
Work of Kudla, Funke-Millson and application
to construction of cocycles : Part Two

1 Goal

Our goal for today is to give topological interpretations for the integrals we saw last time
and restate the results. We also would like to go back to our proposed construction and
highlight the importance of results of Kudla and Funke-Millson.

2 Recall

Last time we proposed a construction of modular symbols. Let X0 ∈ VR then the following
mapping

(r, s) 7→
∑

X∈ΓX0
(X,X)=m

aX(r, s)∆X

gives a modular symbol given that aX(r, s) satisfy certain properties. We ended last time by
saying that we can define

aX(r, s) :=

∫
C(r,s)

η̃(τ,X)

where η̃(τ,X) is a slight modification of the 1-form η(τ,X) considered previously (the dif-
ference is of a factor of

√
2 and q(X,X)). Our goal is to provide a clearer statement and also

present a topological interpretation.
We recall that η(τ,X) is a 1-form on H(3) and C(r, s) is a 1-cycle “joining r and s”.

We also saw the following correspondence between lines in vector space and points on H(3)

(and “boundary”). Under the correspondence we can associate an isotropic line ℓr to any
r ∈ P1(K).

Vector space Manifold

Negative length lines in VR Point in H(3)

Zero length lines in VR C ∪ {∞}

The final theorem was a statement of modularity which we state in the remaining part
of this section. Let Λ ⊂ VQ and assume that VQ has isotropic vectors (see Remark (1)). For
h ∈ Λ∨/Λ and r, s ∈ P1(K), let H(r, s) be the 2-dimensional space generated by ℓr and ℓs.
Define the following sets

S0
(r,s)(h+ Λ) := {X ∈ h+ Λ : Projection of X along H(r, s) is of length zero}

S>0
(r,s)(h+ Λ) := {X ∈ h+ Λ : Projection of X along H(r, s) is of positive length } .
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We are now ready to state the result.

Theorem 1. The series
∑

h∈Λ∨/Λ

gh(r, s)eh is a vector valued modular form of weight 2 and

type ρΛ where

gh(r, s)(q) :=
∑

m∈Q≥0


∫ s

r

∑
X∈S0

(r,s)
(h+Λ)

(X,X)=m

η̃(τ,X)

 qm +
∑

m∈Q>0

 ∑
X∈S>0

(r,s)
(h+Λ)

(X,X)=m

∫ s

r

η̃(τ,X)

 qm.

Remark 1. We note that the assumption that VQ has isotropic vectors might not be com-
pletely precise. However I am confident that there is a assumption (very similar) which makes
the above theorem a valid one. In a general result when there is no restriction on presence
of isotropic vectors, the result still holds that there is a modular form whose coefficients are
certain integrals. However the precise integrals look a bit different and at the moment I am
somewhat unclear on this yoga.

3 Topological Interpretation

There is a nice topological interpretation of these integrals as intersection numbers of cycles.
We won’t go into mathematical details of defining “intersection numbers” but rather content
ourselves with interpreting them as “physical intersections”.

Special Cycles associated to a vector For each vector X ∈ VR we look at X⊥ which is
a three dimensional space. Based on the general recipe of considering negative length lines
we consider

B(X⊥) := {Z ∈ X⊥ : (Z,Z) = −1}.

We now consider three different cases

1. (X,X) > 0 : X⊥ is of signature (2, 1) and thus B(X⊥) is a real manifold of dimension
two. In fact we can identify it with Poincaré upper half plane.

2. (X,X) = 0 : X⊥ is a positive semidefinite space and can be decomposed as U⊕̂X
where U is a space of signature (2, 0). Therefore B(X⊥) is empty.

3. (X,X) < 0 : X⊥ is of signature (3, 0) and thus there is no negative length line in X⊥

and as a consequence B(X⊥) is empty.

From this point of view the only interesting ones to us are actually those of positive
length. Note that we have the inclusion of quadratic spaces X⊥ ⊂ VR which gives us an
embedding of manifolds as B(X⊥) ↪→ B(VR). Infact if one chooses appropriate coordinates
and identify B(VR) with H(3), the embedded manifold B(X⊥) will be a geodesic hemisphere
or a plane in H(3).
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Remark 2. The plane would occur if X is orthogonal to ℓ∞.

We now define “intersection numbers”. For (X,X) > 0,

B(X⊥) ∩ C(r, s) :=
1√
2

1

q(X,X)

∫
C

η(τ,X) ∈
{
+1,+

1

2
, , 0,−1

2
,−1

}
.

The ±1

2
appear precisely when X has an isotropic projection along H(r, s). Therefore we

can now interpret the integrals as physical intersections of oriented manifolds B(X⊥) and
C(r, s) in H(3).

3.1 Modular symbols valued in Integers

This is a very short section but is a culmination of all the hard work seen so far. We present
the following crucial theorem.

