Abelian l-Adic

Representations and Elliptic Curves

Jean-Pierre Serre

Collège de France

McGill University Lecture Notes written with the collaboration of Wiliem Kuyk and John Labute

ADDISON-WESLEY PUBLISHING COMPANY, INC. THE ADVANCED BOOK PROGRAM
 Redwood City, California • Menlo Park, Califomia • Reading, M:
 New York • Amsterdam • Don Mills, Ontario • Sydney • Madrid Singapore • Tokyo • San Juan • Wokingham, United Kingdom

Abelian l-Adic Representations and Elliptic Curves

Originally published in 1968 by W. A. Benjamin, Inc.

Library of Congress Cataloging-in-Publication Data

Serre, Jean Pierre.
Abelian L-adic representations and elliptic curves.
(Advanced book classics series)
On t.p. "l" in l-adic is transcribed in lower-case script.
Bibliography: p.
Includes index.

1. Representations of groups. 2. Curves, Elliptic.
2. Fields, Algebraic. I. Title. II. Series.

QA171.S525 $1988 \quad 512$ '.22 $\quad 88$-19268
ISBN 0-201-09384-7

Copyright © 1989, 1968 by Addison-Wesley Publishing Company
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Manufactured in the United States of America
Published simultaneously in Canada

Publisher's Foreword

"Advanced Book Classics" is a reprint series which has come into being as a direct result of public demand for the individual volumes in thisprogram. That was our initial criterion for launching the series. Additional criteria for selection of a book's inclusion in the series include:

- Its intrinsic value for the current scholarly buyer. It is not enough for the book to have some historic significance, but rather it must have a timeless quality attached to its content, as well. In a word, "uniqueness."
- The book's global appeal. A survey of our international markets revealed that readers of these volumes comprise a boundaryless, worldwide audience.
- The copyright date and imprint status of the book. Titles in the program are frequently fifteen to twenty years old. Many have gone out of print, some are about to go out of print. Our aim is to sustain the lifespan of these very special volumes.

We have devised an attractive design and trim-size for the "ABC" titles, giving the series a striking appearance, while lending the individual titles unifying identity as part of the "Advanced Book Classics" program. Since "classic" books demand a long-lasting binding, we have made them available in hardcover at an affordable price. We envision them being purchased by individuals for reference and research use, and for personal and public libraries. We also foresee their use as primary and recommended course materials for university level courses in the appropriate subject area.

The "Advanced Book Classics" program is not static. Titles will continue to be added to the series in ensuing years as works meet the criteria for inclusion which we've imposed. As the series grows, we naturally anticipate our book buying audience to grow with it. We welcome your support and your suggestions conceming future volumes in the program and invite you to communicate directly with us.

Vita

Jean-Pierre Serre

Professor of Algebra and Geometry at the Collège de France, Paris, was born in Bagcs, France, on September 15, 1926. He graduated from Ecole Normale Supérieure, Paris, in 1948, and obtained his Ph.D. from the Sorbonne in 1951. In 1954 he was awarded a Fields Medal for his work on topology (homotopy groups) and algebraic geometry (coherent sheaves). Since then, his main topics of interest have been number theory, group theory, and modular forms. Professor Serre has been a frequent visitor of the United States, especially at the Institute for Advanced Study, Princeton, and Harvard University. He is a foreign member of the National Academy of Sciences of the U.S.A.

Special Preface

The present edition differs from the original one (published in 1968) by:

- the inclusion of short notes giving references to new results;
- a supplementary bibliography.

Otherwise, the text has been left unchanged, except for the correction of a few misprints.

The added bibliography does not claim to be complete. Its aim is just to help the reader get acquainted with some of the many developments of the past twenty years (for those prior to 1977, see also the survey [78]). Among these developments, one may especially mention the following:

l-adic representations associated to abelian varieties over number fields

Deligne (cf. [52]) has proved that Hodge cohomology classes behave under the action of the Galois group as if they were algebraic, thus providing a very useful substitute for the still unproved Hodge conjecture.

Faltings ([54], see also Szpiro [82] and Faltings-Wüstholz [56]), has proved Tate's conjecture that the map

$$
\operatorname{Hom}_{\mathrm{k}}(\mathrm{~A}, \mathrm{~B}) \otimes \mathrm{Z}_{l} \rightarrow \operatorname{Hom}_{\mathrm{Ca}_{2}}\left(\mathrm{~T}(\mathrm{~A}), \mathrm{T}_{l}(\mathrm{~B})\right)
$$

is an isomorphism (A and B being abelian varieties over a number field K), together with the semi-simplicity of the Galois module $\mathbf{Q}_{l} \otimes \mathrm{~T}_{l}(\mathrm{~A})$ and similar results for $\mathrm{T}_{l}(\mathrm{~A}) / / \mathrm{T}_{l}(\mathrm{~A})$

Preface

This book reproduces, with a few complements, a set of lectures given at McGill University, Montreal, from Sept. 5 to Sept.18, 1967. It has been written in collaboration with John Labute (Chap. I, IV) and Willem Kuyx (Chap. II, III). To both of them, I want to express my heartiest thanks.

Thanks also due to the secretarial staff of the Institute for Advanced Study for its careful typing of the manuscript.

Jean-Pierre Serre

Princeton, Fall 1967
when l is large enough. These results may be used to study the structure of the Galois group of the division points of A, cf. [80]. For instance, if dimA is odd and $\operatorname{End}_{k} \mathrm{~A}=\mathbf{Z}$, one can show that this Galois group has finite index in the group of symplectic similitudes; for elliptic curves, i.e. $\operatorname{dim} \mathrm{A}=1$, this was already proved in [76].

Modular forms and l-adic representations

The existence of l-adic representations attached to modular forms, conjectured in the first edition of this book, has been proved by Deligne ([50], see also Langlands [65] and Carayol [49]). This has many applications for instance to the Ramanujan conjecture (Deligne) and to congruence properties (Ribet [69], [71]; Swinnerton-Dyer [81]; [73], [77]). Some generalizations are known (e.g. Carayol [49]; Ohta [68]; Wiles [84]), but one can hope for much more, in the setting of "Langlands' program": there should exist a diagram

where the vertical line is (essentially) bijective and the horizontal arrow injective with a precise description of its image (Deligne [51]; Langlands [66];[78]). Such a diagram would incorporate, among other things, the conjectures of Artin (on the holomorphy of Lfunctions) and Taniyama-Weil (on elliptic curves over Q). Chapters II and III of the present book, supplemented by the results of Deligne ([53]) and Waldschmidt ([63], [83]), may be viewed as a partial realization of this ambitious program in the abelian case.

Local theory of l-adic representations

Here the ground field K , instead of being a number field, is a local field of residue characteristic p. The most interesting case is charK $=0$ and $p=l$, especially when a HodgeTate decomposition exists: indeed this gives precious information on the image of the inertia group (Sen [72]; [79]; Wintenberger [85]). When the l-adic representation comes from a divisible group or an abelian variety, the existence of such a decomposition is well known (Tate [39]; see also Fontaine [60]); for representations coming from higher dimension cohomology, it has been proved recently by Fontaine-Messing (under some restrictions, cf. [62]) and Faltings ([55]). The results of Fontaine-Messing are parts of a vast program by Fontaine, relating Galois representations and modules of Dieudonnć type (over some "Barsotti-Tate rings," cf. [58], [59], [61]).

Contents

[NTRODUCTION xvii
NOTATIONS xxi
Chapter I l-adic Representations
§1 The notion of an \boldsymbol{l}-adic representation I-1
1.1 Definition I-1
1.2 Examples I-3
§2 l-adic representations of number fields I-5
2.1 Preliminaries I-5
2.2 Cebotarev's density theorem I-7
2.3 Rational l-adic representations I-9
2.4 Representations with values in a linear algebraic group I-14
2.5 L-functions attached to rational representations I-16

Appendix Equipartition and L-functions

A. 1 Equipartition I-18
A. 2 The connection with L-functions I-21
A. 3 Proof of theorem 1 I-26
Chapter II The Groups \mathbf{S}_{m}
§1 Preliminaries II-1
1.1 The torus T II-1
1.2 Cutting down T II-2
1.3 Enlarging groups II-3
§2 Construction of T_{m} and S_{m} II-6
2.1 Idèles and idèle-classes II-6
2.2 The groups T_{m} and S_{m} II-8
2.3 The canonical l-adic representation with values in S_{m} II-10
2.4 Linear representations of S_{m} II-13
2.5 l-adic representations associated to a linear representation of S_{m} II-18
2.6 Alternative construction II-21
2.7 The real case II-23
2.8 An example: complex multiplication of abelian varieties II-25
§3 Structure of \mathbf{T}_{m} and applications II-29
3.1 Structure of $X\left(T_{m}\right)$ II-29
3.2 The morphism $j^{*}: G_{m} \rightarrow T_{m}$ II-31
3.3 Structure of T_{m} II-32
3.4 How to compute Frobeniuses II-35
Appendix Killing arithmetic groups in tori II-38
A. 1 Arithmetic groups in tori II-38
A. 2 Killing arithmetic subgroups II-40

Chapter III Locally Algebraic Abelian Representations

§1 The local case III-1
1.1 Definitions III-1
1.2 Alternative definition of "locally algebraic" via Hodge-Tate modules III-5
§2 The global case III-7
2.1 Definitions III-7
2.2 Modulus of a locally algebraic abelian representation III-9
2.3 Back to $S_{\text {m }}$ III-12
2.4 A mild generalization III-16
2.5 The function field case III-16
§3 The case of a composite of quadratic fields III-20
3.1 Statement of the result III-20
3.2 A criterionfor local algebraicity III-20
3.3 An auxiliary result on tori III-24
3.4 Proof of the theorem III-28
Appendix Hodge-Tate decompositions and locally algebraic representations III-30
A. 1 Invariance of Hodge-Tate decompositions III-31
A. 2 Admissible characters III-34
A. 3 A criterion for local triviality III-38
A. 4 The character ξ_{E} III-40
A. 5 Characters associated with Hodge-Tate decompositions III-42
A. 6 Locally compact case III-47
A. 7 Tate's theorem III-52

Chapter IV l-adic Representations Attached to Elliptic Curves

§1 Preliminaries IV-2
1.1 Elliptic curves IV-2
1.2 Good reduction IV-3
1.3 Properties of V_{1} related to good reduction IV-4
1.4 Safarevic's's theorem IV-7
§2 The Galois modules attached to E IV-9
2.1 The irreducibility theorem IV-9
2.2 Determination of the Lie algebra of G_{l} IV-11
2.3 The isogeny theorem IV-14
§3 Variation of G_{l} and \widetilde{G}_{l} with l IV-18
3.1 Preliminaries IV-18
3.2 The case of a non integral j IV-20
3.3 Numerical example IV-21
3.4 Proof of the main lemma of 3.1 IV-23
Appendix Local results IV-29
A. $1 \quad$ The case $v(j)<0$ IV-29
A.1.1 The elliptic curves of Tate IV-29
A.1.2 An exact sequence IV-31
A.1.3 Determination of g_{1} and i_{1} IV-33
A.1.4 Application to isogenies IV-34
A.1.5 Existence of transvections in the inertia group IV-36
A. 2 The case $v(j) \geq 0$ IV-37
A.2.1 The case $l \neq p$ IV-37
A.2.2 The case $l=p$ with good reduction of height 2 IV-38
A.2.3 Auxiliary results on abelian varieties IV-41
A.2.4 The case $l=p$ with good reduction of height 1 IV-42
BIBLIOGRAPHY B-1

INTRODUCTION

The " \&-adic representations " considered in this book are the algebraic analogue of the locally constant sheaves (or " local coefficients ") of Topology. A typical example is given by the ℓ^{n}-th division points of abelian varieties (cf. chap.I, 1.2); the corresponding ℓ-adic spaces, first introduced by Weil [40] are one of our main tools in the study of these varieties. Even the case of dimension 1 presents non trivial problems; some of them will be studied in chap.IV.

The general notion of an ℓ-adic representation was first defined by Taniyama [35] (see also the review of this paper given by Weil in Math.Rev., 20, 1959, rev.1667). He showed how one can relate $\ell-a d i c$ representations relative to different prime numbers ℓ via the properties of the Frobenius elements (see below). In the same paper, Taniyama also studied some abelian representations which are closely related to complex multiplication (cf. Weil [41], [42] and Shimura-Taniyama [34]). These abelian representations, together with some applications to elliptic curves, are the subject matter of this book.

There are four Chapters, whose contents are as follows:

Chapter I begins by giving the definition and some examples of ℓ-adic representations (§1). In §2, the ground field is assumed to be a number field. Hence, Frobenius elements are defined, and one has the notion of a rational ℓ-adic representation : one for which their characteristic polynomials have rational coefficients (instead of merely ℓ-adic ones). Two representations corresponding to different primes are compatible if the characteristic polynomials of their Frobenius elements are the same (at least almost everywhere) ; not much is known about this notion in the non abelian case (cf. the list of open questions at the end of 2.3). A last section shows how one attaches L-functions to rational ℓ-adic representations; the well known connection between equidistribution and analytic properties of L-functions is discussed in the Appendix.

Chapter II gives the construction of some abelian ℓ-adic representations of a number field K. As indicated above, this construction is essentially due to Shimura, Taniyama and Weil. However, I have found it convenient to present their results in a slightly different way, by defining first some algebraic groups over Q (the groups S_{m}) whose representations - in the usual algebraic sense correspond to the sought for ℓ-adic representations of K. The same groups had been considered before by Grothendieck in his still conjectural theory of " motives " (indeed, motives are supposed to be " \&-adic cohomology without \& " so the connection is not surprising). The construction of these groups S_{m} and of the ℓ-adic representations attached to them, is given in §2 (§1 contains some preliminary constructions on algebraic groups, of a rather
elementary kind). I have also briefly indicated what relations these groups have with complex multiplication (cf. 2.8). The last § contains some more properties of the S_{m} 's.

Chapter III is concerned with the following question : let ρ be an abelian ℓ-adic representation of the number field K; can ρ be obtained by the method of chap. II ? The answer is : this is so if and only if ρ is " locally algebraic " in the sense defined in §1. In most applications, local algebraicity can be checked using a result of Tate saying that it is equivalent to the existence of a " Hodge-Tate " decomposition, at least when the representation is semi-simple. The proof of this result of Tate is rather long, and relies heavily on his theorems on p-divisible groups [39]; it is given in the Appendix. One may also ask whether any abelian rational semi-simple ℓ-adic representation of K is ipso facto locally algebraic; this may well be so, but I can prove it only when K is a composite of quadratic fields; the proof relies on a transcendency result of Siegel and Lang (cf. §3).

Chapter IV is concerned with the \&adic representation ρ_{ℓ} defined by an elliptic curve E. Its aim is to determine, as precisely as possible, the image of the Galois group by $\rho_{\mathcal{L}}$, or at least its Lie algebra. Here again the ground field is assumed to be a number field (the case of a function field has been settled by Igusa [10]). Most of the results have been stated in [25], [31] but with at best some sketches of proofs. I have given here complete proofs, granted some basic facts on elliptic curves, which are collected in §1. The method followed is more

Abstract

" global " than the one indicated in [25]. One starts from the fact, noticed by Cassels and others, that the number of isomorphism classes of elliptic curves isogenous to E is finite; this is an easy consequence of Šafarevič's theorem (cf.1.4) on the finiteness of the number of elliptic curves having good reduction outside a given finite set of places. From this, one gets an irreducibility theorem (cf.2.1). The determination of the Lie algebra of $\operatorname{Im}\left(\rho_{\ell}\right)$ then follows, using the properties of abelian representations given in chap.II, III; one has to know that $\rho_{\mathcal{L}}$, if abelian, is locally algebraic, but this is a consequence of the result of Tate given in chap. III. The variation of $I m\left(p_{\mathcal{L}}\right)$ with ℓ is dealt with in §3. Similar results for the local case are given in the Appendix.

NOTATIONS

General notations

Positive means ≥ 0.
Z (resp. Q, R, C) is the ring (resp. the field) of integers (resp. of rational numbers, of real numbers, of complex numbers).

If p is a prime number, F_{p} denotes the prime field $Z / p Z$ and Z_{p} (resp. Q_{p}) the ring of p-adic integers (resp. the field of p -adic rational numbers). One has:

$$
Z_{p}=\stackrel{\lim }{\rightleftarrows} \cdot Z / p^{n} Z \quad, \quad Q_{p}=Z_{p}\left[\frac{l}{p}\right] .
$$

Prime numbers
They are denoted by $\ell, \ell^{\prime}, \mathrm{p}, \ldots$; we mostly use the letter ℓ for $" \ell$-adic representations" and the letter p for the residue characteristic of some valuation.

Fields

If K is a field, we denote by \bar{K} an algebraic closure of K, and by K_{s} the separable closure of K in \bar{K}; most of the fields we consider are perfect, in which case $K_{s}=\bar{K}$.

If L / K is a (possibly infinite) Galois extension, we denote its Galois group by $\operatorname{Gal}(\mathrm{L} / \mathrm{K})$; it is a projective limit of finite groups.

Algebraic groups

If G is an algebraic group over a field K, and if K^{\prime} is a commutative K-algebra, we denote by $G\left(K^{\prime}\right)$ the group of K^{\prime}-points of G (the " K^{\prime}-rational" points of G). When K^{\prime} is a field, we denote by G / K^{\prime} the $K^{\prime}-$ algebraic group $G \times_{K} K^{\prime}$ obtaine from G by extending the ground field from K to K^{\prime}.

Let V be a finite dimensional K-vector space. We denote by Alt $_{K}(V)$, or fut (V), the group of its K-linear automorphisms, and by GL_{V} the corresponding K -algebraic group (cf. chap. I, 2.4). For any commutative K-algebra K^{\prime}, the group $G L_{V}\left(K^{\prime}\right)$ of K^{\prime}-points of $G L_{V}$ is $A u t_{K^{\prime}}\left(V \otimes_{K} K^{\prime}\right)$; for instance, $G L_{V}(K)=\operatorname{Aut}(V)$.

Abelian 1 -Adic

Representations and

 Elliptic Curves$$
\prime
$$

CHAPTER I

८-ADIC REPRESENTATIONS

§1. THE NOTION OF AN ℓ-ADIC REPRESENTATION

1. 1. Definition

Let K be a field, and let K_{s} be a separable algebraic closure of K. Let $G=\operatorname{Gal}\left(K_{s} / K\right)$ be the Galois group of the extension K_{s} / K. The group G, with the Krull topology, is compact and totally disconnected. Let ℓ be a prime number, and let V be a finitedimensional vector space over the field Q_{ℓ} of $\boldsymbol{\ell}$-adic numbers. The full linear group $A u t(V)$ is an ℓ-adic Lie group, its topology being induced by the natural topology of $\operatorname{End}(V)$; if $n=\operatorname{dim}(V)$, we have $\operatorname{Aut}(V) \simeq G L\left(n, Q_{\ell}\right)$.

DEFINITION - An ℓ-adic representation of G (or, by abuse of language, of K) is a continuous homomorphism $\rho: G \longrightarrow$ Aut(V).

Remarks

1). A lattice of V is a sub- Z_{ℓ}-module T which is free of finite rank, and generate V over Q_{ℓ}, so that V can be identified with $T \otimes_{Z} Q_{\ell}$. Notice that there exists a lattice of V which is stable under G. This follows from the fact that G is compact.

Indeed, let L be any lattice of V, and let H be the set of elements $g \in G$ such that $\rho(g) L=L$. This is an open subgroup of G, and G / H is finite. The lattice T generated by the lattices $\rho(g) L, g \in G / H$, is stable under G.

Notice that L may be identified with the projective limit of the free $\left(Z / \ell^{\mathrm{m}} \mathrm{Z}\right)$-modules $\mathrm{T} / \ell^{\mathrm{m}} \mathrm{T}$, on which G acts; the vector space V may be reconstructed from T by $V=T \otimes_{Z}{ }_{\ell_{\ell}}{ }^{\circ}$
2) If ρ is an ℓ-adic representation of G, the group $G_{\rho}=\operatorname{Im}(\rho)$ is a closed subgroup of $\operatorname{Aut}(V)$, and hence, by the ℓ-adic a nalogue of Cartan's theorem (cf. [28], LG, p. 5-42) G_{ρ} is itself an ℓ-adic Lie group. Its Lie algebra $g_{\rho}=$ Lie $\left(G_{\rho}\right)$ is a subalgebra of $\operatorname{End}(V)=\operatorname{Lie}\left(\right.$ Aut(V)). The Lie algebra \underline{g}_{ρ} is easily seen to be invariant under extensions of finite type of the ground field K (cf. [24], 1.2).

Exercises

1) Let V be a vector space of dimension 2 over a field k and let H be a subgroup of $A u t(V)$. Assume that $\operatorname{det}(l-h)=0$ for all $h \in H$. Show the existence of a basis of V with respect to which H is contained either in the subgroup $\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)$ or in the subgroup $\left(\begin{array}{ll}1 & 0 \\ * & *\end{array}\right)$ of $\operatorname{Aut}(V)$.
2) Let $\rho: G \longrightarrow \operatorname{Aut}\left(\mathrm{~V}_{\ell}\right)$ be an ℓ-adic representation of G, where V_{l} is a Q_{ℓ}-vector space of dimension 2 . Assume $\operatorname{det}(l-\rho(s)) \equiv 0 \bmod . \ell$ for all $s \in G$. Let T be a lattice of V_{ℓ} stable by G. Show the existence of a lattice T^{\prime} of V_{ℓ} with the following two properties.
a) T^{\prime} is stable by G
b) Either T^{\prime} is a sublattice of index ℓ of T and G acts trivially on T / T^{\prime} or T is a sublattice of index ℓ of T^{\prime} and G
acts trivially on TroT.
(Apply exercise l) above to $k=F_{\ell}$ and $V=T / \ell T$.)
3) Let ρ be a semi-simple ℓ-adic representation of G and let U be an invariant subgroup of G. Assume that, for all $x \in U$, $\rho(x)$ is unipotent (all its eigenvalues are equal to 1). Show that $\rho(x)=1$ for aft $x \in U$. (Show that the restriction of ρ to U is semi-simple and use Kolchin's theorem to bring it to triangular form.)
4) Let $\rho: G \longrightarrow \operatorname{Aut}\left(V_{\ell}\right)$ be an ℓ-adic representation of G, and T a lattice of V_{ℓ} stable under G. Show the equivalence of the following properties:
a) The representation of G in the F_{ℓ}-vector space $T / \ell T$ is irreducible.
b) The only lattices of V_{ℓ} stable under G are the $\ell^{n} T$, with $n \in Z$.
1.2. Examples
1. Roots of unity. Let $\ell \neq \operatorname{char}(\mathrm{K})$. The group
$G=\operatorname{Gal}\left(K_{s} / K\right)$ acts on the group μ_{m} of ℓ^{m}-th roots of unity, and hence also on $T_{l}(\mu)=$ lime. μ_{m}. The Q_{ℓ}-vector space $V_{\ell}(\mu)=T_{\ell}(\mu) \otimes_{Z_{\ell}} Q_{\ell}$ is of dimension 1 , and the homomorphism $X_{\ell}: G \longrightarrow \operatorname{Aut}\left(V_{\ell}\right)=Q_{\ell}^{*}$ defined by the action of G on V_{ℓ} is a 1 -dimensional ℓ-adic representation of G. The character X_{ℓ} takes its values in the group of units U_{ℓ} of Z_{ℓ}; by definition

$$
g(z)=z^{X} \ell^{(g)} \text { if } g \in G, \quad z^{\ell^{m}}=1
$$

2. Elliptic curves. Let $\ell \neq \operatorname{char}(\mathrm{K})$. Let E be an elliptic curve defined over K with a given rational point 0 . One knows that
ieere is a unique structure of group variety on E with 0 as neutral eiement. Let E_{m} be the kernel of multiplication by ℓ^{m} in $E\left(K_{s}\right)$, and let

$$
T_{\ell}(E)=\lim _{\longleftrightarrow} E_{m}, V_{\ell}(E)=T_{\ell}(E) \otimes_{Z_{\ell}} Q_{\ell} .
$$

Ine Tate module $T_{\ell}(E)$ is a free Z_{ℓ}-module on which $G=\operatorname{Gal}\left(K_{s} / K\right)$ acts (cf. [12], chap. VII). The corresponding homomorphism $\bar{I}_{\ell}: G \longrightarrow \operatorname{Aut}\left(V_{\ell}(E)\right)$ is an $\boldsymbol{\ell}$-adic representation of G. The group $G_{\ell}=\operatorname{Im}\left(\pi_{\ell}\right)$ is a closed subgroup of $\operatorname{Aut}\left(T_{\ell}(E)\right)$, a 4-dimensional Iie group isomorphic to $G L\left(2, Z_{\ell}\right)$. (In chapter IV, we will determine the Lie algebra of G_{ℓ}, under the assumption that K. is a number :̇eld.)

Since we can identify E with its dual (in the sense of the cuality of abelian varieties) the symbol (x, y) (cf. [12], loc. sit.) defines canonical isomorphisms

$$
\Lambda^{2} \mathrm{~T}_{\ell}(\mathrm{E})=\mathrm{T}_{\ell}(\mu), \quad \Lambda^{2} \mathrm{~V}_{\ell}(\mathrm{E})=\mathrm{V}_{\ell}(\mu)
$$

Hence $\operatorname{det}\left(\pi_{\ell}\right)$ is the character X_{ℓ} defined in example 1.
3. Abelian varieties. Let A be an abelian variety over K oi dimension d. If $\ell \neq \operatorname{char}(K)$, we define $T_{\ell}(A), V_{\ell}(A)$ in the same way as in example 2. The group $\mathrm{T}_{\ell}(\mathrm{A})$ is a free Z_{ℓ}-module of rank 2 d (cf. [12], loc. cit.) on which $G=G a l\left(K_{s} / K\right)$ acts.
4. Cohomology representations. Let X be an algebraic variety defined over the field K , and let $\mathrm{X}_{\mathrm{s}}=\mathrm{X} \times_{\mathrm{K}} \mathrm{K}_{\mathrm{s}}$ be the corresponding variety over K_{s}. Let $\ell \neq \operatorname{char}(\mathrm{K})$, and let i be an integer. Using the étale cohomology of Artin-Grothendieck [3] we let

$$
H^{i}\left(X_{s}, Z_{\ell}\right)=\underset{\gtrless}{\lim } \cdot H^{\mathrm{i}}\left(\left(X_{s}\right)_{e t}, Z / \ell^{\mathrm{n}} Z\right),
$$

$$
H_{\ell}^{\mathrm{i}}\left(\mathrm{X}_{s}\right)=\mathrm{H}^{\mathrm{i}}\left(\mathrm{X}_{s}, Z_{\ell}\right) \otimes_{Z_{\ell}} Q_{\ell}
$$

The group $H_{\ell}^{i}\left(X_{s}\right)$ is a vector space over Q_{ℓ} on which $G=G a l\left(K_{s} / K\right)$ acts (via the action of G on X_{s}). It is finite dimensional, at least if char $(K)=0$ or if X is proper. We thus get an ℓ-adic representation of G associated to $H_{l}^{i}\left(X_{s}\right)$; by taking duals we also get homology ℓ-adic representations. Examples 1, 2, 3 are particular cases of homology ℓ-adic representations where $i=1$ and X is respectively the multiplicative group G_{m}, the elliptic curve E, and the abelian variety A.

Exercise
(a) Show that there is an elliptic curve E, defined over $K_{o}=Q(T)$, with j-invariant equal to T.
(b) Show that for such a curve, over $K=C(T)$, one has $G_{\ell}=S L\left(T_{\ell}(E)\right)$ (cf. Igusa [10] for an algebraic proof).
(c) Using (b), show that, over K_{o}, we have $G_{l}=G L\left(T_{l}(E)\right)$.
(d) Show that for any closed subgroup H of $G L\left(2, Z_{\ell}\right)$ there is an elliptic curve (defined over some field) for which $G_{\ell}=H$.

§2. ℓ-ADIC REPRESENTATIONS OF NUMBER FIELDS

2.1. Preliminaries
(For the basic notions concerning number fields, see for instance Cassels-Frbhlich [6], Lang [13] or Weil [44].) Let K be a number field (i.e. a finite extension of Q). Denote by Σ_{K} the set of all finite places of K, i.e., the set of all normalized discrete valuations of K (or, alternatively, the set of prime ideals in the ring A_{K} of integers of K). The residue field k_{v} of a place $v \in \Sigma_{K}$ is a finite field with $N v=p_{V}^{\operatorname{deg}(v)}$ elements, where
$P_{v}=\operatorname{char}\left(k_{v}\right)$ and $\operatorname{deg}(v)$ is the degree of k_{v} over $F_{p_{v}}$. The rampfiction index e_{v} of v is $v\left(p_{v}\right)$.

Let L / K be a finite Galois extension with Galois group G, and let $w \in \Sigma_{L}$. The subgroup D_{w} of G consisting of those $g \in G$ for which $\mathrm{gw}=\mathrm{w}$ is the decomposition group of w . The restriction of w to K is an integral multiple of an element $v \in \Sigma_{K}$; by abuse of language, we also say that v is the restriction of w to K, and we write w / v ('w divides $v^{\prime \prime}$). Let $L_{w}\left(r e s p . ~ K_{v}\right)$ be the completion of L (resp. K) with respect to w (resp. v). We have $D_{w}=\operatorname{Gal}\left(L_{w} / K_{v}\right)$. The group D_{w} is mapped homomorphically onto the Galois group $\operatorname{Gal}\left(\ell_{w} / k_{v}\right)$ of the corresponding residue extension ℓ_{w} / k_{v}. The kernel of $G \longrightarrow \operatorname{Gal}\left(\ell_{w} / k_{v}\right)$ is the inertia group I_{w} of w. The quotient group D_{w} / I_{w} is a finite cyclic group generated by the Frobenius element F_{w}; we have $F(\lambda)=\lambda^{N v}$ for all $\lambda \epsilon \ell_{w}$. The valuation w (resp. v) is called unramified if $I_{w}=\{1\}$. Almost all places of K are unramified.

If L is an arbitrary algebraic extension of Q, one defines Σ_{L} to be the projective limit of the sets $\Sigma_{L_{a}}$, where L_{a} ranges over the finite sub-extensions of L / Q. Then, if L / K is an arbitray Galois extension of the number field K, and $w \in \Sigma_{L}$, one defines D_{w}, I_{w}, F_{w} as before. If v is an unramified place of K, and w is a place of L extending v, we denote by F_{v} the conjugacy class of F_{w} in $G=\operatorname{Gal}(L / K)$.

DEFINITION - Let $\rho: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \longrightarrow \operatorname{Aut}(\mathrm{V})$ be an ℓ-adic represent dion of K, and let $v \in \Sigma_{K}$. We say that ρ is unramified at V if $\rho\left(\mathrm{I}_{\mathrm{w}}\right)=\{1\}$ for any valuation w of $\overline{\mathrm{K}}$ extending v .

If the representation ρ is unramified at v, then the
restriction of ρ to D_{w} factors through D_{w} / I_{w} for any $w \mid v$; hence $\rho\left(F_{w}\right) \in \operatorname{Aut}(V)$ is defined; we call $\rho\left(F_{w}\right)$ the Frobenius of w in the representation ρ, and we denote it by $F_{w, \rho}$. The conjugacy class of $F_{w, \rho}$ in Aut(V) depends only on v; it is denoted by $F_{v, \rho}$. If L / K is the extension of K corresponding to $H=\operatorname{Ker}(\rho)$, then ρ is unramified at v if and only if v is unramified in L / K.
2.2. Čebotarev's density theorem

Let P be a subset of Σ_{K}. For each integer n, let $a_{n}(P)$ be the number of $v \in P$ such that $N v \leq n$. If a is a real number, one says that P has density a if

$$
\lim \cdot \frac{a_{n}(P)}{a_{n}\left(\Sigma_{K}\right)}=a \quad \text { when } \quad n \longrightarrow \infty .
$$

Note that $a_{n}\left(\Sigma_{K}\right) \sim n / \log (n)$, by the prime number theorem (cf. Appendix, or [13], chap. VIII), so that the above relation may be rewritten:

$$
a_{n}(P)=a \cdot n / \log (n)+o(n / \log (n))
$$

Examples

A finite set has density 0 . The set of $v \in \Sigma_{K}$ of degree 1 (i.e. such that $N v$ is prime) has density l. The set of ordinary prime numbers whose first digit (in the decimal system, say) is 1 has no density.

We can now state Čebotarev's density theorem:

THEOREM - Let L be a finite Galois extension of the number field K, with Galois group G. Let X be a subset of G, stable by
conjugation. Let P_{X} be the set of places $v \in \Sigma_{K}$, unramified in L, such that the Frobenius class F_{v} is contained in X. Then P_{X} has density equal to $\operatorname{Card}(X) / \operatorname{Card}(G)$.

For the proof, see [7], [1], or the Appendix.

COROLLARY 1 - For every $g \in G$, there exist infinitely many unramified places $w \in \Sigma_{L}$ such that $F_{w}=g$.

For infinite extensions, we have:

COROLLARY 2 - Let L be a Galois extension of K, which is unramified outside a finite set S.
a) The Frobenius elements of the unramified places of L are dense in $\operatorname{Gal}(\mathrm{L} / \mathrm{K})$.
b) Let X be a subset of $G a l(L / K)$, stable by conjugation. Assume that the boundary of X has measure zero with respect to the Haar measure μ of X, and normalize μ such that its total mass is 1 . Then the set of places $v \notin S$ such that $F_{v} C X$ has a density equal to $\mu(\mathrm{X})$.

Assertion (b) follows from the theorem, by writing L as an increasing union of finite Galois extensions and passing to the limit (one may also use Prop. 1 of the Appendix). Assertion (a) follows from (b) applied to a suitable neighborhood of a given class of Gal(L/K).

Exercise
Let G be an ℓ-adic Lie group and let X be an analytic subset of G (i.e. a set defined by the vanishing of a family of analytic functions on G). Show that the boundary of X has measure zero
with respect to the Haar measure of G.
2.3. Rational ℓ-adic representations

Let ρ be an ℓ-adic representation of the number field K. If $v \in \Sigma_{K}$, and if v is unramified with respect to ρ, we let $P_{v, \rho}(T)$ denote the polynomial $\operatorname{det}\left(1-F_{v, \rho} T\right)$.

DEFINITION - The ℓ-adic representation ρ is said to be rational (resp. integral) if there exists a finite subset S of Σ_{K} such that
(a) Any element of $\Sigma_{K}-S$ is unramified with respect to ρ.
(b) If $v \notin S$, the coefficients of $P_{v, \rho}(T)$ belong to Q (resp. to Z).

Remark
Let K^{\prime} / K be a finite extension. An ℓ-adic representation ρ of K defines (by restriction) an ℓ-adic representation ρ / K^{\prime} of K^{\prime}. If ρ is rational (resp. integral), then the same is true for ρ / K^{\prime}; this follows from the fact that the Frobenius elements relative to K^{\prime} are powers of those relative to K.

Examples

The $\boldsymbol{\ell}$-adic representations of K given in examples $1,2,3$ of section 1.2 are rational (even integral) representations. In example l, one can take for S the set S_{ℓ} of elements v of Σ_{K} with $\mathrm{P}_{\mathrm{v}}=\ell$; the corresponding Frobenius is $N v$, viewed as an element of U_{ℓ}. In examples 2,3 , one can take for S the union of S_{ℓ} and the set S_{A} where A has "bad reduction"; the fact that the corresponding Frobenius has an integral characteristic polynomial (which is independent of ℓ) is a consequence of Weil's results on endomorphisms of abelian varieties (cf. [40] and [12], chap. VII). The rationality of
the cohomology representations is a well-known open question.

DEFINITION - Let ℓ^{\prime} be a prime, ρ^{\prime} an ℓ^{\prime}-adic representation of K, and assume that ρ, ρ^{\prime} are rational. Then ρ, ρ^{\prime} are said to be compatible if there exists a finite subset S of Σ_{K} such that ρ and ρ^{\prime} are unramified outside of S and $P_{v, \rho}(T)=P_{v, \rho^{\prime}}(T)$ for $v \in \Sigma_{K}-S$.
(In other words, the characteristic polynomials of the Frobenius elements are the same for ρ and ρ ', at leastfor almost all v's.)

If $\rho: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \longrightarrow \operatorname{Aut}(\mathrm{V})$ is a rational ℓ-adic representation of K, then V has a composition series

$$
\mathrm{v}=\mathrm{v}_{\mathrm{o}} \supset \mathrm{v}_{1} \supset \ldots \supset \mathrm{v}_{\mathrm{q}}=0
$$

of ρ-invariant subspaces with $\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}+1}(0 \leq \mathrm{i} \leq \mathrm{q}-1)$ simple
(i. e. $\frac{\text { irreducible). }}{\mathrm{q}-1}$ The ℓ-adic representation ρ^{\prime} of K defined by
$\mathrm{V}^{\prime}=\sum_{\mathrm{i}=0} \mathrm{~V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}+1}$ is semi-simple, rational, and compatible with ρ; $i=0$
it is the "semi-simplification" of V.

THEOREM - Let ρ be a rational ℓ-adic representation of K, and let ℓ^{\prime} be a prime. Then there exists at most one (up to isomorphism) ℓ^{\prime}-adic rational representation ρ^{\prime} of K which is semi-simple and compatible with ρ.
(Hence there exists a unique (up to isomorphism) rational, semi-simple ℓ-adic representation compatible with ρ.)

Proof. Let $\rho_{1}^{\prime}, \rho_{2}^{\prime}$ be semi-simple ℓ^{\prime}-adic representations of K
which are rational and compatible with ρ.
We first prove that $\operatorname{Tr}\left(\rho_{1}^{\prime}(g)\right)=\operatorname{Tr}\left(\rho_{2}^{\prime}(g)\right)$ for all $g \in G$. Let $H=G /\left(\operatorname{Ker}\left(\rho_{1}^{\prime}\right) \cap \operatorname{Ker}\left(\rho_{2}^{\prime}\right)\right)$; the representations $\rho_{1}^{\prime}, \rho_{2}^{\prime}$ may be regarded as representations of H, and it suffices to show that $\operatorname{Tr}\left(\rho_{1}^{\prime}(h)\right)=\operatorname{Tr}\left(\rho_{2}^{\prime}(h)\right)$ for all $h \in H$. Let $M \subset \bar{K}$ be the fixed field of H. Then by the compatibility of $\rho_{1}^{\prime}, \rho_{2}^{\prime}$ there is a finite subset S of Σ_{K} such that for all $v \in \Sigma_{K}-S, w \in \Sigma_{M}$, wive, we have $\operatorname{Tr}\left(\rho_{1}^{\prime}\left(F_{w}\right)\right)=\operatorname{Tr}\left(\rho_{2}^{\prime}\left(F_{w}\right)\right)$. But, by cor. 2 to Cebotarev's theorem (cf. 2.2) the F_{w} are dense in H. Hence $\operatorname{Tr}\left(\rho_{l}^{\prime}(h)\right)=\operatorname{Tr}\left(\rho_{2}^{\prime}(h)\right)$ for all $h \in H$ since $\operatorname{Tr} \in \rho_{1}^{\prime}, \operatorname{Tr} \in \rho_{2}^{\prime}$ are continuous.

