
1 Intro

These notes follow very closely the exposition in Chapter II.3 of Serre’s A Course in Arithmetic.
The text is quite condensed: we tried to explicit the hidden ideas.

Write Mk for the set of modular forms of weight k. Recall that Mk = ∅ for k an odd number.
Also,

Proposition 1.1. Each Mk forms a complex vector space. Further, M is a graded ring.

Proof. Let f ∈ Mk, g ∈ Mk′ , and λ ∈ C.
Suppose k = k′. Then, (f + λg)[γ]k = f [γ]k + λg[γ]k = f + λg, and the holomorphy conditions are
respected. This shows Mk is a vector space over C.
Now, we show that fg is also modular, but of weight k+ k′. This gives the (graded) ring structure
to M.

(fg)[γ]k+k′(τ) = j(γ, τ)k+k′f(τ)g(τ) = j(γ, τ)kf(τ)j(γ, τ)k
′
g(τ) = f(τ)g(τ)

We develop a formula which will enable us to decribe explicitely the vector spacesMk. The result
can be derived from the Riemann-Roch theorem, and should be derived in this way for modular
forms over general congruence subgroups. In our case, the evaluation of an integral suffices.

2 The Integral

The main result is a formula relating the zeros and poles of a modular form to its degree. We get
it by computing an integral in two diffent ways. First, a definition

Definition 2.1. Let f be a meromorphic function on H, and p ∈ H. Then, define the order of f
at p, written νp(f), to be the least number n so that f(z)

(z−p)n is holomorhic at p.

This allows us to discriminate poles and zeroes, since ν1(z− 1) ̸= ν1
(
(z − 1)2

)
. Also, note that

the order of a zero is a positive number and the order of a pole is a negative number. The reason
for this convention will become apparent. Recall that we consider ”f(∞)” to be the value of f̂ at
q = 0, where f̂ is the fourier transform (a function of e1πiz). In this logic, define ν∞(f) = ν0(f̂).

Theorem 2.1. Let f be a nonzero weakly modular form of weight 2k. Then

ν∞(f) +
1

2
νi(f) +

1

3
νρ(f) +

∼∑
ρ∈Y (G)

νρ(f) =
2k

12

The proof will be in two parts. We integrate df
f on the domain U shown in the image in two

different ways. The following lemma justifies the chocie of domain.

Lemma 2.1. Our function f can only have finitely many zeroes and poles in U .

Proof. More generaly, meromorphic functions can only have finitely many zeros or poles on compact
sets. This is because every infinite subset of a compact set has an accumulation point, but the set
of zeroes/poles can’t accumulate.
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Figure 1: The contour U .

Hence by taking the limit as [A,E] goes to infinity, we recover all the fundamental domain. We
add an extra assumption before we continue: that f has no zeros or poles on the vertical segments.

Now, we need a way to extract the order of poles and zeros. To this end, we use a general
principle of complex analysis.

Lemma 2.2. Let f be holomorphic on U , and suppose f vanishes at only finitely many points.

Then, 1
2πi

∮
U

f ′(z)
f(z) dz =

∑
p∈U νpf . The sum converges since there are only finitely many nonzero

terms.

Proof. Say f has a zero or pole at p1, ..., pn in U . Let νi = νpi(f) > 0. Then, we investigate the
Laurent Series of f ′/f at pi.

(z−pi)
−νf(z) = a0+a1(z−pi)

1+Ω((z−pi)
2) =⇒ f(z) = (z−pi)

ν
(
a0 + a1(z − pi)

1 +Ω((z − pi)
2)
)

f ′(z) = νa0(z − pi)
ν−1 + a1(ν + 1)(z − pi)

ν + ...

f ′(z)

f(z)
=

(z − pi)
ν−1(−νa0 +Ω(z − pi)

(z − pi)ν−1(a0(z − pi) + Ω ((z − pi)2)
=

ν

z − pi
+Ω(1)

Hence, the residue is by definition Respi(
f ′

f ) = ν. Hence, the residue theorem yields that 1
2πi

∮
U

f ′(z)
f(z) dz =∑

pi
νpif =

∑
p∈U νpf .
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Lemma 2.3. The integral of f on the domain U is

1

2πi

∮
U

df

f
= −ν∞(f)− 1

3
νρ(f)−

1

2
νi(f) +

2k

12

Proof. This expression follows from a trick-less computation of the contour integral: we integrate
line by line.

First, note that for z ∈ [A,B], z + 1 ∈ [D′, E] and modularity yields f(z + 1) = f(z). Because

of the direction we integrate in,
∫ B
A

df
f +

∫ E
D′

df
f = 0.

A similar phenomenon appears when looking at [B′, C] and [D,D′], since then f(Sz) = zkf(z).

After applying the differential, df(Sz) = d(zk)f(z) + zkdf = k dzf(Sz)
z + df(z)f(Sz)

f(z) , so

df(Sz)

f(Sz)
= k

dz

z
+

df(z)

f(z)

We can now compute the integrals∫ C

B′

df

f
+

∫ D

C′

df

f
=

∫ C

B′

df(z)

f(z)
− df(Sz)

f(Sz)
= −k

∫ C

B′

dz

z

As the radii of the arcs go to 0, the arc [B′, C] is 1/12 of the unit circle. Hence, by switching to

polar coordinates, one evaluates the integral to be −1/12. Thus
∫ C
B′ +

∫ D
C′

df
f = k

12 .

