Some Comments on Section 7

Nikita Lvov

November 16, 2024

1 Alternative proof of 7.3 (i)

Let $k_{\mathfrak{p}}$ be the completion of k at \mathfrak{p} . As usual, we denote by $U_{\mathfrak{p}}$, π , and $k(\mathfrak{p})$ the group of units, the uniformizer, and the residue field, respectively. Define $\nu_{\mathfrak{p}}$ analogously to ν :

classes in $k_{\mathfrak{p}}^*/(k_{\mathfrak{p}}^*)^l$ whose evaluation is 0 mod l

Theorem 1.1. We have maps:

(I) $\nu \to \nu_{\mathfrak{p}}$. Moreover, the map

$$\nu \hookrightarrow \prod_{\mathfrak{p} \notin T} \nu_{\mathfrak{p}} \tag{1.1}$$

is injective as long as the set T of excluded primes is finite.

(II) $\nu_{\mathfrak{p}} \cong k^*(\mathfrak{p})/l \cong \mathbb{F}_l$ for all $\mathfrak{p} \nmid l$

Proof of (II) Recall that $k_{\mathfrak{p}}^* \cong \pi^{\mathbb{Z}} \times U_{\mathfrak{p}}$. Hence,

elements of $k_{\mathfrak{p}}^*$ whose evaluation is $0 \mod l \cong (\pi^l)^{\mathbb{Z}} \times U_{\mathfrak{p}}$

Therefore,

$$\nu_{\mathfrak{p}} \cong U_{\mathfrak{p}}/l$$

 $(U_{\mathfrak{p}})^l$ contains all elements that are congruent to $1 \mod \mathfrak{p},$ by Hensel's lemma. Hence,

$$U_{\mathfrak{p}}/l \cong k(\mathfrak{p})^*/l \cong \mathbb{F}_l$$

As in (7.3), we get the last isomorphism because $k(\mathfrak{p})^*$ is cyclic and contains ζ_l .

Proof of (I) The map is well defined. Injectivity follows from the following lemma:

Lemma 1.2. If x is an l^{th} power at all but finitely many primes, it is an l^{th} power globally.

Proof. The hypothesis of the lemma implies that all but finitely many primes of k split in $k(x^{1/l})$. We apply (5) on page 5 to conclude that $x^{1/l} \in k$. \Box

To get our set of auxiliary primes, we use the following lemma from linear algebra:

Lemma 1.3. If an $n \times \infty$ matrix has rank n, some $n \times n$ submatrix has rank n.

We apply this to (1.1). It follows from Lemma 1.3 that there exists a set of primes P in the complement of T such that

$$\nu \cong \prod_{\mathfrak{p} \in P} \nu_{\mathfrak{p}}$$

2 Alternative proof of 7.2 (b)

We give a proof of 7.2 (b), that is analogous to the proof of 7.2 (a) and, similarly, relies on the two identities below:

$$x^{l} - 1 = \prod_{i} (x - \zeta^{i}) \Rightarrow \sum_{i} val(x - \zeta^{j}) = val(x^{l} - 1)$$

$$(2.1)$$

$$val\left((x-\zeta^{i})-(x-\zeta^{j})\right)=val(\zeta^{i}-\zeta^{j})=e_{0} \text{ for } i\neq j$$

$$(2.2)$$

Lemma 2.1. We have the following explicit description of *l*-torsion in $(\mathfrak{o}/\lambda^n)^*$, as *n* varies:

Case 1: If $\frac{n}{l} \leq e_0$,

$$val(x^{l}-1) \geq n \Leftrightarrow val(x-\zeta^{i}) \geq \left\lceil \frac{n}{l} \right\rceil \forall i \Leftrightarrow x \in 1 + \lambda^{\left\lceil \frac{n}{l} \right\rceil}$$

Case 2: If $\frac{n}{l} > e_0$,

$$val(x^{l}-1) \ge n \Leftrightarrow \begin{cases} val(x-\zeta^{i_{0}}) = n - (l-1)e_{0} & \text{for some (unique)} i_{0}, \\ \\ val(x-\zeta^{i}) = e_{0} & \text{for all } i \neq i_{0} \end{cases}$$

Proof. We combine (2.1) and (2.2) just as we did for the proof of 7.2 (a). \Box

Lemma 2.2.

$$\frac{\#\left\{x \in \mathfrak{o}/\lambda^{e_0 l+1} \left| x^l = 1\right\}\right\}}{\#\left\{x \in \mathfrak{o}/\lambda^{e_0 l} \left| x^l = 1\right\}\right\}} = l$$

$$(2.3)$$

Proof. Lemma 2.1 allows us to explicitly compute: $\# \left\{ x \in \mathfrak{o}/\lambda^n \mid x^l = 1 \right\}$ for all n.¹

Corollary.

$$\frac{\#\left\{\left(\mathfrak{o}/\lambda^{e_0l+1}\right)^*/l\right\}}{\#\left\{\left(\mathfrak{o}/\lambda^{e_0l}\right)^*/l\right\}} = l$$
(2.4)

Proof of 7.2 (b): Now we have the exact sequence:

$$0 \longrightarrow 1 + \lambda^{e_0 l} \longrightarrow \left(\mathfrak{o} / \lambda^{e_0 l + 1} \right)^* \longrightarrow \left(\mathfrak{o} / \lambda^{e_0 l} \right)^* \longrightarrow 0 \qquad (2.5)$$

(2.4) implies that the kernel of

$$\left(\mathfrak{o}/\lambda^{e_0l+1}\right)^*/l \longrightarrow \left(\mathfrak{o}/\lambda^{e_0l}\right)^*/l$$

has cardinality l. By (2.5), this kernel is the image of

$$1 + \lambda^{e_0 l} \longrightarrow \left(\mathfrak{o} \big/ \lambda^{e_0 l + 1} \right)^* \big/ l.$$

Therefore, this image likewise has cardinality l, as desired.

¹Intuitively, the denominator of (2.3) counts the elements in a coset, while the numerator counts the elements in *l* disjoint cosets. In this case, the relevant cosets have the same cardinality.