The theorem now follows from the following result applied to the group ring $\Lambda=Q_{\ell}[H]$.

LEMMA - Let k be a field of characteristic zero, let \wedge be a k-algebra, and let ρ_{1}, ρ_{2} be two finite-dimensional linear representations of Λ. If ρ_{1}, ρ_{2} are semi-simple and have the same trace (T rc $\rho_{1}=\operatorname{Tr} \in \rho_{2}$), then they are isomorphic.

For the proof see Bourbaki, Alg., ch. 8, §12, $\mathrm{n}^{\mathrm{o}} 1$, prop. 3.

DEFINITION - For each prime ℓ let ρ_{ℓ} be a rational ℓ-adic reprosentation of K. The system $\left(\rho_{\ell}\right)$ is said to be compatible if $\rho_{\ell^{\prime}} \rho_{\ell^{\prime}}$ are compatible for any two primes ℓ, ℓ^{\prime}. The system $\left(\rho_{\ell}\right)$ is said to be strictly compatible if there exists a finite subset S of Σ_{K} such that:
(a) Let $S_{\ell}=\left\{v \mid p_{v}=\ell\right\}$. Then, for every $v \notin S v S_{\ell}, \rho_{\ell}$ is unramified at v and $P_{v, \rho_{\ell}}(T)$ has rational coefficients.
(b) $P_{V, \rho_{\ell}}(T)=P_{v, \rho_{\ell^{\prime}}}(T)$ if $v \not \subset \cup S_{\ell} \cup S_{\ell^{\prime}}$.

When a system $\left(\rho_{\ell}\right)$ is strictly compatible, there is a smallest finite set S having properties (a) and (b) above. We call it the exceptional set of the system.

Examples

The systems of ℓ-adic representations given in examples l, 2,3 of section 1.2 are each strictly compatible. The exceptional set of the first one is empty. The exceptional set of example 2 (resp. 3) is the set of places where the elliptic curve (resp. the abelian variety) has 'bad reduction', cf. [32].

Questions

1. Let ρ be a rational ℓ-adic representation. Is it true that $P_{v, \rho}$ has rational coefficients for all v such that ρ is unramified at v ?

A somewhat similar question is:
Is any compatible system strictly compatible?
2. Can any rational ℓ-adic representation be obtained (by tensor products, direct sums, etc.) from ones coming from $\boldsymbol{\ell}$-adic cohomology?
3. Given a rational ℓ-adic representation ρ of K, and a prime ℓ^{\prime}, does there exist a rational ℓ^{\prime}-adic representation ρ^{\prime} of K compatible with ρ ? \rightarrow [no: easy counter-examples].
4. Let ρ, ρ^{\prime} be rational ℓ, ℓ^{\prime}-adic representations of K which are compatible and semi-simple.
(i) If ρ is abelian (i.e., if $\operatorname{Im}(\rho)$ is abelian), is it true that ρ^{\prime} is abelian? (We shall see in chapter III that this is true at least if ρ is 'locally algebraic'.) \rightarrow [yes: this follows from [63].]
(ii) Is it true that $\operatorname{Im}(\rho)$ and $\operatorname{Im}\left(\rho^{\prime}\right)$ are Lie groups of the
same dimension? More optimistically, is it true that there exists a Lie algebra g over Q such that $\operatorname{Lie}(\operatorname{Im}(\rho))=g{ }^{\otimes} Q_{\ell} Q^{\prime}$ $\operatorname{Lie}\left(\operatorname{Im}\left(\rho^{\prime}\right)\right)=\underline{g} \boldsymbol{\theta}_{Q} Q_{\ell^{\prime}}$?
5. Let X be a non-singular projective variety defined over K , and let i be an integer. Is the i -th cohomology representation $H_{l}^{i}\left(X_{s}\right)$ semi-simple? Does its Lie algebra contain the homotheties if $i \geq 1$? (When $i=1$, an affirmative answer to either one of these questions would imply a positive solution for the "congruence subgroup problem' on abelian varieties, cf. [24], §3.) \rightarrow [yes for $\mathrm{i}=1$: see [48] and also [75].]

Remark
The concept of an \boldsymbol{l}-adic representation can be generalized by replacing the prime ℓ by a place λ of a number field E. A λ-adic representation is then a continuous homomorphism $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right) \longrightarrow \operatorname{Aut}(\mathrm{V})$, where V is a finite-dimensional vector space over the local field E_{λ}. The concepts of rational λ-adic representation, compatible representations, etc., can be defined in a way similar to the ℓ-adic case.

Exercises

1) Let ρ and ρ^{\prime} be two rational, semi-simple, compatible representations. Show that, if $\operatorname{Im}(\rho)$ is finite, the same is true for $\operatorname{Im}\left(\rho^{\prime}\right)$ and that $\operatorname{Ker}(\rho)=\operatorname{Ker}\left(\rho^{\prime}\right)$. (Apply exer. 3 of 1.1 to ρ^{\prime} and to $U=\operatorname{Ker}(\rho)$.

Generalize this to λ-adic representations (with respect to a number field E).
2) Let ρ (resp. ρ ') be a rational ℓ-adic (resp. ℓ '-adic) representation of K, of degree n. Assume ρ and ρ^{\prime} are compatible. If $s \in G=G \operatorname{Gal}(\bar{K} / K)$, let $\sigma_{i}(s)\left(\right.$ resp. $\left.\sigma_{i}^{\prime}(s)\right)$ be the
i-th coefficient of the characteristic polynomial of $\rho(s)$ (resp. of $\left.\rho^{\prime}(s)\right)$. Let $P\left(X_{o}, \ldots, X_{n}\right)$ be a polynomial with rational coefficients, and let X_{P} (resp. X_{P}^{\prime}) be the set of $s \in G$ such that $P\left(\sigma_{o}(s), \ldots, \sigma_{n}(s)\right)=0$ (resp. $\left.P\left(\sigma_{o}^{\prime}(s), \ldots, \sigma_{n}^{\prime}(s)\right)=0\right)$.
a) Show that the boundaries of X_{P} and X_{P}^{\prime} have measure zerofor the Haar measure μ of G (use Exer. of 2.2).
b) Assume that μ is normalized, i.e. $\mu(G)=1$. Let T_{P} be the set of $v \in \Sigma_{K}$ at which ρ is unramified, and for which the coefficients $\sigma_{0}, \ldots, \sigma_{n}$ of the characteristic polynomial of $F_{v, \rho}$ satisfy the equation $P\left(\sigma_{0}, \ldots, \sigma_{n}\right)=0$. Show that T_{P} has density equal to $\mu\left(\mathrm{X}_{\mathrm{P}}\right)$.
c) Show that $\mu\left(X_{P}\right)=\mu\left(X_{P}^{\prime}\right)$.
2.4. Representations with values in a linear algebraic group

Let H be a linear algebraic group defined over a field k. If k^{\prime} is a commutative k-algebra, let $H\left(k^{\prime}\right)$ denote the group of points of H with values in k '. Let A denote the coordinate ring (or "affine ring") of H. An element $f \in A$ is said to be central if $f(x y)=f(y x)$ for any $x, y \in H\left(k^{\prime}\right)$ and any commutative k-algebra k^{\prime}. If $x \in H\left(k^{\prime}\right)$, we say that the conjugacy class of x in H is rational over k if $f(x) \in k$ for any central element f of A.

DEFINITION - Let H be a linear algebraic group over Q, and let
K be a field. A continuous homomorphism $\rho: \operatorname{Gal}\left(K_{s} / K\right) \longrightarrow H\left(Q_{l}\right)$ is called an ℓ-adic representation of K with values in H.
(Note that $H\left(Q_{\ell}\right)$ is, in a natural way, a topological group and even an ℓ-adic Lie group.)

If K is a number field, one defines in an obvious way what it
means for ρ to be unramified at a place $v \in \Sigma_{K} ;$ if $w \mid v$, one defines the Frobenius element $F_{w, \rho} \in H\left(Q_{\ell}\right)$ and its conjugacy class $F_{v, \rho^{-}}$We say, as before, that ρ is rational if
(a) there is a finite set S of Σ_{K} such that ρ is unramified outside S,
(b) if $v \notin S$, the conjugacy class $F_{v, \rho}$ is rational over Q. Two rational representations ρ, ρ^{\prime} (for primes ℓ, ℓ^{\prime}) are said to be compatible if there exists a finite subset S of Σ_{K} such that ρ and ρ^{\prime} are unramified outside S and such that for any central element $f \in A$ and any $v \in \Sigma_{K}-S$ we have $f\left(F_{v, \rho}\right)=f\left(F_{v, \rho^{\prime}}\right)$. One defines in the same way the notions of compatible and strictly compatible systems of rational representations.

Remarks

1. If the algebraic group H is abelian, then condition (b) above means that $F_{v, \rho}$ (which is now an element of $H\left(Q_{l}\right)$) is rational over Q, i. e. belongs to $H(Q)$.
2. Let V_{o} be a finite-dimensional vector space over Q, and let $G_{V_{0}}$ be the linear algebraic group over Q whose group of points in any commutative Q-algebra k is $\operatorname{Aut}\left(V_{0}{ }^{\boldsymbol{Q}_{Q}} k\right)$; in particular, if $V_{\ell}=V_{0}{ }^{\otimes_{Q}} Q_{\ell}$, then $G L_{V_{0}}\left(Q_{\ell}\right)=\operatorname{Aut}\left(V_{\ell}\right)$. If $\phi: H \longrightarrow \mathrm{GL}_{\mathrm{V}_{\mathrm{O}}}$ is a homomorphism of linear algebraic groups over Q, call ϕ_{ℓ} the induced homomorphism of $H\left(Q_{\ell}\right)$ into $\mathrm{GL}_{\mathrm{V}_{0}}\left(\mathrm{Q}_{\ell}\right)=\operatorname{Aut}\left(\mathrm{V}_{\ell}\right)$. If ρ is an $\boldsymbol{\ell}$-adic representation of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ into $H\left(Q_{\ell}\right)$, one gets by composition a linear $\boldsymbol{\ell}$-adic representation $\phi_{\ell} \circ \rho: \operatorname{Gal}\left(\mathrm{K}_{s} / \mathrm{K}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{V}_{\ell}\right)$. Using the fact that the coefficients of the characteristic polynomial are central functions, one sees that
$\phi_{\ell} \circ \rho$ is rational if ρ is rational (K a number field). Of course, compatible representations in H give compatible linear representations. We will use this method of constructing compatible representations in the case where H is abelian (see ch. II, 2.5).
2.5. L-functions attached to rational representations

Let K be a number field and let $\rho=\left(\rho_{\ell}\right)$ be a strictly compatible system of rational $\boldsymbol{\ell}$-adic representations, with exceptional set S. If $v \notin S$, denote by $P_{v, \rho}(T)$ the rational polynomial $\operatorname{det}\left(l-F_{v, \rho_{\ell}} T\right)$, for any $\ell \neq p_{v}$; by assumption, this polynomial does not depend on the choice of ℓ. Let s be a complex number. One has:

$$
\begin{aligned}
\left.P_{v, \rho}(N v)^{-s}\right) & =\operatorname{det}\left(1-F_{v, \rho} /(N v)^{s}\right) \\
& =\prod_{i}\left(1-\lambda_{i, v} /(N v)^{s}\right),
\end{aligned}
$$

where the $\lambda_{i, v}$'s are the eigenvalues of $F_{v, \rho}$ (note that the $\lambda_{i, v}{ }^{\prime} s$ are algebraic numbers and hence may be identified with complex numbers). Put:

$$
L_{\rho}(s)=\prod_{v \notin S} \frac{1}{P_{v, \rho}\left((N v)^{-s}\right)}
$$

This is a formal Dirichlet series $\sum_{n=1}^{\infty} a_{n} / n^{s}$, with coefficients in Q. In all known cases, there exists a constant k such that $\left|\lambda_{i, v}\right| \leq(N v)^{k}$, and this implies that L_{ρ} is convergent in some half plane $R(s)>C$; one conjectures it extends to a meromorphic function in the whole
plane. When ρ comes from ℓ-adic cohomology, there are some further conjectures on the zeros and poles of L_{ρ}, cf. Tate [36]; these, as indicated by Tate, may be applied to get equidistribution properties of the Frobenius elements, cf. Appendix.

Remarks

1) One can also associate L-functions to E-rational systems of λ-adic representations (2.3, Remark), where E is a number field, once an embedding of E into C has been chosen.
2) We have given a definition of the local factors of L_{ρ} only at the places $v \notin S$. One can give a more sophisticated definition in which local factors are defined for all places, even (with suitable hypotheses) for primes at infinity (gamma factors); this is necessary when one wants to study functional equations. We don't go into this here. \rightarrow [see [51], [74].]
3) Let $\phi(s)=\Sigma a_{n} / n^{s}$ be a Dirichlet series. Using the theorem in 2.3, one sees that there is (up to isomorphism) at most one semi-simple system $\rho=\left(\rho_{\ell}\right)$ over Q such that $L_{\rho}=\phi$. Whether there does exist one (for a given ϕ) is often a quite interesting question. For instance, is it so for Ramanujan's $\phi(s)=\sum_{\sum}^{\infty} \tau(n) / n^{s}$, where $\tau(n)$ is defined by the identity $\mathrm{n}=1$

$$
x \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) x^{n} ?
$$

There is considerable numerical evidence for this, based on the congruence properties of τ (Swinnerton-Dyer, unpublished); of course, such a ρ would be of dimension 2 , and its exceptional set S would be empty. \rightarrow [proved by Deligne: see [49], [50], [65], ...]

More generally, there seems to be a close connection between
modular forms, such as $\Sigma \tau(\mathrm{n}) \mathrm{x}^{\mathrm{n}}$, and rational (or algebraic) ℓ-adic representations; see for instance Shimura [33] and Weil [45].
\rightarrow [see also [49], [51], [65], [66], [68], [84].]
Examples

1. If G acts through a finite group, L_{ρ} is an Artin (non abelian) L-series, at least up to a finite number of factors (cf. [1]). All Artin L-series are gotten in this way, provided of course one uses E-rational representations (cf. Remark l) and not merely rational ones.
2. If ρ is the system associated with an elliptic curve E (cf. 1.2), the corresponding L-function gives the non-trivial part of the zeta function of E. The symmetric powers of ρ give the zeta functions of the products $E \times \ldots \times E$, cf. Tate [36].

APPENDIX

Equipartition and L-functions

A.1. Equipartition

Let X be a compact topological space and $C(X)$ the Banach space of continuous, complex-valued, functions on X, with its usual norm $\|f\|=\operatorname{Sup}_{x \in X}|f(x)|$. For each $x \in X$ let δ_{x} be the Dirac measure associated to x; if $f \in C(X)$, we have $\delta_{x}(f)=f(x)$.

Let $\left(x_{n}\right)_{n>1}$ be a sequence of points of X. For $n \geq 1$, let

$$
\mu_{\mathrm{n}}=\left(\delta_{x_{1}}+\ldots+\delta_{x_{n}}\right) / n
$$

and let μ be a Radon measure on X (i.e. a continuous linear form on $C(X)$, cf. Bourbaki, Int., chap. III, §1). The sequence (x_{n}) is said to be μ-equidistributed, or μ-uniformly distributed, if $\mu_{n} \rightarrow \mu$ weakly as $n \longrightarrow \infty$, i. e. if $\mu_{n}(f) \longrightarrow \mu(f)$ as $n \longrightarrow \infty$ for any $\mathrm{f} \in \mathrm{C}(\mathrm{X})$. Note that this implies that μ is positive and of total mass 1. Note also that $\mu_{n}(f) \longrightarrow \mu(f)$ means that

$$
\mu(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

LEMMA 1 - Let $\left(\phi_{a}\right)$ be a family of continuous functions on X with the property that their linear combinations are dense in $C(X)$. Suppose that, for all a, the sequence $\left(\mu_{n}\left(\phi_{a}\right)\right)_{n>1}$ has a limit. Then the sequence $\left(x_{n}\right)$ is equidistributed with respect to some measure μ; it is the unique measure such that $\mu\left(\phi_{a}\right)=\lim _{n \rightarrow \infty} \mu_{n}\left(\phi_{a}\right)$ for all a.

If $f \in C(X)$, an argument using equicontinuity shows that the sequence $\left(\mu_{n}(f)\right)$ has a limit $\mu(f)$, which is continuous and linear in f ; hence the lemma.

PROPOSITION 1 - Suppose that $\left(x_{n}\right)$ is μ-equidistributed. Let U be a subset of X whose boundary has μ-measure zero, and, for all n, let ${ }^{n} U$ be the number of $m \leq n$ such that $\cdot x_{m} \in U$. Then $\lim _{n \rightarrow \infty}\left(n_{U} / n\right)=\mu(U)$.
$n \rightarrow \infty$
Let U° be the interior of U. We have $\mu\left(U^{\circ}\right)=\mu(U)$. Let $\varepsilon>0$. By the definition of $\mu\left(U^{\circ}\right)$ there is a continuous function $\phi \in C(X), \quad 0 \leq \phi \leq 1$, with $\phi=0$ on $X-U^{0}$ and $\mu(\phi) \geq \mu(U)-\varepsilon$. Since $\mu_{n}(\phi) \leq n_{U} / n$ we have

$$
\lim _{\mathrm{n} \rightarrow \infty} \inf _{\mathrm{U}} / \mathrm{n} \geq \lim _{\mathrm{n} \rightarrow \infty} \mu_{\mathrm{n}}(\phi)=\mu(\phi) \geq \mu(U)-\varepsilon,
$$

from which we obtain $\lim \inf n_{U} / n \geq \mu(U)$. The same argument applied to $X-U$ shows that

$$
\lim \inf \left(n-n_{U}\right) / n \geq \mu(X-U)
$$

Hence $\lim \sup n_{U} / n \leq \mu(U) \leq \lim \inf n_{U} / n$, which implies the proposition.

Examples

1. Let $X=[0,1]$, and let μ be the Lebesgue measure. A sequence $\left(x_{n}\right)$ of points of X is μ-equidistributed if and only if for each interval $[a, b]$, of length $d>0$ in $[0,1]$ the number of $m \leq n$ such that $x_{m} \in[a, b]$ is equivalent to $d n$ as $n \longrightarrow \infty$.
2. Let G be a compact group and let X be the space of conjugacy classes of G (i.e. the quotient space of G by the equivalence relation induced by inner automorphisms of G). Let μ be a measure on G; its image of $G \longrightarrow X$ is a measure on X, which we also denote by μ. We then have

PROPOSITION 2 - The sequence $\left(x_{n}\right)$ of elements of X is μ-equidistributed if and only if for any irreducible character X of G we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} x\left(x_{i}\right)=\mu(x)
$$

The map $C(X) \longrightarrow C(G)$ is an isomorphism of $C(X)$ onto the space of central functions on G; by the Peter-Weyl theorem, the
irreducible characters X of G generate a dense subspace of $C(X)$. Hence the proposition follows from lemmal.

COROLLARY 1 - Let μ be the Haar measure of G with $\mu(G)=1$. Then a sequence $\left(x_{n}\right)$ of elements of X is μ-equidistributed if and only if for any irreducible character X of $G, X \neq 1$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} x\left(x_{i}\right)=0
$$

This follows from Prop. 2 and the following facts:

$$
\begin{aligned}
& \mu(X)=0 \quad \text { if } X \text { is irreducible } \neq 1 \\
& \mu(1)=1 .
\end{aligned}
$$

COROLLARY $2-(H$. Weyl [46]) Let $G=R / Z$, and let μ be the normalized Haar measure on G. Then $\left(x_{n}\right)$ is μ-equidistributed if and only if for any integer $m \neq 0$ we have

$$
\sum_{n<N} e^{2 \pi m i x} n=o(N) \quad(N \longrightarrow \infty)
$$

For the proof, it suffices to remark that the irreducible characters of R / Z are the mappings $x \longmapsto e^{2 \pi m i x}(m \in Z)$.
A. 2. The connection with L-functions

Let G and X be as in Example 2 above: G a compact group and X the space of its conjugacy classes. Let $X_{v}, V \in \Sigma$, bea family of elements of X, indexed by a denumerable set Σ, and let

Nv be a function on Σ with values in the set of integers ≥ 2.

We make the following hypotheses:
(1) The infinite product $\prod_{v \in \Sigma} \frac{1}{1-(N v)^{-s}}$ converges for every $s \in C$ with $R(s)>1$, and extends to a meromorphic function on $R(s) \geq 1$ having neither zero nor pole except for a simple pole at $\mathrm{s}=1$.
(2) Let ρ be an irreducible representation of G, with character X, and put

$$
L(s, \rho)=\prod_{v \in \Sigma} \frac{1}{\operatorname{det}\left(1-\rho\left(x_{v}\right)(N v)^{-s}\right)}
$$

Then this product converges for $R(s)>1$, and extends to a meromorphic function on $R(s) \geq 1$ having neither zero nor pole except possibly for $s=1$.

The order of $L(s, \rho)$ at $s=1$ will be denoted by $-C_{\chi}$. Hence, if $L(s, \rho)$ has a pole (resp. a zero) of order m at $s=1$, one has $c_{X}=m$ (resp. $c_{X}=-m$).

Under these assumptions, we have:

THEOREM 1 - (a) The number of $v \in \Sigma$ with $N v \leq n$ is equivalent to $n / \log n$ (as $n \longrightarrow \infty$).
(b) For any irreducible character X of G, we have

$$
\sum_{N v \leq n} x\left(x_{v}\right)=c_{x}^{n / \log n+o(n / \log n) \quad(n \longrightarrow \infty) .}
$$

The theorem results, by a standard argument, from the theorem of Wiener-Ikehara, cf. A. 3 below.

Suppose now that the function $v \longmapsto N v$ has the following property:
(3) There exists a constant C such that, for every $n \in Z$, the number of $v \in \Sigma$ with $N v=n$ is $\leq C$.

One may then arrange the elements of Σ as a sequence $\left(v_{i}\right)_{i>1}$ so that $i \leq j$ implies $N v_{i} \leq N v_{j}$ (in general, this is possible in many ways). It then makes sense to speak about the equidistribution of the sequence of $\mathbf{x}_{\mathbf{v}}{ }^{\prime}$ s; using (3), one shows easily that this does not depend on the chosen ordering of Σ. Applying theorem 1 and proposition 2, we obtain

THEOREM 2 - The elements $x_{v}(v \in \Sigma)$ are equidistributed in X with respect to a measure μ such that for any irreducible character X of G we have

$$
\mu(x)=c_{x}
$$

COROLLARY - The elements $x_{v}(v \in \Sigma)$ are equidistributed for the normalized Haar measure of G if and only if $c_{X}=0$ for every irreducible character $X \neq 1$ of G, i.e., if and only if the L-functions relative to the non trivial irreducible characters of G are holomorphic and nonzero at $s=1$.

Examples

1. Let G be the Galois group of a finite Galois extension L / K of the number field K , let Σ be the set of unramified places of K, let x_{v} be the Frobenius conjugacy class defined by $v \in \Sigma$, and let $N v$ be the norm of $v, ~ c f .2 .1$.

Properties (1), (2), (3) are satisfied with $c_{X}=0$ for all irreducible $X \neq 1$. This is trivial for (3). For (1), one remarks that $L(s, 1)$ is the zeta function of K (up to a finite number of terms), hence has a simple pole at $s=1$ and is holomorphic on the rest of
the line $R(s)=1$, cf. for instance Lang [13], chap. VII; for a proof of (2), cf. Artin [1], p. 121. Hence theorem 2 gives the equidistribu tion of the Frobenius elements, i.e. the Čebotarev density theorem, cf. 2. 2.
2. Let C be the idèle class group of a number field K, and let ρ be a continuous homomorphism of C into a compact abelian Lie group G. An easy argument (cf. ch. III, 2.2) shows that ρ is almost everywhere unramified (i.e., if U_{V} denotes the group of units at v, then $\rho\left(U_{v}\right)=1$ for almost all $\left.v\right)$. Choose $\pi_{v} \in K$ with $v\left(\pi_{v}\right)=1$. If ρ is unramified at v, then $\rho\left(\pi_{v}\right)$ depends only on v, and we set $\left.x_{v}=\alpha \pi_{v}\right)$. We make the following assumption:
(*) The homomorphism ρ maps the group C^{0} of ideles of volume 1 onto G.
(Recall that the volume of an idele $a=\left(a_{v}\right)$ is defined as the product of the normalized absolute values of its components a, cf. Lang [13] or Weil [44].)

Then, the elements x_{v} are uniformly distributed in G with respect to the normalized Haar measure. This follows from theorem 1 and the fact that the L-functions relative to the irreducible characters X of G are Hecke L-functions with Grbssencharacters; these L-functions are holomorphic and non-zero for $R(s) \geq 1$ if $x \neq 1$, see [13], chap. VII.

Remark

This example (essentially due to Hecke) is given in Lang (loc. cit., ch. VIII, §5) except that Lang has replaced the condition (*) by the condition " ρ is surjective", which is insufficient. This led him to affirm that, for example, the sequence (log p) (and also the sequence $(\log n)$) is uniformly distributed modulo 1 ; however,
one knows that this sequence is not uniformly distributed for any measure on R / Z (cf. Pólya-Szegð [22], p. 179-180).
3. (Conjectural example). Let E be an elliptic curve defined over a number field K and let Σ be the set of finite places v of K such that E has good reduction at v, cf. 1.2 and chap. IV. Let $v \in \Sigma$, let $\ell \neq P_{v}$ and let F_{v} be the Frobenius conjugacy class of v in Aut($\left.T_{l}(E)\right)$. The eigenvalues of F_{v} are algebraic numbers; when embedded into C they give conjugate complex numbers $\pi_{v}, \bar{\pi}_{v}$ with $\left|\pi_{v}\right|=N v^{1 / 2}$. We may write then

$$
\pi_{v}=(N v)^{1 / 2} e^{i \phi} ; \bar{\pi}_{v}=(N v)^{1 / 2} e^{-i \phi} v \text { with } 0 \leq \phi_{v} \leq \pi
$$

On the other hand, let $G=S U(2)$ be the Lie group of 2×2 unitary matrices with determinant l. Any element of the space X of conjugacy classes of G contains a unique matrix of the form $\left(\begin{array}{cc}\mathrm{e}^{\mathrm{i} \phi} & 0 \\ 0 & \mathrm{e}^{-\mathrm{i} \phi}\end{array}\right), \quad 0 \leq \phi \leq \pi . \quad$ The image in X of the Haar measure of
is known to be $\frac{2}{\pi} \sin ^{2} \phi \mathrm{~d} \phi$. The irreducible representations of G are the m-th symmetric powers ρ_{m} of the natural representation ρ_{1} of degree 2 .

Take now for x_{v} the element of X corresponding to the angle $\phi=\phi_{v}$ defined above. The corresponding L function, relative to ρ_{m}, is:

$$
L_{\rho_{m}}(s)=\prod_{v} \prod_{a=0}^{a=m} \frac{1}{1-e^{i(m-2 a) \phi} v_{(N v)^{-s}}}
$$

If we put:

$$
L_{m}^{1}(s)=\prod_{v} \prod_{a=0}^{a=m} \frac{1}{1-\pi_{v}^{m-a} \bar{\pi}_{v}^{a}(N v)^{-s}}
$$

we have

$$
L_{\rho_{m}}(s)=L_{m}^{1}(s-m / 2)
$$

The function L_{m}^{l} has been considered by Tate [36]. He conjectures that L_{m}^{l}, for $m \geq 1$, is holomorphic and non zero for $R(s) \geq 1+m / 2$, provided that E has no complex multiplication. Granting this conjecture, the corollary to theorem 2 would yield the uniform distribu tion of the $x_{v}^{\prime} s$, or, equivalently, that the angles ϕ_{v} of the Frobenius elements are uniformly distributed in $[0, \pi]$ with respect to the measure $\frac{2}{\pi} \sin ^{2} \phi \mathrm{~d} \phi \quad$ ("conjecture of Sato-Tate").

One can expect analogous results to be true for other ℓ-adic representations.
A. 3. Proof of theorem 1

The logarithmic derivative of L is

$$
L^{\prime} / L=-\Sigma \sum_{v, m>1} \frac{x\left(x_{v}^{m}\right) \log (N v)}{(N v)^{m s}}
$$

where x_{v}^{m} is the conjugacy class consisting of the m-th powers of elements in the class x_{v}. One sees this by writing L as the product

$$
\prod_{i, v} \frac{1}{1-\lambda_{v}^{(i)}(N v)^{-s}}
$$

where the $\lambda_{v}^{(i)}$ are the eigenvalues of x_{v} in the given representation. Now the series

$$
\sum_{v, m \geq 2} \frac{\log (\mathrm{Nv})}{\left|(\mathrm{Nv})^{\mathrm{ms}}\right|}
$$

converges for $R(s)>1 / 2$. Indeed, it suffices to show that

$$
\sum \frac{\log (\mathrm{Nv})}{\mathrm{v}(\mathrm{Nv})^{\sigma}}<\infty
$$

if $\sigma>1$; but this series is majorized by

$$
\left(\text { Constant) } \times \underset{\mathrm{v}(\mathrm{Nv})^{\sigma+\varepsilon}}{\sum} \frac{1}{()^{\sigma+}}\right.
$$

$$
(\varepsilon>0) .
$$

On the other hand, the convergence for $\sigma>1$ of the product

$$
\prod_{v} \frac{1}{1-(N v)^{-\sigma}}
$$

shows that

$$
\sum_{\mathrm{v}} \frac{1}{(\mathrm{Nv})^{\sigma}}<\infty
$$

for $\sigma>1$; hence our assertion. One can therefore write

$$
L^{\prime} / L=-\sum_{v} \frac{\chi\left(x_{v}\right) \log (N v)}{(N v)^{s}}+\phi(s)
$$

where $\phi(s)$ is holomorphic for $R(s)>\frac{1}{2}$. Moreover, by hypothesis,

L'/L can be extended to a meromorphic function on $R(s) \geq 1$ which is holomorphic except possibly for a simple pole at $s=1$ with residue ${ }^{-c}{ }_{X}$. One may then apply the Wiener-Ikehara theorem (cf. [13], p. 123):

THEOREM - Let $F(s)=\Sigma a_{n} / n^{s}$ be a Dirichlet series with complex coefficients. Suppose there exists a Dirichlet series $F^{+}(s)=\Sigma a_{n}^{+} / n^{s}$ with positive real coefficients such that
(a) $\left|a_{n}\right| \leq a_{n}^{+}$for all n;
(b) The series F^{+}converges for $R(s)>1$;
(c) The function F^{+}(resp. F) can be extended to a meromorphic function on $R(s) \geq 1$ having no poles except (resp. except possibly) for a simple pole at $s=1$ with residue $c_{+}>0$ (resp. c).

Then

$$
\sum_{m \leq n} a_{n}=c n+o(n)
$$

$$
(n \longrightarrow \infty)
$$

(where $c=0$ if F is holomorphic at $s=1$).

One applies this theorem to

$$
F(s)=-\sum_{v} \frac{X\left(x_{v}\right) \log (N v)}{(N v)^{s}},
$$

and we take for F^{+}the series

$$
\mathrm{d} \Sigma \frac{\log (\mathrm{Nv})}{(\mathrm{Nv})^{\mathrm{s}}}
$$

where d is the degree of the given representation ρ; this is possible
since $X\left(x_{v}\right)$ is a sum of d complex numbers of absolute value 1 , hence $\left|X\left(x_{v}\right)\right| \leq d ;$ moreover, the series

$$
\sum \frac{\log (N v)}{v(N v)^{s}}
$$

differs from the logarithmic derivative of

$$
\prod \frac{1}{1-(N v)^{-s}}
$$

by a function which is holomorphic for $R(s)>1 / 2$ as we saw above. Hence by the Wiener-Ikehara theorem we have

$$
\sum_{N v \leq n} x\left(x_{v}\right) \log (N v)=c_{x^{n}}^{n+o(n)}
$$

$$
(n \longrightarrow \infty)
$$

Consequently, by the Abel summation trick (cf. [13], p. 124, prop. 1),

$$
\sum_{N v<n} x\left(x_{v}\right)=c_{x} n / \log n+o(n / \log n) \quad(n \longrightarrow \infty)
$$

and in particular,

$$
\sum_{N v \leq n} 1=n / \log n+o(n / \log n)
$$

$$
(n \longrightarrow \infty)
$$

Hence,

$$
\left.\underset{\mathrm{Nv} \leq \mathrm{n}}{\sum_{v}} \mathrm{x}\left(\mathrm{x}_{\mathrm{v}}\right)\right) /(\underset{\mathrm{Nv} \leq \mathrm{n}}{\Sigma} 1) \longrightarrow c_{x}
$$

$$
\text { as } n \longrightarrow \infty,
$$

CHAPTER II

THE GROUPS S_{m}

Throughout this chapter, K denotes an algebraic number field. We associate to K a projective family $\left(S_{m}\right)$ of commutative algerbrain groups over Q, and we show that each S_{m} gives rise to a strictly compatible system of rational ℓ-adic representations of K .

In the next chapter, we shall see that all "locally algebraic" abelian rational representations are of the form described here.

§1. PRELIMINARIES

1.1. The torus T

Let $T=R_{K / Q}\left(G_{m / K}\right)$ be the algebraic group over Q, obtaine from the multiplicative group G_{m} by restriction of scalars from K to Q, cf. Weill [43], §1.3. If A is a commutative Q algebra, the points of T with values in A form by definition the multiplicative group $\left(\mathrm{K} \otimes Q_{Q} A\right)^{*}$ of invertible elements of $K \otimes_{Q} A$. In particular, $T(Q)=K^{*}$. If $d=[K: Q]$, the group T is a torus of dimension d; this means that the group $T / \bar{Q}=T \times{ }_{Q} \bar{Q}$ obtained from T by extending the scalars from Q to \bar{Q}, is isomorphic
to $G_{m / \bar{Q}} \times \ldots \times G_{m / \bar{Q}}(d$ times $)$. More precisely, let Γ be the set of embeddings of K into \bar{Q}; each $\sigma \in \Gamma$ extends to a homomorphism $K \otimes_{Q} \bar{Q} \rightarrow \bar{Q}$, hence defines a morphism $[\sigma]: T / \bar{Q} \rightarrow G_{m / \bar{Q}}$. The collection of all [σ]'s gives the isomorphism
$\mathrm{T} / \overline{\mathrm{Q}} \rightarrow \mathrm{G}_{\mathrm{m} / \overline{\mathrm{Q}} \times \ldots \times \mathrm{G}_{\mathrm{m} / \overline{\mathrm{Q}}} \text {. Moreover, the }[\sigma] \text { 's form a basis } . .}$ of the character group $X(T)=\operatorname{Hom}_{\bar{Q}}\left(T / \bar{Q}, G_{m} / \bar{Q}\right)$ of T. Note that the Galois group $G a(\bar{Q} / Q)$ acts in a natural way on $X(T)$, viz. by permuting the [σ]'s. (For the dictionary between tori and Galois modules, see for instance T. Ono [21].)

1.2. Cutting down T

Let E be a subgroup of $\mathrm{K}^{*}=\mathrm{T}(\mathrm{Q})$ and let $\overline{\mathrm{E}}$ be the Zariski closure of E in T. Using the formula $\bar{E} \times \bar{E}=\overline{E \times E}$, one sees that \bar{E} is an algebraic subgroup of T. Let T_{E} be the quotient group T / \bar{E}; then T_{E} is also a torus over Q. Its character group $X_{E}=X\left(T_{E}\right)$ is the subgroup of $X=X(T)$ consisting of those characters which take the value 1 on E. If $\lambda=\prod_{\sigma \in \Gamma}[\sigma]^{n} \sigma$ denotes a character of T, then X_{E} is the subgroup of those $\lambda \in X$ for which $\prod \sigma(x)^{n}=1$, for all $x \in E$.

Exercise

a. Let K be quadratic over Q, so that $\operatorname{dim} T=2$. Let E be the group of units of K. Show that T_{E} is of dimension 2 (resp. 1) if K is imaginary (resp. real).
b. Take for K a cubic field with one real place and one complex one, and let again E be its group of units (of rank l). Show that $\operatorname{dim} T=3$ and $\operatorname{dim} T_{E}=1$
(For more examples, see 3.3.)

1.3. Enlarging groups

Let k be a field and A a commutative algebraic group over k. Let

$$
\begin{equation*}
0 \rightarrow Y_{1} \rightarrow Y_{2} \rightarrow Y_{3} \rightarrow 0 \tag{*}
\end{equation*}
$$

an exact sequence of (abstract) commutative groups, with Y_{3} finite. Let

$$
\varepsilon: Y_{1} \rightarrow A(k)
$$

be a homomorphism of Y_{1} into the group of $k-r a t i o n a l$ points of A. We intend to construct an algebraic group B, together with a mor phism of algebraic groups $A \rightarrow B$ and a homomorphism of Y_{2} into $B(k)$ such that,
(a) the diagram

is commutative,
(b) B is "universal" with respect to (a).

The universality of B means that, for any algebraic group B^{\prime} over k and morphisms $A \rightarrow B^{\prime}, Y_{2} \rightarrow B^{\prime}(k)$ such that (a) is true (with B replaced by B^{\prime}), there exists a unique algebraic morphism $f: B \rightarrow B^{\prime}$ such that the given maps $A \rightarrow B^{\prime}$ and $Y_{2} \rightarrow B(k)$ can
be obtained by composing those of B with f. (In other words, B is a push-out over Y_{1} of A and the "constant" group scheme defined by Y_{2}.)

The uniqueness of B is assured by its universality. Let us prove its existence. For each $y \in Y_{3}$ let \bar{y} be a representative of y in Y_{2}. If $y, y^{\prime} \in Y_{3}$, we have

$$
\bar{y}+\overline{y^{\prime}}=\overline{y+y^{\prime}}+c\left(y, y^{\prime}\right)
$$

with $c\left(y, y^{\prime}\right) \in Y_{1}$; the cochin c is a 2-cocycle defining the externsion (*). Let B be the disjoint union of copies A_{y} of A, indexed by $y \in Y_{3}$. Define a group law on B via the mappings

$$
\pi_{y, y^{\prime}}: A_{y} \times A_{y^{\prime}} \rightarrow A_{y+y^{\prime}} \quad\left(y, y^{\prime} \in Y_{3}\right)
$$

given by addition in A followed by translation by $\varepsilon\left(c\left(y, y^{\prime}\right)\right)$. One then checks easily that B has the required universal property, the maps $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{Y}_{2} \rightarrow \mathrm{~B}(\mathrm{k})$ being defined as follows:
$A \rightarrow B$ is the natural map $A \rightarrow A_{o}$ followed by translation by $-\mathrm{c}(0,0)$,
$Y_{2} \rightarrow B(k)$ maps an element $\bar{y}+z, y \in Y_{3}, z \in Y_{1}$ onto the image of z in A_{y}.

