and such that

Divisor
$$(r_1) = 3P_1 - P_2 + P_3 - 2P_4 - P_5$$
.

Now, let a belong to $\mathbb{Z}/25\mathbb{Z}$, and define

$$\wp_a(\tau) = \wp(a/25; \tau)$$
,

where

$$\wp(z;\tau) = \frac{1}{z^2} + \sum_{(m,n)\in\mathbb{Z}^2 - 0} \left(\frac{1}{(z - n - m\tau)^2} - \frac{1}{(n + m\tau)^2} \right)$$

is the Weierstrass \wp -function. It is well known that the functions

$$\wp_{a,b}(\tau) = \wp_a(\tau) - \wp_b(\tau)$$

are modular units on $X_1(25)$. The divisors of these functions are computed in [1]. In particular, we find that

Divisor
$$\left(\frac{\wp_{7,9}\wp_{6,3}\wp_{1,12}\wp_{8,4}}{\wp_{1,3}\wp_{7,4}\wp_{6,7}\wp_{8,1}}\right) = 3P_1 - P_2 + P_3 - 2P_4 - P_5$$

where the P_i denote the cusps on X which are above the cusp ∞ of $X_0(25)$. By expressing the function on the left in terms of so-called Klein forms $t_{(a_1, a_2)}$ (cf. [2]), the above simplifies to give

Divisor
$$\left(\frac{t_{(0,1)}t_{(0,7)}}{t_{(0,9)}t_{(0,12)}}\right) = 3P_1 - P_2 + P_3 - 2P_4 - P_5$$
.

Let us abbreviate $t_{(0,a)}$ to t_a . By comparing divisors and q-expansions, one finds the following infinite product expressions for the r_i :

$$\begin{split} r_1 &= \frac{t_1 t_7}{t_9 t_{12}} (25\tau) = -q^3 \prod_{n \equiv \pm 1, \, \pm 7(25)} (1-q^n) / \prod_{n \equiv \pm 9, \, \pm 12(25)} (1-q^n) \,, \\ r_2 &= \frac{t_2 t_{11}}{t_1 t_7} (25\tau) = q^{-1} \prod_{n \equiv \pm 2, \, \pm 11(25)} (1-q^n) / \prod_{n \equiv \pm 1, \, \pm 7(25)} (1-q^n) \,, \end{split}$$

$$\begin{split} r_3 &= \frac{t_4 t_3}{t_{11} t_2} (25\tau) = -q \prod_{n \equiv \pm 4, \pm 3(25)} (1-q^n) / \prod_{n \equiv \pm 11, \pm 2(25)} (1-q^n) \,, \\ r_4 &= \frac{t_8 t_6}{t_3 t_4} (25\tau) = -q^{-2} \prod_{n \equiv \pm 8, \pm 6(25)} (1-q^n) / \prod_{n \equiv \pm 3, \pm 4(25)} (1-q^n) \,, \\ r_5 &= \frac{t_9 t_{12}}{t_6 t_8} (25\tau) = q^{-1} \prod_{n \equiv \pm 9, \pm 12(25)} (1-q^n) / \prod_{n \equiv \pm 6, \pm 8(25)} (1-q^n) \,. \end{split}$$

The Galois group $\operatorname{Gal}(X_1(25)/X_0(25)) = (\mathbf{Z}/25\mathbf{Z})^*/\langle \pm 1 \rangle$ acts on the t_a by multiplying the subscripts (which are viewed as belonging to $(\mathbf{Z}/25\mathbf{Z})^*/\langle \pm 1 \rangle$). Hence, to go from r_i to r_{i+1} , one applies the Galois automorphism $2 \in \operatorname{Gal}(X/X_0(25)) = (\mathbf{Z}/25\mathbf{Z})^*/\langle \pm 1, \pm 7 \rangle$.

3. Gauss sums

Given a prime $p \equiv 1 \pmod{5}$, let $\Psi_p \colon \mathbf{F}_p \to \mathbf{C}^*$ be the additive character sending 1 to ζ_p . We consider the Gauss sum

$$g(p) = \sum_{x \in \mathbb{F}_p} \chi(x) \Psi_p(x),$$

where χ is a character of \mathbf{F}_p^* of order 5. The value of g(p) is independent of χ , up to the action of $\operatorname{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$.

By combining Lehmer's explicit determination of the roots of her polynomial as Gaussian periods, and our identification of these roots with certain modular forms of level 25, we obtain:

Theorem 3.1. If $\eta(\tau)/\eta(25\tau) = n \in \mathbb{Z}$, and $\eta(5\tau)^6/(\eta(\tau)\eta(25\tau)^5) = p$ is prime, then

$$\prod_{i=1}^{4} (\eta(\tau)/\eta(25\tau) - \sigma_i^{-1}(\zeta_5\sqrt{5}))^{i/5} = (n/5)g(p),$$

where $\sigma_i \in Gal(\mathbf{Q}(\zeta_5)/\mathbf{Q})$ sends ζ_5 to ζ_5^i .

There is some ambiguity in the formula, since the value of g(p) depends on the choice of a multiplicative character χ , and the left-hand side is really only defined up to a fifth root of 1. We are asserting that there is a way of making these choices so that the formula holds.

Observe that the left-hand side is a modular unit (i.e., a unit for the covering $X_1(25) \to X_0(1)$). Thus the above expresses Gauss sums as values of certain modular units on $X_1(25)$. It seems that the other coverings of lower degree studied by Lehmer yield similar results. It would be interesting to obtain such formulas a priori: this might provide a justification for the fact that translates of Gaussian period polynomials yield cyclic units for extensions of small degree.

Note. The idea of studying families of units in cyclic extensions of Q arising from the modular covering $X_1(N) \to X_0(N)$ has been explored by Odile

Lecacheux (see, for example, the paper [3], which studies units in sextic extensions which arise from the modular covering $X_1(13) \to X_0(13)$). Independently of the author, Lecacheux has also observed the connection between Lehmer's quintic and the modular curve $X_1(25)$ [4].

ACKNOWLEDGMENT

I wish to thank Dan Abramovich and Noam Elkies for some interesting discussions.

BIBLIOGRAPHY

- 1. Daniel S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), 193-237.
- 2. Daniel S. Kubert and Serge Lang, Modular units, Springer-Verlag, New York, 1981.
- 3. Odile Lecacheux, Unités d'une famille de corps cycliques réels de degré 6 liés à la courbe modulaire $X_1(13)$, J. Number Theory 31 (1989), 54-63.
- 4. ____, private communication.
- 5. Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), 535-541.
- B. H. Matzat, Rationality criteria for Galois extensions, Galois Groups Over Q, Proc. Workshop held March 23-27, 1987 (Y. Ihara, K. Ribet, and J.-P. Serre, eds.), MSRI Publications, 1989, pp. 361-384.
- 7. A. Ogg, Survey of modular functions of one variable, Modular Functions of One Variable (Proc. Antwerp 1972), Lecture Notes in Math., vol. 320, Springer, 1973.
- 8. René Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138 E-mail address: darmon@zariski.harvard.edu