Theorem 2. Let r, s ∈ P1(K) and X ∈ VR. The “intersection numbers” defined previously
satisfy the following properties:

1. B(X⊥) ∩ C(r, s) +B(X⊥) ∩ C(s, r) = 0.

2. B(X⊥) ∩ C(r, s) +B(X⊥) ∩ C(s, t) +B(X⊥) ∩ C(t, r) = 0.

3. B((γX)⊥) ∩ (γr, γs) = B(X⊥) ∩ C(r, s) for all γ ∈ Γ.

We can quite clearly see that these B(X⊥) ∩ C(r, s) are candidates for aX(r, s). In fact
if we can have a supply of vectors X such that aX(r, s) = 0 for almost all vectors in its
Γ-orbit, we will have a modular symbol valued in integers. The good news is that there exist
infinitely many such Γ-orbits in our setup! In fact we can restrict our attention to vectors X
whose projection along any H(r, s) is always of non-zero length and this restricted set gives
many examples of divisor valued modular symbols.

An argument by picture. We won’t give a proof of the aforementioned theorem but
rather try to give a few pleasant pictures to generate confidence in the statement.
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The above two pictures describe intersection numbers when considering intersections of
B(X⊥) with three oriented 1-cycles : C(r, s), C(s, t), and C(t, r) when intersections are
transversal. The hemisphere B(X⊥) is oriented by choosing an outward normal and then we
can assign ±1 depending on the orientation of 1-cycle. If there is no intersection we assign
zero.

The above two pictures describe intersection numbers when considering intersections of
B(X⊥) with three oriented 1-cycles : C(r, s), C(s, t), and C(t, r) when the intersections are
at “boundary”. In the left picture, the “boundary” intersection is +1/2 for both 1-cycles as
the orientations align with outward normal. However for the right picture, there is a +1/2
(resp. −1/2) as the cycle from 1 → 2 is oriented along the outward normal (resp. as the
cycle from ∞ → 1 is oriented opposite to the outward normal).

4 Lifting to Cocycles valued in functions

We start with the following lemma.
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Lemma 3. If
∑

X∈S aX = 0 for aX ∈ Z and some set S ⊂ VQ, then there is a function
f ∈ C(z1, z2)× such that

div(f) =
∑
X∈S

aX∆X .

From previous lecture. We recall that for each X ∈ VQ we associated a divisor ∆X

defined as

∆X :=

{
([X1 : Y1], [X2 : Y2]) :

(
X1

Y1

)T

SX

(
X2

Y2

)
= 0

}
.

Proof. It suffices to prove that ∆v1 −∆v2 is a divisor of some function. This fact is easier to
esatblish by just explicitly writing out the defining equations for ∆v1 and ∆v2 . Say we have

∆v1 = {([X1 : Y1], [X2 : Y2]) : F1(X1, Y1, X2, Y2) = 0}
∆v2 = {([X1 : Y1], [X2 : Y2]) : F2(X1, Y1, X2, Y2) = 0}

Then we define our f(z1, z2) by

f(z1, z2) =
F1(z1, 1, z2, 1)

F2(z1, 1, z2, 1)

where F1(z1, z2) is a dehomogonization of F1(X1, Y1, X2, Y2).

Let Div† be a divisor module generated by ∆′
Xs and F † denote all the rational functions

whose divisors are in Div†. We then have the following exact sequence

0 → F †/C× → Div† → Z → 0.

The exactness in the middle follows from Lemma (3). This induces a long exact sequence in
cohomology

· · · → H1(Γ,F †/C×) → H1(Γ,Div†) → H1(Γ,Z) → · · · .

Our construction from the previous section gives us the following cocycle valued in divi-
sors

JX0 : Γ → Div†

γ 7→=
∑

X∈ΓX0
(X,X)=m

aX(∞, γ∞)∆X .

Applying the degree map gives us

deg(JX0(∞, γ∞)) =
∑

X∈ΓX0
(X,X)=m

aX(∞, γ∞) ∈ Z.
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We saw that we were not able to give a suitable definition of aX(r, s) for all vectors X, but
for the ones we could do we defined it as

aX(∞, γ∞) =

∫ γ∞

∞
η(τ,X),

and we have already seen that

∑
X∈Γh+Λ
(X,X)=m

∫ γ∞

∞
η(τ,X)

is m-th coefficient of a vector valued modular form of weight 2 and type ρΛ (or at least a part
of). The key point for us is that spaces of modular forms finite dimensional and thus there
are many linear relations between their coefficients. Hence we can make use of such linear
relations to have a combination of J ′

X0
s such that their image under the connecting map

vanishes and thus the divisor valued cocycle lifts to a cocycle valued in function modular
scalars. We summarize this discussion in the following theorem.

Theorem 4. Let {c(mi, hi)}ri=1 be integers such that for each X ∈ hi + Λ of length mi the
projection of X along all H(r, s) ⊂ VQ is anisotropic.

r∑
i=1

c(hi,mi)cmi,hi
(g) = 0

for all g ∈ M2,DΛ
where cmi,hi

(g) denotes (hi,mi)−th coefficient of vector valued modular
forms. Then there exists a rational cocycle J ∈ H1(Γ,F †/C×) such that

div∗(J(γ)) =
r∑

i=1

c(hi,mi)

 ∑
X∈hi+Λ
(X,X)=mi

aX(∞, γ∞)∆X

 .
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