Note that for any extension field k^{\prime} of k we have an exact sequence

$$
0 \rightarrow \mathrm{~A}\left(\mathrm{k}^{\prime}\right) \rightarrow \mathrm{B}\left(\mathrm{k}^{\prime}\right) \rightarrow \mathrm{Y}_{3} \rightarrow 0,
$$

The algebraic group B is thus an extension of the "constant" algebraic group Y_{3} by A.

Remarks

1) Let k^{\prime} be an extension of k and $A^{\prime}=A X_{k} k^{\prime}$. We may apply the above construction to the k^{\prime}-algebraic group A^{\prime}, with respect to the exact sequence $(*)$ and to the map $Y_{1} \rightarrow A(k) \rightarrow A^{\prime}\left(k^{\prime}\right)$. The group B^{\prime} thus obtained is canonically isomorphic to $B X_{k} \mathbf{k}^{\prime}$; this follows, for instance, from the explicit construction of B and B^{\prime}.
2) We will only use the above construction when char $(\mathbf{k})=0$ and A is a torus. The enlarged group B is then a "group of multiplicative type" ; this means that, after a suitable finite extension of the ground field, B becomes isomorphic to the product of a torus and a finite abelian group. Such a group is uniquely determined by its character group $X(B)=\operatorname{Hom}_{\mathrm{k}}\left(\mathrm{B} / \overline{\mathrm{k}}, \mathrm{G}_{\mathrm{m} / \overline{\mathrm{k}}}\right)$, which is a Galois module of finite type over Z. Here $X(B) \quad c$ an be described as the set of pairs (ϕ, X), where $\phi: Y_{2} \rightarrow \bar{k}^{*}$ is a homomorphism and $X \in X(A)$ is such that $\phi\left(y_{1}\right)=X\left(y_{1}\right)$ for all $y_{1} \in Y_{1}$. Note that this gives an alternate definition of B.

Exercise
a) Let k^{\prime} be a commutative k-algebra, with $k^{\prime} \neq 0$, and Spec (k^{\prime}) connected (i.e. k^{\prime} contains exactly two idempotents: 0 and 1). Show the existence of an exact sequence:

$$
0 \rightarrow \mathrm{~A}\left(\mathrm{k}^{\prime}\right) \rightarrow \mathrm{B}\left(\mathrm{k}^{\prime}\right) \rightarrow \mathrm{Y}_{3} \rightarrow 0
$$

b) What happens when $\operatorname{Spec}\left(\mathrm{k}^{\prime}\right)$ is not connected?

§2. CONSTRUCTION OF $\quad T_{m}$ AND S_{m}

2.1. Idèles and idèles-classes

We defined in Chapter I, 2.1 the set Σ_{K} of finite places of the number field K. Let now Σ_{K}^{∞} be the set of equivalence classes of archimedean absolute values of K, and let $\bar{\Sigma}_{K}$ be the union of Σ_{K} and Σ_{K}^{∞}. If $v \in \bar{\Sigma}_{K}$ then K_{v} denotes the completion of K with respect to v. For $v \in \Sigma_{K}^{\infty}$ we have $K_{v}=R$ or $K_{v}=C$, and K_{v} is ultrametric if $v \in \Sigma_{K}$. For $v \in \Sigma_{K}$, the group of units of K_{v} is denoted by U_{V}. The idele group I of K is the subgroup of $\prod K_{v}^{*}$ consisting of the families $\left(a_{v}\right)$ with $a_{v} \in U_{v}$, for almost $v \in \bar{\Sigma}_{K}$
all v ; it is given a topology by decreeing that the subgroup (with the product topology)

$$
\prod_{v \in \Sigma_{K}^{\infty}} K_{v}^{*} \times \prod_{v \in \Sigma_{K}} U_{v}
$$

be open. We embed K^{*} into I by sending $a \in K^{*}$ onto the idele $\left(a_{v}\right)$, where $a_{v}=a$ for all v. The topology induced on K^{*} is the discrete topology. The quotient group $C=I / K^{*}$ is called the deleclass group of K. (For all this, see Cassels-Frohlich [6], Lang [13], or Weir [44].)

Let S be a finite subset of Σ_{K}. Then by a modulus of support S we mean a family $m=\left(m_{v}\right)$ where the m_{v} are integers ≥ 1. If $v \in \bar{\Sigma}_{K}$ and m is a modulus of support S, we let $U_{V, m}$ denote the connected component of K_{V}^{*} if $v \in \Sigma_{K}^{\infty}$, the subgroup of U_{V} consisting of those $u \in U_{v}$ for which $v(l-u) \geq m_{v}$ if $v \in S$, and U_{v} if $v \in \Sigma_{K}-S$. The group $U_{m}=\prod_{V} U_{V, m}$ is an open subgroup of I. If E is the group of units of K, let $E_{m}=E \cap U_{m}$. The subgroup E_{m} is of finite index in E. (Conversely, by a theorem of Chevalley ([8], see also [24], $n^{\circ} 3.5$) every subgroup of finite index in E containe an E_{m} for a suitable modulus m.)

Let I_{m} be the quotient I / U_{m} and C_{m} the quotient $I / K^{*} U_{m}=C /$ (Image of U_{m} in C). One then has the exact sequence

$$
1 \rightarrow \mathrm{~K}^{*} / \mathrm{E}_{\mathrm{m}} \rightarrow \mathrm{I}_{\mathrm{m}} \rightarrow \mathrm{C}_{\mathrm{m}} \rightarrow 1
$$

The group C_{m} is finite; in fact, the image of U_{m} in C is open, hence contains the connected component D of C, and the group C / D is known to be compact (see [13], [44]). Moreover, any open subgroup of I contains one of the $U_{m} ' s$, hence C / D is the projective limit of the C_{m} 's. Class field theory (cf. for instance Cassel - Frohlich [6]), gives an isomorphism of $C / D=1 i m C_{m}$ onto the Galois group $G^{a b}$ of the maximal abelian extension of K.

Remark

A more classical definition of C_{m} is as follows. Let Id_{S} be the group of fractional ideals of K prime to S, and $P_{S, m}$ the subgroup of principal ideals (γ), where γ is totally positive and
$Y \equiv 1$ mod.m (i.e. $\quad Y$ belongs to $U_{V, m}$ for all $v \in S$ and $v \in \Sigma_{K}^{\infty}$). Let $C l_{m}=I d_{S} / P_{S, m}$. We have the exact sequence:

$$
1 \rightarrow \mathrm{P}_{\mathrm{S}, \pi} \rightarrow \mathrm{Id}_{\mathrm{S}} \rightarrow \mathrm{Cl}_{\mathrm{m}} \rightarrow 1
$$

For each $\underline{a}=\prod_{v \notin S} v^{a} v \in I d_{S}$, choose an idele $\alpha=\left(\alpha_{v}\right)$, with
$\alpha_{v} \in U_{v, m}$ if $v \in S$ or $v \in \Sigma_{K}^{\infty}$, and $v\left(\alpha_{v}\right)=a_{v}$ if $v \in \Sigma_{K}-S$.
The image of α in $I_{m}=I / U_{m}$ depends only on \underline{a}. We then get a homomorphism $g: I_{S} \rightarrow I_{m}$. One checks readily that g extends to a commutative diagram
and that $f: C l_{m} \rightarrow C_{m}$ is an isomorphism; hence C_{m} can be adentiffed with the ideal class group mod m (and this shows again that it is finite).
2.2. The groups T_{m} and S_{m}

We are now in a position to apply the group construction of 1.3 . We take for exact sequence (*) the sequence

$$
1 \rightarrow K^{*} / E_{m} \rightarrow I_{m} \rightarrow C_{m} \rightarrow 1
$$

and for A the algebraic group $T_{m}=T / \bar{E}_{m}$, where E_{m} is as before, T is the torus $R_{K / Q}\left(G_{m / K}\right)$ defined in 1.1 , and \bar{E}_{m} is the

Zariski closure of E_{m} in T, cf. 1.2.
The construction of 1.3 now yields a Q-algebraic group S_{m} with an algebraic morphism $T_{m} \rightarrow S_{m}$ and a group homomorphism $\varepsilon: I_{m} \rightarrow S_{m}(Q)$. The sequence

$$
1 \rightarrow \mathrm{~T}_{\mathrm{m}} \rightarrow \mathrm{~S}_{\mathrm{m}} \rightarrow \mathrm{C}_{\mathrm{m}} \rightarrow 1
$$

is exact $\left(C_{m}\right.$ being identified with the corresponding constant algerbraic group) and the diagram
(**)

$$
\begin{aligned}
& 1 \rightarrow \mathrm{~K}^{*} / \mathrm{E}_{\mathrm{m}} \longrightarrow \mathrm{I}_{\mathrm{m}} \longrightarrow \mathrm{C}_{\mathrm{m}} \rightarrow 1 \\
& \downarrow \quad \downarrow \varepsilon \quad \downarrow i d . \\
& 1 \rightarrow \mathrm{~T}_{\mathrm{m}}(\mathrm{Q}) \longrightarrow \mathrm{S}_{\mathrm{m}}(\mathrm{Q}) \rightarrow \mathrm{C}_{\mathrm{m}} \rightarrow 1
\end{aligned}
$$

is commutative.

Remark
Let m^{\prime} be another modulus; assume $m^{\prime} \geq m$, ie. $\operatorname{Supp}\left(m^{\prime}\right) \supset \operatorname{Supp}(m)$ and $m_{v}^{\prime} \geq m_{v}$ if $v \in \operatorname{Supp}(m)$. From the inelusion $U_{m^{\prime}} \subset U_{m}$ one deduces maps $T_{m}, \rightarrow T_{m}$ and $I_{m}{ }^{\prime} \rightarrow I_{m}$, whence a morphism $S_{m}, \rightarrow S_{m}$. Hence the $S_{m}{ }^{\prime} s$ form a projective system; their limit is a proalgebraic group over Q, extension of the profinite group $C / D=\underset{\rightleftarrows}{\lim } C_{m} \quad$ by a torus.

Exercises

1) Let $\bar{E}_{m}(Q)$ be the Zariski-closure of $E_{m} \quad$ in $K^{*}=T(Q)$. Show that the kernel of $\varepsilon_{m}: I / U_{m} \rightarrow S_{m}(Q)$ is the image of $\overline{E_{m}}(Q) \rightarrow I / U_{m}$.
2) Let $H_{m^{\prime} / m}$ be the kernel of $S_{m^{\prime}} \rightarrow S_{m}$, where $m^{\prime} \geq m$.
a) Show that $H_{m^{\prime} / m}$ is a finite subgroup of $\left(S_{m^{\prime}}(Q)\right)$ and that it is contained in the image of ε_{m}, .
b) Construct an exact sequence (cf. Exer. 1)

$$
1 \rightarrow\left(E_{m} \cap \bar{E}_{m},(Q)\right) / E_{m}, \rightarrow U_{m} / U_{m}, \rightarrow H_{m, / m} \rightarrow 1
$$

2.3. The canonical ℓ-adic representation with values in S_{m} Let m be a modulus, and let l be a prime number. Let $\varepsilon: I \rightarrow I_{m} \rightarrow S_{m}(Q)$ be the homomorphism defined in 2.2. Let $\pi: \mathrm{T} \rightarrow \mathrm{S}_{\mathrm{m}}$ be the algebraic morphism $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{m}} \rightarrow \mathrm{S}_{\mathrm{m}}$; by taking points with values in Q_{ℓ}, π defines a homomorphism

$$
\pi_{\ell}: T\left(Q_{\ell}\right) \rightarrow S_{m}\left(Q_{\ell}\right)
$$

Since $K \otimes Q_{\ell}=\prod_{v \mid \ell} K_{v}$, the group $T\left(Q_{\ell}\right)$ can be identified with $\mathrm{K}_{\ell}^{*}=\prod_{\mathrm{V} \mid \ell} \mathrm{K}_{\mathrm{v}}^{*}$, and is therefore a direct factor of the idele group I .
Let pr_{ℓ} denote the projection of I onto this factor. The map

$$
\alpha_{\ell}=\pi_{\ell} \circ \mathrm{pr}_{\ell}: \mathrm{I} \rightarrow \mathrm{~T}\left(\mathrm{Q}_{\ell}\right) \rightarrow \mathrm{S}_{\mathrm{m}}\left(\mathrm{Q}_{\ell}\right)
$$

is a continuous homomorphism.

LEMMA $-\alpha_{\ell}$ and ε coincide on K^{*}.
This is trivial from the commutativity of the diagram ($* *$) of 2.2 .

Now，let $\varepsilon_{\ell}: I \rightarrow S_{m}\left(Q_{\ell}\right)$ be defined by
（本雨类）

$$
\begin{aligned}
\varepsilon_{\ell}(\mathrm{a}) & =\varepsilon(\mathrm{a}) \alpha_{\ell}\left(\mathrm{a}^{-1}\right) \\
\text { i. e. } \quad \varepsilon_{\ell} & =\varepsilon \cdot \alpha_{\ell}^{-1}
\end{aligned}
$$

（If $a \in I$ ，write a_{ℓ} the ℓ－component of a ．Then

$$
\left.\varepsilon_{l}(\mathrm{a})=\varepsilon(\mathrm{a}) \pi_{\ell}\left(\mathrm{a}_{\ell}^{-1}\right) .\right)
$$

By the lemma，ε_{ℓ} is trivial on K^{*} and，hence，defines a map $C \rightarrow S_{m}\left(Q_{\ell}\right) ;$ since $S_{m}\left(Q_{\ell}\right)$ is totally disconnected（it is an $\boldsymbol{\ell}$－adic Lie group），the latter homomorphism is trivial on the con－ netted component D of C ．We have already recalled that C / D may be identified with the Galois group $G^{a b}$ of the maximal abelian extension of K ．So we end up with a homomorphism
$\varepsilon_{\ell}: G^{\text {ab }} \rightarrow S_{m}\left(Q_{\ell}\right)$ ，i．e．with an ℓ－adic representation of K with values in $S_{m} \quad$（cf．Chap．I，2．3）．

This representation is rational in the sense of Chapter I，2．3． More precisely，let $v \oint \operatorname{Supp}(m)$ ，and let $f_{v} \in I$ be an dele which is a uniformizing parameter at v ，and which is equal to l everywhere else；let $F_{v}=\varepsilon\left(f_{v}\right)$ be the image of f_{v} in $S_{m}(Q)$ ．With these iota－ tons we have：

PROPOSITION

a）The representation $\varepsilon_{\ell}: G^{a b} \rightarrow S_{m}\left(Q_{l}\right)$ is a rational repre－ mentation with values in S_{m}
b）ε_{ℓ} is unramified outside $\operatorname{Supp}(m) \cup S_{\ell}$ ，where $S_{\ell}=\left\{v \mid p_{v}=\ell\right\}$ ．
c) If $v \oint \operatorname{Supp}(m) \cup S_{\ell}$, then the Frobenius element $F_{v, \varepsilon_{\ell}}$ (cf. Chap. I, 2.3) is equal to $F_{v} \in S_{m}$ (Q).

Proof. It is known that the class field isomorphism $C / D \xrightarrow{\sim} G^{a b}$ maps K_{V}^{*} (resp. U_{V}) onto a dense subgroup of the decomposition group of v in $G^{a b}$ (resp. onto the inertia group of v in $G^{a b}$), and that a uniformizing element f_{v} of K_{v}^{*} is mapped onto the Frobenius class of v.

If $v\left\{\operatorname{Supp}(m)\right.$ and $a \in U_{V}$, then $\varepsilon(a)=1$; if moreover $\mathrm{p}_{\mathrm{v}} \neq \ell, \alpha_{\ell}(\mathrm{a})=1$, hence $\varepsilon_{\ell}(\mathrm{a})=1$ and ε_{ℓ} is unramified at v ; this proves b). For such a v, we have $\varepsilon_{\ell}\left(f_{v}\right)=\varepsilon\left(f_{v}\right)=F_{v}$; hence c), and a) follows from c).

COROLLARY - The representations ε_{ℓ} form a system of strictly compatible ℓ-adic representations with values in S_{m}

We also see that the exceptional set of this system is contained in Supp (m); for an example where it is different from Supp (m), see Exercise 2.

Remark

By construction, $\varepsilon_{\ell}: I \rightarrow S_{m}\left(Q_{\ell}\right)$ is given by
$x \rightarrow \pi_{\ell}\left(x^{-1}\right)$ on the open subgroup $U_{\ell, m}=\prod_{\mathrm{v} \mid \ell} \mathrm{U}_{\mathrm{V}, \mathrm{m}} \quad$ of K_{ℓ}^{*}.
Hence, $\operatorname{Im}\left(\varepsilon_{\ell}\right)$ contains $\pi_{\ell}\left(U_{\ell, m}\right) \subset T_{m}\left(Q_{\ell}\right) \subset S_{m}\left(Q_{\ell}\right)$, and is an open subgroup of $S_{m}\left(Q_{\ell}\right)$. This open subgroup maps onto C_{m}, as remarked above. These properties imply, in particular, that $\operatorname{Im}\left(\varepsilon_{\ell}\right)$ is Zariski-dense in S_{m}

Exercises

$$
\begin{aligned}
\text { (l) Let } K=Q, \operatorname{Supp}(m) & =\emptyset . \\
\text { a) Show that } E_{m} & =\{1\}, C_{m}=\{1\}, \text { hence } \\
T_{m}=S_{m}=G_{m} \text { and } S_{m}(Q) & =Q^{*}, S_{m}\left(Q_{\ell}\right)=Q_{\ell}^{*} .
\end{aligned}
$$

b) Show that I is the direct product of its subgroups I_{m} and Q^{*}; hence any $a \in I$ may be written as

$$
a=u . \gamma \quad u \in U_{m}, \gamma \in Q^{*} .
$$

Show that, if $a=\left(a_{p}\right)$, one has

$$
\varepsilon(a)=\gamma=\operatorname{sgn}\left(a_{\infty}\right) \prod_{p} p^{v_{p}\left(a_{p}\right)}
$$

c) Show that

$$
\rho_{\ell}(a)=\gamma \cdot a_{\ell}^{-1},
$$

and

$$
F_{p}=p
$$

d) Show that ρ_{ℓ} coincides with the character X_{ℓ} of

Chap. I, 1. 2.
(2) Let $K=Q, \operatorname{Supp}(m)=\{2\}$ and $m_{2}=1$. Show that the groups $E_{m}, C_{m}, T_{m}, S_{m}$ coincide with those of Exercise 1, hence that the exceptional set of the corresponding system is empty.
2.4. Linear representations of S_{m}

We recall first some well known facts on representations.
a) Let k be a field of characteristic 0 ; let H be an affine
commutative algebraic group over k. Let $X(H)=\operatorname{Hom}_{\mathrm{k}}\left(\mathrm{H} / \overline{\mathrm{k}}, \mathrm{G}_{\mathrm{m}} / \overline{\mathrm{k}}\right)$ be the group of characters of H (of degree 1). Here we write the characters of $X(H)$ multiplicatively. The group $G=G a l(\overline{\mathrm{k}} / \mathrm{k})$ acts on $\mathrm{X}(\mathrm{H})$.

Let Λ be the affine algebra of H, and let $\bar{\Lambda}=\Lambda \otimes_{k} \bar{k}$ be the one of H / \bar{k}. Every element $\chi \in X(H)$ can be identified with an invertible element of $\bar{\Lambda}$. Hence, by linearity, a homomorphism

$$
\alpha: \overline{\mathrm{k}}[\mathrm{X}(\mathrm{H})] \rightarrow \bar{\Lambda}
$$

where $\overline{\mathrm{k}}[\mathrm{X}(\mathrm{H})]$ is the group algebra of $\mathrm{X}(\mathrm{H})$ over $\overline{\mathrm{k}}$. This is a G-homomorphism if the action of G is defined by $s\left(\Sigma a_{X} x\right)=\Sigma s\left(a_{X}\right) s(x)$ for $a_{X} \in \bar{k}$ and $X \in X(H)$. It is well-known (linear independence of characters) that α is injective. It is bijecfive if and only if H is a group of multiplicative type (cf. l. 3, remark 2). Hence we may identify $\overline{\mathrm{k}}[\mathrm{X}(\mathrm{H})]$ with a subalgebra of $\bar{\Lambda}$.
b) Let V be a finite-dimensional k-vector space and let

$$
\phi: \mathrm{H} \rightarrow \mathrm{GL}_{\mathrm{V}}
$$

be a linear representation of H into V. Assume ϕ is semi-simple (this is always the case if H is of multiplicative type). We associate to ϕ its trace

$$
\theta_{\phi}=\Sigma_{X} n_{X}(\phi)_{X}
$$

in $Z[X(H)]$, where ${ }_{-}^{n}(\phi)$ is the multiplicity of X in the denomposition of X over \bar{k}^{X}.

We have $\theta_{\phi}(\mathrm{h})=\operatorname{Tr}(\phi(\mathrm{h}))$ for any point h of H (with value in any commutative k-algebra). Let $\operatorname{Rep}_{k}(H)$ be the set of isomorphism classes of linear semi-simple representations of H. If k_{1} is an extension of k, then scalar extension from k to k_{1} defines a map $\operatorname{Rep}_{k}(H) \rightarrow \operatorname{Rep}_{k_{1}}\left(H / k_{l}\right)$ which is easily seen to be infective. We say that an element of $\operatorname{Rep}_{\mathrm{k}_{1}}\left(\mathrm{H} / \mathrm{k}_{1}\right)$ can be defined over k , if it is in the image of this map.

PROPOSITION l - The map $\phi \mapsto \theta_{\phi}$ defines a bijection between $\operatorname{Rep}_{k}(H)$ and the set of elements $\theta=\Sigma n_{x} X$ of $Z[X(H)]$ which satisfy:
(a) θ is invariant by G (i.e. $n_{x}=n_{s(x)}$ for all $s \in G, X \in X(H))$.
(b) $n_{x} \geq 0$ for every $x \in X(H)$.

Proof. The injectivity of the map $\phi \mapsto \theta_{\phi}$ is well-known (and does not depend on the commutativity of H). To prove surjectivity, consider first the case where θ has the form $\theta=\Sigma \chi^{(i)}$ where $\chi^{(i)}$ is a full set of different conjugates of a character $X \in X(H)$. If $G(X)$ is the subgroup of G fixing X, then
(汶)

$$
\theta=\sum_{s \in G / G(x)} s(x) .
$$

The fixed field k_{X} of $G(X)$ in \bar{k} is the smallest subfield of \bar{k} such that $\chi \in \Lambda \otimes k_{\chi}$. Consider χ as a representation of degree 1 of H / k. One gets, by restriction of scalars to k, a representation
ϕ of H of degree $\left[k_{\chi}: k\right]$. One sees easily that the trace θ_{ϕ} of ϕ is equal to θ. The surjectivity of $\phi \mapsto \theta_{\phi}$ now follows from the fact that any θ satisfying (a) and (b) is a sum of elements of the form (*) above.

COROLLARY - In order that $\phi_{1} \in \operatorname{Rep}_{k_{1}}\left(\mathrm{H} / \mathrm{k}_{\mathrm{l}}\right)$ can be defined over k , it is necessary and sufficient that $\theta_{\phi_{1}} \in \Lambda \otimes_{k} k_{1} \xrightarrow{\text { belongs to }} \Lambda$.
(c) We return now to the groups S_{m} :

PROPOSITION 2 - Let k_{1} be an extension of k and let $\phi \in \operatorname{Rep}_{k_{1}}\left(S_{m / k_{l}}\right) . \quad$ The following properties are equivalent:
(i) ϕ can be defined over k ,
(ii) For every v Supp (m), the coefficients of the characteristic polynomial $\phi\left(F_{v}\right)$ belong to k,
(iii) There exists a set Σ of places of k of density l (cf. Chapter I, 2.2) such that $\operatorname{Tr}\left(\phi\left(F_{\mathrm{v}}\right)\right) \in \mathrm{k}$ for all $\mathrm{v} \in \Sigma$.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) are trivial. To prove (iii) \Rightarrow (i) we need the following lemma.

LEMMA - The set of Frobeniuses $F_{v}, v \in \Sigma$, is dense in S_{m} for the Zariski topology.

Proof. Let X be the set of all $F_{v}^{\prime} s, v \in \Sigma$, and let ℓ be a prime number. Let $\bar{X} C_{m}$ (resp. $\left.\bar{X}_{\ell} \subset S_{m}\left(Q_{\ell}\right)\right)$ the closure of X in the Zariski topology (resp. ℓ-adic topology). It is clear that
$\overline{\mathrm{X}}_{\ell} \subset \overline{\mathrm{X}}\left(\mathrm{Q}_{\ell}\right)$. On the other hand, $\mathrm{V}_{\boldsymbol{C}} \mathrm{Cbotarev}^{\prime} \mathrm{s}$ theorem (cf. Chapter I, 2.2) implies that $\bar{X}_{\ell}=\operatorname{Im}_{\ell} \varepsilon_{\ell}$) (cf. 2.3). The set $\operatorname{Im}\left(\varepsilon_{\ell}\right)$, however, is Zariski dense in S_{m} (cf. Remark in 2.3). Hence $\bar{X}=S_{m}$, which proves the lemma.

Let us now prove that (iii) \Rightarrow (i). Let θ_{ϕ} be the trace of ϕ in $\Lambda \otimes_{k} k_{l}$, where Λ is the affine algebra of $H=S_{m / k}$. Let $\left\{\ell_{\alpha}\right\}$ be a basis of the k-vector space k_{1}, with $\ell_{\alpha_{0}}=1$ for some index α_{0}. We have $\theta_{\phi}=\Sigma \lambda_{\alpha} \otimes \ell_{\alpha}\left(\lambda_{\alpha} \in \Lambda\right)$; hence $\operatorname{Tr}(\phi(\mathrm{h}))=\theta_{\phi}(\mathrm{h})=\Sigma \lambda_{\alpha}(\mathrm{h}) \ell_{\alpha}$ for all $\mathrm{h} \in \mathrm{H}\left(\mathrm{k}_{\mathrm{l}}\right)$. Take $\mathrm{h}=\mathrm{F}_{\mathrm{v}}$, with $\mathrm{v} \in \Sigma$. Since F_{v} belongs to $\mathrm{H}(\mathrm{k})$ we have $\lambda_{\alpha}\left(\mathrm{F}_{\mathrm{v}}\right) \in \mathrm{k}$ for all α; since $\operatorname{Tr}\left(\phi\left(F_{v}\right)\right) \in k$, we get $\lambda_{\alpha}\left(F_{v}\right)=0$ for all $\alpha \neq \alpha_{0}$. By the lemma, the $F_{v}^{\prime \prime s,} v \in \Sigma$, are Zariski-dense in H; hence $\lambda_{\alpha}=0$ for $\alpha \neq \alpha_{0}$ and $\theta_{\phi}=\lambda_{\alpha_{0}}$ belongs to Λ and (i) follows from the corollary to Proposition ${ }^{\circ} 1$.

Exercise

Show that the characters of S_{m} correspond in a one-one way to the homomorphisms $X: I \rightarrow \bar{Q}^{*}$ having the following two properties:
(a) $x(x)=1$ if $x \in U_{m}$
(b) For each embedding σ of K into \bar{Q}, there exists an integral number $n(\sigma)$ such that

$$
\chi(x)=\prod_{\sigma \in \Gamma} \sigma(x)^{\mathrm{n}(\sigma)}
$$

for all $x \in K^{*}$.
2.5. $\quad \ell$-adic representations associated to a linear representation of S_{m}

1) The ℓ-adic case

Let V_{ℓ} be a finite-dimensional Q_{ℓ}-vector space and

$$
\phi: S_{\mathrm{m} / Q_{\ell}} \rightarrow \mathrm{GL}_{\ell}
$$

a linear representation of $\mathrm{S}_{\mathrm{m} / \mathrm{Q}_{\ell}}$ in V_{ℓ}. This defines a
homomorphism

$$
\left.\phi: S_{m}\left(Q_{\ell}\right) \rightarrow G L_{\ell}\left(Q_{\ell}\right)=\operatorname{Aut}_{\left(V_{\ell}\right)}\right)
$$

which is continuous for the ℓ-adic topologies of those groups. By composition with the map $\varepsilon_{\ell}: G^{a b} \rightarrow S_{m}\left(Q_{\ell}\right)$ defined in 2.3, we get a map

$$
\phi_{\ell}=\phi \circ \varepsilon_{\ell}: G^{a b} \rightarrow \operatorname{Aut}\left(V_{\ell}\right)
$$

i. e. an abelian ℓ-adic representation of K in V_{ℓ}.

PROPOSITION - a) The representation ϕ_{ℓ} is semi-simple.
b) Let $v \in \Sigma_{k}$, with $v \oint \operatorname{Supp}(m)$ and $p_{v} \neq \ell$.

Then ϕ_{l} is unramified at v; the corresponding Frobenius element $F_{v, \phi_{\ell}} \in \operatorname{Aut}\left(\mathbb{V}_{\boldsymbol{\ell}}\right)$ is equal to $\phi\left(F_{\mathrm{v}}\right)$, where F_{v} denotes the element of $S_{m}(Q)$ defined in 2.3.
c) The representation ϕ_{ℓ} is rational (Chap. I, 2.3) if and only if ϕ can be defined over Q (cf. 2.4).

Since $\quad S_{m}$ is a group of multiplicative type, all its representtations can be brought to diagonal form on a suitable extension of the ground field; hence a). Assertion b) follows from 2.3, and assertion c) follows from Proposition 2 of 2. 4.

Remark

Let us identify $\phi_{\boldsymbol{l}}$ with the corresponding homomorphism of the idèle group I into fut $\left(V_{\ell}\right)$. Then
d) $\operatorname{Ker}\left(\phi_{\ell}\right)$ contains $U_{v, m}$ if $v \neq \operatorname{Supp}(m), p_{v} \neq \ell$.
e) Let $\phi_{\mathrm{T}}: \mathrm{T}_{/ \mathrm{Q}_{\ell}} \rightarrow \mathrm{GL}_{\mathrm{V}_{\ell}}$ be defined by composing
$\mathrm{T}_{/ \mathbb{Q}_{\boldsymbol{\ell}}} \rightarrow \mathrm{S}_{\mathfrak{m} / Q_{\boldsymbol{\ell}}}$ with ϕ. If x belongs to the open subgroup
$U_{\ell, m}=\prod_{v \mid \ell} U_{v, m}$ of $T\left(Q_{\ell}\right)$, one has

$$
\phi_{\ell}(x)=\phi_{T}\left(x^{-1}\right)
$$

These properties follow readily from those of ε_{ℓ}.
2) The rational case

Let now V_{o} be a finite dimensional vector space over Q and $\phi_{0}: S_{m} \rightarrow G L_{V_{0}}$ a linear representation of S_{m}. For each prime number ℓ we may apply the preceding construction to the representation $\phi_{o / \ell}: S_{m / Q_{\ell}} \rightarrow \mathrm{GL}_{\mathrm{V}_{\ell}}$, where $\mathrm{V}_{\ell}=\mathrm{V}_{\mathrm{o}} \otimes Q_{\ell}$;
we then get an ℓ-adic representation $\phi_{\ell}: G^{a b} \rightarrow A u t\left(V_{\ell}\right)$.

THEOREM - 1) The ϕ_{ℓ} form a strictly compatible system of rational abelian semi-simple representations. Its exceptional set is contained in $\operatorname{Supp}(\mathrm{m})$.
2) For each $v d \operatorname{Supp}(m)$ the Frobenius element of v with respect to the system $\left(\phi_{\ell}\right)$ is the element $\phi_{0}\left(F_{v}\right)$ of $\operatorname{Aut}\left(V_{0}\right)$.
3) There exist infinitely many primes ℓ such that ϕ_{ℓ} is diagonalizable over Q_{ℓ}.

The first two assertions follow directly from the proposition above. To prove the third one, note first that there exists a finite extension E of Q over which ϕ_{O} becomes diagonalizable. If ℓ is a prime number which splits completely in E, one can embed E into Q_{ℓ} and this shows that ϕ_{ℓ} is diagonalizable. Assertion 3) now follows from the well-known fact that there exist infinitely many such $\boldsymbol{\ell}$ (this is, for instance, a consequence of Čebotarev's theorem, cf. Chap. I, 2.2).

Remark

The Frobenius elements $\phi_{0}\left(F_{v}\right) \in \operatorname{Aut}\left(V_{0}\right)$ can also be defined using the homomorphism

$$
\phi_{o} \circ \varepsilon: I \rightarrow S_{m}(Q) \rightarrow \operatorname{Aut}\left(V_{o}\right)
$$

Note that their eigenvalues generate a finite extension of Q; indeed they are contained in any field over which ϕ_{o} can be brought in diagonal form.

Exercises

1) Let $\phi_{0}: S_{m} \rightarrow G L_{V_{0}}$ be a linear representation of S_{m}, and let ℓ be a prime number.
a) Show that the Zariski closure of $\operatorname{Im}\left(\phi_{\ell}\right)$ is the agebraid group $\phi_{0}\left(S_{m}\right)$. (Use the fact that $\operatorname{Im}\left(\varepsilon_{\ell}\right)$ is Zariski dense in S_{m}, cf. 2.3.)
b) Let \underline{s}_{m} be the Lie algebra of S_{m} and $\left.\phi_{0} \underline{\mathbf{s}}_{m}\right)$ be its image by ϕ_{0}, i. e. the Lie algebra of $\phi_{0}\left(S_{m}\right)$. Show that the Lie algebra of the l-adic Lie group $\operatorname{Im}\left(\phi_{l}\right)$ is $\phi_{o}\left(\underline{s}_{m}\right) \otimes Q_{l}$. (Use the fact that $\operatorname{Im}\left(\varepsilon_{\ell}\right)$ is open in $S_{m}\left(Q_{\ell}\right)$, cf. 2.3.)
2) a) Show that there exists a unique one-dimensional reppresentation

$$
\mathrm{N}: \mathrm{S}_{\mathrm{m}} \rightarrow \mathrm{G}_{\mathrm{m}}
$$

such that $N\left(F_{v}\right)=N v \in Q^{*}$ for all $v \oint \operatorname{Supp}(m)$.
b) Show that the orphism $T \rightarrow S_{m} \xrightarrow{N} G_{m}$ is the one induced by the norm map from K to Q.
c) Show that the ℓ-adic representation defined by N is isomorphic to the representation $V_{\ell}(\mu)$ defined in Chap. I, 1. 2.
2.6. Alternative construction

Let $\phi_{0}: S_{m} \rightarrow G L_{V_{0}}$ be as in 2.5. If we compose ϕ_{0} with the map $\varepsilon: I \rightarrow S_{m}(Q)$ defined in 2.2, we obtain a homomorphism

$$
\phi_{\mathrm{o}} \circ \varepsilon: \mathrm{I} \rightarrow \mathrm{GL}_{\mathrm{V}_{\mathrm{o}}}(\mathrm{Q})=\operatorname{Aut}\left(\mathrm{V}_{\mathrm{o}}\right)
$$

Conversely:

PROPOSITION - Let $\mathrm{f}: \mathrm{I} \rightarrow$ Aut $\left(\mathrm{V}_{\mathrm{o}}\right)$ be a homomorphism. There exists a $\phi_{0}: S_{m} \rightarrow \mathrm{GL}_{V_{0}}$ such that $\phi_{0} 0 \varepsilon=\mathrm{f}$ if and only if the following conditions are satisfied:
(a) The kernel of f contains U_{m}
(b) There exists an algebraic homomorphism $\quad \psi: \mathrm{T} \rightarrow \mathrm{GL}_{\mathrm{V}_{\mathrm{o}}}$ such that $\psi(x)=f(x)$ for every $x \in K^{*}=T(Q)$.

Moreover, such a ϕ_{0} is unique.

Proof. The necessity of the conditions (a) and (b) is trivial. Conversely, if f has properties (a), (b), it defines a homomorphism $I / U_{m} \rightarrow$ Aut $\left(V_{o}\right)$. On the other hand, since f and ψ agree on K^{*}, the orphism ψ is equal to l on $E_{m}=K^{*} \cap U_{m}$, hence on its Zariski-closure $\overline{E_{m}}$. This means that ψ factors through

$$
\mathrm{T} \rightarrow \mathrm{~T}_{\mathrm{m}} \rightarrow \mathrm{GL}_{\mathrm{V}}
$$

By the universal property of S_{m}.. (cf. 1.3 and 2.2), the maps $I / U_{m} \rightarrow G L_{V_{o}}(Q)$ and $T_{m} \rightarrow G L_{V_{0}}$ define an algebraic morphism $\phi_{\mathrm{o}}: \mathrm{S}_{\mathrm{m}} \rightarrow \mathrm{GL}_{\mathrm{V}_{\mathrm{o}}}$, and one checks easily that ϕ_{o} has the required properties, and is unique.

Since U_{m} is open, property (a) implies that f is continuous
with respect to the discrete topology of $\operatorname{Aut}\left(V_{0}\right)$. Conversely, any continuous homomorphism $f: I \rightarrow$ fut $\left(V_{0}\right)$ is trivial on some U_{m}; moreover, there is a smallest such m; it is called the conductor of f .

Exercise

Let m be a modulus and let V_{0} be a finite dimensional Q-vector space. For each $v \$ \operatorname{Supp}(m)$ let F_{v} be an element of Alt (V_{0}). Assume
(a) The F_{v} 's commute pairwise.
(b) There exists an algebraic orphism $\psi: T \rightarrow \mathrm{GL}_{\mathrm{V}}$ such that $\psi(\alpha)=\prod_{V} \mathrm{~V}^{\mathrm{V}(\alpha)}$ for $\alpha \in \mathrm{K}^{*}, \alpha \equiv 1(\bmod \mathrm{~m})$, and $\alpha>0$ at each real place.

Show that there exists an algebraic orphism $\phi_{0}: S_{m} \rightarrow G L_{V_{0}}$ for which the Frobenius elements are equal to the $F_{\mathbf{v}}$'s.