Now, we look at [E,A]. Note that when applying the change of variables q = e2πiz, this segment
becomes a circle C of some radius < 1 centered at 0. Note also that the zeroes and poles of f are
all contained in U , so the circle C does not contain any zero or pole other than at q = 0. Thus, by
the residue theorem and being careful about orientation,

1

2πi

∫ A

E

df

f
=

1

2πi

∮
C

df

f
= −ν0(f̂) = −ν∞(f)

Finally, we look at the arcs. Recall that we made the circle contaning [B,B′] big enough for it to
contain ρ, but small enough so that it was the only zero or pole inside. Hence, 1

2πi

∮
C

df
f = −νρ(f).

Now however, notice that the angle BρB′ is π
3 by a geometry exercise, so 1

2πi

∫ B′

B
df
f = −1

6νρ(f).

Similarily, 1
2πi

∫ C′

C
df
f = −1

2νi(f), and
1

2πi

∫ D′

D
df
f = −1

6νρ(f).

Combining, we have

1

2πi

∮
U

df

f
= −ν∞(f)− 2

6
νρ(f)−

1

2
νi(f) +

2k

12

The theorem now follows:

proof of Theorem. The theorem follows from the previous lemmas. Indeed,

1

2πi

∮
U

df

f
=

1

2πi

∮
U

f ′(z)

f(z)
dz =

∗∑
ρ∈X(G)

νρ(f)
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and also
1

2πi

∮
U

df

f
= −ν∞(f)− 1

3
νρ(f)−

1

2
νi(f) +

2k

12

Rearranging the term gives the desired result.

There is one hickup before we continue. It might have been the case that f has a pole or zero
on the walls on the fundamental domain. In this case, make circles around the point of interest.
Since T will map one to the other and they have opposite orientation, they cancel each other’s
contribution.

3 The Spaces

We are now equipped to prove our main results. First, we recall some basic objects.

Definition 3.1. A cusp form is a modular form with f(∞). The set is written Sk, which by
definition is the kernel of the functional f → f(∞).

By the first isomorphism theorem, one sees that the quotient Mk/Sk is either 0 or C, depend-
ing if that functional was surjective or not. Note that it is either the 0 map, or surjective, since
wf → wf(∞) for w ∈ C. Hence, dim(Mk/Sk) = 0 or 1.

Recall from earlier talks that for 2k ≥ 2, one can define the Eisenstein series, a modular form
of weight 2k. Also, Ek(∞) ̸= 0. So in fact, when Eisenstein series exist, we have Mk = Sk ⊕ CEk.

For an example of a cusp form, the discriminant ∆ = g32 − g23 is a cusp form of weight 12 (where
g2 = 60G4, and g3 = 140G6).

We now have every character ready to act in the proof of our main theorem. The tightness we
wish to use to describe the sets comes from the formula proven earlier.

Theorem 3.1. For k < 0 and k = 2, Mk = 0.

Proof. Recall the formula describing the order of poles and zeroes of a form of weight 2k.

ν∞(f) +
1

2
νi(f) +

1

3
νρ(f) +

∼∑
ρ∈X(G)

νρ(f) =
2k

12

Now, f is holormophic on the upper half plane and at infinity, so νp(f) ≥ 0. Hence the LHS must
be positive, so k ≥ 0. This shows there are no forms of weight k < 0. If k = 2, we must find a
positive triple that solves a+ b

2 +
c
3 = 1

6 . It is easy to see that there are none. This shows the first
bullet.

Theorem 3.2. If f ∈ M2k−12, ∆f ∈ S2k. The map is an isomorphism.

Proof. We can apply this formula in the other direction: to get information about a specific form.
For example, there is a unique solution to a + b

2 + c
3 = 1

3 . Hence, modular forms of weight 4
satisfy ν∞(f) = 0 = νi(f) and νρ(f) = 1. This is the case for G4. We get similar results for G6.
Combining, we see that ∆ has ν∞(∆) = 1 and νp(∆) = 0 for all other p. Hence the discrimant
function is not vanishing on the upper half plane.
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Now, let we show division by ∆ is the inverse to the map we wish to show is an isomorphism.
It is well defined since ∆ is non vanishing. If g ∈ Sk and f = g/∆, then f has weight k − 12. We
have to show f is holomorphic on the plane and at infinity. This again is done using the formula,
since νp(g) = νp(f) − νp(∆). So νp(g) = νp(f) for p ̸= ∞, and νp(f) − 1 at p = ∞. But g was a
cusp form, so ν∞(g) > 0. Hence f is a modular form of weight k − 12, and multiplication by ∆ is
an isomorphism.

Theorem 3.3. For k ≥ 0, there are 2 cases. If k ≡ 2 (mod 12), then dim(M2k) = ⌊2k/12⌋.
Otherwise, dim(M2k) = ⌊2k/12⌋+ 1.

Proof. Let k be one of 0, 2, 3, 4, 5. Then, S2k
∼= M2k−12 = 0. Thus the M2k have dimension 1. We

know already forms in these: the Eisenstein series. Hence M2k = CE2k.

To go to higher k, notice that S2k
∼= M2k−12 and S2k−12 = M2k−12⊕C pair to give dim(M2k) =

dim(M2k−12) + 1. The result is proven.
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