2.7. The real case

The preceding constructions are relative to a given prime number ℓ. However, they have an archimedean analogue, as follows:

Let $\pi: T \rightarrow S_{m}$ be the canonical map defined in 2.3 , and let

$$
\pi_{\infty}: T(R) \rightarrow S_{m}(R)
$$

be the corresponding homomorphism of real Lie groups. Since $T(R)=(K \otimes R)^{*}=\prod_{v \in \Sigma_{K}^{\infty}} K_{v}^{*}$, we can identify $T(R)$ with a direct
factor of the idele group I. Let pr_{∞} be the projection on this
factor; the map

$$
\begin{equation*}
\alpha_{\infty}=\pi_{\infty}{ }^{\circ} \mathrm{pr}{ }_{\infty}: \mathrm{I} \rightarrow \mathrm{~T}(\mathrm{R}) \rightarrow \mathrm{S}_{\mathrm{m}} \tag{R}
\end{equation*}
$$

is continuous, and one checks as in 2.3 that α_{∞} coincides with ε on K^{*}. One may then define a map

$$
\varepsilon_{\infty}: I \rightarrow S_{m}(R)
$$

by

$$
\varepsilon_{\infty}(\mathrm{a})=\varepsilon(\mathrm{a}) \alpha_{\infty}\left(\mathrm{a}^{-1}\right) .
$$

One has $\varepsilon_{\infty}(a)=1$ if $a \in K^{*}$, hence ε_{∞} may be viewed as a homomorphism of the iđele class group $C=I / K^{*}$ into the real Lie group S_{m} (R).

The main difference with the "finite" case is that ε_{∞} is not trivial on the connected component of C, hence has no Galois group interpretation.

When one composes $\varepsilon_{\infty}: C \rightarrow S_{m}(R)$ with a complex chiracter $S_{m / C} \rightarrow G_{m / C}$, one gets a homomorphism $C \rightarrow C^{*}$, i.e. a Grossencharakter of K, in the sense of Heck. It is easily seen that the characters obtained in this way coincide with the "Grossencharakter of type (A_{o})" of Weill (cf. [35], [41]), whose conductor divide m .

Exercise
Let

$$
\mathrm{e}: \mathrm{I} \rightarrow \mathrm{~S}_{\mathrm{m}}(\mathrm{R}) \times \prod_{\ell} \mathrm{S}_{\mathrm{m}}\left(\mathrm{Q}_{\ell}\right)
$$

be the map defined by ε_{∞} and the $\varepsilon_{\ell}{ }_{\ell}$ s.
a) Show that the image of e is contained in the subgroup $S_{m}(A)$ of $S_{m}(R) \times \prod_{\ell} S_{m}\left(Q_{\ell}\right)$, where A denotes the ring of adeles of Q, and that $e: I \rightarrow S_{m}(A)$ is continuous (for the natural topology of the adelized group $\left.S_{m}(A)\right)$.
b) Let $\pi_{A}: T(A) \rightarrow S_{m}$ (A) be the map defined by $\pi: T \rightarrow S_{m}$. Show that, if one identifies $T(A)$ with I in the obvious way, one has

$$
e(x)=\varepsilon(x) \pi_{A}\left(x^{-1}\right)
$$

where $\varepsilon: I \rightarrow S_{m}(Q) \subset S_{m}(A)$ is the map defined in 2.3. [Note that this gives an alternate definition of the $\left.\varepsilon_{\ell}^{\prime} s.\right]$
c) Show that e (I) is not open in S_{m} (A) if $C_{m} \neq\{1\}$.
2.8. An example: complex multiplication of abelian varieties
(We give here only a brief sketch of the theory, with a few indications on the proofs. For more details, see Shimura-Taniyama [34], Taniyama [35], Weil [41], [42] and Serre-Tate [32].)

Let A be an abelian variety of dimension d defined over K.
Let $E_{K d_{K}}(A)$ be its ring of endomorphisms and put
$\operatorname{End}_{K}(A)_{O}=\operatorname{End}_{K}(A) \otimes Q$.

Let E be a number field of degree $2 d$, and

$$
\mathrm{i}: \mathrm{E} \rightarrow \operatorname{End}_{K}(\mathrm{~A})_{o}
$$

be an injection of E into $E^{E n d}{ }_{K}(A)_{O}$. The variety A is then said to have "complex multiplication" by E; in the terminology of Shimura-Taniyama, it is a variety of "type (CM)".

Let ℓ be a prime integer and define $T_{\ell}(A)$ and $V_{\boldsymbol{\ell}}=T_{\ell}(A) \otimes Q_{\boldsymbol{\ell}}$ as in Chapter $I, 1.2$. These are free modules over Z_{ℓ} and Q_{ℓ}, of rank Ld. The Q-algebra $\operatorname{End}_{K}(A)_{O}$ acts on V_{ℓ}; hence the same is true for E, and, by linearity, for $E_{\ell}=E \otimes_{Q} Q_{\ell}$. One proves easily:

LEMMA - V_{ℓ} is a free E_{ℓ}-module of rank l.
Let $\rho_{\boldsymbol{\ell}}: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \rightarrow \operatorname{Aut}\left(\mathrm{V}_{\boldsymbol{\ell}}\right)$ be the $\boldsymbol{\ell}$-adic representation defined by A. If $s \in G a l(\bar{K} / K)$, it is clear that $\rho_{\ell}(s)$ commutes with E, hence with E_{ℓ}. But the lemma above implies that the commuting algebra of E_{ℓ} in End $\left(V_{\ell}\right)$ is E_{ℓ} itself. Hence, ρ_{ℓ} may be identified with a homomorphism

$$
\rho_{\ell}: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \rightarrow \mathrm{E}_{\ell}^{*} .
$$

Let now T_{E} be the 2d-dimensional torus attached to E (as T is attached to K), so that $T_{E}\left(Q_{\ell}\right)=E_{\ell}^{*}$, and ρ_{ℓ} takes values in $T_{E}\left(Q_{\ell}\right)$.

THEOREM 1-(a) The system $\left(\rho_{\ell}\right)$ is a strictly compatible system of rational ℓ-adic representations of K with values in T_{E} (in the
sense of Chap. I, 2.4).
(b) There is a modulus m and a morphism

$$
\phi: S_{\mathrm{m}} \rightarrow \mathrm{~T}_{\mathrm{E}}
$$

such that ρ_{ℓ} is the image by ϕ of the canonical system $\left(\varepsilon_{\ell}\right)$ attached to $S_{m}, c f .2 .3$.

Moreover, the restriction of ϕ to T_{m} can be given explicitly:

Let t be the tangent space at the origin of A. It is a K-vector space on which E acts, ice. an (E,K)-bimodule. If we view it as an E-vector space, the action of K is given by a homomorphism $j: K \rightarrow$ End $_{E}(t)$. In particular, if $x \in K^{*}, \operatorname{det}_{E} j(x)$ is an element of E^{*}; the map $\operatorname{det}_{E} j: K^{*} \rightarrow E^{*}$ is clearly the restriction of an algebraic morphism $\delta: \mathrm{T} \rightarrow \mathrm{T}_{\mathrm{E}}$.

THEOREM $2-\underset{\mathrm{The} \operatorname{map}}{ } \delta: \mathrm{T} \rightarrow \mathrm{T}_{\mathrm{E}} \xrightarrow{\text { coincides with the composition }}$
$\underline{\operatorname{map}} \mathrm{T} \rightarrow \mathrm{T}_{\mathrm{m}} \rightarrow \mathrm{S}_{\mathrm{m}} \xrightarrow{\phi} \mathrm{T}_{\mathrm{E}}$.

Example

If A is an elliptic curve, E is an imaginary quadratic field, and the action of E on the one-dimensional K-vector space t defines an embedding $E \rightarrow K$. The map $\operatorname{det}_{E} j: K^{*} \rightarrow E^{*}$ is just the norm relative to this embedding.

Indications on the proofs of Theorems 1 and 2
Part (a) of Theorem 1 is proved as follows: Let S denote the finite set of $v \in \Sigma_{K}$ where A has "bad reduction". If $v \| S$, and
$\ell \neq P_{v}$, one shows easily that ρ_{ℓ} is unramified at v (the converse is also true, see [32]); moreover the corresponding Frobenius element $\mathrm{F}_{{\mathrm{V}, \rho_{\ell}} \text { may be identified with the Frobenius endomorphism }}$ F_{V} of the reduced variety \widetilde{A}_{V}. But F_{V} commutes with E in End $\left(\widetilde{A}_{v}\right)_{0}$ and the commuting algebra of E in End $\left(\tilde{A}_{v_{0}}\right)_{0}$ is E itself (cf. [34], p. 39). Hence F_{v} belongs to $E^{*}=T_{E}(Q)$ and this implies (a).

Theorem 2 and part (b) of Theorem lare less easy; they are proved, in a somewhat different form in Shimura-Taniyama [34] (see also [32]). Note that one could express them (as in 2.6) by saying that there exists a homomorphism $f: I \rightarrow E^{*}$ (where I denotes, as usual, the group of ideles of K) having the following properties:
(a) f is trivial on U_{m}, for some modulus m with support
S.
(b) If $v \$ S$, the image by f of a uniformizing parameter at $\mathbf{v} \frac{\text { is the Frobenius element }}{*} F_{V} \in E^{*}$.
(c) If $x \in K^{*}$ is a principal idele, one has $f(x)=\operatorname{det}_{E} j(x)$.

This is essentially what is proved in [34], p. 148, formula (3), except that the result is expressed in terms of ideals instead of ideles, and $\operatorname{det}_{E} \mathbf{j}(x)$ is written in a different form, namely
$" \prod_{\mathrm{K} / \mathrm{K}^{*}(\mathrm{x})^{\psi} \alpha}$.
α

Remark

Another possible way of proving Theorems 1 and 2 is the following:

Let ℓ be a prime integer distinct from any of the $p_{v}, v \in S$. One then sees that the Galois-module V_{ℓ} is of Hodge-Tate type in the sense of Chapter III, 1.2 (indeed, the corresponding local modules
are associated with ℓ-divisible groups, and one may apply Tate's theorem [39]). Hence ρ_{ℓ} is "locally algebraic" (Chapter III, loc. cit.), and using the theorem of Chapter $\Pi I, 2.3$ one sees it defines a morphism $\phi: S_{m} \rightarrow T_{E}$. One has $\phi \circ \varepsilon_{\ell}=\rho_{\ell}$ by construction; the same is true for any prime number ℓ^{\prime}, since $\phi \circ \varepsilon_{\ell}$ ' and ρ_{ℓ}, have the same Frobenius elements for almost all v. This proves part (b) of Theorem 1. As for Theorem 2, one uses the explicit form of the Hodge-Tate decomposition of V_{ℓ}, as given by Tate [39], combined with the results of the Appendix to Chapter III.

§3. STRUCTURE OF T_{m} AND APPLICATIONS

3.1. Structure of $X\left(T_{m}\right)$

If ω is a complex place of \bar{Q}, the completion of \bar{Q} with respect to ω is isomorphic to C; the decomposition group of ω is thus cyclic of order 2 ; its non-trivial element will be denoted by c_{ω} (the "Frobenius at the infinite place ω "). The $c_{\omega}{ }^{\prime}$'s are conjugate in $G=G a l(\bar{Q} / Q)$; let C_{∞} denote their conjugacy class. (By a theorem of Artin [1], p. 257, the elements of C_{∞} are the only non-trivial elements of finite order in G.)

Let $\mathrm{X}(\mathrm{T})$ be the character group of the torus T , cf .1 .1 ; we write $X(T)$ additively and put $Y(T)=X(T) \otimes_{Z} Q$. We decompose Y as a direct sum $Y=Y^{0} \oplus Y^{-} \oplus Y^{+}$of G-invariant subspaces, as follows (cf. Appendix, A. 2)

$$
\begin{aligned}
& Y^{O}=Y^{G}=\{y \in Y \mid g y=y \text { for all } g \in G\}, \\
& Y^{-}=\left\{y \in Y \mid c y=-y \text { for all } c \in C_{\infty}\right\}
\end{aligned}
$$

and Y^{+}is a G-invariant supplement to $\mathrm{Y}^{\circ} \oplus \mathrm{Y}^{-}$in Y ; one proves easily that Y^{+}is unique, cf. Appendix, bloc. cit.

More explicitly, if $\sigma \in \Gamma$ is an embedding of K into \bar{Q}, let $[\sigma] \epsilon \mathrm{X}(\mathrm{T})$ be the corresponding character of T ; the $[\sigma]$'s, $\sigma \in \Gamma$, form a basis of $X(T)$ and $g .[\sigma]=[g . \sigma]$ if $g \in G$. The space Y° is generated by the norm element $\Sigma \quad[\sigma]$, and its G-invariant $\sigma \in \Gamma$
 any character $X \in X(T)$ can be written in the form

$$
\begin{align*}
& \mathrm{x}=\underset{\sigma \in \Gamma}{\mathrm{a} \Sigma}[\sigma]+\underset{\sigma \in \Gamma}{ } \sum_{\sigma} \mathrm{b}_{\sigma}[\sigma], \tag{*}\\
& \mathrm{a}, \mathrm{~b}_{\sigma} \in \mathrm{Q}, \Sigma \mathrm{~b}_{\sigma}=0, \mathrm{a}+\mathrm{b}_{\sigma} \in \mathrm{Z} .
\end{align*}
$$

(In particular, we see that $d a \in Z$ where $d=[K: Q]$.) The subspace Y^{-}can now be described as follows

$$
\begin{gathered}
\mathrm{Y}^{-}=\left\{\Sigma \mathrm{b}_{\sigma}[\sigma] \mid \mathrm{b}_{\sigma} \in Q, \Sigma \mathrm{~b}_{\sigma}=0, \mathrm{~b}_{c \sigma}=-\mathrm{b}_{\sigma}\right. \text { for } \\
\text { all } \left.\mathrm{c} \in \mathrm{C}_{\infty} \text { and } \sigma \in \Gamma\right\} .
\end{gathered}
$$

On the other hand, the projection $T \rightarrow T_{m}$ defines an injectdion of $X\left(T_{m}\right)$ into $X(T)$; we identify $X\left(T_{m}\right)$ with its image under this injection.

PROPOSITION - $X\left(T_{m}\right) \otimes_{Z} Q=Y^{\circ} \oplus Y^{-}$.

COROLLARY 1 - The character group $X\left(\mathrm{~T}_{\mathrm{m}}\right)$ is a sublattice of finite index of $X(T) \cap\left(Y^{\circ} \oplus Y^{-}\right)$.

COROLLARY 2 - If $X \in X\left(T_{m}\right)$ is written in the form $\left.{ }^{*}\right)$, then $2 \mathrm{a} \in \mathrm{Z}$.

In fact, given $c \in C_{\infty}$ and $\sigma \in \Gamma$, we have

$$
2 \mathrm{a}=2 \mathrm{a}+\mathrm{b}_{\sigma}+\mathrm{b}_{\mathrm{c} \sigma}=\left(\mathrm{a}+\mathrm{b}_{\sigma}\right)+\left(\mathrm{a}+\mathrm{b}_{c \sigma}\right) \in \mathrm{z} .
$$

3.2. The morphism $j^{*}: G_{m} \rightarrow T_{m}$

We have seen that any character $X \in X\left(T_{m}\right)$ can be written in the form

$$
\mathrm{x}=\mathrm{a} \underset{\sigma \in \Gamma}{\Sigma}[\sigma]+\sum_{\sigma \in \Gamma} \mathrm{b}_{\sigma}[\sigma]
$$

with $\mathrm{a}, \mathrm{b}_{\sigma} \in Q, \sum \mathrm{~b}_{\sigma}=0,2 \mathrm{a} \in \mathrm{Z}$. Hence $\mathrm{x} \mapsto 2 \mathrm{a}$ defines a homomorphism $j: X\left(T_{m}\right) \rightarrow X\left(G_{m}\right)=Z$ and we obtain by duality a morephism of algebraic groups $\quad j^{*}: G_{m} \rightarrow T_{m}$. If $\phi_{o}: S_{m} \rightarrow G L_{V_{0}}$ is a representation of S_{m}, we obtain by composition with j^{*} a morphism of algebraic groups $G_{m} \rightarrow \mathrm{GL}_{V_{0}}$. This representation of G_{m} defines (and is defined by) a grading $V_{0}=\sum_{i \in Z} V_{0}^{(i)}$ of V_{0}; recall that G_{m} acts on $V_{o}^{(i)}$ by means of the character $\mathrm{i} \in \mathrm{Z}=\mathrm{X}\left(\mathrm{G}_{\mathrm{m}}\right)$.

We say that V_{0} is homogeneous of degree n if $V_{0}=V_{0}^{(n)}$.

Remark

For representations coming from the ℓ-adic homology $H_{*}(\bar{X})$ of a projective smooth variety X, the grading defined above

Exercise

1) Let $N: S_{m} \rightarrow G_{m}$ be the orphism defined in Exercise 2 of 2.5. Show that $N \circ j: G_{m} \rightarrow S_{m} \rightarrow G_{m}$ is $\lambda \mapsto \lambda^{2}$. Show that any orphism $S_{m} \rightarrow G_{m}$ is equal to εN^{n}, where ε is a character of C_{m} with values in $\{ \pm 1\}$ and $n \in Z$.
2) Let $\phi: S_{m} \rightarrow G L_{V}$ be a linear representation of S_{m}. Assume ϕ is homogeneous of degree d, and put $h=\operatorname{dim} V_{o}$.
a) Show that $d h$ is even (apply Exert. 1 to
$\left.\operatorname{det}(\phi): S_{m} \rightarrow G_{m}\right)$.
b) Prove that there exists on V_{o} a positive definite quadratic form Q such that

$$
Q(\rho(x) y)=N(x)^{d} Q(y)
$$

for any $y \in V_{0}$ and any $x \in S_{m}(Q)$. [Let H be the kernel of $N: S_{m} \rightarrow G_{m}$. Using the fact that $H(R)$ is compact, prove the existence of a positive definite quadratic form Q on V_{0} invariant by H; then note that S_{m} is generated by H and $j^{*}\left(G_{m}\right)$.]
3.3. Structure of T_{m}

We need first some notations:
Let H_{c} be the closed subgroup of $G=G a l(\bar{Q} / Q)$ generated by C_{∞} (cf. 3.1). There is a unique continuous homomorphism
$\varepsilon: H_{c} \rightarrow\{\underline{+}\}$ such that $\varepsilon(c)=-1$ for all $c \in C_{\infty}$. Indeed the unicity of ε is clear, and one proves its existence by taking the restriction to H_{c} of the homomorphism $G \longrightarrow\{ \pm 1\}$ associated with an imaginary quadratic extension of Q. We let $H=\operatorname{Ker}(\varepsilon)$. The groups H and H_{c} are closed invariant subgroups of G, and $\left(H: H_{c}\right)=2$.

Let now K be, as before, a finite extension of Q; we identify it with a subfield of \bar{Q}; let $G_{K}=G a l(\bar{Q} / K)$ be the corresponding subgroup of G. The field K is totally real if and only if all the elements c of C_{∞} act trivially on K, i.e. if and only if G_{K} contains G_{c}. Hence, there exists a maximal totally real subfield K_{o} of K, whose Galois group is $G_{K_{o}}=G_{K} . H_{c}$. We let K_{1} be the field corresponding to $G_{K} . H$. We have

$$
\mathrm{K}_{\mathrm{o}} \subset \mathrm{~K}_{1} \subset \mathrm{~K} \quad \text { and } \quad\left[\mathrm{K}_{1}: \mathrm{K}_{\mathrm{o}}\right]=1 \text { or } 2
$$

As shown by Weal (cf. [47], p. 4) the fields K_{o} and K_{1} are closely connected to the groups T_{m} relative to K . Indeed, if $\mathrm{X}=\Sigma \mathrm{b}_{\sigma}[\sigma]$ is an element of the group denoted by Y^{-}in 3.1, we have $b_{c \sigma}=-b_{\sigma}$ for all $c \in C_{\infty}$. If $h=c_{1} \ldots c_{n}$, this gives

$$
b_{h \sigma}=(-1)^{n} b_{\sigma}=\varepsilon(h) b_{\sigma}
$$

and by continuity the same holds for all $h \in H_{c}$. One deduces from this:

PROPOSITION - The norm map defines an isomorphism of the space $\mathrm{Y}_{\mathrm{K}_{1}}^{\circ}$ relative to K_{1} onto the space $\mathrm{Y}_{\mathrm{K}}^{-}$relative to K .

More precisely, if $\mathrm{X}_{1}=\Sigma \mathrm{b}_{\sigma_{1}}\left[\sigma_{1}\right]$ belongs to $\mathrm{Y}_{\mathrm{K}_{1}}^{-}$, where $\sigma_{1} \in \Gamma_{K_{1}}$, the image of X_{1} by the norm map is

$$
\mathrm{N}_{\mathrm{K}_{1} / \mathrm{K}_{\mathrm{o}}}^{*}\left(\mathrm{x}_{1}\right)=\Sigma \mathrm{b}_{\sigma / \mathrm{K}_{1}}[\sigma], \quad \sigma \in \Gamma_{\mathrm{K}}
$$

where σ / K_{1} is the restriction of σ to K_{1}. It is clear that this map is injective. Conversely, if $X=\Sigma \mathrm{b}_{\sigma}[\sigma]$ belongs to $\mathrm{Y}_{\mathrm{K}}^{-}$, we saw above that $b_{h \sigma}=\varepsilon(h) b_{\sigma}$ for all $h \in H_{c}$, hence $b_{h \sigma}=b_{\sigma}$ for $h \in H$ and of course also for $h \in H . G_{K}$. This shows that b_{σ} depends only on the restriction of σ to K_{1}, and hence that X belongs to the image of the norm map.

COROLLARY - The tori T_{m} attached to K and K_{1} are isogenous to each other.

There remains to describe the tori T_{m} attached to K_{1}. There are two cases:
(1) $K_{1}=K_{0}$. In this case, we have $Y^{-}=0$ and T_{m} is onedimensional, and isomorphic to G_{m}.

Indeed, if $X=\Sigma b_{\sigma}[\sigma]$ belongs to Y^{-}, and $c \in C_{\infty}$, we have $\mathrm{b}_{\mathrm{c} \sigma}=-\mathrm{b}_{\sigma}$ (cf. 3.1) but also $\mathrm{b}_{\mathrm{c} \sigma}=\mathrm{b}_{\sigma}$ since $c \in G_{K} \cdot H_{c}=G_{K} \cdot H$. This shows that $b_{\sigma}=0$ for all σ, hence $\mathrm{Y}^{-}=0$.
(2) $\left[\mathrm{K}_{1}: \mathrm{K}_{0}\right]=2$. The field K_{1} is then a totally imaginary quadratic extension of K_{o} (and it is the only one contained in K, as one checks readily). In this case Y^{-}is of dimension $d=\left[K_{0}: Q\right]$ and T_{m} is $(\mathrm{d}+1)$-dimensional.

More precisely, the space Y attached to K_{1} is $2 d$-dimensional and the involution σ of K_{1} corresponding to K_{o} decomposes Y in two eigenspaces of dimension d each; the space Y^{-}is the one corresponding to the eigenvalue -1 of σ. This is proved by the same argument as above, once one remarks that all $c \in C_{\infty}$ induce σ on K_{1}.

Remark
In this last case (which is the most interesting one), the torus T_{m} is isogenous to the product of G_{m} by the d-dimensional torus kernel of the norm map from K_{1} to K_{o}.

3.4. How to compute Frobeniuses

Let ϕ be a linear representation of S_{m} of degree n. By extending the groundfield, the restriction of ϕ to T_{m} can be put in diagonal form; let X_{1}, \ldots, x_{n} be the n characters of T_{m} so obtained and write (in additive notation)

$$
x_{i}=\sum_{\sigma \in \Gamma} n_{\sigma}(i)[\sigma] \quad\left(n_{\sigma}(i) \in Z\right)
$$

We say that X_{i} is positive if all the $n_{\sigma}(i) ' s$ are ≥ 0. Let $v \not \operatorname{Supp}(m)$, and let $F_{v} \in S_{m}(Q)$ be the corresponding Frobenius element, cf. 2.3. Since $C_{m}=S_{m} / T_{m}$ is finite, there exists an integer $N \geq 1$ such that $F_{V}^{N} \in T_{m}$ (Q). If ${\underset{V}{*}}_{P_{V}}$ is the prime ideal of v , this means that there exists $\alpha \in \mathrm{K}^{*}$, with $\mathrm{P}_{\mathrm{v}}^{\mathrm{N}}=(\alpha)$, $\alpha \equiv 1 \bmod \mathrm{~m}$, and $\alpha>0$ at all real places of K .

PROPOSITION 1 - The eigenvalues of $\phi\left(\mathrm{F}_{\mathrm{v}}^{\mathrm{N}}\right)$ are the numbers $n_{\sigma}(\mathrm{i})$
$X_{i}(\alpha)=\prod_{\sigma} \sigma(\alpha)^{\sigma} \quad(i=1, \ldots, n)$.
This is trivial by construction, because F_{V}^{N} is the image of α under $T(Q) \rightarrow T_{m}(Q)$.

COROLLARY 1 - The eigenvalues of $\phi\left(F_{v}\right)$ are $\left\{p_{v}\right\}$-units (i.e. they are units at all places of \bar{Q} not dividing p_{v}).

COROLLARY $2-\frac{\text { Let }}{\mathrm{N}} \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}$ be the eigenvalues of $\phi\left(\mathrm{F}_{\mathrm{v}}\right)$, indexed so that $z_{i}^{N}=x_{i}(\alpha)$. Let w be a place of \bar{Q} dividing P_{v}, normalized so that $w\left(p_{v}\right)=v\left(p_{v}\right)=e_{v}$. Then $w\left(z_{i}\right)=\sum_{\sigma \in \Gamma} n_{\sigma}(i)$. $w \cdot \sigma=v$
We have $w\left(z_{i}^{N}\right)=w\left(\prod_{\sigma \in \Gamma} \sigma(\alpha)^{n_{\sigma}(i)}\right)=\sum_{\sigma \in \Gamma} n_{\sigma}(i) w \circ \sigma(\alpha)$, and

$$
\begin{array}{lll}
\mathrm{w} \bullet \sigma(\alpha)=0 & \text { if } & \mathrm{w} \circ \sigma \neq \mathrm{v} \\
\mathrm{w} \circ \sigma(\alpha)=\mathrm{N} & \text { if } & \mathrm{w} \circ \sigma=\mathrm{v}
\end{array}
$$

since $(\alpha)=R_{V}^{N}$.
Hence the result.

COROLLARY 3 - Let ℓ be a prime number and let
$\phi_{\ell}: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \rightarrow \operatorname{Aut}_{\left(V_{\ell}\right)}$ be the $\boldsymbol{\ell}$-adic representation of K isocited to ϕ. Then ϕ_{ℓ} is integral (cf. Ch. I, 2.2) if and only if all the characters X_{i} occurring in ϕ are positive.

Proof of Corollary 3. Assume first the $X_{i}{ }^{\prime} s$ are positive. Let $v \oint \operatorname{Supp}(m)$ and let z_{1}, \ldots, z_{n} be the corresponding eigenvalues of
F_{v} as in Corollary 2. Corollaries 1 and 2 show that the $w\left(z_{i}\right)$ are positive for all valuations w of \bar{Q}; hence the z_{i} are integral over Z. Hence the ϕ_{ℓ}^{\prime} s are integral.

Conversely, assume ϕ_{ℓ} is integral for some ℓ. There exists a finite subset S^{\prime} of Σ_{K}, containing $\operatorname{Supp}(m)$, such that if $v \not S^{\prime}$, the eigenvalues of $\phi\left(F_{v}\right)$ are integral. Choose a prime number p which splits completely in K and is such that $p_{v}=p$ implies v 作'. Let w be a valuation of \bar{Q} dividing p. The valuations $\mathrm{w} \bullet \sigma, \sigma \in \Gamma$, are pairwise inequivalent. Let $\sigma \in \Gamma$; and let v be the normalized valuation of K equivalent to $w o \sigma$ so that $\lambda_{v}=w \circ \sigma$ for some $\lambda>0$. Let z_{1}, \ldots, z_{n} be the eigenvalues of $\phi\left(\mathrm{F}_{\mathrm{v}}\right)$. By Corollary $2, \mathrm{w}\left(\mathrm{z}_{\mathrm{i}}\right)=\lambda_{n_{\sigma}}(\mathrm{i})$. Since the z_{i} are integral, this shows that the $n_{\sigma}(i)$'s are all positive.

PROPOSITION $2-\underline{\text { Let }} \mathbf{v} \ddagger \operatorname{Supp}(m)$ and let X be a character of S_{m}. Let $X_{T} \in X\left(T_{m}\right)$ be the restriction of X to T_{m} and let $i=j\left(x_{T}\right)$ be the integer defined in 3.2. Then, for any archimedian absolute value ω of \bar{Q} extending the usual absolute value of Q,
we have

$$
\omega\left(x\left(\mathrm{~F}_{\mathrm{v}}\right)\right)=(\mathrm{Nv})^{\mathrm{i} / 2} .
$$

Proof. If $x=a \underset{\sigma \in \Gamma}{ }[\sigma]+\underset{\sigma \in \Gamma}{\sum} \mathrm{b}_{\sigma}[\sigma]$ as in 3.1, we have

$$
\omega\left(X_{\left(F_{v}\right)}\right){ }^{\mathrm{N}}=\omega\left(\mathrm{X}_{\mathrm{v}}\left(\mathrm{~F}_{\mathrm{v}}^{\mathrm{N}}\right)\right)=\prod_{\sigma} \omega \circ \sigma(\alpha)^{\mathrm{a}} \cdot \prod_{\sigma} \omega \circ \sigma(\alpha)^{\mathrm{b}},
$$

and $\prod \omega \circ \sigma(\alpha)^{a}=\omega(N(\alpha))^{a}=N v^{a N}=N v^{i N / 2}$, where $i=2 a$. It remains to show that $x=\prod_{\sigma} \omega \circ \sigma(\alpha)^{b_{\sigma}}$ is equal to 1 . Let $c=c_{\omega}$ σ
be the "Frobenius" attached to ω (cf. 3.1). Since $b_{\sigma}+b_{c \sigma}=0$, we have $x . y=1$ with $y=\prod_{\sigma} \omega \circ \sigma(\alpha){ }^{\mathrm{b}} \mathrm{c} \sigma$. But $\mathrm{y}=\prod_{\tau} \omega \circ \mathrm{oc} \circ \tau(\alpha)^{\mathrm{b}}{ }^{\tau}$, and, since $\omega \cdot c=\omega$, we have $y=x$, hence $x^{2}=1$, and $x=1$, since $x>0$.

Exercises

1) Check the product formula for the eigenvalues of the $\phi\left(F_{v}\right)$. (Use Cor. 1 and 2 to Prop. 1 and Prop. 2.)
2) Show that Prop. 2 and Cor. 1 and 2 to Prop. 1 determine the eigenvalues of the $\phi\left(F_{v}\right)^{\prime} s$ up to multiplication by roots of unity.
3) (Generalization of Cor. 1 to Prop. 1). Let (ρ_{ℓ}) be a strictly compatible system of rational \boldsymbol{l}-adic representations, with exceptional set S (cf. Chap. I, 2.3). Show that, for any $v \in \Sigma_{K}-S$, the eigenvalues of $F_{v, \rho_{\ell}}, \ell \neq P_{v}$, are p_{v}-units.

APPENDIX

Killing arithmetic groups in tori

A.1. Arithmetic groups in tori

Let A be a linear algebraic group over Q, and let Γ be a subgroup of the group $A(Q)$ of rational points of A. Then Γ is said to be an arithmetic subgroup if for any algebraic embedding
$A \subset G L_{n}$ (n arbitrary) the groups Γ and $A(Q) \cap G L_{n}(Z)$ are commensurable (two subgroups Γ_{1}, Γ_{2} are said to be commensurable if $\Gamma_{1} \cap \Gamma_{2}$ is of finite index in Γ_{1} and Γ_{2}). It is well-known that it suffices to check that Γ and $A(Q) \cap G L_{n}(Z)$ are commensurable for one embedding $A \subset G L_{n}$.

Example
Let K be a number field and let E be the group of units of K. Then E is an arithmetic subgroup of $\left.T=R_{K / Q} G_{m}\right)$.

If T is a torus over Q, let T° be the intersection of the kernels of the homomorphisms of T into G_{m}. The torus T is said to be anisotropic if $T=T^{\circ}$; in terms of the character group $X=X(T)$ this means that X has no non-zero elements which are left fixed by $G=\operatorname{Gal}(\bar{Q} / Q)$.

THEOREM - Let T be a torus over Q, and let Γ be an arithmetic subgroup of T. Then $\Gamma \cap \mathrm{T}^{\circ}$ is of finite index in Γ, and the quotient $T^{\circ}(R) / \Gamma \cap T^{\circ}$ is compact.

This is due to T. Ono; for a proof of a more general statement (' Godement's conjecture") see Mostow-Tamagawa [18].

COROLLARY - Let T be a torus over Q, and let Γ be an arithmetic subgroup of T. If T is anisotropic, then $T(R) / \Gamma$ is compact.

Exercise

Let T be a torus over Q, with character group X.
a) Show that

$$
\mathrm{T}(\mathrm{Q})=\operatorname{Hom}_{\mathrm{Gal}}\left(\mathrm{X}, \overline{\mathrm{Q}}^{*}\right)
$$

b) Let U be the subgroup of \bar{Q}^{*} whose elements are the algebraic units of \bar{Q}. Let

$$
\Gamma=\operatorname{Hom}_{\mathrm{Gal}}(\mathrm{X}, \mathrm{U}) .
$$

Show that Γ is an arithmetic subgroup of $T(Q)$ and that any arithmetic subgroup of $T(Q)$ is contained in Γ.
A. 2. Killing arithmetic subgroups

Let T be a torus over Q, and let $X(T)$ be its character group; put $Y(T)=X(T) \otimes_{Z} Q$. Let Λ be the set of classes of Q-irreducible representations of $G=G a l(\bar{Q} / Q)$ through its finite quotients. For each $\lambda \in \Lambda$, let Y_{λ} be the corresponding isotypic sub-G-module of Y, i.e. the sum of all sub-G-modules of Y isomorphic to λ. One has the direct sum decomposition

$$
Y=\Perp_{\lambda \in \Lambda} Y_{\lambda} .
$$

Let $Y^{\circ}=Y_{1}$, where 1 is the unit represental:on of G; let Y^{-}be the sum of those Y_{λ} where for all the infinite 'robeniuses $c \in C_{\infty}$ (cf. 3.1) we have $\lambda(c)=-1$; let Y^{+}be the sum of the other Y_{λ}. We have

$$
\begin{aligned}
& Y^{\circ}=Y^{G}=\{y \in Y \mid g y=y \text { for all } g \in G\} \\
& Y^{-}=\left\{y \in Y \mid c y=-y \quad \text { for all } c \in C C_{\infty}\right\}, \\
& Y=Y^{\circ} \oplus Y^{-} \oplus Y^{+} .
\end{aligned}
$$

Note that $Y=Y^{\circ}$ if and only if T is anisotropic.
If $c \in C_{\infty}$, and $H=\{1, c\}$, then, since $T(R)=\operatorname{Hom}_{H}\left(X(T), C^{*}\right)$, we see that $T(R)$ is compact if and only if $Y=Y^{-}$.

PROPOSITION - Let Γ be an arithmetic subgroup of the torus T, and $\bar{\Gamma}$ its Zariski closure (cf. 1.2). Then:

$$
\begin{equation*}
\mathrm{Y}(\mathrm{~T} / \bar{\Gamma})=\mathrm{Y}^{\circ} \oplus \mathrm{Y}^{-} \tag{*}
\end{equation*}
$$

[Since the torus $T / \bar{\Gamma}$ is a quotient of T, we identify $Y(T / \bar{\Gamma})$ with a submodule of $Y(T)$.

Proof. Suppose first that Y is irreducible, i.e. that T has no proper subtori and is $\neq 0$.

If $Y=Y^{\circ}$, then T is isomorphic to G_{m} and hence Γ is finite. This shows that $\mathrm{Y}(\mathrm{T} / \bar{\Gamma})=\mathrm{Y}(\mathrm{T})$, hence ${ }^{(*)}$. If $\mathrm{Y}=\mathrm{Y}^{-}$, then $\mathrm{T}(\mathrm{R})$ is compact. Since Γ is a discrete subgroup of $T(R)$, it is finite. Hence $Y(T / \bar{\Gamma})=Y(T)$ and (*) follows.

If $\mathrm{Y}=\mathrm{Y}^{+}$, then $\mathrm{T}(\mathrm{R})$ is not compact. Consequently, Γ is infinite since $T(R) / \Gamma$ is compact by Ono's theorem. Hence $\bar{\Gamma}$ is an algebraic subgroup of T of dimension ≥ 1. Its connected component is a nontrivial subtorus of T . This shows that $\bar{\Gamma}=\mathrm{T}$, hence $Y(T / \bar{\Gamma})=0$. Hence again $(*)$.

The general case follows easily from the irreducible one; for instance, choose a torus T^{\prime} to T which splits in direct product of irreducible tori and note that Γ is commensurable with the image by $T^{\prime} \rightarrow T$ of an arithmetic subgroup of T.

Exercise

Let $y \in Y$. Define $N y$ as the mean value of the transforms of y by G.
a Prove that N is a G-linear projection of Y onto Y°, hence $\operatorname{Ker}(N)=\mathrm{Y}^{-} \oplus \mathrm{Y}^{+}$.
b Prove that Y^{+}is generated by the elements $\mathrm{cy}+\mathrm{y}$, with $y \in \operatorname{Ker}(N), c \in C_{\infty}$.

CHAPTER III

LOCALLY ALGEBRAIC ABELIAN REPRESENTATIONS

In this Chapter, we define what it means for an abelian $\boldsymbol{\ell}$-adic representation to be locally algebraic and we prove (cf. 2.3) that such a representation, when rational, comes from a linear representation of one of the groups S_{m} of Chapter II.

When the ground field is a composite of quadratic extensions of Q, any rational semi-simple ℓ-adic representation is ipso facto locally algebraic; this is proved in $\S 3$, as a consequence of a result on transcendental numbers due to Siegel and Lang.

In the local case, an abelian semi-simple representation is locally algebraic if and only if it has a "Hodge-Tate decomposition". This fact, due to Tate (Collège de France, 1966), is proved in the Appendix, together with some complements.

§1. THE LOCAL CASE

1.1. Definitions

Let p be a prime number and K a finite extension of Q_{p}; let $T=R_{K / Q_{p}}\left(G_{m / K}\right)$ be the corresponding algebraic torus over
Q_{p} (cf. Weil [43], Chap. I).
Let V be a finite dimensional Q_{p}-vector space and denote, as usual, by $G L V$ the corresponding linear group; it is an algebraic group over Q_{p}, and $G L_{V}\left(Q_{p}\right)=A u t(V)$.

Let $\rho: \operatorname{Gal}(\bar{K} / K)^{a b} \rightarrow$ Aut (V) be an abelian p-adic representation of K in V, where $G a l(\bar{K} / K)^{a^{2 b}}$ denotes the Galois group of the maximal abelian extension of K. If $i: K^{*} \rightarrow \operatorname{Gal}(\bar{K} / K)^{a b}$ is the canonical homomorphism of local class field theory (cf. for instance Cassels-Fryhlich [6], chap. VI, §2), we then get a continuous homomorphism $\rho \circ$ i of $K^{*}=T\left(Q_{p}\right)$ into Aut (V).

DEFINITION - The representation ρ is said to be locally algebraic $\underset{*}{\text { if there is an algebraic morphism }} \quad \mathrm{r}: \mathrm{T} \rightarrow \mathrm{GL}_{\mathrm{V}} \quad$ such that $\rho \circ i(x)=r\left(x^{-1}\right)$ for all $x \in K^{*}$ close enough to 1 .

Note that, if $r: T \rightarrow G L v$ satisfies the above condition, it is unique; this follows from the fact that any non-empty open set of $K^{*}=T\left(Q_{p}\right)$ is Zariski dense in T. We say that r is the algebraic morphism associated with ρ.

Examples

1) Take $K=Q_{p}$, and $\operatorname{dim} V=1$, so that ρ is given by a continuous homomorphism $\operatorname{Gal}\left(\bar{Q}_{p} / Q_{p}\right)^{\text {ab }} \rightarrow U_{p}$, where U_{p} is the group of p-adic units. It is easy to see that there exists an element $\nu \in Z_{p}$ such that $\rho \circ i(x)=x^{\nu}$ if x is close enough to 1 . The representation ρ is locally algebraic if and only if ν belongs to Z. This happens for instance when $V=V_{p}(\mu)$, cf. Chap. I, 1. 2 , in which case $\nu=-1$ and r is the canonical one-dimensional representation of $T=G$
2) The abelian representation associated to a Lubin-Tate formal group (cf. [17] and [6], Chap. VI, §3) is locally algebraic (and also of the form $u \mapsto u^{-1}$ on the inertia group).

PROPOSITION 1 - Let $\rho: \operatorname{Gal}(\bar{K} / K)^{a b} \rightarrow$ Aut (V) be a locally algebraic abelian representation of K. The restriction of ρ to the inertia subgroup of $\operatorname{Gal}(\bar{K} / K)^{a b}$ is semi-simple.

Let us identify the inertia subgroup of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}}$ with the group U_{K} of units of K. By assumption, there is an open subgroup U^{\prime} of U_{K} and an algebraic morphism r of T into $G L_{V}$ such that $\rho(x)=r\left(x^{-1}\right)$ if $x \in U^{\prime}$. Let W be a sub-vector space of V stable by $\rho\left(U_{K}\right)$; it is then stable by $\rho\left(U^{\prime}\right)$, hence by $r(T)$. But every linear representation of a torus is semi-simple. Hence, there exists a projector $\pi: V \rightarrow \mathrm{~W}$ which commutes with the action of T. If we put $\pi^{\prime}=\frac{1}{\left(U_{K}: U^{\prime}\right)} \sum_{s \in U_{K} / U '} \rho(s) \pi \rho\left(s^{-1}\right)$, we obtain a projector $\pi^{\prime}: V \rightarrow W$ which commutes with all $\rho(s), s \in U_{K}$, q.e.d.

Conversely, let us start from a representation ρ whose restriction to U_{K} is semi-simple. If we make a suitable large finite extension E of Q_{p}, the restriction of ρ to U_{K} may be brought into diagonal form, i.e. is given by continuous characters $X_{i}: U_{K} \rightarrow E^{*}, i=1, \ldots, n$. We assume E large enough to contain all conjugates of K, and we denote by Γ_{K} the set of all Q-embeddings of K into E. Recall (cf. chap. II, l.l) that the $[\sigma], \sigma \in \Gamma_{K}$, make a basis of the character group $\mathrm{X}(\mathrm{T})$ of T .

$$
x_{i}(u)=\prod_{\sigma \in \Gamma_{K}} \sigma(u)^{-n_{\sigma}(i)}
$$

for all i and all u close enough to 1.

The necessity is trivial. Conversely, if there exist such integers $n_{\sigma}(i)$, they define algebraic characters $r_{i}=\prod[\sigma]^{n} \sigma^{(i)}$ of T, hence a linear representation r of T / E. It is clear that there is an open subgroup U^{\prime} of U_{K}, such that $\rho(u)=r\left(u^{-1}\right)$ for all $u \in U^{\prime}$. Hence it remains to see that r can be defined over Q_{p} (cf. chap. II, 2.4). But the trace $\theta_{r}=\Sigma r_{i}$ of \mathbf{r} (loc. cit.) is such that $\theta_{r}(u) \in Q_{p}$ for all $u \in U^{\prime}$. Since U^{\prime} is Zariski-dense in T, this implies that θ_{r} is "defined over Q_{p} ", hence that r can be defined over Q_{p} (loc. cit.), q.e.d.

Extension of the ground field

Let K^{\prime} be a finite extension of K, and let ρ^{\prime} be the restriction of the given representation ρ to $G a\left(\bar{K} / K^{\prime}\right)$. Then ρ^{\prime} is locally algebraic if and only ρ is; moreover, if this is so, the associated algebraic morphisms

$$
\mathrm{r}: \mathrm{T} \rightarrow \mathrm{GL}_{\mathrm{V}}, \mathrm{r}^{\prime}: \mathrm{T}^{\prime} \rightarrow \mathrm{GL}_{\mathrm{V}}
$$

are such that $r^{\prime}=N$ or, where T^{\prime} is the torus associated with K' / K
K^{\prime} and $N_{K^{\prime} / K}: T^{\prime} \rightarrow T$ is the algebraic morphism defined by the norm from K^{\prime} to K.

All this follows easily from the commutativity of the diagram

$$
\begin{array}{cc}
K^{*} \rightarrow \operatorname{Gal}(\overline{\mathrm{~K}} / \mathrm{K})^{\mathrm{ab}} \\
\uparrow \mathrm{~N} & \uparrow \\
\mathrm{~K}^{\prime} & \rightarrow \operatorname{Gal}\left(\overline{\mathrm{K}} / \mathrm{K}^{\prime}\right)^{\mathrm{ab}}
\end{array}
$$

and from the fact that the kernel of $\mathrm{N}_{\mathrm{K}^{\prime} / \mathrm{K}^{\prime}}: \mathrm{T}^{\prime} \rightarrow \mathrm{T}$ is connected for the Zariski topology.

Exercise

Give an example of a locally algebraic abelian p-adic representation of dimension 2 which is not semi-simple.

1.2. Alternative definition of "locally algebraic" via Hodge-Tate

 modulesLet us recall first the notion of Hodge-Tate module (cf [27], §2); here K is only assumed to be complete with respect to a discrete valuation, with perfect residue field k and $\operatorname{char}(K)=0$, $\operatorname{char}(\mathrm{k})=\mathrm{p}$. Denote by C the completion $\hat{\bar{K}}$ of the algebraic closure of K .

The group $G=G a l(\bar{K} / K)$ acts continuously on \bar{K}. This action extends continuously to C. Let W be a C-vector space of finite dimension upon which G acts continuously and semi-linearly according to the formula

$$
s(c w)=s(c) . s(w) \quad(s \in G, c \in C \text { and } w \in W) .
$$

Let $X: G \rightarrow U_{p}$ be the homomorphism of G into the group $U_{p}=Z_{p}^{*}$ of p-adic units, defined by its action on the p^{ν}-th roots of unity (cf. chap. I, l. 2):

$$
\mathrm{s}(\mathrm{z})=\mathrm{z}^{\mathrm{X}(\mathrm{~s})} \quad \text { if } \mathrm{s} \in \mathrm{G} \text { and } \mathrm{z}^{\mathrm{P}^{\nu}}=1
$$

Define for every i $\in Z$ the subspace

$$
W^{i}=\left\{w \in W \mid s w=X(s)^{i} w \text { for all } s \in G\right\}
$$

of W. This is a K-vector subspace of W. Let $W(i)=C \otimes_{K} W^{i}$. This is a C-vectorspace upon which G acts in a natural way (ie. by the formula $s(c \otimes y)=s(c) \otimes s(y))$. The inclusion $W^{i} \rightarrow W$ extends uniquely to a C-linear map $\alpha_{i}: W(i) \rightarrow W$, which commutes with the action of G.

PROPOSITION (Tate) - Let $ل \mathrm{~W}(\mathrm{i})$ be the direct sum of the $W(i), i \in Z$. Let $\alpha: \Perp W(i) \rightarrow W$ be the sum of the $\alpha_{i}{ }^{\prime} s$ defined above. Then α is injective.

For the proof see [27], $\$ 2$, prop. 4.

COROLLARY - The K-spaces $W^{i}(i \in Z)$ are of finite dimension. They are linearly independent over C.

DEFINITION 1 - The module W is of Hodge -Tate type if the homo$\underline{\text { morphism }} \alpha: \underset{i \in Z}{\Perp} \mathrm{~W}(\mathrm{i}) \rightarrow \mathrm{W}$ is an isomorphism.

Let now V be as in 1.1 , a vector space over Q_{p}, of finite dimension. Let $\rho: G \rightarrow$ Alt (V) be a p-adic representation. Let $W=C \otimes_{Q_{p}} V$ and let G act on W by the formula

$$
s(c \otimes v)=s(c) \otimes \rho(s)(v), \quad s \in G, c \in C, v \in V
$$

DEFINITION 2 - The representation ρ is of Hodge-Tate type if the C-space $W=C \otimes_{Q_{p}} V$ is of Hodge-Tate type (cf. def. 1).

Example

Let F be a p-divisible group of finite height (cf. [26], [39]); let T be its Tate module (lac. cit.) and $V=Q_{p} \otimes T$. The group G acts on V, and Tate has proved ([39], Cor. 2 to Th. 3) that this Galois module is of Hodge -Tate type; more precisely, one has $\mathrm{W}=\mathrm{W}(0) \oplus \mathrm{W}(1)$, where $\mathrm{W}=\mathrm{C} \otimes \mathrm{V}$ as above.

THEOREM (Tate) - Assume K is a finite extension of Q_{p} (i.e. its residue field is finite). Let $\rho: G \rightarrow$ fut (V) be an abelian p-adic representation of K . The following properties are equivalent:
(a) ρ is locally algebraic (cf. 1.1).
(b) ρ is of Hodge-Tate type and its restriction to the inertia group is semi-simple.

For the proof, see the Appendix.

§2 -THE GLOBAL CASE

2.1. Definitions

We now go back to the notations of chap. II, i. e. K denotes a number field. Let ℓ be a prime number and let

$$
\rho: \operatorname{Gal}(\bar{K} / K)^{\mathrm{ab}} \rightarrow \operatorname{Aut}\left(\mathrm{~V}_{\ell}\right)
$$

be an abelian ℓ-adic representation of K. Let $v \in \Sigma_{K}$ be a place
of K of residue characteristic ℓ and let $D_{V} \subset G a l(\bar{K} / K)^{a b}$ be the corresponding decomposition group. This group is a quotient of the local Galois group $G a\left(\bar{K}_{V} / K_{V}\right)^{\text {ab }}$ (these two groups are, in fact, isomorphic, but we do not need this here). Hence, we get by composion an ℓ-adic representation of K_{V}

$$
\rho_{\mathrm{v}}: \operatorname{Gal}\left(\bar{K}_{\mathrm{v}} / \mathrm{K}_{\mathrm{v}}\right)^{\mathrm{ab}} \rightarrow \mathrm{D}_{\mathrm{v}} \xrightarrow{\rho} \operatorname{Aut}\left(\mathrm{~V}_{\ell}\right) .
$$

DEFINITION - The representation ρ is said to be locally algebraic if all the local representations ρ_{v}, with $p_{v}=\ell$, are locally alge-

It is convenient to reformulate this definition, using the torus $T=R_{K / Q}\left(G_{m / K}\right)$ of Chap. II, 1.1. Let $T / Q_{\ell}=T \times_{Q_{\ell}} Q_{\ell}$ be the $Q_{\boldsymbol{\ell}}$-torus obtained from T by extending the ground field from Q to $Q_{\ell} \cdot$ We have

$$
T_{/ Q_{l}}\left(Q_{l}\right)=\left(K \otimes Q_{l}\right)^{*}=K_{l}^{*},
$$

where $K_{\ell}=K \otimes Q_{\ell}$.
Let I be the idele group of K , cf. Chap. II, 2.l. The injecdion $K_{\ell}^{*} \rightarrow \mathrm{I}$, followed by the class field homomorphism $\mathrm{i}: \mathrm{I} \rightarrow \mathrm{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}}$, defines a homomorphism

$$
\mathrm{i}_{\ell}: \mathrm{K}_{\ell}^{*} \rightarrow \operatorname{Gal}(\overline{\mathrm{~K}} / \mathrm{K})^{\mathrm{ab}}
$$

PROPOSITION - The representation ρ is locally algebraic if and only if there exists an algebraic morphism

$$
f: T_{/ Q_{\ell}} \rightarrow G L_{\ell}
$$

such that $\rho \circ \dot{i}_{\ell}(x)=f\left(x^{-1}\right)$ for all $x \in K_{\ell}^{*}$ close enough to 1.
(Note that, as in the local case, the above condition determines f uniquely; one says it is the algebraic orphism associated with p.)

Since $K \otimes_{Q} Q_{\ell}=\prod_{v \mid \ell} K_{v}$, we have

$$
T_{/ Q_{\ell}}=\prod_{v \mid \ell} T_{v},
$$

where T_{v} is the Q_{ℓ}-torus defined by K_{v}, cf. ll. The proposition follows from this decomposition.

Exercise
Give a criterion for local algebraicity analogous to the one of Prop. 2 of 1.1.
2. 2. Modulus of a locally algebraic abelian representation

Let $\rho: \operatorname{Gal}(\bar{K} / \mathrm{K})^{\mathrm{ab}} \rightarrow$ Rut $\left(\mathrm{V}_{\ell}\right)$ be as above; by composition with the class field homomorphism $\mathrm{i}: \mathrm{I} \rightarrow \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}}, \rho$ defines a homomorphism $\rho \circ i: I \rightarrow \operatorname{Aut}\left(V_{\ell}\right)$.

We assume that ρ is locally algebraic and we denote by f the associated algebraic orphism $\mathrm{T}_{/_{\ell} Q_{\ell}} \rightarrow \mathrm{GL}_{\mathrm{V}_{\boldsymbol{\ell}}} \cdot$

DEFINITION - Let m be a modulus (chap. II, ll). One says that ρ is defined $\bmod m$ (or that m is a modulus of definition for ρ) if
(i) $\rho=\mathrm{i} \frac{\text { is trivial on }}{-1} U_{v, m} \quad$ when $\mathrm{p}_{\mathrm{v}} \neq \ell$.
(ii) $\rho \circ i_{\ell}(x)=f\left(x^{-1}\right)$ for $v, m \in \prod_{v \mid \ell} U_{v, m}$
(Note that $\prod_{V \mid l} U_{v, m}$ is an open subgroup of $K_{\ell}^{*}=T / Q_{\ell}\left(Q_{\ell}\right)$.)
In order to prove the existence of a modulus of definition, we need the following auxiliary result:

PROPOSITION - Let H be a Lie group over Q_{ℓ} (resp. R) and let α be a continuous homomorphism of the idele group I into H.
(a) If $p_{v} \neq \ell$ (resp. $\left.p_{v} \neq \infty\right)$, the restriction of α to K_{v}^{*} is equal to l on an open subgroup of K_{v}.
(b) The restriction of α to the unit group U_{V} of K_{V}^{*} is equal to 1 for almost all $v^{\prime} s$.

Part (a) follows from the fact that K_{v}^{*} is a P_{v}-adic Lie group and that a homomorphism of a p -adic Lie group into an $\boldsymbol{\ell}$-adic one is locally equal to 1 if $p \neq \ell$.

To prove (b), let N be a neighborhood of 1 in H which contain no finite subgroup except $\{1\}$; the existence of such an N is classical for real Lie groups, and quite easy to prove for ℓ-adic ones. By definition of the idele topology, $\alpha\left(U_{v}\right)$ is contained in N for almost all $v^{\prime} s$. But (a) shows that, if $p_{v} \neq \ell$, the group
$\alpha\left(U_{v}\right)$ is finite; hence $\alpha\left(U_{v}\right)=\{l\}$ for almost all $v^{\prime} s$, q.e.d.

COROLLARY - Any abelian $\boldsymbol{\ell}$-adic representation of K is unramified outside a finite set of places.

This follows from (b) applied to the homomorphism α of I induced by the given representation, since the $\alpha\left(U_{v}\right)$ are known to be the inertia subgroups.

Remark

This does not extend to non-abelian representations (even solvable ones), cf. Exercise.

PROPOSITION 2 - Every locally algebraic abelian ℓ-adic representation has a modulus of definition.

Let $\rho: \operatorname{Gal}(\bar{K} / K)^{a b} \rightarrow \operatorname{Aut}\left(V_{\ell}\right)$ be the given representation and f the associated morphism of $T Q_{\ell}$ into $G L_{V_{\ell}}$. Let X be the set of places $v \in \Sigma_{K}$, with $p_{v} \neq \ell$, for which ρ is ramified; the corollary to Prop. 1 shows that X is finite. By Prop. l, (a), we can choose a modulus m such that $\rho \circ i: I \rightarrow \operatorname{Aut}\left(V_{l}\right)$ is trivial on all the $U_{V, m}, V \in X$. Enlarging m if necessary, we can assume that definition for ρ.

Remark
It is easy to show that there is a smallest modulus of definition for ρ; it is called the conductor of ρ.

Exercise

Let $z_{1}, \ldots, z_{n}, \ldots \in K^{*}$. For each n, let E_{n} be the subfield of \bar{K} generated by all the ℓ^{n}-th roots of the element $z_{1} z_{2}^{l} \ldots z_{n}^{l}{ }^{n-1}$.
a) Show that E_{n} is a Galois extension of K, containing the ℓ^{n}-th roots of unity and that its Galois group is isomorphic to a subgroup of the affine group $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$ in $G L\left(2, Z / \ell^{n} Z\right)$.
b) Let E be the union of the E_{n}^{\prime} s. Show that E is a Galois extension of K, whose Galois group is a closed subgroup of the affine group relative to Z_{ℓ}.
c) Give an example where E (and hence the corresponding 2 -dimensional ℓ-adic representation) is ramified at all places of K.

2.3. Back to S_{m}

Let m be a modulus of K and let

$$
\phi: S_{\mathrm{m}} / Q_{\ell} \rightarrow \mathrm{GL}_{\ell}
$$

be a linear representation of $S_{m / Q_{\ell}}$. Let

$$
\phi_{\ell}: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}} \rightarrow \operatorname{Aut}\left(\mathrm{~V}_{\ell}\right)
$$

be the corresponding ℓ-adic representation (cf. chap. II, 2.5.).

THEOREM 1 -The representation ϕ_{ℓ} is locally algebraic and defined mod m. The associated algebraic morphism

$$
\mathrm{f}: \mathrm{T}_{/ Q_{\ell}} \rightarrow \mathrm{GL}_{\ell}
$$

is $\phi \circ \pi$, where π denotes the canonical morphism of T into S_{m} (cf. chap. II, 2.2).

This is trivial from the construction of ϕ_{ℓ} as $\phi^{\circ} \varepsilon_{\ell}$ (chap. II, 2.5) and the corresponding properties of ε_{ℓ} (chap. II, 2. 3).

The converse of Theorem 1 is true. We state it only for the case of rational representations:

THEOREM 2 - Let $\rho: \operatorname{Gal}(\bar{K} / K)^{a b} \rightarrow$ Aut $\left(V_{\ell}\right)$ be an abelian $\boldsymbol{\ell}$-adic representation of the number field K. Assume ρ is rational (chap. I, 2.3) and is locally algebraic with m as a modulus of definition (cf. 2.2). Then, there exist a Q-vector subspace V_{0} of V_{ℓ}, with $V_{\ell}=V_{0} \otimes_{Q} Q_{\ell}$, and a morphism $\phi_{0}: S_{m} \rightarrow G L_{V_{0}}$ of Q-algebraic groups such that ρ is equal to the ℓ-adic representnation ϕ_{ℓ} associated to ϕ_{0} (cf. chap. II, 2.5).
(The condition $V_{\ell}=V_{o} \otimes_{Q} Q_{\ell}$ means that V_{o} is a " Q structure" on V_{ℓ}, cf. Bourbaki Alg., chap. II, $3^{\text {rd }}$ ed.)

Proof. Let $\mathrm{r}: \mathrm{T}_{/_{\ell}} \rightarrow \mathrm{GL}_{\boldsymbol{\ell}}$ be the algebraic orphism as socrated with ρ. We have

$$
\rho \circ i(x)=r\left(x^{-1}\right) \text { for } x \in K_{\ell}^{*} \cap U_{m}=\prod_{v \mid \ell} U_{v, m}
$$

Define a map $\psi: I \rightarrow \operatorname{Aut}\left(V_{\ell}\right)$ by

$$
\psi(x)=\rho \circ i(x) \cdot r\left(x_{\ell}\right)
$$

where x_{l} is the ℓ th component of the idele x. One checks immediately that ψ is trivial on U_{m} and coincides with r on K^{*}. Hence r is trivial on $E_{m}=K^{*} \cap U_{m}$ and factors through an algebraid orphism $r_{m}: T_{m / Q_{\ell}} \rightarrow L_{V_{\ell}}$. By the universal property of the Q_{ℓ}-algebraic group $S_{m / Q_{\ell}}$ (cf. chap. II, 1.3 and 2.2), there exists an algebraic morphism

$$
\phi: S_{m / Q_{\ell}} \rightarrow \mathrm{GL}_{\ell}
$$

with the following properties:
(a) The morphism $\mathrm{T}_{\mathrm{m} / \mathrm{Q}_{\ell}} \rightarrow \mathrm{S}_{\mathrm{m} / \mathrm{Q}_{\ell}} \xrightarrow{\phi} \mathrm{GL}_{\mathrm{V}_{\ell}}$ is r_{m}.
(b) the map $I \xrightarrow{\varepsilon} S_{m}\left(Q_{\ell}\right) \xrightarrow{\phi} \operatorname{Aut}\left(V_{\ell}\right)$ is ψ.

It is trivial to check that the ℓ-adic representation ϕ_{ℓ} attached to ϕ as above coincides with ρ. Indeed, if a $\in I$, we have (with the notations of chap. II)

$$
\begin{aligned}
\phi_{\ell} \circ i(a) & =\phi\left(\varepsilon_{\ell}(a)=\phi(\varepsilon(a)) \phi\left(\pi_{\ell}\left(a_{\ell}^{-1}\right)\right)\right. \\
& =\psi(a) \phi\left(\pi_{\ell}\left(a_{\ell}^{-1}\right)\right) \\
& =\rho \circ i(a) r\left(a_{\ell}\right) \phi\left(\pi_{\ell}\left(a_{\ell}^{-1}\right)\right) \\
& =\rho \circ i(a)
\end{aligned}
$$

since $\phi \circ \pi_{\ell}=r$ by (a) above.
Hence $\phi_{\ell}=\rho$; the fact that ρ is rational then implies that ϕ can be defined over Q (chap. II, 2.4, Prop.), and this gives V_{o} and ϕ_{o}, q.e.d.

Remark

The subspace V_{o} of V_{ℓ} constructed in the proof of the theorem is not unique; however, any other choice gives us a space of the form $\sigma \mathrm{V}_{0}$, where σ is an automorphism of V_{ℓ} commuting with ρ. To a given V_{o} corresponds of course a unique ϕ.

COROLLARY 1 - For each prime number ℓ^{\prime} there exists a unique (up to isomorphism) ℓ^{\prime} - adic rational semi-simple representation $\rho_{\ell^{\prime}}$ of K, compatible with ρ. It is abelian and locally algebraic. These representations form a strictly compatible system (cf. chap. I, 2.3) with exceptional set contained in $\operatorname{Supp}(m)$. For an infinite mumber of $\ell^{\prime}, \rho_{\ell}$, can be brought in diagonal form.

Proof. The unicity of the $\rho_{\ell^{\prime}}$ follows from the theorem of chap. I, 2.3. For the existence, take $\rho_{\ell^{\prime}}$ to be the $\phi_{\ell^{\prime}}$ associated to ϕ as in chapter II, 2.5. The remaining assertion follows from the provosition in chap. II, 2.5.

COROLLARY 2 - The eigenvalues of the Frobenius elements $F_{v, p}$
$\left(\mathrm{v} \backslash \operatorname{Supp}(\mathrm{m}), \mathrm{p}_{\mathrm{v}} \neq \ell\right)$ generate a finite extension of Q.
This follows from the corresponding property of $\phi_{\boldsymbol{l}}$, cf. chapter II, 2. 5, Remark l:
2. 4. A mild generalization

Most results of this and the previous Chapter may be extended to the case where we take for ground field of the linear representation a number field E (instead of Q). More precisely, let λ be a finite place of E and let $E{ }_{\lambda}$ be the λ-adic completion of E. The notion of an E-rational λ-adic representation of K has been defined in chap. I, 2.3, Remark. Let

$$
\rho: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \rightarrow \operatorname{Aut}\left(\mathrm{V}_{\lambda}\right)
$$

be such a representation, and assume ρ is abelian. Let ℓ be the residue characteristic of λ, so that E_{λ} contains Q_{ℓ}. As in 2.1, we say that ρ is locally algebraic if there exists an algebraic
morphism

$$
\mathrm{f}: \mathrm{T}_{/ \mathrm{E}_{\lambda}} \rightarrow \mathrm{GL}_{\mathrm{V}_{\lambda}}
$$

such that $\rho \circ i_{\ell}(x)=f\left(x^{-1}\right)$ for $x \in K_{\ell}^{*}$ close enough to l (note that $K_{\ell}^{*}=T\left(Q_{\ell}\right)$ is a subgroup of $\left.T\left(E_{\lambda}\right)\right)$ As in 2.3 , one proves that such a ρ comes from an E-linear representation of some S_{m} (and conversely).
2.5. The function field case

The above constructions have a (rather elementary) analogue for function fields of one variable over a finite field:

Let K be such a field, and let p be its characteristic. If m is a modulus for K (i.e. a positive divisor) we define the subgroup U_{m} of the idele group I as in chap. II, 2.1, and we put

$$
\Gamma_{\mathrm{m}}=\mathrm{I} / \mathrm{U}_{\mathrm{m}} \mathrm{~K}^{*}
$$

The degree map deg: $I \rightarrow Z$ is trivial on U_{m}, hence defines an exact sequence

$$
1 \rightarrow \mathrm{~J}_{\mathrm{m}} \rightarrow \Gamma_{\mathrm{m}} \rightarrow \mathrm{Z} \rightarrow 1
$$

One sees easily that the group J_{m} is finite; moreover, it may be interpreted as the group of rational points of the "generalized Jacobian variety defined by $m^{\prime \prime}$. If $\hat{\Gamma}_{m}$ denotes the completion of Γ_{m} with respect to the topology of subgroups of finite index, it is known (class field theory) that $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}} \simeq \underset{\lim ^{2}}{ } \widehat{\Gamma}_{\mathrm{m}}$.

Let now $\rho: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}} \rightarrow \operatorname{Aut}\left(\mathrm{V}_{\boldsymbol{\ell}}\right)$ be an abelian $\boldsymbol{\ell}$-adic representation of K, with $\ell \neq \mathrm{p}$. One proves as in 2.2 that there exists a modulus m such that ρ is trivial on U_{m}, i.e. such that ρ may be identified with a homomorphism of $\hat{\Gamma}_{m}$ into Aut $\left(V_{\ell}\right)$. Moreover

PROPOSITION - A homomorphism $\phi: \Gamma_{m} \rightarrow$ Aut $\left(V_{l}\right)$ can be extended to a continuous homomorphism of $\hat{\Gamma}_{\mathfrak{m}}$ if and only if there exists a lattice of V_{ℓ} which is stable by $\rho\left(\Gamma_{m}\right)$.

The necessity follows from Remark 1 of chap I, l.l. The sufficiency is clear.

Note that, as in the number field case, we have Frobenius elements and we can define the notion of rationality of an $\boldsymbol{\ell}$-adic representation.

$$
\phi: \hat{\Gamma}_{\mathfrak{m}} \rightarrow \operatorname{Aut}\left(V_{\ell}\right)
$$

of K is rational if and only if $\operatorname{Tr} \phi(\gamma)$ belongs to Q for every $Y \in \Gamma_{m}$.

If $v \oint \operatorname{Supp}(m)$, and if f_{v} is a uniformizing parameter at v, the image F_{v} of f_{v} in Γ_{m} is the Frobenius element of the Galois group $\hat{\Gamma}_{\mathfrak{m}}$. Hence, if $\operatorname{Tr} \phi$ takes rational values on Γ_{m}, the characteristic polynomial of $\phi\left(F_{v}\right)$ has rational coefficients for all $v \dot{S u p p}(m)$ and ϕ is rational.

To prove the converse, note first that \check{C} ebotarev's theorem (Chap. I, 2.2) is valid for K, if one uses a somewhat weaker definition of equipartition. Hence, the Frobenius elements F_{v} are dense in $\hat{\Gamma}_{m}$. In particular, they generate Γ_{m}, and, from this, one sees that $\operatorname{Tr} \rho(\gamma)$ belongs to some number field E. We can then construct an E-linear representation $\phi: \Gamma_{m} \rightarrow G L(n, E)$ with the same trace as ρ, and the theorem follows from:

LEMMA - Let Γ be a finitely generated abelian group, and $\phi: \Gamma \rightarrow G L(n, E)$ a linear representation of Γ over a number field E. Let Σ be a subset of Γ, which is dense in Γ for the topology of subgroups of finite index. Assume that $\operatorname{Tr} \phi(\gamma) \in Q$ for all $\gamma \in \Sigma$. Then $\operatorname{Tr} \phi(\gamma) \in Q$ for all $\gamma \in \Gamma$.

Proof of the lemma. Since $\phi(\Gamma)$ is finitely generated, there is a finite S of places of E such that all the elements of $\phi(\Gamma)$ are S-integral matrices. If ℓ^{\prime} is a prime number not divisible by any element of S, the image of $\phi(\Gamma)$ in $G L\left(n, E \otimes Q_{\ell^{\prime}}\right)$ is contained in a compact subgroup of $G L\left(n, E \otimes Q_{\ell^{\prime}}\right)$; hence ϕ extends by
continuity to

$$
\hat{\phi}: \hat{\Gamma} \rightarrow G L\left(n ; E \otimes Q_{\ell},\right)
$$

where $\hat{\Gamma}$ is the completion of Γ for the topology of subgroups of finite index. Since Σ is dense in $\hat{\Gamma}$, it follows that $\operatorname{Tr} \hat{\phi}(\hat{\gamma})$ belongs to the adherence $Q_{\ell^{\prime}}$ of Q in $E \otimes Q_{\ell^{\prime}}$ for every $\hat{\gamma} \in \hat{\Gamma}$. Hence, if $\gamma \in \Gamma$, we have

$$
\operatorname{Tr} \phi(\Gamma) \in E \cap Q_{\ell^{\prime}}=Q
$$

Exercises

1) Let $\phi: \Gamma_{m} \rightarrow$ fut $\left(V_{\ell}\right)$ be a semi-simple ℓ-adic reprosentation of Γ_{m}. Show the equivalence of:
(a) ϕ extends continuously to $\hat{\Gamma}_{\mathfrak{m}}$.
(b) For every $\gamma \in \Gamma_{\mathfrak{m}}$, the eigenvalues of $\phi(\gamma)$ are units (in a suitable extension of Q_{ℓ}).
(c) There exists $\gamma \in \Gamma_{m}$, with $\operatorname{deg}(\gamma) \neq 0$, such that the eigenvalues of $\phi(\gamma)$ are units.
(d) For every $\gamma \in \Gamma_{m}$, one has $\operatorname{Tr} \phi(\gamma) \in Z_{l}$.
2) Let $\phi: \hat{\Gamma}_{\mathrm{m}} \rightarrow$ fut $\left(\mathrm{V}_{\ell}\right)$ be a rational ℓ-adic representsdion of K. Show that, for almost all prime number ℓ ', there is a rational l^{\prime}-adic representation of K compatible with ϕ. Show that this holds for all $\ell^{\prime} \neq \mathrm{p}$ if and only if the following property is valid: for all $\gamma \in \Gamma_{m}$, the coefficients of the characteristic polynomial of $\phi(\gamma)$ are p-integers.

§3. THE CASE OF A COMPOSITE OF QUADRATIC FIELDS

3.1. Statement of the result
 The aim of this $§$ is to prove:

THEOREM - Let ρ be a rational, semi-simple, $\boldsymbol{\ell}$-adic abelian representation of K. Assume
(*) K is a composite of quadratic extensions of Q.

Then ρ is locally algebraic (and hence stems from a linear representation of some $\left.S_{m}, c f .2 .3\right)$.

This applies in particular when $K=Q$ or when K is quadratic over Q.

Remarks

1) An analogous result holds for E-rational semi-simple abelian λ-adic representations (cf. 2.4).
2) It is quite likely that condition (*) is not necessary. But proving this seems to require stronger results on transcendental numbers than the ones now available.

3. 2. A criterion for local algebraicity

PROPOSITION - Let $\rho: \operatorname{Gal}(\bar{K} / K)^{a b} \rightarrow A u t\left(V_{\ell}\right)$ be a rational semisimple ℓ-adic abelian representation of K. Assume that there exists an integer $N \geqslant 1$ such that ρ^{N} is locally algebraic. Then ρ is locally algebraic.

Proof. Since ρ is semi-simple, it can be brought in diagonal form over a finite extension of Q_{ℓ}, hence gives rise to a family $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ of n continuous characters $\psi_{i}: C_{K} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$, where C_{K} is the idele-class group of K, and $n=\operatorname{dim} . V_{\ell}$. Let $x_{1}=\psi_{1}^{N}, \ldots, x_{n}=\psi_{n}^{N}$ be the corresponding characters occurring in ρ^{N}. Since ρ^{N} is locally algebraic, to each X_{i} corresponds an algebraic character $X_{i}^{\text {alg }} \in X(T)$ of the torus T here we identify $X(T)$ with $\operatorname{Hom}\left(T / \bar{Q}_{\ell}, G_{m / \bar{Q}_{\ell}}\right)$, since $\overline{\mathrm{Q}}_{\ell}$ is algebraically closed). Each $x_{i}^{\text {alg }}$ is of the form $\prod_{\sigma \in \Gamma}\left[\mathcal{\sigma}^{n_{\sigma}(i)}\right.$, where Γ is the set of embeddings of K into \bar{Q}_{ℓ}, cf. Chap. II, 1.1. One has

$$
x_{i}(x)=x_{i}^{a l g}\left(x^{-1}\right)=\prod_{\sigma}(x)^{-n_{\sigma}(i)}
$$

for all $x \in K_{\ell}^{*}$ close enough to 1 .

LEMMA - All the integers $n_{\sigma}(i), 1 \leq i \leq n$, $\sigma \in \Gamma$, are divisible by N.

Proof of the lemma
Let U be an open subgroup of $\bar{Q}_{\boldsymbol{l}}^{*}$ containing no $N^{\text {th }}$-root of unity except 1 , and let m be a modulus of K such that $\psi_{i}(x) \in U$ for all $x \in U_{m}$ and $i=1, \ldots, n$; the existence of such an m follows from the continuity of $\psi_{1}, \ldots, \psi_{n}$. We take m large enough so that:
a) It is a modulus of definition for ρ^{N}.
b) ρ is unramified at all $v \in \operatorname{Supp}(m)$, and the corresponding Frobenius elements $F_{v, \rho}$ have a characteristic polynomial with
rational coefficients.
Let K_{m} be the abelian extension of K corresponding to the open subgroup $K^{*} U_{m}$ of the idele group I, and let L be a finite Galois extension of Q containing K_{m}. Choose a prime number p which is distinct from ℓ, is not divisible by any place of Supp (m), and splits completely in L. Let v be a place of K dividing p, and let f_{v} be an idele which is a uniformizing element at v and is equal to l elsewhere. The fact that v splits completely in K_{m} (since it does in L) implies that f_{v} is the norm of an adele of K_{m}, hence (by class -field theory) belongs to $K^{*} U_{m}$; this means that the prime ideal \mathbb{R}_{V} is a principal ideal (α), with $\alpha \equiv 1$ mod.m and α positive at all real places of K.

Let $\mathrm{x}=\psi_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{v}}\right)$ and $\mathrm{y}=\mathrm{X}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{v}}\right)$, so that $\mathrm{y}=\mathrm{x}^{\mathrm{N}}$; these are the Frobenius elements of ψ_{i} and X_{i} relative to v. By definition of $x_{i}^{a l g}$, we have

$$
y=x_{i}^{\operatorname{alg}}(\alpha)=\prod_{\sigma \in \Gamma} \sigma(\alpha)^{n_{\sigma}^{(i)}}
$$

where α is as above.
Hence y belongs to the subfield \tilde{L} of Q_{ℓ} corresponding to L (this field is well defined since L is a Galois extension of Q). Moreover, if w_{σ} is any place of L such that $w_{\sigma} \circ \sigma$ induces v on K , we have (as in chap. II, 3.4):

$$
w_{\sigma}(y)=n_{\sigma}(\mathrm{i}) .
$$

Assume now that $n_{\sigma}(i)$ is not divisible by N. Then x, which is an $N^{\text {th }}$-root of y, does not belong to \tilde{L}. Hence there is a
nontrivial $N^{\text {th }}$-root of unity z such that x and $z x$ are conjugate over \tilde{L}, and a fortiori over Q. Since the characteristic polynomial of $F_{v, \rho}$ has rational coefficients, any conjugate over Q of an eigenvalue of $F_{v, \rho}$ is again an eigenvalue of $F_{v, \rho}$. Hence, there exists an index j such that

$$
\psi_{j}\left(f_{v}\right)=z \cdot x=z \cdot \psi_{i}\left(f_{v}\right) .
$$

But $f_{v} \in K^{*} U_{m}$ and all ψ_{j} are trivial on K^{*} and map U_{m} into the open subgroup U we started with. Hence $z=\psi_{j}(f) \cdot \psi_{i}\left(f_{v}\right)^{-l}$ belongs to U, and this contradicts the way U has been chosen.

Proof of the proposition

Since the $n_{\sigma}(i)$ are divisible by N, there exist $\phi_{i} \in X(T)$ with $\phi_{i}^{N}=x_{i}^{a l g}$. If $x \in K_{\ell}^{*}$, we have:

$$
\phi_{i}\left(x^{-1}\right)^{N}=x_{i}^{a l g}\left(x^{-1}\right)=x_{i}(x)=\psi_{i}(x)^{N}
$$

if \mathbf{x} is close enough to 1 . Hence $\phi_{\mathrm{i}}(\mathrm{x}) \psi_{\mathrm{i}}(\mathrm{x})$ is an $\mathrm{N}^{\text {th }}$-root of unity when x is close enough to 1 , and, by continuity, it is equal to l in a neighbourhood of 1 . Hence, the restriction of ρ to K_{ℓ}^{*} is locally equal to ϕ^{-1}, where ϕ is the (algebraic) representation of T defined by the family $\left(\phi_{1}, \ldots, \phi_{n}\right)$. The representdion ϕ, a priori defined over \bar{Q}_{ℓ}, can be defined over Q_{ℓ} (and even over Q); this follows, for instance, from the fact that the family $\left(\phi_{1}, \ldots, \phi_{n}\right)$ is stable under the action of $G a l(\bar{Q} / Q)$, since the family $\left(x_{1}^{\operatorname{alg}^{n}}, \ldots, x_{n}^{\text {alg }}\right)$ is .

Hence ρ is locally algebraic, q.e.d.

3. 3. An auxiliary result on tori

In [15], Lang proved that two exponential functions $\exp \left(\mathrm{b}_{1} z\right)$, $\exp \left(b_{2} z\right), b_{1}, b_{2} \in C$, which take algebraic values for at least 3 Q-linearly independent values of z, are multiplicatively dependent: the ratio b_{1} / b_{2} is a rational number. This had also been noticed by Siegel.

Lang proved the following ℓ-adic analogue:

PROPOSITION 1 - Let E be a field containing Q_{ℓ} and complete for a real valuation extending the valuation of $Q_{\ell} \cdot$ Let $b_{1}, b_{2} \in E$ and let Γ be an additive subgroup of E. Assume:
(1) Γ is of rank at least 3 over Z.
(2) The exponential series $\exp (z)=\Sigma z^{n} / n$! converges absolutely on $b_{1} \Gamma$ and $b_{2} \Gamma$.
(3) For all $z \in \Gamma$ the elements $\exp \left(b_{1} z\right)$ and $\exp \left(b_{2} z\right)$ are algebraic over Q.

Then b_{1} and b_{2} are linearly dependent over Q (i.e. b_{1} / b_{2} belongs to Q if $\left.b_{2} \neq 0\right)$.

For the proof, see [15], Appendix, or [30], $\$ 1$.

We will apply this result to tori, taking for E the completion of \bar{Q}_{ℓ}. We need a few definitions first:
a/ Let T be an n-dimensional torus over Q, with character group $X(T)$. As before, we identify $X(T)$ with the group of morephisms of T / E into $G_{m / E}$. We say that T is a sum of onedimensional tori if there exist one-dimensional subtori T_{i} of T , $1 \leq \mathrm{i} \leq \mathrm{n}$, such that the sum map $\mathrm{T}_{1} \times \ldots \times \mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{T}$ is surjective (and hence has a finite kernel). An equivalent condition is:
$X(T) \otimes Q$ is a direct sum of one-dimensional subspaces stable by $\operatorname{Gal}(\overline{\mathrm{Q}} / \mathrm{Q})$.
b/ Let f be a continuous homomorphism of $T\left(Q_{\ell}\right)$ into E^{*}. We say that f is locally algebraic if there is a neighbourhood U of 1 in the $\boldsymbol{\ell}$-adic Lie group $\mathrm{T}\left(\mathrm{Q}_{\ell}\right)$, and an element $\phi \in \mathrm{X}(\mathrm{T})$ such that $f(x)=\phi(x)$ for all $x \in U$. We say that f is almost locally algebraic if there is an integer $N \geq 1$ such that f^{N} is locally algebraic.
c/ Let S be a finite set of prime numbers, and, for each $p \in S$, let W_{p} be an open subgroup of $T\left(Q_{p}\right)$; denote by W the family $\left(W_{p}\right)_{p \in S}$.

Let $T(Q)_{W}$ be the set of elements $x \in T(Q)$ whose images in $T\left(Q_{p}\right)$ belong to W_{p} for all $p \in S$; this is a subgroup of $T(Q)$. With these notations, we have:

PROPOSITION 2 - Let $f: T\left(Q_{\ell}\right) \rightarrow E^{*}$ be a continuous homomor phism. Assume:
(a) There exists a family $W=\left(W_{p}\right)_{p \in S}$ such that $f(x)$ is algebraic over Q for all $x \in T(Q)_{W}$.
(b) T is a sum of one-dimensional tori.

Then f is almost locally algebraic.

Proof.

i) We suppose first that T is one-dimensional, and we denote by X a generator of $X(T)$. If X is invariant by $G a l(\bar{Q} / Q)$, T is isomorphic to G_{m} and $T(Q) \simeq Q^{*}$. If not, $G a l(\bar{Q} / Q)$ acts on $X(T)$ via a group of order 2 , corresponding to some quadratic
extension F of Q; the character X defines an isomorphism of $T(Q)$ onto the group F_{1}^{*} of elements of F of norm 1 . In both cases, one sees that $T(Q)$ is an abelian group of infinite rank (for a more precise result, see Exercise below). On the other hand, each quotient $T\left(Q_{p}\right) / W_{p}$ is a finitely generated abelian group of rank ≤ 1. Hence $T(Q) / T(Q)_{W}$ is finitely generated, and this implies that $T(Q)_{W}$ is also of infinite rank.

Since $T\left(\mathbf{Q}_{\boldsymbol{\ell}}\right)$ is an $\boldsymbol{\ell}$-adic Lie group of dimension 1 , it is locally isomorphic to the additive group Q_{ℓ}. This means that there exists a homomorphism

$$
\mathrm{e}: \mathrm{Z}_{\ell} \rightarrow \mathrm{T}\left(\mathrm{Q}_{\boldsymbol{\ell}}\right)
$$

which is an isomorphism of Z_{l} onto an open subgroup of $T\left(Q_{\ell}\right)$. By composition we get two continuous homomorphisms

$$
f \circ e: Z_{\ell} \rightarrow E^{*}, \quad x \circ e: Z_{\ell} \rightarrow E^{*}
$$

But any continuous homomorphism of Z_{ℓ} into E^{*} is locally an exponential. This implies that, after replacing Z_{ℓ} by $\ell^{m} Z_{\ell}$ if necessary, there exist $b_{1}, b_{2} \in E$ such that

$$
f \circ e(z)=\exp \left(b_{1} z\right), \quad x \circ e(z)=\exp \left(b_{2} z\right)
$$

with absolute convergence of the exponential series.
Let now Γ be the set of elements $z \in Z_{\ell}$ such that $e(z) \in T(Q)_{W}$. Since $T\left(Q_{\ell}\right) / e\left(Z_{\ell}\right)$ is finitely generated, and $T(Q)_{W}$ is of infinite rank, Γ is of infinite rank. If $z \in \Gamma, e(z)$
belongs to $T(Q)_{W}$, hence $f \circ e(z)$ is algebraic over Q; the same is true for $X \circ e(z)$ since X maps $T(Q)$ either into Q or into the group F_{1}^{*} defined above. Proposition 1 then shows that $\mathrm{b}_{1} / \mathrm{b}_{2}$ is rational. This means that some integral power f^{N} of f, with $\mathrm{N} \geq 1$, is locally equal to an integral power of X, hence f is almost locally algebraic.
ii) General case. Write $T=T_{1} \ldots T_{n}$ where T_{1}, \ldots, T_{n} are one-dimensional subtori of T. Since $X(T) \otimes Q$ is the direct sum of the $X\left(T_{i}\right) \otimes Q, \quad$ it is enough to show that, for all i, the restriction f_{i} of f to $T_{i}\left(Q_{\ell}\right)$ is almost locally algebraic. But we may choose open subgroups $W_{i, p}$ of $T_{i}\left(Q_{p}\right)$ such that $W_{1, p} \ldots W_{n, p} \subset W_{p}$. If we put $W_{i}=\left(W_{i, p}\right)_{p \in S}$, we then see that f_{i} takes algebraic values on $T_{i}(Q)_{W_{i}}$, hence is almost locally al gebraic by i) above, q.e.d.

Remark

If one could suppress condition (b) from Prop. 2, all the results of this \S would extend to arbitrary number fields. This would be possible if one had a sufficiently strong n-dimensional version of Prop. 1 above; the one given in [30], $\S 2$ does not seem strong enough (it requires density properties which are unknown in the case considered here). \rightarrow [This has been done by Waldschmidt: see [63],

Exercise
Let T be a non-trivial torus over Q. Show that $T(Q)$ is the direct sum of a finite group and a free abelian group of infinite rank.

3.4. Proof of the theorem

We go back to the notations and hypotheses of 3.1. Let

$$
\rho: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}} \rightarrow \operatorname{Aut}\left(\mathrm{~V}_{\ell}\right)
$$

be a rational, semi-simple, abelian ℓ-adic representation of K. If E is the completion of \bar{Q}_{ℓ}, as in 3.3 , we may bring ρ in diagonal form over E. This gives rise to a family ($\psi_{1}, \ldots, \psi_{n}$) of continuous characters of $G a l(\bar{K} / K)^{a b}$ (hence also of the adele group I) into E^{*}; here, $\mathrm{n}=\operatorname{dim} . \mathrm{V}_{\ell}$.

Let $\mathrm{f}_{\mathrm{i}}: \mathrm{K}_{\ell}^{*} \rightarrow \mathrm{E}^{*}$ be the restriction of ψ_{i} to the $\ell^{\text {th }}$-componeat K_{ℓ}^{*} of I. Note that $K_{\ell}^{*}=T\left(Q_{\ell}\right)$, where T is, as usual, the torus defined by K (chap. II, 1.1).

LEMMA - The torus T and the homomorphism f_{i} satisfy the
assumptions
(a) and
(b) of Prop. 2, 3.3.

Verification of (a)
Let S be a finite set of primes, with $\ell \backslash S$, such that if $v \in \Sigma_{K}, P_{V} \neq \ell, P_{V} \& S$, the representation ρ is unramified at v, and the characteristic polynomial of $F_{v, \rho}$ has rational coefficients. If $p \in S$, Prop. 1 of 2.2 shows that there exists an open subgroup W_{p} of $K_{p}^{*}=T\left(Q_{p}\right)$ such that $\psi_{i}\left(W_{p}\right)_{*}=1$. Let $W=\left(W_{p}\right)_{p \in S}$ and let $x \in T(Q)_{W}$. Since $x \in K^{*}$, we have $\psi_{i}(x)=1$, when x is identified with an idle of K. On the other hand, let us split the idele x in its components

$$
x=x_{\infty} \cdot x_{\ell} \cdot x_{S} \cdot x^{\prime}
$$

according to the decomposition of I in

$$
\mathrm{I}=\mathrm{K}_{\infty}^{*} \times \mathrm{K}_{\ell}^{*} \times \mathrm{K}_{\mathrm{S}}^{*} \times \mathrm{I}^{\prime}
$$

(Here $K^{*}=(\mathrm{K} \otimes \mathrm{R})^{*}, \quad \mathrm{~K}_{\mathrm{S}}^{*}=\prod_{\mathrm{p} \in \mathrm{S}} \mathrm{K}_{\mathrm{P}}^{*}$ and I^{\prime} is the restricted product of the K_{v}^{*}, for $v \in \Sigma_{K}$, and $p_{v} \neq \ell, p_{v} \notin S$.) The relation $\psi_{i}(x)=1$, together with $\psi_{i}\left(x_{\ell}\right)=f_{i}(x)$, gives

$$
f_{i}(x)^{-1}=\psi_{i}\left(x_{\infty}\right) \psi_{i}\left(x_{S}\right) \psi_{i}\left(x^{\prime}\right)
$$

By construction, we have $\psi_{i}\left(x_{S}\right)=1$ and it is clear that $\psi_{i}\left(x_{\infty}\right)= \pm 1$. Hence:

$$
f_{i}(x)= \pm \psi_{i}\left(x^{\prime}\right)^{-1}
$$

But, for each $v \in \Sigma_{K}$, with $p_{v} \nmid S, p_{v} \neq \ell$, we know that the eigenvalues of $F_{v, \rho}$ are algebraic; hence, if f_{v} is an ide le which is a uniformizing element at v, and is equal to l elsewhere, $\psi_{i}\left(f_{v}\right)$ is algebraic. If $a(v)$ is the valuation of x^{\prime} at v, we have:

$$
\psi_{i}\left(x^{\prime}\right)=\prod \psi_{i}\left(f_{v}\right)^{a(v)} ;
$$

hence $\psi_{i}\left(x^{\prime}\right)$ and $f_{i}(x)$ are algebraic and we have checked (a).

Verification of (b).

Since K is a composite of quadratic fields, it is a Galois extension of Q, and its Galois group G is a product of groups of order 2. The character group $X(T)$ of T is isomorphic to the
regular representation of G, and it is clear that $X(T) \otimes Q$ splits as a direct sum of one-dimensional G-stable subspaces (each correspond to a character of G). Hence T is a sum of one-dimensional tori.

End of the proof of the theorem
Using prop. 2 of 3.3 , we see that each f_{i} is almost locally algebraic. Hence there is an integer $N \geq 1$ such that the f_{i}^{N} are locally algebraic. This implies, $c f$. 1.l, that ρ^{N} is locally algebraic, hence (cf. 3.2) that ρ itself is locally algebraic, q.e.d.

Exercise

Assume that K is a composite of quadratic fields. Let X be a Grossencharakter of K and suppose that the values of X (on the ideals prime to the conductor) are algebraic numbers. Show that X is "of type (A)" in the sense of Weil [41]. (Use the same method than asove, with E replaced by C.) If the values of X lie in a finite extension of Q, show that X is "of type $\left(A_{0}\right)$ ". \rightarrow [no assumption on K is necessary, thanks to [83].]

APPENDIX

Hodge-Tate decompositions and locally algebraic representations

Let K be a field of characteristic zero, complete with respect to a discrete valuation and with perfect residue field k of characteristic $p>0$. In this Appendix we deal with Hodge - Tate decomposition of p-adic abelian representations of K.

Sections Al and A2 give invariance properties of these decompositions under ground field extensions. Special characters of Gal (\bar{K} / K) are defined in A4; they are closely connected both with Hodge-Tate modules (A4 and A5) and local algebraicity (A6). The proof of Tate's theorem (cf. 1.2) is given in the last section.

Al. Invariance of Hodge-Tate decompositions

Let C be the completion of \bar{K} (cf. 1.2); the group Gal (\bar{K} / K) acts continuously on C. Let X be the character of $G a l(\bar{K} / K)$ into the group of p -adic units defined in chap. $\mathrm{I}, \mathrm{l} .2$. Let $\mathrm{K}^{\prime} / \mathrm{K}$ be a subextension of \bar{K} / K on which the valuation \bar{v} of \bar{K} is discrete; this means that K^{\prime} is a finite extension of an unramified one of K. Let \hat{K}^{\prime} denote the closure of K^{\prime} in C .

Let now W be a finite dimensional C-vector space on which Gal (K/K) acts continuously and semi-linearly (see l. 2). As before, we denote by W^{n} (resp. $\mathrm{W}_{\mathrm{K}^{\prime}}^{\mathrm{n}}$) the K -(resp. $\hat{\mathrm{K}}^{\prime}-$) vector space defined by

$$
W^{n}=\left\{w \in W \mid s(w)=x(s)^{n} w \quad \text { for all } s \in \operatorname{Gal}(\bar{K} / K)\right\}
$$

(resp. $W_{K^{\prime}}^{n}=\left\{w \in W \mid s(w)=X(s)^{n} w \quad\right.$ for all $\left.\left.s \in \operatorname{Gal}\left(\bar{K} / K^{\prime \prime}\right)\right\}\right)$.

Let $\mathrm{W}(\mathrm{n})=\mathrm{C} \otimes_{\mathrm{K}} \mathrm{W}^{\mathrm{n}}$ and $\mathrm{W}(\mathrm{n})^{\prime}=\mathrm{C} \otimes_{\hat{K}^{\prime}}, \mathrm{W}_{\mathrm{K}^{\prime}}^{\mathrm{n}}$. Identifying the modules $W(n)$ and $W(n)^{\prime}$ with their canonical images in W, we prove

THEOREM 1- The canonical map $\hat{\mathrm{K}}^{\prime} \otimes_{\mathrm{K}} \mathrm{W}^{\mathrm{n}} \rightarrow \mathrm{W}_{\mathrm{K}^{\prime}}^{\mathrm{n}}$ is a $\hat{\mathrm{K}}^{\prime}$-isomorphism.

COROLLARY 1 - The Galois modules $W(n)$ and $W(n)$ are equal.

Indeed, Theorem l shows that W^{n} and $W_{K^{\prime}}^{n}$ generate the same C-vector subspace of W.

COROLLARY 2 - The Galois module W is of Hodge-Tate type over K if and only if it is so over \hat{K}^{\prime}.

Proof of Theorem 1

Note first that replacing the action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on w by $(s, w) \mapsto X(s)^{-i}$ sw, $i \in Z$, just changes. W^{n} to W^{n+i}. This shifting process reduces the problem to the case $n=0$; in that case, W^{n} (resp. $W_{K^{\prime}}^{n}$) is the set of elements of W which are invariant under $\operatorname{Gal}(\bar{K} / K)$ (resp. under $\left.\operatorname{Gal}\left(\bar{K} / K^{\prime}\right)\right)$. Note also that the injectivity of $\hat{\mathrm{K}}^{\prime} \otimes \mathrm{W}^{\circ} \rightarrow \mathrm{W}_{\mathrm{K}^{\prime}}^{\circ}$ is trivial, since we know that $C \otimes_{K} W^{\mathrm{O}} \rightarrow \mathrm{W}$ is injective (cf. 1. 2).

On the other hand, an easy up-and-down argument shows that one can assume $\mathrm{K}^{\prime} / \mathrm{K}$ to be either finite Galois or unramified Galois. In both cases, since $\operatorname{Gal}\left(\bar{K} / \mathrm{K}^{\prime}\right)$ acts trivially on $\mathrm{W}_{\mathrm{K}^{\prime}}^{\circ}$, we have a semi-linear action of $\mathrm{Gal}\left(\mathrm{K}^{\prime} / \mathrm{K}\right)$ on $\mathrm{W}_{\mathrm{K}^{\prime}}^{\mathrm{O}}$. When $\mathrm{K}^{\prime} / \mathrm{K}$ is finite, it is well known that this implies that $\mathrm{W}_{\mathrm{K}^{\prime}}^{\circ}$ is generated by the elements invariant by $\operatorname{Gal}\left(\mathrm{K}^{\prime} / \mathrm{K}\right)$, i.e. by w° (this is a non-commutative analogue of Hilbert's "Theorem 90", cf. for instance [29], p. 159).

Let now K'/K be unramified Galois and let G be its Galois group. Let \hat{O}^{\prime} denote the ring of integers of \hat{K}^{\prime}. Let Λ be an \hat{O}^{\prime}-lattice of $W_{K^{\prime}}^{\circ}$ (i.e. a free \hat{O}^{\prime}-submodule of $W_{K^{\prime}}^{\circ}$ of the same rank as $W_{K^{\prime}}^{\circ}$). Since G acts continuously on $W_{K^{\prime}}^{\circ}$, the stabilizer in G of Λ is open, hence of finite index, and the lattice Λ has
finitely many transforms. The sum Λ° of these transforms is invariant by G. Let e_{1}, \ldots, e_{N} be a basis of Λ°. Let $s \in G$. Then

$$
s\left(e_{j}\right)=\sum_{i=1}^{N} a_{i j}(s) e_{i}, \quad a_{i j} \in \hat{O}^{\prime},
$$

and the matrix $a(s)=\left(a_{i j}(s)\right)$ belongs to $G L\left(N, \hat{O}^{\prime}\right)$. We have $a(s t)=a(s) s(a(t))$; this means that a is a continuous l-cocycle on G with values in $G L\left(N, \hat{O}^{\prime}\right)$. Recall that two such cocycles a and a^{\prime} are said to be cohomologous if there exists $b \in G L\left(N, \hat{O}^{\prime}\right)$ such that $a^{\prime}(s)=b^{-1} a(s) s(b)$ for all $s \in G$. This is an equivalence relation on the set of cocycles and the corresponding quotient space is denoted by $H^{l}\left(G, G L\left(N, \hat{O}^{\prime}\right)\right)$. In fact:

LEMMA - $H^{1}\left(G, G L\left(N, \hat{O}^{\prime}\right)\right)=\{1\}$.

Assuming the lemma, the proof of the theorem is concluded as follows. Since $a(s)$ is cohomologous to 1 , there exists $b \in G L\left(N, \hat{O}^{\prime}\right)$ such that $b=a(s) s(b)$ for all $s \in G$. If $b=\left(b_{i j}\right)$, define a new basis $e_{1}^{\prime}, \ldots, e_{N}^{\prime}$ of $W_{K^{\prime}}^{\circ}$ by

$$
e_{j}^{\prime}=\sum_{i=1} b_{i j} e_{i}
$$

Using the identity $b=a(s) s(b)$, one sees that $e_{1}^{\prime}, \ldots, e_{N}^{\prime}$ are invariant under G, hence belong to W°; this proves the surjectivity of $\hat{\mathrm{K}}^{\prime} \otimes_{\mathrm{K}} \mathrm{W}^{\mathrm{o}} \rightarrow \mathrm{W}_{\mathrm{K}^{\prime}}^{\mathrm{o}}$.

Let π be a uniformizing element of \hat{O}^{\prime}. Filter the ring $A=G L\left(N, \hat{O}^{\prime}\right)$ by means of $A_{n}=\left\{a \in A \mid a \equiv 1 \bmod \pi^{n}\right\}$. We get $A / A_{1} \cong G L\left(N, k^{\prime} / k\right)$, where k^{\prime} / k is the residue field extension of K^{\prime} / K. Moreover, for $n \geq 1$, there is an isomorphism $A_{n} / A_{n+k} \cong M_{N}\left(k^{\prime}\right)$, where $M_{N}\left(k^{\prime}\right)$ is the additive group of $N \times N$ matrices with coefficients in k^{\prime}. The lemma follows now from the triviality of $H^{l}\left(G, G L\left(N, k^{\prime}\right)\right)$ and $H^{l}\left(G, M_{N}\left(k^{\prime}\right)\right)$, where now k^{\prime} is endowed with the discrete topology (so this is ordinary Galois cohomology, cf. [29], p. 158-159).

A2. Admissible characters

Let $G=\operatorname{Gal}(\bar{K} / K)$ and let $\phi: G \rightarrow K^{*}$ be a continuous homomorphism.

DEFINITION - The character ϕ is said to be admissible (notation: $\phi \sim 1$ if there exists $x \in C, x \neq 0$, such that $s(x)=\phi(s) x$ for all $s \in G$.

Remarks

1) The admissible characters form a subgroup of the group of all characters of G with values in K^{*}; if ϕ, ϕ^{\prime} are two characters, we write $\phi \sim \phi^{\prime}$ if $\phi^{-1} \phi^{\prime} \sim 1$.
2) Let $H^{l}\left(G, C^{*}\right)$ be the first cohomology group of G with values in C^{*} (cohomology being defined by continuous cochains, as in Al). A continuous character $\phi: \mathrm{G} \rightarrow \mathrm{K}^{*}$ is a l-cocycle, hence defines an element $\bar{\phi}$ of $H^{l}\left(G, C^{*}\right)$. One has $\bar{\phi}=\bar{\phi}^{\prime}$ if and only if $\phi \sim \phi^{\prime}$.
3) Define a new action of G on C by means of

$$
(s, c) \mapsto \phi(s) s(c) \quad s \in G, c \in C .
$$

Denote the C-G-module thus obtained by $C(\phi)$. Then ϕ is admissible if and only if $C(\phi)$ and C are isomorphic as C-G-modules.

PROPOSITION 1 - Suppose there exists $c \in C^{*}$ such that $\phi(s)=s(c) / c$ for s in some open subgroup N of the inertia group of G. Then ϕ is admissible.

Proof. Let $\mathrm{K}^{\prime} / \mathrm{K}$ be the subextension of $\overline{\mathrm{K}} / \mathrm{K}$ corresponding to N ; it is a finite extension of an unamified one. Let $\mathrm{W}=\mathrm{C}(\phi)$, as in Remark 3, and let W° (resp. $W_{K^{\prime}}^{\circ}$) be the subspace of W consisting of elements invariant by G (resp. by N). By hypothesis, $W_{K^{\prime}}^{0}$ is $\neq 0$. Hence, by $A l$, Theorem 1 , we also have $W^{0} \neq 0$, and this means that ϕ is admissible, q.e.d.

Let now U_{C} be the group of units of C, U_{C}^{1} the subgroup of units congruent to 1 modulo the maximal ideal, and identify $\overline{\mathrm{k}}^{*}$ with the group of multiplicative representatives, so that $U_{C}=U_{C}^{1} \times \overline{\mathrm{k}}^{*}$, cf. [29], p. 44. Define the logarithm map

$$
\text { log: } U_{C} \rightarrow C
$$

by

$$
\begin{aligned}
& \log (x)=0 \quad \text { if } x \in \bar{k}^{*} \\
& \log (x)=\sum_{n=1}^{\infty}(-1)^{n-1}(x-1)^{n} / n \quad \text { if } x \in U_{C}^{1} .
\end{aligned}
$$

This is a continuous homomorphism and even a local isomorphism.

Moreover:

LEMMA - (a) log is surjective.
(b) The kernel of $\log : U_{C} \rightarrow C$ is $\bar{k}^{* *} \times \mu_{p^{\infty}}$,
where $\mu_{p}{ }^{\infty}$ is the set of all p^{n}-th roots of unity, for $n=1,2, \ldots$
Assertion (a) follows from the fact that C is algebraically closed, hence that U_{C} is divisible.

On the other hand, if $u \in U_{C}^{l}$ is such that $\log (u)=0$, one has $\lim . u^{p^{N}}=1$, hence, if N is large enough, $u^{p^{N}}$ belongs to a subgroup of U_{C}^{l} where \log is infective (for instance the subgroup of elements x with $x \equiv 1 \bmod p^{2}$). Hence $u^{p^{N}}=1$, and $u \in \mu_{p}^{\infty}$; this implies (b).

We now apply the log map to the cohomology groups of G with values in U_{C}, C, C^{*}, \ldots (cohomology being, as usual, defined by continuous cochains). First, since the valuation group of C is Q, we have the exact sequence

$$
1 \rightarrow \mathrm{U}_{\mathrm{C}} \rightarrow \mathrm{C}^{*} \rightarrow Q \rightarrow 1
$$

By Tate's theorem ([39], §3.3) one has $H^{0}\left(G, C^{*}\right)=K^{*}$, hence an exact sequence

$$
\mathrm{K}^{*} \rightarrow Q \rightarrow \mathrm{H}^{1}\left(\mathrm{G}, \mathrm{U}_{\mathrm{C}}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{G}, \mathrm{C}^{*}\right) \rightarrow 0
$$

or, equivalently:

$$
0 \rightarrow Q / Z \xrightarrow{\delta} H^{l}\left(G, U_{C}\right) \xrightarrow{i} H^{1}\left(G, C^{*}\right) \rightarrow 0 .
$$

Let $\mathrm{N}=\mathrm{Ker}(\mathrm{log})$. We have the exact sequence

$$
\mathrm{H}^{1}(\mathrm{G}, \mathrm{~N}) \xrightarrow{\mathrm{j}} \mathrm{H}^{1}\left(\mathrm{G}, \mathrm{U}_{\mathrm{C}}\right) \xrightarrow{\lambda} \mathrm{H}^{1}(\mathrm{G}, \mathrm{C}),
$$

where λ is induced by the log. Since $H^{l}(G, C)$ is a K-vector space, the composite $\lambda \cdot \delta: Q / Z \rightarrow H^{l}(G, C)$ is 0 , hence there is a unique map

$$
L: H^{1}\left(G, C^{*}\right) \rightarrow H^{1}(G, C)
$$

such that $L \circ i=\lambda$.

PROPOSITION $2-$ The map $L: H^{l}\left(G, C^{*}\right) \rightarrow H^{l}(G, C)$ is injective.

Using the exact sequences above, one sees it is enough to prove that io $\mathrm{j}: \mathrm{H}^{\mathrm{l}}(\mathrm{G}, \mathrm{N}) \rightarrow \mathrm{H}^{\mathrm{l}}\left(\mathrm{G}, \mathrm{C}^{*}\right)$ is trivial. But N is a discrete subgroup of \bar{K}^{*}, hence $\mathrm{i} \circ \mathrm{j}$ factors through $H^{l}\left(G, \bar{K}^{*}\right)$, where now $\overline{\mathrm{K}}^{*}$ is viewed as a discrete group; by Theorem 90, $\mathrm{H}^{1}\left(\mathrm{G}, \overline{\mathrm{K}}^{*}\right)$ is trivial, hence also io, q.e.d.

Let now $\phi: G \rightarrow K^{* *}$ be a continuous character. Since $\phi(G)$ is compact, it is contained in U_{K}, hence in U_{C}, and $\log \phi: G \rightarrow C$ is an additive 1 -cocycle. Its cohomology class in $\mathrm{H}^{\mathrm{l}}(\mathrm{G}, \mathrm{C})$ is $\mathrm{L} \bar{\phi}$, where $\bar{\phi}$ is the cohomology class of ϕ in $H^{1}\left(G, C^{*}\right)$.

PROPOSITION $3-$ The properties $\phi \sim 1$ and $L \bar{\phi}=0$ are equivalent. This follows from the injectivity of L.

COROLLARY - If there exists a non-zero integer n such that $\phi^{\mathrm{n}} \sim 1$, then $\phi \sim 1$.

Indeed, $L \bar{\phi}=\frac{1}{n} L \bar{\phi}^{n}=0$.

Remark

Springer has proved that $H^{1}(G, C)$ is of dimension 1 over K (cf. Tate [39], §3.3). Hence, one can take for basis of $H^{l}(G, C)$ the element $L \bar{X}$, where X is the fundamental character defined in chap. I, 1.2. In particular, for any $\phi: G \rightarrow K^{*}$, there is an element $c(\phi)$ of K such that $L \bar{\phi}=c(\phi) L \bar{X}$; when K is locally compact, this $c(\phi)$ may be computed explicitly, see A6, Exer. 2.

A3. A criterion for local triviality

From now on, E denotes a subfield of K having the following properties:
(a) E contains Q_{p} and $\left[E: Q_{p}\right]<\infty$ (so that E is locally compact).
(b) K contains all Q_{p}-conjugates of E.

We denote by Γ_{E} the set of all Q_{p}-embeddings of E in K. Consider a continuous character

$$
\psi: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \rightarrow \mathrm{E}^{*}
$$

with values in E. For each $\sigma \in \Gamma_{E}$ this gives a character $\sigma \circ \psi: \mathrm{G} \rightarrow \mathrm{E}^{*} \xrightarrow{\sigma} \mathrm{~K}^{*}$ of $\mathrm{G}=\mathrm{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ into K^{*}.

PROPOSITION 3 - The following two properties are equivalent :
(1) ψ is equal to l on an open subgroup of the inertia group of G,
(2) $\sigma \circ \psi \sim 1$ for all $\sigma \in \Gamma_{E}$.

Proof
(1) \Rightarrow (2) is trivial from the result of Al (since we know that admissibility can be seen on an open subgroup of the inertia group).
(2) \Rightarrow (1). We use the log map defined in A2. Note that ψ takes values in the group U_{E} of units of E, hence $\log \psi: G \rightarrow E$ is well defined. Let I be the inertia group of G; the subgroup $\log \psi(I)$ of E is compact, and hence isomorphic to Z_{p}^{n} for some n. If W is the Q_{p}-vector subspace of E generated by $\log \psi(I)$, we see that $\log \psi(I)$ is a lattice in W, and $\operatorname{dim} W=n$. Note that saying that ψ is equal to l on an open neighbourhood of 1 in I is equivalent to saying that $\log \psi(\mathrm{I})=0$ (since $\log : \mathrm{U}_{\mathrm{E}} \rightarrow \mathrm{E}$ is a local isomorphism). Suppose this is not the case, i.e. suppose that $n \geq 1$. Choose a Q_{p}-linear map $f: E \rightarrow K$ such that $\operatorname{dim} f(W)=1$; such a map obviously exists. By Galois theory (independence of characters) the set Γ_{E} is a basis of $\operatorname{Hom}_{Q_{p}}(E, K)$. Hence, there exist $k_{\sigma} \in K$ with

$$
\mathrm{f}=\sum_{\sigma \in \Gamma_{\mathrm{E}}} \mathrm{k}_{\sigma}{ }^{\sigma}
$$

and we have $f \circ \log \psi=\Sigma \mathrm{k}_{\sigma} \sigma \circ \log \psi=\Sigma \mathrm{k}_{\sigma} \log (\sigma \circ \psi)$.

But by assumption (and Prop. 3 of A2), the additive 1-cocycle $\log (\sigma \circ \psi): \mathrm{G} \rightarrow \mathrm{K}$ is cohomologous to 0 . Hence the same is true for folog ψ. But we may assume (replacing f by $p N_{f}$, with N large, if necessary) that there exists a continuous homomorphism $F: U_{E} \rightarrow U_{K}$ such that $f \circ l o g=l o g \circ F$. We then have $\log (F \circ \psi)=f \circ \log \psi$ and hence (cf. Prop. 3 of A2), F० $\psi \sim 1$, i.e. Fo ψ is admissible. But $F \circ \psi$ has now the property that $F \circ \psi(I) \subset U_{K}$ is a p-adic Lie group of dimension 1 (product of Z_{p} with a finite group). This contradicts a theorem of Tate ([39], §3, Th. 2), hence the result.

A4. The character X_{E}

We keep the same hypotheses on K and E as in the previous section. By class field theory, the group $G a l(\bar{E} / E)^{a b}$ may be identified with the completion \hat{E}^{*} of E^{*} with respect to the topology of open subgroups of finite index. In particular, we have an exact sequence

$$
1 \rightarrow \mathrm{U}_{\mathrm{E}} \rightarrow \operatorname{Gal}(\mathrm{E} / \mathrm{E})^{\mathrm{ab}} \rightarrow \hat{\mathrm{Z}} \rightarrow 1
$$

where $\hat{Z} \cong \prod Z_{\ell}$ denotes the completion of Z with respect to the topology of subgroups of finite index (cf. for instance Artin-Tate [2] or Cassels-Frohlich [6], Chap.VI, §2).

Let now π be a uniformizing element of E. The image of π in $G a(\bar{E} / E)^{a b}$ generates a subgroup whose closure is isomorphic to \hat{Z}, and this gives an isomorphism:

$$
\operatorname{Gal}(\bar{E} / E)^{a b} \simeq U_{E} \times \hat{Z}
$$

Let $\mathrm{pr}_{\pi}: \operatorname{Gal}(\overline{\mathrm{E}} / \mathrm{E})^{\mathrm{ab}} \rightarrow \mathrm{U}_{\mathrm{E}}$ be the projection associated with this decomposition (the Galois extension of E corresponding to $\operatorname{Ker}\left(\mathrm{pr} \boldsymbol{\pi}^{\text {) }}\right.$ is the composite of all finite abelian extensions of E for which π is a norm, cf. [6], p. 144-145).

On the other hand, the inclusion $\mathrm{E} \rightarrow \mathrm{K}$ defines a homomorphism $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \rightarrow \operatorname{Gal}(\overline{\mathrm{E}} / \mathrm{E})$, hence also a homomorphism

$$
\mathbf{r}_{\mathrm{E}}: G \rightarrow \operatorname{Gal}(\bar{E} / E)^{\mathrm{ab}}
$$

Define $X_{E, \pi}\left(\right.$ abbr. $\left.X_{E}\right)$ to be the composite homomorphism

$$
\mathrm{G} \rightarrow \mathrm{Gal}(\overline{\mathrm{E}} / \mathrm{E})^{\mathrm{ab}} \rightarrow \mathrm{U}_{\mathrm{E}} \xrightarrow{\mathrm{i}} \mathrm{U}_{\mathrm{E}},
$$

where $i(x)=x^{-1}$ for $x \in U_{E}$. Observe that the restriction of X_{E} to the inertia group of G is $x \mapsto r_{E}\left(x^{-1}\right)$, and hence is independent of the choice of π.

PROPOSITION 4 - Let F_{π} be the Lubin-Tate formal group ([17], see also [6], chap. VI, §3) associated to E and π. Let T be its Tate-module, which is free of rank 1 over the ring O_{E} of integers of E. The action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on T is given by the character
$X_{E}: G \rightarrow U_{E}$, defined above.

This follows from the main theorem of [17] (see also [6], Th. 3, p. 149).

COROLLARY - If $E=Q_{p}$ and $\pi=p$, then the character X_{E} coincides with the character x defined in chap. I, 1.2 .

Indeed, the Lubin-Tate group is now the multiplicative group G_{m} and its Tate module is the module $T_{p}(\mu)$ defined in chap. I, 1. 2.

Remark

If K is locally compact, we may identify $G^{a b}$ to \hat{K}^{*} and the character X_{E} is given by

$$
\hat{\mathrm{K}}^{*} \xrightarrow{\mathrm{~N}} \hat{\mathrm{E}}^{*} \xrightarrow{\mathrm{pr} \pi} \mathrm{U}_{\mathrm{E}} \xrightarrow{\mathrm{i}} \mathrm{U}_{\mathrm{E}},
$$

where $N=N_{K / E}$ is the norm map. [This follows from the fundtorial properties of the "reciprocity law" of local class field theory.]

In particular, the restriction of X_{E} to the inertia subgroup U_{K} of $G^{a b}$ is $x \mapsto N_{K / E}\left(x^{-1}\right)$.

A5. Characters associated with Hodge-Tate decompositions
Retaining the notation of the previous sections, let $\rho: G \rightarrow U_{E}$ be a continuous homomorphism. Let V be a one-dimensional vector space over E; we make G act on V by

$$
(s, y) \mapsto \rho(s) y, \quad s \in G, y \in V
$$

Hence V is a G-module. Let $W=C \otimes_{Q_{p}} V$, where $C=\hat{\bar{K}}$ as
before. This is a d-dimensional vector space over C, where $d=\left[E: Q_{p}\right]$. Every element x of E defines a C-endomorphism a_{x} of W by

$$
a_{x}\left(\Sigma c_{i} \otimes y_{i}\right)=\Sigma c_{i} \otimes x y_{i}, \quad c_{i} \in C, y_{i} \in V
$$

We get in this way a representation of E in the C-vector space W; note that the action of a_{x} commutes with the action of G. Let $\sigma \in \Gamma_{E}$ and put

$$
W_{\sigma}=\left\{w \mid w \in W, a_{x}(w)=\sigma(x) w \quad \text { for all } x \in E\right\} .
$$

LEMMA 1- (a) Each W_{σ} is a one-dimensional C-vector space stable by G.
(b) W is the direct sum of the $\mathrm{W}_{\sigma}{ }^{\prime} \mathrm{s}, \quad \sigma \in \Gamma_{E}$.
(c) For each $\sigma \in \Gamma_{E}$, the Galois module W_{σ} is isomorphic to $C(\sigma \circ \rho)$.
[For the definition of the "twisted" module $C(\sigma \circ \rho)$ see A2, Remark 3.]

Proof. The assertions (a) and (b) are consequences of the wellknown fact that $C \otimes_{Q_{p}} E$ is a product of d copies of C, the
projections $C \otimes_{Q_{p}} E \rightarrow C$ being given by the elements of Γ_{E}.
For (c) note that the same decomposition holds for
$V_{K}=K \otimes_{Q_{p}} V$, since K contains all the Q_{p}-conjugates of E;
hence for each $\sigma \in \Gamma_{E}$, there exists a $w \in W_{\sigma}$ contained in V_{K}.

For such a w, say $w=\Sigma k_{i} \otimes y_{i}\left(k_{i} \in K, y_{i} \in V\right)$ we have

$$
\begin{aligned}
s(w) & =\Sigma k_{i} \otimes s\left(y_{i}\right) \\
& =\Sigma k_{i} \otimes \rho(s) y_{i} \\
& =a \rho(s)^{w} \\
& =\sigma \circ \rho(s) w \quad \text { since } w \text { belongs to } w_{\sigma},
\end{aligned}
$$

and this implies that W_{σ} is isomorphic to $C(\sigma \circ \rho)$.
If ρ_{1} and ρ_{2} are two characters of G into K^{*}, then we shall write $\rho_{1} \equiv \rho_{2}$ if ρ_{1} and ρ_{2} coincide on an open subgroup of the inertia group of G.

THEOREM 2 - Let $\rho, \mathrm{V}, \mathrm{W}$ be as above and, for each $\sigma \in \Gamma_{E}$, let n_{σ} be an integer. The following are equivalent:
(i)

$$
\rho \equiv \prod_{\sigma \in \Gamma_{E}} \sigma^{-1} \circ \times{ }_{\sigma E}{ }_{\sigma}
$$

(ii) $\sigma \circ \rho \sim x^{n}$ for all $\sigma \in \Gamma_{E}$
(iii) for every $\sigma \in \Gamma_{E}$ the Galois-module W_{σ} is isomorphic to $C\left(x^{n}\right)^{n}$.
[Recall that X is the character defined in chap. I, 1.2, and that $X_{\sigma E}$ is the one attached to the subfield σE of K, as in A4. Note that, since $X_{\sigma E}$ restricted to the inertia group depends only on σE, (i) is meaningful.]

COROLLARY - V is of Hodge -Tate type if and only if there exist $\mathrm{n}_{\sigma} \in \mathrm{Z}$ such that $\rho \equiv \prod_{\sigma \in \Gamma_{\mathrm{E}}} \sigma^{-1}{ }^{\mathrm{c}} \chi^{\mathrm{n}}{ }_{\sigma \mathrm{E}}^{\sigma}$

This follows from (iii) and the fact that $W=C \otimes V$ is the direct sum of the $\mathrm{W}_{\sigma}{ }^{\prime} \mathrm{s}$.

Proof of Theorem 2

We prove first:

LEMMA $2-$ (a) $\chi_{E} \sim \chi$
(b) If $\quad \sigma \in \Gamma_{E}$ is not the inclusion map, $\sigma \chi_{E} \sim 1$.

Proof. Let π be a uniformizing parameter of E, let F_{π} be the Lubin-Tate group associated to E and π, let T_{π} be its Tate module, and $V_{\pi}=T_{\pi} \otimes Q_{p}$. Since V_{π} is a one-dimensional vector space over E, and G acts on V through $X_{E}: G \rightarrow U_{E}$ (cf. A4, Prop. 4), the above constructions apply to V_{π} and X_{E}. By a theorem of Tate ([39], $\S 4$, Cor. 2 to Th. 3), $W_{\pi}=C \otimes_{Q_{p}} V_{\pi}$ has
a Hodge -Tate decomposition of the type

$$
\mathrm{W}_{\pi}=\mathrm{W}_{\pi}(0) \oplus \mathrm{W}_{\pi}(\mathrm{l})
$$

where $\operatorname{dim} W_{\pi}(0)=d-1, \operatorname{dim} W_{\pi}(1)=1$. More precisely, Tate defines canonical isomorphisms $W_{\pi}(0)=C \otimes_{K} \operatorname{Hom}_{E}\left(t^{\prime}, K\right)$, where t^{\prime}
is the (d-1)-dimensional tangent space of the dual of F_{π}, $W_{\pi}(1)=\left(C \otimes_{Q_{p}} V_{p}(\mu)\right) \otimes_{K} t$, where t is the one-dimensional tangent space to F_{π}, and $V_{p}(\mu)$ is the Q_{p}-vector space of dimension 1 defined in Chap. I, 1. 2.
Note that $C \otimes_{Q_{p}} V_{p}(\mu)$ is isomorphic to $C(X)$, hence one gets an isomorphism

$$
\mathrm{W}_{\pi}(1) \cong \mathrm{C}(\mathrm{x}) \otimes_{\mathrm{K}} \mathrm{t}
$$

These isomorphisms commute with the action of E.
Since E acts on t by the inclusion map $\sigma_{1}: E \rightarrow K$, this shows that the component $\left(W_{\pi}\right)_{\sigma_{1}}$ of W_{π} is $W_{\pi}(1)$. Hence, using Lemma 1, we have $C(x) \simeq C\left(X_{E}\right)$, and this implies $X_{E} \sim x$, whence (a). On the other hand, the same argument shows that $\left(\mathrm{W}_{\pi}\right)_{\sigma}, \sigma \neq \sigma_{1}$, are contained in the other factor $W_{\pi}(0)$ of W_{π}; hence $C\left(\sigma \circ x_{E}\right) \cong C(1)$, (where 1 stands, of course, for the unit character), and this proves (b).

We now go back to the proof of Theorem 2. The equivalence of (ii) and (iii) follows from Lemma l. To show (i) \Longleftrightarrow (ii), note first that $X_{\sigma E}$ takes values in σE^{*}, hence $\sigma^{-1} \circ X_{\sigma E}$ takes values in E^{*}, and the same is true for the character
$\rho_{1}=\prod_{\sigma \in \Gamma_{E}} \sigma^{-1} \circ \chi_{\sigma E}{ }^{n}$.

Let $\tau \in \Gamma_{E}$. We have

$$
\tau \circ \rho_{1}=\prod_{\sigma \in \Gamma_{E}} \tau \circ \sigma^{-1} \circ \chi{ }_{\sigma \mathrm{E}}^{\mathrm{n}} .
$$

From Lemma 2, applied to the field σE, we see that $\tau \circ \sigma^{-1} \circ \chi_{\sigma E} \sim 1$ if $\tau \circ \sigma^{-1}$ is not the identity on σE, i.e. if $\tau \neq \sigma$; if $\tau=\sigma$, we have $\tau \circ \sigma^{-1} \circ \chi_{\sigma E}=\chi_{\sigma E} \sim \chi$. Hence $\tau \circ \rho_{1} \sim \chi^{\mathrm{n}} \tau$, and (ii) is equivalent to

$$
\tau \circ \rho_{1} \sim \tau \circ \rho \quad \text { for all } \tau \in \Gamma_{E}
$$

By Prop. 3 of A3, this is equivalent to $\rho_{1} \equiv \rho$, q.e.d.

A6. Locally compact case
We now add to all the previous assumptions regarding K and E, the assumption that K is finite over Q_{p} (i.e. K is locally compact). By local class field theory, we may then identify $G^{a b}$ with \widehat{K}^{*}, and the inertia subgroup of $G^{a b}$ with U_{K}, the group of units of K.

Let T (resp. $T_{E}, T_{\sigma E}$) be the Q_{p}-torus associated to K (resp. to $\mathrm{E}, \sigma \mathrm{E}$, where $\sigma \in \Gamma_{\mathrm{E}}$), cf. ll. The norm map from K to σE defines an algebraic orphism

$$
\mathrm{N}_{\mathrm{K} / \sigma E}: \mathrm{T} \rightarrow \mathrm{~T}_{\sigma E}
$$

By composition with $\sigma^{-1}: \mathrm{T}_{\sigma E} \rightarrow \mathrm{~T}_{E}$, this gives a morphism

$$
\mathbf{r}_{\sigma}=\sigma^{-1} \subset \mathrm{~N}_{\mathrm{K} / \sigma \mathrm{E}}: \mathrm{T} \rightarrow \mathrm{~T}_{\mathrm{E}} .
$$

PROPOSITION 5 - (a) $r_{\sigma}\left(u^{-1}\right)=\sigma^{-1} \circ \chi_{\sigma E}(u)$ for all $u \in U_{K}$,
(b) the $r_{\sigma}\left(\sigma \in \Gamma_{E}\right)$ make a Z -basis of
$\operatorname{Hom}_{\operatorname{alg}}\left(\mathrm{T}, \mathrm{T}_{\mathrm{E}}\right)$.
(Note that (a) makes sense, since U_{K} has been identified with the inertia group of $G^{a b}$.)

Assertion (a) follows from the remark at the end of A4. On the other hand, let $X(T)$ and $X\left(T_{E}\right)$ be the character groups of T and T_{E} respectively. The characters $[s], s \in \Gamma_{K}$ (resp. $(\sigma), \sigma \in \Gamma_{E}$) make a basis of $\mathrm{X}(\mathrm{T})$ (resp. of $\mathrm{X}\left(\mathrm{T}_{\mathrm{E}}\right)$). The monphism $r_{\sigma}: T \rightarrow T_{E}$ defines by transposition a homomorphism

$$
X\left(r_{\sigma}\right): X\left(T_{E}\right) \rightarrow X(T) .
$$

One checks easily that the effect of $\mathrm{X}\left(\mathrm{r}_{\sigma}\right)$ on the basis $[\tau], \tau \in \Gamma_{E}$, is:

$$
\mathrm{X}\left(\mathrm{r}_{\sigma}\right)([\tau])=\underset{s \sigma=\tau}{\Sigma}[\mathrm{s}]
$$

Assertion (b) then follows from:

LEMMA - The elements $X\left(r_{\sigma}\right), \sigma \in \Gamma_{E}$, form a basis of
$\operatorname{Hom}_{G a l}\left(X_{E}\left(T_{E}\right), X(T)\right)$.

Proof. The independence of the $\mathrm{X}\left(\mathrm{r}_{\sigma}\right)$ is clear. On the other hand, let $\phi \in \operatorname{Hom}_{G a l}\left(X_{E}\left(T_{E}\right), \mathrm{X}(\mathrm{T})\right)$ be such that

$$
\phi([\tau])=\Sigma \operatorname{n}(\tau, s)[\mathrm{s}] .
$$

If $\alpha \in \operatorname{Gal}\left(\bar{Q}_{p} / Q_{p}\right)$ is equal to the identity on τE, we have $\alpha[\tau]=[\tau]$, hence $\alpha \phi([\tau])=\phi([\tau])$, ie. $n(\tau, \alpha s)=n(\tau, s)$ for all $s \in \Gamma_{K}$. This means that $n(\tau, s)$ depends only on the element $\sigma=s^{-1} \tau$; if we put $n_{\sigma}=n(\tau, s)$, we then have

$$
\begin{aligned}
\phi([\tau]) & =\sum_{\sigma \in \Gamma_{E}} n_{\sigma} \underset{s \sigma=\tau}{\Sigma}[s] \\
& =\sum_{\sigma \in \Gamma_{E}} n_{\sigma} \mathrm{X}^{\left(r_{\sigma}\right)([\tau]) .}
\end{aligned}
$$

This proves the lemma.

PROPOSITION 6 - Let ρ and $\left(n_{\sigma}\right), \sigma \in \Gamma_{E}$, be as in Th. 2 of A5.
Let $\mathrm{r}: \mathrm{T} \rightarrow \mathrm{T}_{\mathrm{E}}$ be the orphism defined by

$$
\mathbf{r}=\prod_{\sigma \in \Gamma_{E}}{ }^{r_{\sigma}{ }^{n}{ }^{\sigma}} .
$$

The equivalent properties (i), (ii), (iii) of Th. 2 are equivalent to:
(iv) There exists an open subgroup U^{\prime} of the inertia subgroup U_{K} of $G^{a b}$ such that $r(u) \rho(u)=1$ if $u \in U^{\prime}$.

Indeed, (iv) is just a reformulation of (i), since we know that $\sigma^{-1}{ }^{-1} x_{\sigma E}(u)=r_{\sigma}\left(u^{-1}\right)$ if $u \in U_{K}$.

COROLLARY - The following are equivalent:
(a) ρ is locally algebraic.
(b) The Galois module V attached to ρ is of Hodge-Tate
type.

This follows from Theorem 2, combined with Prop. 5 and Prop. 6.

Exercises

1) a) Let $A=\operatorname{End}_{Q_{p}}(K)$ be the space of Q_{p}-linear undomorphisms of K; if $a \in A$, denote by $\operatorname{Tr}(a)$ the trace of a. If $x \in K$, denote by u_{x} the endomorphism $y \mapsto x y$ of K. Show that, for any $a \in A$, there exists a unique element $c_{K}(a)$ of K such that

$$
\operatorname{Tr}\left(u_{x} \circ a\right)=\operatorname{Tr}_{K / Q_{p}}\left(x \cdot c_{K}(a)\right) \quad \text { for all } x \in K
$$

b) Show that the map $c_{K}: A \rightarrow K$ so defined is K-linear for both the natural structures of K-vector space on A.
c) Let e_{i} be a Q_{p}-basis of K and let e_{i}^{\prime} be the dual basis, so that $\operatorname{Tr}_{K / Q_{p}}\left(e_{i} e_{j}^{\prime}\right)=\delta_{i j}$. Show that

$$
c_{K}(a)=\sum_{i} a\left(e_{i}\right) e_{i}^{\prime} \quad \text { if } a \in A
$$

d) If $L \supset K$ and $a \in A$, show that

$$
c_{L}\left(a \cdot T r_{L / K}\right)=c_{K}(a) .
$$

Show that $c_{K}\left(\operatorname{Tr}_{K / Q_{p}}\right)=1$.
e) If K is a Galois extension of Q_{p}, show that $c_{K}(\sigma)=0$ for every $\sigma \in \operatorname{Gal}\left(K / Q_{p}\right), \sigma \neq$ id., and $c_{K}(\mathrm{id})=$.1 .
2) Let $\phi: G^{a b} \rightarrow K^{*}$ be a continuous homomorphism, and let a_{ϕ} be the Q_{p}-linear endomorphism of K such that the diagram

$\downarrow \log \downarrow \log$

is commutative. Let $L \bar{\phi}$ (resp. L $\bar{\chi}$) be the image of ϕ (resp. χ) in the one-dimensional K-vector space $H^{1}(G, C)$, cf. A2. Show that

$$
L \bar{\phi}=c \cdot L \bar{x}
$$

extension of Q_{p} and $\phi=\sigma^{-1} \circ \chi_{K}, \sigma \in \operatorname{Gal}\left(K_{(}\left(Q_{p}\right)\right.$, in which case

In particular, ϕ is admissible if and only if $\mathrm{c}_{\mathrm{K}}\left(\mathrm{a}_{\phi}\right)=0$.

A7. Tate's Theorem
We recall the statement (cf. 1.2); here again, K is locally compact.

THEOREM 3- Let V be a finite dimensional vector space over Q_{p} and let $\rho: G^{\text {al }} \rightarrow$ Mut (V) be an abelian p-adic representation of K. The following are equivalent :
(1) ρ is locally algebraic
(2) ρ is of Hodge-Tate type and its restriction to the inertia group is semi-simple.

Proof. We have already remarked (cf. 1. 1) that (l) implies:
(*) - The restriction of ρ to the inertia group is semi-simple.
Hence we may assume that (*) holds.
Let π be a uniformizing element of K , and let $\mathrm{pr} \pi$ denote the projection map of $G^{a b}$ onto its inertia group U_{K} associated to π (cf. A4 and Cassels-Frohlich [6], p. 144-145). Define a new representation ρ^{\prime} of $G^{a b}$ by

$$
\rho^{\prime}=\rho \circ p r_{\pi} .
$$

Replacing ρ by ρ^{\prime} does not affect the local algebraicity (clear), nor the Hodge -Tate property (this follows from Al, Cor. 2 to Th. 1). Since (*) implies that ρ^{\prime} is semi-simple, this means
that, after replacing ρ by ρ^{\prime}, we may assume that ρ is semisimple and even (by an easy reduction) that it is simple. Let then $E \subset$ End (V) be the commuting algebra of ρ. Since ρ is abelian and simple, E is a commutative field, of finite degree over Q_{p}, and V is a one-dimensional vector space over E; the representation ρ is given by a continuous character $\rho: G \rightarrow E^{*}$.

Let now K^{\prime} be a finite extension of K which is large enough to contain all the Q_{p}-conjugates of E. Call (1^{\prime}) and (2^{\prime}) the properties corresponding to (1) and (2), when K^{\prime} is taken as groundfield instead of K. We know (cf. l.1) that (1) $\Longleftrightarrow\left(l^{\prime}\right)$. By Cor. 2 to Th. 1 of Al , we have $(2) \Longleftrightarrow\left(2^{\prime}\right)$. Hence it is enough to prove that $\left(1^{\prime}\right) \Longleftrightarrow\left(2^{\prime}\right)$, and this has been done in A6 (Cor. to Prop. 6), q.e.d.

CHAPTER IV

ौ-ADIC REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES

Let K be a number field and let E be an elliptic curve over K. If ℓ is a prime number, let

$$
\rho_{\ell}: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \longrightarrow \operatorname{Aut}\left(\mathrm{V}_{\ell}(\mathrm{E})\right)
$$

be the corresponding ℓ-adic representation of K, $c f . c h a p . ~ I, ~ 1.2$. The main result of this Chapter is the determination of the Lie algebra of the ℓ-adic Lie group $G_{\ell}=\operatorname{Im}\left(\rho_{\ell}\right)$. This is based on a finiteness theorem of Šafarevič (1.4) combined with the properties of locally algebraic abelian representations (chap. III) and Tate's local theory of elliptic curves with non-integral modular invariant (Appendix, Al). The variation of G_{ℓ} with ℓ is studied in $\S 3$.

The Appendix gives analogous results in the local case (i.e. when K is a local field).

§1. PRELIMINARIES

1.1. Elliptic curves (cf. Cassels [5], Deuring [9], Igusa [10])

By an elliptic curve, we mean an abelian variety of dimension l, i. e. a complete, non singular, connected curve of genus l with a given rational point P_{o}, taken as an origin for the composition law (and often written 0).

Let E be such a curve. It is well known that E may be embedded, as a non-singular cubic, in the projective plane $P_{2 / K}$, in such a way that P_{o} becomes a 'flex' (one takes the projective embedding defined by the complete linear series containing the divisor 3. P_{0}). In this embedding, three points P_{1}, P_{2}, P_{3} have sum 0 if and only if the divisor $P_{1}+P_{2}+P_{3}$ is the intersection of E with a line. By choosing a suitable coordinate system, the equation of E can be written in Weierstrass form

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

where x, y are non-homogeneous coordinates and the origin P_{0} is the point at infinity on the y-axis. The discriminant

$$
\Delta=g_{2}^{3}-27 g_{3}^{2}
$$

is non-zero.
The coefficients g_{2}, g_{3} are determined up to the transformations $\mathrm{g}_{2} \longmapsto \mathrm{u}^{4} \mathrm{~g}_{2}, \mathrm{~g}_{3} \longmapsto \mathrm{u}^{6} \mathrm{~g}_{3}, \mathrm{u} \in \mathrm{K}^{*}$. The modular invariant j of E is

$$
j=2^{6} 3^{3} \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}=2^{6} 3^{3} \frac{g_{2}^{3}}{\Delta}
$$

Two elliptic curves have the same j invariant if and only if they become isomorphic over the algebraic closure of K .
(All this remains valid over an arbitrary field, except that, when the characteristic is 2 or 3 , the equation of E has to be written in the more general form

$$
y^{2}+a_{1} x y+a_{3} y+x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0
$$

Here again, 0 is the point at infinity on the y-axis and the corresponding tangent is the line at infinity. There are corresponding definitions for Δ and j, for which we refer to Deuring [9] or Ogg [20]; note, however, that there is a misprint in Ogg's formula for Δ : the coefficient of β_{4}^{3} should be -8 instead of -1 .)

1.2. Good reduction

Let $v \in \Sigma_{K}$ be a place of the number field K. We denote by O_{v} (resp. \underline{m}_{v}, k_{v}) the corresponding local ring in K (resp. its maximal ideal, its residue field).

Let E be an elliptic curve over K. One says that E has good reduction at v if one can find a coordinate system in $P_{2 / K}$ such that the corresponding equation f for E has coefficient in O_{V} and its reduction $\tilde{f} \bmod \underline{m}_{v}$ defines a non-singular cubic \tilde{E}_{v} (hence an elliptic curve) over the residue field k_{v} (in other words, the discriminant $\Delta(f)$ of f must be an invertible element of $\left.O_{v}\right)$. The
curve ${\underset{V}{v}}$ is called the reduction of E at v; it does not depend on the choice of f, provided, of course, that $\Delta(f) \in O_{v^{*}}^{*}$.

One can prove that the above definition is equivalent to the following one: there is an abelian scheme E_{v} over $\operatorname{Spec}\left(O_{v}\right)$, in the sense of Mumford [19], chap. VI, whose generic fiber is E; this scheme is then unique, and its special fiber is \widetilde{E}_{v}. Note that \widetilde{E}_{v} is defined over the finite field k_{v}; we denote its Frobenius endomorphism by F_{v}.

On either definition, one sees that E has good reduction for almost all places of K.

If E has good reduction at a given place v, its j invariant is integral at v (i.e. belongs to O_{v}) and its reduction $\tilde{j} \bmod \underline{m}_{v}$ is the j invariant of the reduced curve \tilde{E}_{v}.

The converse is almost true, but not quite: if j belongs to O_{v}, there is a finite extension L of K such that $E X_{K} L$ has good reduction at all the places of L dividing v (this is the "potential good reduction' of Serre-Tate [32], §2). For the proof of this, see Deuring [29], §4, $\mathrm{n}^{\mathrm{O}} 3$.

Remark
The definitions and results of this section have nothing to do with number fields. They apply to every field with a discrete valuation.
1.3. Properties of V_{ℓ} related to good reduction

Let ℓ be a prime number. We define, as in chap. I, 1.2 , the Galois modules T_{ℓ} and V_{ℓ} by:

$$
V_{\ell}=T_{\ell} \otimes Q_{\ell}, T_{\ell}=\underset{\ell}{\Longleftrightarrow} E_{\ell}
$$

where $E_{\ell}{ }^{n}$ is the kernel of $\ell^{n}: E(\bar{K}) \longrightarrow E(\bar{K})$.
We denote by ρ_{l} the corresponding homomorphism of $\operatorname{Gal}(\bar{K} / K)$ into $\operatorname{Aut}\left(\mathrm{T}_{\ell}\right)$. Recall that $\mathrm{E}_{\boldsymbol{\ell}} \mathrm{n}^{\prime} \mathrm{T}_{\boldsymbol{\ell}}$ and $\mathrm{V}_{\boldsymbol{\ell}}$ are of rank 2 over $Z / \ell^{n} Z, Z_{\ell}$ and Q_{ℓ}, respectively.

Let now v be a place of K, with $p_{v} \neq \ell$ and let \bar{v} be some extension of v to \bar{K}; let D (resp. I) be the corresponding decomposition group (resp. inertia group), cf. chap. I, 2.l. If E has good reduction at v, one easily sees that reduction at \bar{v} defines an isomorphism of $E_{\boldsymbol{l}}{ }^{n}$ onto the corresponding module for the reduced curve \tilde{E}_{v}. In particular, $E_{\ell^{\prime}} \mathrm{T}_{\ell}, V_{\ell}$ are unramified at v (chap. I, 2.1) and the Frobenius automorphism $F_{v, \rho_{l}}$ of T_{ℓ} corresponds to the Frobenius endomorphism F_{v} of \tilde{E}_{v}. Hence:

$$
\operatorname{det}\left(F_{v, \rho_{l}}\right)=\operatorname{det}\left(F_{v}\right)=\operatorname{Nv}
$$

and

$$
\operatorname{det}\left(1-F_{v, \rho_{l}}\right)=\operatorname{det}\left(1-F_{v}\right)=1-\operatorname{Tr}\left(F_{v}\right)+N v
$$

is equal to the number of k_{v}-points of \widetilde{E}_{v}. Conversely:

CRITERION OF NÉRON-OGG-ŠAFAREVIČ. If V_{ℓ} is unramified at v for some $\ell \neq p_{v}$, then E has good reduction at v.

For the proof, see Serre-Tate [32], §1.

COROLLARY - Let E and E^{\prime} be two elliptic curves which are isogenous (over K). If one of them has good reduction at a place v, the same is true for the other one.
(Recall that E and E^{\prime} are said to be isogenous if there exists a non-trivial morphism $E \longrightarrow E^{\prime}$.)

This follows from the theorem, since the ℓ-adic representations associated with E and E^{\prime} are isomorphic.

Remark
For a direct proof of this corollary, see Koizumi-Shimura [11].

Exercise

Let S be the finite set of places where E does not have good reduction. If $v \in \Sigma_{K}-S$, we denote by t_{v} the number of k_{v}-points of the reduced curve \widetilde{E}_{v}.
(a) Let l be a prime number and let m be a positive integer. Show that the following properties are equivalent:
(i) $\mathrm{t}_{\mathrm{v}} \equiv 0 \bmod \ell^{\mathrm{m}}$ for all $\mathrm{v} \in \Sigma_{\mathrm{K}}-\mathrm{S}, \mathrm{p}_{\mathrm{v}} \neq \ell$.
(ii) The set of $v \in \Sigma_{K}-S$ such that $t_{v} \equiv 0 \bmod \ell^{m}$ has density one (cf. chap. I, 2.2).
(iii) For all $s \in \operatorname{Im}\left(\rho_{\ell}\right)$, one has $\operatorname{det}(l-s) \equiv 0 \bmod \ell^{m}$.
(The equivalence of (ii) and (iii) follows from Čebotarev's density theorem. The implications (i) \Longrightarrow (ii) and (iii) \Longrightarrow (i) are easy.)
(b) We take now $m=1$. Show that the properties (i), (ii), (iii) are equivalent to:
(iv) There exists an elliptic curve E^{\prime} over K such that:
(a) Either E^{\prime} is isomorphic to E, or there exist an isogeny
$E^{\prime} \longrightarrow E$ of degree ℓ.
(β) The group $E^{\prime}(K)$ contains an element of order ℓ.
(The implication (iv) \Longrightarrow (iii) is easy. For the proof of the converse, use Exer. 2 of chap. I, l.l.) \rightarrow [for $m \geq 2$, see Katz [64].]
1.4. Šafarevič's theorem

It is the following (cf. [23]):

THEOREM - Let S be a finite set of places of K. The set of isomorphism classes of elliptic curves over K , with good reduction at all places not in S, is finite.

Since isogenous curves have the same bad reduction set (cf.
1.3), this implies:

COROLLARY - Let E be an elliptic curve over K. Then, up to isomorphism, there are only a finite number of elliptic curves which are K-isogenous to E.

To prove the theorem, we use the following criterion for good reduction:

LEMMA - Let S be a finite set of places of K containing the divisors of 2 and 3 , and such that the ring O_{S} of S-integers is principal. Then, an elliptic curve E defined over K has good re$\frac{\text { duction outside }}{} S \frac{\text { if and only if its equation can be put in the }}{2}$ $\frac{\text { Weierstrass form }}{3} y^{2}=4 x^{3}-g_{2} x-g_{3}$ with $g_{i} \in O_{S}$ and $\Delta=g_{2}^{3}-27 g_{3}^{2} \in O_{S}^{*}$ (the group of units of O_{S}).

Proof. The sufficiency is trivial. To prove necessity, we write the curve E in the form

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2}^{\prime} x-g_{3}^{\prime} \tag{*}
\end{equation*}
$$

with $g_{i}^{\prime} \in K$. Let v be a place of K not in S. Then, since there is good reduction at v, and since the divisors of 2 and 3 do not belong
to S, the curve E can be written in the form

$$
y^{2}=4 x^{3}-g_{2, v} x-g_{3, v}
$$

with $g_{i, v}$ in the local ring at v and the discriminant Δ_{v} a unit in this ring. Using the properties of the Weierstrass form, there is an element $u_{v} \in K^{*}$ such that $g_{2, v}=u_{v}^{4} g_{2}^{\prime}, g_{3, v}=u_{v}^{6} g_{3}^{\prime}, \Delta_{v}=u^{12} \Delta^{\prime}$; moreover, as we can take $g_{i, v}=g_{i}^{\prime}$ for almost all v, we see that we can assume that $u_{v}=1$ for almost all $v \notin S$. Since the ring O_{S} is principal, there is an element $u \in K^{*}$ with $v(u)=v\left(u_{v}\right)$ for all $v \notin S$. Then, if we replace x by $u^{-2} x$ and y by $u^{-3} y$ in (*), the curve E takes the form

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

with $g_{2}=u^{4} g_{2}^{\prime}, g_{3}=u^{6} g_{3}^{\prime}$ and $\Delta=u^{12} \Delta^{\prime}$. Since, by construction, $g_{i} \in O_{S}$ and $\Delta \in O_{S}^{*}$, the lemma is established.

Proof of the theorem. After possibly adding a finite number of places of K to S, we may assume that S contains all the divisors of 2 and 3, and that the ring O_{S} is principal. If E is an elliptic curve defined over K having good reduction outside S, the above lemma tells us that we can write E in the form

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} \tag{*}
\end{equation*}
$$

with $g_{i} \in O_{S}$ and $\Delta=g_{2}^{3}-27 g_{3}^{2} \in O_{S}^{*}$. But, since we are free to multiply Δ by any $u \in\left(O_{S}^{*}\right)^{12}$, and since $O_{S}^{*} /\left(O_{S}^{*}\right)^{12}$ is a finite group, we see that there is a finite set $X \subset O_{S}^{*}$ such that any elliptic
curve of the above type can be written in the form (*) with $g_{i} \in O_{S}$ and $\Delta \in X$. But, for a given Δ, the equation

$$
u^{3}-27 V^{2}=\Delta
$$

represents an affine elliptic curve. Using a theorem of Siegel (generalized by Mahler and Lang, cf. Lang [14], chap. VII), one sees that this equation has only a finite number of solutions in O_{S}. This finishes the proof of the theorem.

Remark
There are many ways in which one can deduce Šafarevič's theorem from Siegel's. The one we followed has been shown to us by Tate.

§2. THE GALOIS MODULES ATTACHED TO E

In this section, E denotes an elliptic curve over K. We are interested in the structure of the Galois modules $\mathrm{E}_{\boldsymbol{\ell}} \mathrm{n}^{\prime} \mathrm{T}_{\boldsymbol{\ell}}, \mathrm{V}_{\boldsymbol{\ell}}$ defined in 1.3.
2.1. The irreducibility theorem

Recall first that the ring $E_{K}(E)$ of K-endomorphisms of E is either Z or of rank 2 over Z. In the first case, we say that E has "no complex multiplication over K." If the same is true for any finite extension of K, we say that E has 'no complex multiplication. "

Then:
(a) V_{ℓ} is irreducible for all primes ℓ;
(b) E_{ℓ} is irreducible for almost all primes ℓ.

We need the following elementary result:

LEMMA - Let E be an elliptic curve defined over K with End $_{K}(E)=Z$. Then, if $E^{\prime} \longrightarrow E, E^{\prime \prime} \longrightarrow E$ are K-isogenies with non-isomorphic cyclic kernels, the curves E^{\prime} and $E^{\prime \prime}$ are nonisomorphic over K.

Proof. Let n^{\prime} and $n^{\prime \prime}$ be respectively the orders of the kernels of $E^{\prime} \longrightarrow E$ and $E^{\prime \prime} \longrightarrow E$. Suppose that E^{\prime} and $E^{\prime \prime}$ are isomorphic over K, and let $E^{\prime} \longrightarrow E^{\prime \prime}$ be an isomorphism. If $E \longrightarrow E^{\prime}$ is the transpose of the isogeny $E^{\prime} \longrightarrow E$, it has a cyclic kernel of order n^{\prime}, and hence the isogeny $\mathrm{E} \longrightarrow \mathrm{E}$, obtained by composition of $\mathrm{E} \longrightarrow \mathrm{E}^{\prime}, \mathrm{E}^{\prime} \longrightarrow \mathrm{E}^{\prime \prime}, \mathrm{E}^{\prime \prime} \longrightarrow \mathrm{E}$, has for kernel an extension of $Z / n^{\prime \prime} Z$ by $Z / n^{\prime} Z$. But, since $E_{K}(E)=Z$, this isogeny must be multiplication by an integer a, and its kernel must therefore be of the form $Z / a Z \times Z / a Z$. Hence n^{\prime} and $n^{\prime \prime}$ divide a. Since $a^{2}=n^{\prime} n^{\prime}$, we obtain $a=n^{\prime}=n^{\prime}$, a contradiction.

Proof of the theorem.

(a) It suffices to show that, if $E n{ }_{K}(E)=Z$, there is no onedimensional Q_{ℓ}-subspace of V_{ℓ} stable under $\operatorname{Gal}(\bar{K} / K)$. Suppose there were one; its intersection X with T_{ℓ} would be a submodule of T_{ℓ} with X and T_{ℓ} / X free Z_{ℓ}-modules of rank 1 . For $n \geq 0$, consider the image $X(n)$ of X in $E_{\ell^{n}}=T / \ell^{n} T$. This is a submodule of $E{ }_{\ell}{ }^{n}$ which is cyclic of order ℓ^{n} and stable by $\operatorname{Gal}(\bar{K} / \mathrm{K})$. Hence it corresponds to a finite K -algebraic subgroup of.
E and one can define the quotient curve $E(n)=E / X(n)$. The kernel of the isogeny $E \longrightarrow E(n)$ is cyclic of order ℓ^{n}. The above lemma then shows that the curves $E(n), n \geq 0$, are pairwise non-isomorphic, contradicting the corollary to Šafarevič's theorem (1.4).
(b) If E_{ℓ} is not irreducible, there exists a Galois submodule X_{ℓ} of E which is one-dimensional over F_{ℓ}. In the same way as above, this defines an isogeny $\mathrm{E} \longrightarrow \mathrm{E} / \mathrm{X}_{\ell}$ whose kernel is cyclic of order ℓ. The above lemma shows that the curves which correspond to different values of ℓ are non-isomorphic, and one again applies the corollary to Šafarevič's theorem.

Remark

One can prove part (a) of the above theorem by a quite different method (cf. [25], §3.4); instead of the Šafarevič's theorem, one uses the properties of the decomposition and inertia subgroups of $\operatorname{Im}\left(\rho_{\ell}\right)$, cf. Appendix.
2.2. Determination of the Lie algebra of G_{ℓ}

Let $G_{\ell}=\operatorname{Im}\left(\rho_{\ell}\right)$ denote the image of $\operatorname{Gal}(\bar{K} / K)$ in $\operatorname{Aut}\left(T_{\ell}\right)$, and let ${\underset{g}{\ell}}^{C} \operatorname{End}\left(\mathrm{~V}_{\boldsymbol{\ell}}\right)$ be the Lie algebra of $G_{\boldsymbol{\ell}}$.

THEOREM - If E has no complex multiplication (cf. 2.1), then $g_{\ell}=\operatorname{End}\left(V_{\ell}\right)$, i.e. G_{ℓ} is open in $\operatorname{Aut}\left(T_{\ell}\right)$.

Proof. The irreducibility theorem of 2.1 shows that, for any open subgroup U of G_{ℓ}, V_{ℓ} is an irreducible U-module. Hence, V_{ℓ} is an irreducible g_{ℓ}-module. By Schur's lemma, it follows that the commuting algebra g_{ℓ}^{\prime} of g_{ℓ} in $\operatorname{End}\left(V_{\ell}\right)$ is a field; since $\operatorname{dim} V_{\ell}=2$, this field is either Q_{ℓ} or a quadratic extension of Q_{ℓ}. If $g_{l}^{\prime}=Q_{\ell}$, then g_{ℓ} is equal to either $\operatorname{End}\left(V_{\ell}\right)$, or the subalgebra
$s \ell\left(V_{\ell}\right)$ of End $\left(V_{\ell}\right)$ consisting of the endomorphisms with trace 0 ; but, in the second case, the action of g_{ℓ} on ${ }^{2} \Lambda V_{\ell}$ would be trivial, and this would contradict the fact that the Galois modules ΛV_{ℓ} and $\mathrm{V}_{\ell}(\mu)$ are isomorphic (chap. I, 1.2). Hence $g_{\ell}=s \ell\left(V_{\ell}\right)$ is impossible.

Suppose now that g_{ℓ}^{\prime} is a quadratic extension of Q_{ℓ}. Then V_{ℓ} is a one-dimensional $\mathrm{g}_{\ell}^{\prime}$-vector space and the commuting algebra of g_{l}^{\prime} in $\operatorname{End}\left(V_{\ell}\right)$ is g_{ℓ}^{\prime} itself. Hence $g_{\boldsymbol{l}}$ is contained in g_{l}^{\prime}, and is abelian g_{l}^{\prime} is a 'non-split Cartan algebra' of End($\left.\mathrm{V}_{\ell}\right)$). After replacing K by a finite extension (this does not affect g_{ℓ}, cf. chap. I, l.1), we may then suppose that G_{ℓ} itself is abelian. The $\boldsymbol{\ell}$-adic representation $\mathrm{V}_{\boldsymbol{\ell}}$ is then semi-simple, abelian and rational. It is, moreover, locally algebraic. To see this, we first remark that, at a place v dividing ℓ, we have $v(j) \geq 0$ since otherwise the decomposition group of v in G_{ℓ} would be non-abelian by Tate's theory (cf. Appendix, i. .l.3); hence, after a finite extension of K, we can assume that E has good reduction at all places v dividing ℓ (cf. 1.2). Let $E(l)$ be the ℓ-divisible group attached to E at v (cf. Tate [39], 2.1, example (a)). We have $\mathrm{V}_{\ell} \simeq \mathrm{V}_{\ell}(\mathrm{E}(\ell))$ and this module is known to be of Hodge-Tate type (loc. cit., §4). Using another result of Tate (chap. III, 1.2), this implies that the representation V_{ℓ} is locally algebraic, as claimed above. (This could also be seen by using, instead of the theory of Hodge-Tate modules, the local results of the Appendix, A2.)

We may now apply to V_{ℓ} the results of chap. III, 2.3. Hence, there is, for each prime ℓ^{\prime}, a rational, abelian, semisimple ℓ^{\prime}-adic representation $W_{\ell^{\prime}}$ compatible with V_{ℓ}. But $\mathrm{V}_{\ell^{\prime}}$ is compatible with V_{ℓ}, and V_{ℓ} is semi-simple. Hence $V_{\ell \prime}$ is isomorphic to $W_{\ell^{\prime}}(c f$. chap. $1,2.3)$. But we know (chap. III, 2.3)
that we may choose ℓ^{\prime} such that $W_{\ell^{\prime}}$ is the direct sum of onedimensional subspaces stable under $\operatorname{Gal}(\bar{K} / K)$. This contradicts the irreducibility of $V_{\ell^{\prime}}$. Hence, we must have $g_{\ell}^{\prime}=Q_{\ell}$ and $g_{\ell}=\operatorname{End}\left(V_{\ell}\right)$, q.e.d.

Remark

If E has complex multiplication, and $\mathrm{L}=\mathrm{Q} \otimes \operatorname{End}\left(\mathrm{E} \times{ }_{\mathrm{K}} \overline{\mathrm{K}}\right)$ is the corresponding imaginary quadratic field, one shows easily that $\mathrm{g}_{\boldsymbol{\ell}}$ is the Cartan subalgebra of $\operatorname{End}\left(\mathrm{V}_{\boldsymbol{\ell}}\right)$ defined by $\mathrm{L}_{\boldsymbol{\ell}}=\mathrm{Q}_{\boldsymbol{\ell}} \otimes \mathrm{L}$. It splits if and only if ℓ decomposes in L.

Exercises

(In these exercises, we assume E has no complex multiplication. Let S be the set of places $v \in \Sigma_{K}$ where E has bad reduction. If $v \in \Sigma_{K}-S$, we denote by F_{v} the Frobenius endomorphism of the reduced curve \tilde{E}_{v}; if $\ell \neq \mathrm{P}_{\mathrm{v}}$, we identify F_{v} to the corresponding automorphism of T_{ℓ}.)

1) Let $\mathrm{H}(\mathrm{X}, \mathrm{Y})$ be a polynomial in two indeterminates X, Y with coefficients in a field of characteristic zero. Let V_{H} be the set of those $v \in \Sigma_{K}-S$ for which $H\left(\operatorname{Tr}\left(F_{v}\right), N v\right)=0$. If H is not the zero polynomial, show that V_{H} has density 0 . (Show that the set of $g \in G L\left(2, Z_{\ell}\right)$ with $H(\operatorname{Tr}(g), \operatorname{det}(g))=0$ has Haar measure zero.)
2) The eigenvalues of F_{v} may be identified with complex numbers of the form

$$
(N v)^{\frac{1}{2}} \mathrm{e}^{ \pm i \varphi_{v}}, \quad 0 \leq \varphi_{\mathrm{v}} \leq \pi
$$

cf. chap. I, Appendix A. 2. Show that the set of v for which φ_{v} is a given angle φ has density zero. (Show that $\operatorname{Tr}\left(F_{v}\right)^{2}=4(N v) \cos ^{2} \varphi$ and then use the preceding exercise.)
3) Let $L_{v}=Q\left(F_{v}\right)$ be the field generated by F_{v}. By the preceding exercise, L_{v} is quadratic imaginary except for a set of v of density 0 .
(a) Let ℓ be a fixed prime. Let C be a semi-simple commutative $Q_{\ell}-$ algebra of rank 2 . Let X_{C} be the set of elements $s \in A u t\left(V_{\ell}\right)$ such that the subalgebra $Q_{\ell}[s]$ of $\operatorname{End}\left(V_{l}\right)$ generated by s is isomorphic to C. Show that X_{C} is open in $\operatorname{Aut}\left(V_{\ell}\right)$, and show that it has a non- empty intersection with every open subgroup of $\operatorname{Aut}\left(V_{\ell}\right)$, in particular, with G_{ℓ}.
(b) Show that $F_{v} \in X_{C}$ if and only if the field L_{v} is quadratic and $L_{v} \otimes Q_{\ell}$ is isomorphic to C.
(c) Let ℓ_{1}, \ldots, l_{n} be distinct prime numbers, and choose for each an algebra C_{i} of the type considered in (a). Show that the set of v for which $F_{v} \in X_{C_{i}}$ for $i=1, \ldots, n$ has density >0.
(Use the fact that the image of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ in any finite product of the $\operatorname{Aut}\left(\mathrm{V}_{\ell}\right)$ is open; this is an easy consequence of the theorem proved above.)
(d) Deduce that, for any finite set P of prime numbers, there exist an infinity of v such that L_{v} is ramified at all $\ell \in P$. In particular, there are an infinite number of distinct fields L_{v}.
2.3. The isogeny theorem

THEOREM - Let E and E^{\prime} be elliptic curves over K, let ℓ be a prime number and let $V_{\ell}(E)$ and $V_{\ell}\left(E^{\prime}\right)$ be the corresponding ℓ-adic representations of K. Suppose that the Galois modules $\mathrm{V}_{\ell}(E)$ and $\mathrm{V}_{\ell}\left(E^{\prime}\right)$ are isomorphic and that the modular invariant j of E (cf. l.l) is not an integer of K. Then E and E^{\prime} are Kisogenous.

We need the following result:

PROPOSITION - Let E and E^{\prime} be elliptic curves over K. The following conditions are equivalent:
(a) The Galois modules $\mathrm{V}_{\ell}(E)$ and $\mathrm{V}_{\ell}\left(E^{\prime}\right)$ are isomorphic for all ℓ.
(b) The Galois modules $\mathrm{V}_{\ell}(E)$ and $\mathrm{V}_{\ell}\left(\mathrm{E}^{\prime}\right)$ are isomorphic for one ℓ.
(c) If F_{v} and F_{v}^{\prime} are the Frobeniuses of the reduced curves \tilde{E}_{v} and \tilde{E}_{v}^{\prime}, we have $\operatorname{Tr}\left(F_{v}\right)=\operatorname{Tr}\left(F_{v}^{\prime}\right)$ for all v where there is good reduction.
(d) For a set of places of K of density one we have $\operatorname{Tr}\left(F_{v}\right)=\operatorname{Tr}\left(F_{v}^{\prime}\right)$.

Clearly (a) implies (b), and (c) implies (d). The implication $(b) \Longrightarrow(c)$ follows from the fact that $\operatorname{Tr}\left(\mathrm{F}_{\mathrm{v}}\right)$ is known when $\mathrm{V}_{\boldsymbol{l}}$ is known. To prove $(\mathrm{d}) \Longrightarrow(\mathrm{a})$ one remarks first that the representtions of $\operatorname{Gal}(\bar{K} / K)$ in $V_{\ell}(E)$ and $V_{\ell}\left(E^{\prime}\right)$ have the same trace, by Čebotarev's density theorem (chap. I, 2.2). Moreover, $V_{\ell}(E)$ (and also $\left.V_{\ell}\left(E^{\prime}\right)\right)$ is semi-simple. This is clear if E has no complex multiplication over K since $V_{\ell}(E)$ is then irreducible (2.1); if E has complex multiplication, it follows from the Remark in 2.2. Since $\mathrm{V}_{\ell}(E)$ and $\mathrm{V}_{\ell}\left(E^{\prime}\right)$ are semi-simple and have the same trace, they are isomorphic.

Remarks

1) If E and E^{\prime} have good reduction at v, let t_{v} (resp. t_{v}^{\prime}) be the number of k_{v}-points of \tilde{E}_{v} (resp. \tilde{E}_{v}^{\prime}). We have the formulas (cf. 1.3):

$$
\begin{aligned}
& t_{v}=1-\operatorname{Tr}\left(F_{v}\right)+N v \\
& t_{v}^{\prime}=1-\operatorname{Tr}\left(F_{v}^{\prime}\right)+N v
\end{aligned}
$$

Hence condition (c) (resp. condition (d)) is equivalent to saying that $t_{v}=t_{v}^{\prime}$ for all v where there is good reduction (resp. for a set of v^{\prime} s of density one).
2) If E and E^{\prime} are K-isogenous, it is clear that conditions (a), (b), (c), (d) are satisfied.

Proof of the theorem. In view of Remark 2) above, it suffices to show that the equivalent conditions (a), (b), (c), (d) imply that the elliptic curves E and E^{\prime} are isogenous when the modular invariant j of E is not an integer of K. Let v be a place of K such that $v(j)<0$, and let p be the characteristic of the residue field k_{v}.

If $j^{\prime}=j\left(E^{\prime}\right)$, we first show that $v\left(j^{\prime}\right)$ is also < 0 . Suppose that $\mathrm{v}\left(\mathrm{j}^{\prime}\right) \geq 0$. Then, after possibly replacing K by a finite extension, we may assume that E^{\prime} has good reduction at v.

Then, if $\ell \neq p$, the Galois-module $V_{\ell}\left(E^{\prime}\right)$ is unramified at v (cf. 1.3); but $V_{\ell}(E)$ is ramified at v : this follows either from the criterion of Néron-Ogg-Šafarevič (1.3) or from the determination of the inertia group given in the Appendix, A. l.3. This contradicts the fact that $V_{\ell}(E)$ and $V_{\ell}\left(E^{\prime}\right)$ are isomorphic.

Let now q and q^{\prime} be the elements of K_{v} which correspond to j and j^{\prime} in Tate's theory (cf. Appendix A.l.l), and let E_{q} and $E_{q^{\prime}}$ be the corresponding elliptic curves (loc. cit). Since E and E_{q} have the same modular invariant j, there is a finite extension K^{\prime} of K_{v} where they become isomorphic, and we can do the same for E^{\prime} and $E_{q^{\prime}}$. Hence, the Tate modules $T_{p}\left(E_{q}\right)$ and $T_{p}\left(E_{q^{\prime}}\right)$ become isomorphic over K^{\prime}. But, in this case the isogeny
theorem is true (cf. Appendix A.l.4), i.e. the curves E_{q} and $\mathrm{E}_{\mathrm{q}^{\prime}}$, hence also E and E^{\prime}, are K^{\prime}-isogenous. However, if two elliptic curves are isogenous over some extension of the ground field, they are isogenous over a finite extension of the ground field. We may thus choose a finite extension L of K and an L-isogeny $f: E X_{K} L \longrightarrow E^{\prime} X_{K} L$. We will show that f is automatically defined over K. For this, it suffices to show that $f={ }^{\mathbf{s}} \mathrm{f}$ for all $s \in \operatorname{Gal}(\bar{K} / K)$, or, equivalently, that $V(f): V_{p}(E) \longrightarrow V_{p}\left(E^{\prime}\right)$ commutes with the action of Galois. However, if $G_{L}=\operatorname{Gal}(\bar{K} / L)$ is the open subgroup of $G=\operatorname{Gal}(\bar{K} / K)$ which corresponds to L, then $\mathrm{V}(\mathrm{f})$ commutes with the action of G_{L}. It is then enough to show that $\operatorname{Hom}_{G_{L}}\left(V, V^{\prime}\right)=\operatorname{Hom}_{G}\left(V, V^{\prime}\right)$. But V and V^{\prime} are isomorphic as G-modules. Hence we have to show that End $G_{L}(V)=$ End $_{G}(V)$. But this is clearly true; in fact, G and G_{L} are open in Aut(V) by the theorem in section 4 , and hence their commuting algebra is reduced to the homotheties in each case, i.e. End $G_{L}(V)=\operatorname{End}_{G}(V)=Q_{p}$.
This completes the proof of the theorem.

Remark

It is very likely that the theorem is true without the hypothesis that j is not integral. This could be proved (by Tate's method [38]) if the following generalization of Šafarevič's theorem were true: given a finite subset S of Σ_{K}, the abelian varieties over K, of dimension 2, with polarization of degree one, and good reduction outside S, are in finite number (up to isomorphism). \rightarrow [this has been proved by Faltings, see [54], [56], [82].]
§3. VARIATION OF G_{ℓ} AND \widetilde{G}_{ℓ} WITH ℓ

3.1. Preliminaries

We keep the notations of the preceding paragraphs. For each prime number ℓ, we denote by ρ_{ℓ} the homomorphism

$$
\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \longrightarrow \operatorname{Aut}\left(\mathrm{T}_{\ell}\right) \simeq \operatorname{GL}\left(2, \mathrm{Z}_{\ell}\right)
$$

defined by the action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on T_{ℓ}. The ρ_{ℓ}^{\prime} s define a homomorphism

$$
\rho: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \longrightarrow \prod_{\boldsymbol{\ell}} \operatorname{Aut}\left(\mathrm{T}_{\boldsymbol{\ell}}\right)
$$

where the product is taken over the set of all prime numbers.
Let $G=\operatorname{Im}(\rho) \subset \prod_{\ell} \operatorname{Aut}\left(T_{\ell}\right)$ and $G_{\ell}=\operatorname{Im}\left(\rho_{\ell}\right) \subset \operatorname{Aut}\left(T_{\ell}\right)$, so that G_{ℓ} is the image of G under the $\ell^{\text {th }}$ projection map. Let \tilde{G}_{ℓ} be the image of G_{ℓ} in $\operatorname{Aut}\left(E_{\ell}\right)=\operatorname{Aut}\left(T_{\ell} / \ell T_{\ell}\right) \simeq \operatorname{GL}\left(2, F_{\ell}\right)$.

LEMMA - (l) The image of G by jet $: \prod \operatorname{Aut}\left(T_{\ell}\right) \rightarrow \prod_{\ell} Z_{\ell}^{*}$ is open. (2) For almost all $\ell, \operatorname{det}\left(G_{\ell}\right)=Z_{\ell}^{*}$ and $\operatorname{det}\left(\widetilde{G}_{\ell}\right)^{\ell}=F_{\ell}^{*}$

We know (cf. chap. I, 1.2) that $\operatorname{det}\left(\rho_{\ell}\right): \operatorname{Gal}(\bar{K} / K) \longrightarrow Z_{\ell}^{*}$ is the character X_{ℓ} giving the action of $\operatorname{Gal}(\bar{K} / K)$ on ℓ^{n}-th roots of unity. Hence $\operatorname{det}(G) \subset \prod_{\ell}^{*}$ is the Galois group $\operatorname{Gal}\left(K_{c} / K\right)$, where $K_{c}=Q_{c} K$ is the extension of K generated by all roots of unity. Since one knows that $G a l\left(Q_{c} / Q^{\prime}\right)=\prod Z_{\ell}^{*}$ (cf. for instance [13], chap. IV) it follows that $\operatorname{det}(G)$ is the open subgroup of $\prod Z_{\ell}^{*}$ corresponding to the field $K \cap Q_{c}$, hence (1). Assertion (2) follows
from (1) and the definition of the product topology.
Assume now that E has no complex multiplication. We know (cf. 2.2) that each G_{ℓ} is open in $\operatorname{Aut}\left(\mathrm{T}_{\ell}\right)$. This does not a prior imply that G itself is open. However:

PROPOSITION - The following properties are equivalent:
(i) $G \underline{\text { is open in }} \prod_{\ell} \operatorname{Aut}\left(T_{\ell}\right)$.
(ii) ${\underset{\sim}{\ell}}_{\ell}=\operatorname{Aut}\left(T_{\ell}\right)$ for almost all ℓ.
(iii) $\tilde{G}_{\ell}^{\ell}=\operatorname{Aut}\left(E_{\ell}\right)$ for almost all ℓ.
(iv) \tilde{G}_{ℓ} contains $S L\left(E_{\ell}\right)$ for almost all ℓ.

The implications (i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv) are trivial. Amplication (iv) \Longrightarrow (i) follows from the following group-theoretical result, whose proof will be given in section 3.4 below:

MAIN LEMMA - Let G be a closed subgroup of $\Pi G L\left(2, Z_{\ell}\right)$ and let G_{ℓ} and \widetilde{G}_{ℓ} denote its images in $G L\left(2, Z_{\ell}\right)$ and $G L\left(2, F_{\ell}\right)$ as above. Assume:
(a) G_{ℓ} is open in $G L\left(2, Z_{\ell}\right)$ for all ℓ.
(b) The image of G by det $: \prod G L\left(2, Z_{\ell}\right) \rightarrow \prod Z_{\ell}^{*}$ is open.
(c) G_{ℓ} contains $S L\left(2, F_{\ell}\right)$ for almost all ℓ.

Then G is open in $\prod G L\left(2, Z_{\ell}\right)$.

Remark

For each integer $n \geq 1$, let E_{n} be the group of points of $E(\bar{K})$ of order dividing n, and let \widetilde{G}_{n} be the image of the canonical map $\operatorname{Gal}(\bar{K} / K) \longrightarrow \operatorname{Aut}\left(E_{n}\right) \simeq \operatorname{GL}(2, Z / n Z)$. One sees easily that property (i) above is equivalent to
(i') The index of \widetilde{G}_{n} in $\operatorname{Aut}\left(E_{n}\right)$ is bounded.

3.2. The case of a non-integral j

THEOREM - Assume that the modular invariant j of E is not an integer of K. Then E enjoys the equivalent properties (i), (ii), (iii), (iv) of 3.1.

Since j is not integral, we can choose a place v of K such that $v(j)<0$. Let q be the element of the local field K_{v} which corresponds to j by Tate's theory (cf. Appendix, A.l.l) and let E_{q} be the corresponding elliptic curve over K_{V}. There is a finite extension K^{\prime} of K_{v} over which E and E_{q} are isomorphic; one can even take for K^{\prime} either K_{v} or a quadratic extension of K_{v}. Let v^{\prime} be the valuation of K^{\prime} which extends v; assume v^{\prime} is normalized so that $v^{\prime}\left(K^{\prime *}\right)=Z$, and let

$$
n=v^{\prime}(q)=-v^{\prime}(j) .
$$

We have $\mathrm{n} \geq 1$.

LEMMA 1 - Assume ℓ does not divide n, and let $I_{v, \ell}$ be the inertia subgroup of \widetilde{G}_{ℓ} corresponding to some extension of v to \bar{K}. Then $I_{v, l}$ contains a transvection, i.e. an element whose matrix form is $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ for a suitable F_{ℓ}-basis of $E_{\boldsymbol{\ell}}$.

This is true for the curve E_{q} over K^{\prime}, cf. Appendix, A.1.5. The result for E follows from the isomorphism $E_{/ K^{\prime}} \simeq_{E_{q / K}}{ }^{\circ}$ LEMMA 2 - Let H be a subgroup of $G L\left(2, F_{\ell}\right)$ which acts irreducibly on $F_{\ell} \times F_{\ell}$ and which contains a transvection. Then H contains $\operatorname{SL}\left(2, F_{\ell}\right)$.

For any transvection $s \in H$, let D_{s} be the unique one dimensional subspace of $F_{\ell} \times F_{\ell}$ which is fixed by s. If all such lines were the same, the line so defined would be stable by H, and H would not be irreducible. Hence there are transvections s, s' $\in H$ such that $D_{s} \neq D_{s^{\prime}}$. If we choose a suitable basis (e, e') of $F_{\ell} \times F_{\ell^{\prime}}$ this means that the matrix forms of s, s^{\prime} are

$$
s=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad s^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

The lemma follows then from the well known fact that these two matrices generate $\operatorname{SL}\left(2, F_{\ell}\right)$.

Proof of the theorem. Lemma l shows that, for almost all l, $I_{v, ~},{ }^{\prime}$ and a fortiori \widetilde{G}_{ℓ}, contains a transvection. On the other hand, we know (cf. 2.1) that \tilde{G}_{ℓ} is irreducible for almost all ℓ. Applying lemma 2 to \tilde{G}_{ℓ} we then see that \tilde{G}_{ℓ} contains $S L\left(E_{\ell}\right)$ for almost all ℓ; hence we have (iv), q.e.d.

Remark

It seems likely that the condition " j is not integral" can be replaced by the weaker one " E has no complex multiplication."
\rightarrow [yes: see [76].]
3.3. Numerical example

When E is given explicitly and has a non-integral j, one may sometimes determine the finite set of ℓ 's with $\widetilde{G}_{\ell} \neq G L\left(2, F_{\ell}\right)$. Take for instance $K=Q$, and E defined by the equation:

$$
y^{2}+x^{3}+x^{2}+x=0
$$

This is the curve 3^{+}of Ogg's list [20]; its j invariant is $2^{11} 3^{-1}$,
its discriminant is $\Delta=-2^{4} 3$, its "conductor" is 24 (it is 2isogenous to the modular curve J_{24} corresponding to the congruence subgroup $\Gamma_{o}(24)$, cf. [20]). The existence of a non-trivial 2 -isogeny for E shows that $\widetilde{G}_{\ell} \neq G L\left(2, F_{\ell}\right)$ for $\ell=2\left(\widetilde{G}_{2}\right.$ is cyclic of order 2 and corresponds to the quadratic field $Q(\sqrt{-3}))$. But, for $\ell \neq 2$, one has $\widetilde{G}_{\ell}=G L\left(2, F_{\ell}\right)$. Indeed, \widetilde{G}_{ℓ} has the following properties:
a) $\operatorname{det}\left(\widetilde{G}_{\ell}\right)=F_{\ell}{ }^{*} \quad$ cf. 3.1.
b) \widetilde{G}_{ℓ} contains a transvection. This follows from Lemma 1 and the fact that n is here equal to 1 .
c) \tilde{G}_{ℓ} is irreducible. If not, there would be an isogeny $E \longrightarrow E^{\prime}$ of degree ℓ (defined over Q). The curve E^{\prime} would have the same conductor 24 as E, hence would be one of the curves $1^{-}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{+}$of Ogg's list. But Ogg has proved that, for each such curve, there is an isogeny $E^{\prime} \longrightarrow E$ of degree $1,2,4$ or 8. The map $E \longrightarrow E^{\prime} \longrightarrow E$ would then be an endomorphism of E of degree $\ell, 2 \ell, 4 \ell$ or 8ℓ, and this is impossible for $\ell \neq 2$ since $\operatorname{End}(E)=Z$.

Now, using lemma 2, one sees that properties a), b), c) imply that $\tilde{G}_{\ell}=G L\left(2, F_{\ell}\right)$.

Exercise

Prove that $\widetilde{G}_{\ell}=G L\left(2, F_{\ell}\right)$ for all $\ell \neq 2$ when $K=Q$ and E is an elliptic curve of conductor 3.2^{λ}, where $\lambda \leq 6$. (Use Ogg's Table 1. For $\lambda=5$, note that the curves 7^{+}and 7^{-}become isomorphic over $Q(i)$, but are not isogenous over Q. For $\lambda=6$, use a similar argument, and observe that the curves 10^{+}and 18^{+} do not have the same number of points mod. 5, hence are not isogenous over Q.)

What happens when $\lambda=7,8$?
3.4. Proof of the main lemma of 3.1

We need first a few lemmas:

LEMMA $1-\underline{L e t} S_{\ell}=\operatorname{PSL}\left(2, F_{\ell}\right)=\operatorname{SL}\left(2, F_{\ell}\right) /\{\underline{1}\}, \ell \geq 3$. Then S_{ℓ} is a simple group if $\ell \geq 5$. Every proper subgroup of S_{ℓ} is solvable or isomorphic to the alternating group A_{5} : the last possibility occurs only if $\ell= \pm 1 \mathrm{mod} .5$.

This is well known, cf. for instance Burnside [4], chap. XX.

LEMMA 2 - No proper subgroup of $\operatorname{SL}\left(2, F_{\ell}\right)$ maps onto $\operatorname{PSL}\left(2, F_{\ell}\right)$.
This is clear for $\ell=2$, since $\operatorname{PSL}\left(2, F_{2}\right)=\operatorname{SL}\left(2, F_{2}\right)$. For $\ell \neq 2$, suppose there is such a proper subgroup X. We would then have

$$
\operatorname{SL}\left(2, F_{\ell}\right)=\{ \pm 1\} \times X,
$$

and this is absurd, since $\operatorname{SL}\left(2, F_{\ell}\right)$ is generated by the elements $\left(\begin{array}{ll}l & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ which are of order ℓ, hence contained in X.

LEMMA 3 - Let X be a closed subgroup of $\operatorname{SL}\left(2, Z_{\ell}\right)$ whose image in $\operatorname{SL}\left(2, F_{\ell}\right)$ is $\operatorname{SL}\left(2, F_{\ell}\right)$. Assume $\ell \geq 5$. Then $X=\operatorname{SL}\left(2, Z_{\ell}\right)$. We prove by induction on n that X maps onto $\operatorname{SL}\left(2, Z / \ell^{n} Z\right)$. This is true for $n=1$. Assume it is true for n, and let us prove it for $n+l$. It is enough to show that, for any $s=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L\left(2, Z_{\ell}\right)$ which is congruent to $1 \bmod . \ell^{n}$, there is $x \in X$ with $x \equiv s \bmod \cdot \ell^{n+1}$. Write $s=1+\ell^{n} u$; since $\operatorname{det}(s)=1$, one has $\operatorname{Tr}(\mathrm{u}) \equiv 0 \bmod . \ell . \quad$ But it is easy to see that any such u is congruent mod. ℓ to a sum of matrices u_{i} with $u_{i}^{2}=0$. Hence, we may assume that $u^{2}=0$. By the induction hypothesis, there exists $y \in X$ such that $y=1+\ell^{n-1} u+\ell^{n} v$, where v has coefficients in Z_{ℓ}. Put
$x=y^{\ell}$. We have:

$$
\begin{aligned}
x= & 1+l\left(l^{n-1} u+l^{n} v\right)+\binom{l}{2}\left(l^{n-1} u+l^{n} v\right)^{2}+\ldots \\
& +\left(l^{n-1} u+l^{n} v\right)^{l} .
\end{aligned}
$$

If $n \geq 2$, it is clear that $x \equiv 1+\ell^{n} u \bmod \cdot \ell^{n+1}$. This is also true for $n=1$. Indeed, since $u^{2}=0$, and $u+\ell v \equiv u \bmod$. ℓ, we have

$$
x \equiv 1+\ell u+(u+\ell v)^{\ell} \quad \bmod . \ell^{2} .
$$

But $(u+\ell v)^{2} \equiv \ell(u v+v u) \bmod \cdot \ell^{2}$, hence:

$$
(u+\ell v)^{\ell} \equiv \ell(u v+v u) u^{\ell-2} \equiv 0 \bmod . \ell^{2} \text { since } \ell>4 .
$$

This shows that $x \equiv 1+\ell^{n} u \bmod . \ell^{n+1}$ in all cases, and proves lemma 3.

We now consider a closed subgroup G of $X=\prod G L\left(2, z_{\ell}\right)$ having the properties (a), (b), (c) of the main lemma of 3.l.

LEMMA 4 - Let S be a finite set of primes, and $X_{S}=\prod_{l \in S} G L\left(2, z_{\ell}\right)$. The image G_{S} of G by the projection $X \longrightarrow X_{S}$ is open in X_{S}.

Replacing G by an open subgroup if necessary, we can as some that each $G_{\ell^{\prime}}, \ell \in S$, is contained in the group of elements congruent to 1 mod. ℓ, hence that each G_{ℓ} is a pro- ℓ-group. Since G_{S} is a subgroup of $\prod_{\ell \in S} G_{\ell}$, it follows that G_{S} is pro-nilpotent (projective limit of finite nilpotent groups), hence is the product of its Sylow subgroups. This shows that $G_{S}=\prod_{\ell \in S} G_{\ell}$, and since G_{ℓ} is
open in $G L\left(2, Z_{\ell}\right)$ by property (a), we see that G_{S} is open in X_{S}. Before we go further, we introduce some terminology. Let Y be a profinite group, and Σ a finite simple group. We say that Σ occurs in Y if there exist closed subgroups Y_{1}, Y_{2} of Y such that Y_{1} is normal in Y_{2} and Y_{2} / Y_{1} is isomorphic to Σ. We denote by Occ(Y) the set of classes of finite simple non abelian groups occurring in Y. If $Y=\underset{\longleftrightarrow}{l i m} . Y_{a}$, and each $Y \longrightarrow Y_{a}$ is surjective, we have

$$
\operatorname{Occ}(Y)=U \operatorname{Occ}\left(Y_{a}\right)
$$

If Y is an extension of Y^{\prime} and $Y^{\prime \prime}$, we have:

$$
O c c(Y)=O c c\left(Y^{\prime}\right) \cup O c c\left(Y^{\prime \prime}\right) .
$$

Using these formulae and lemma l, one gets:

$$
\operatorname{Occ}\left(\operatorname{GL}\left(2, \mathrm{Z}_{\ell}\right)\right)=\operatorname{Occ}\left(\operatorname{SL}\left(2, \mathrm{Z}_{\ell}\right)\right)=\operatorname{Occ}\left(\mathrm{S}_{\ell}\right)
$$

where $S_{\ell}=\operatorname{PSL}\left(2, F_{\ell}\right)$ as before, and:

$$
\begin{aligned}
& \operatorname{Occ}\left(S_{\ell}\right)=\emptyset \text { if } \ell=2,3 \\
& \operatorname{Occ}\left(S_{\ell}\right)=\left\{S_{\ell}\right\}=\left\{A_{5}\right\} \text { if } \ell=5 \\
& \operatorname{Occ}\left(S_{\ell}\right)=\left\{S_{\ell}\right\} \text { if } \ell \equiv \pm 2 \bmod .5, \ell>5 \\
& \operatorname{Occ}\left(S_{\ell}\right)=\left\{S_{\ell}, A_{5}\right\} \text { if } \ell \equiv \pm 1 \bmod .5, \ell>5 .
\end{aligned}
$$

Let now S be a finite set of primes so that $2,3,5 \in S$ and
$\ell \notin S \Longrightarrow \widetilde{G}_{\ell} \supset \operatorname{SL}\left(2, F_{\ell}\right) . \quad$ Property (c) shows that such a set exists.
LEMMA 5 - The group G contains $\prod_{\ell \& S} S L\left(2, Z_{\ell}\right)$.
(This partial product is understood as a subgroup of the full product $\left.X=\prod_{\ell} G L\left(2, Z_{\ell}\right).\right)$

It is enough to show that G contains each $\operatorname{SL}\left(2, Z_{\ell}\right), \ell \notin S$. Let $H_{\ell}=G \cap G L\left(2, Z_{\ell}\right)$. If $\ell \notin S$, the fact that \tilde{G}_{ℓ} contains $S L\left(2, F_{\ell}\right)$ shows that $S_{\ell} \in \operatorname{Occ}\left(G_{\ell}\right)$ hence $S_{\ell} \in \operatorname{Occ}(G)$. On the other hand, G / H_{ℓ} is isomorphic to a closed subgroup of $\prod_{\ell \neq \ell} G L\left(2, Z_{\ell}{ }^{\prime}\right)$ hence $S_{\ell} \notin \operatorname{Occ}\left(G / H_{l}\right.$) (we use the obvious fact that the simple groups $S_{p}, p \geq 5$, are pairwise non isomorphic). Since

$$
\operatorname{Occ}(\mathrm{G})=\operatorname{Occ}\left(\mathrm{H}_{\ell}\right) \cup \operatorname{Occ}\left(\mathrm{G} / \mathrm{H}_{\ell}\right)
$$

we then have $S_{\ell} \in \operatorname{Occ}\left(\mathrm{H}_{\ell}\right)$. Let \tilde{H}_{ℓ} be the image of H_{l} in $\mathrm{SL}\left(2, \mathrm{~F}_{\ell}\right)$; the kernel of $\mathrm{H}_{\ell} \longrightarrow \tilde{\mathrm{H}}_{\ell}$ being a pro-l-group, we have $\operatorname{Occ}\left(\mathrm{H}_{\ell}\right)=\operatorname{Occ}\left(\tilde{\mathrm{H}}_{\ell}\right)$, hence $\mathrm{S}_{\ell} \in \operatorname{Occ}\left(\tilde{\mathrm{H}}_{\ell}\right)$. Hence $\tilde{\mathrm{H}}_{\ell}$ maps onto $S_{l}=\operatorname{PSL}\left(2, F_{l}\right)$, and, by lemma 2 , we have $\tilde{H}_{l}=S L\left(2, F_{\ell}\right)$ and, by lemma 3, $H_{\ell}=\operatorname{SL}\left(2, Z_{\ell}\right)$. Hence G contains $S L\left(2, Z_{\ell}\right)$.

LEMMA 6 - The group G contains an open subgroup of $\prod_{\ell} S L\left(2, z_{\ell}\right)$.
Let S be as in lemma 5; let G_{S} be the projection of G into $\prod_{\ell \in S} G L\left(2, Z_{\ell}\right)$ and G_{S}^{\prime} the projection into the complementary product $\ell \in S$
$\prod_{\ell \in S} G L\left(2, z_{\ell}\right)$. Let H_{S} be $G \cap \prod_{\ell} G L\left(2, Z_{\ell}\right)$ and

$H_{S}^{\prime}=G \cap \prod_{l \neq S} G L\left(2, Z_{\ell}\right)$, so that $H_{S} \subset G_{S}, H_{S}^{\prime} \subset G_{S}^{\prime}$. One has canonical $\ell \notin S$

$$
\mathrm{G}_{\mathrm{S}} / \mathrm{H}_{\mathrm{S}} \simeq \mathrm{G} /\left(\mathrm{H}_{\mathrm{S}} \times \mathrm{H}_{\mathrm{S}}^{\prime}\right) \simeq \mathrm{G}_{\mathrm{S}}^{\prime} / \mathrm{H}_{\mathrm{S}}^{\prime}
$$

Lemma 5 shows that H_{S}^{\prime} contains $\prod_{\ell \notin S} \mathrm{SL}\left(2, Z_{\ell}\right)$, so that $G_{S}^{\prime} / H_{S}^{\prime}$ $\ell \notin S$ is abelian. Hence G_{S} / H_{S} is abelian and H_{S} contains the adherence $\left(G_{S}, G_{S}\right)$ of the commutator group of G_{S}. By lemma 4, G_{S} is open in $\prod_{\ell \in S} G L\left(2, z_{\ell}\right)$. It is easy to see that this implies that $\left(G_{S}, G_{S}\right)$ $\ell \in S$ contains an open subgroup of $\prod_{\ell \in S} S L\left(2, Z_{\ell}\right)$ (this follows for instance from the fact that the derived Lie algebra of gl_{2} is sl_{2}). Hence H_{S} contains an open subgroup U of $\prod_{\ell \in S} S L\left(2, Z_{\ell}\right)$. Using lemma 5, we then see that G contains $U \times \prod_{\ell \in S} S L\left(2, Z_{\ell}\right)$ which is open in $\ell \notin S$

End of the proof

Consider the determinant map

$$
\operatorname{det}: \prod_{\ell} G L\left(2, z_{\ell}\right) \rightarrow \prod_{\ell} \mathrm{z}_{\ell}^{*}
$$

whose kernel is $\prod \mathrm{SL}\left(2, \mathrm{Z}_{\ell}\right)$. Hypothesis (c) means that the image of G by this map is open and lemma 6 shows that $G \cap K \operatorname{Cr}(\operatorname{det})$ is open in $\operatorname{Ker}(\mathrm{det})$. This is enough to imply that G itself is open, q.e.d.

Exercises

1) a) Generalize lemma 3 to $S L\left(d, Z_{\ell}\right.$) for $d \geq 2, \ell \geq 5$ (same method).
b) Show that the only closed subgroup of $\operatorname{SL}\left(\mathrm{d}, \mathrm{Z}_{3}\right)$ which maps onto $S L\left(d, Z / 3^{2} Z\right)$ is $S L\left(d, Z_{3}\right)$ itself.
c) Show that the only closed subgroup of $\operatorname{SL}\left(\mathrm{d}, \mathrm{Z}_{2}\right)$ which maps onto $S L\left(d, Z / 2^{3} Z\right)$ is $S L\left(d, Z_{2}\right)$ itself.
2) Let E be the unramified quadratic extension of Q_{2}, and
O_{E} its ring of integers. Let $\mathrm{x} \longmapsto \overline{\mathrm{x}}$ be the non trivial automorphism of E .
a) Show that O_{E} contains a primitive third root of unity z.
b) Show that O_{E} contains an element u with $u . \bar{u}=-1$ (take for instance $u=(1+\sqrt{5}) / 2)$.
c) Let a and β be the Z_{2}-linear endomorphisms defined by $a(x)=z x, \beta(x)=u \bar{x}$, where z and u are as in a), b) above. Show that a is of order $3, \beta$ of order 4 , and $\beta a \beta^{-1}=a^{-1}$, so that a and β generate a non-abelian group G of order 12 .
d) Show that G is contained in $\operatorname{SL}\left(\mathrm{O}_{\mathrm{E}}\right) \simeq \operatorname{SL}\left(2, z_{2}\right)$ and that reduction mod. 2 defines a homomorphism of G onto $S L\left(2, F_{2}\right)$. (Hence lemma 3 does not extend to the case $\ell=2$.)
3) Let $S_{9}=S L(2, Z / 9 Z), S_{3}=S L(2, Z / 3 Z)$ and $g=\operatorname{Ker}\left(\mathrm{S}_{9} \longrightarrow \mathrm{~S}_{3}\right)$. The group g is isomorphic to a threedimensional vector space over F_{3}. Let $x \in H^{2}\left(S_{3}, g\right)$ be the cohomology class corresponding to the extension

$$
1 \longrightarrow \mathrm{~g} \longrightarrow \mathrm{~S}_{9} \longrightarrow \mathrm{~S}_{3} \longrightarrow 1
$$

a) Show that the restriction of x to a 3-Sylow subgroup of S_{3} is zero (note that $S L(2, Z)$ contains an element of order 3, viz. $\left(\begin{array}{rr}1 & 1 \\ -3 & -2^{2}\end{array}\right)$.
b) Deduce from a) that $x=0$, i.e. that there exists a subgroup X of S_{9} which is mapped isomorphically onto S_{3}. (The inverse image of X in $S L\left(2, Z_{3}\right)$ is a non-trivial subgroup which is mapped onto S_{3}; hence lemma 3 does not extend to the case $\ell=3$.)

APPENDIX

Local Results

In what follows, K denotes a field which is complete with respect to a discrete valuation v; we denote by O_{K} (resp. by k) the ring of integers (resp. the residue field) of K; we assume that k is perfect and of characteristic $p \neq 0$.

Let E be an elliptic curve over K and let l be a prime number different from the characteristic of K. Let T_{ℓ} and V_{ℓ} be the corresponding Galois modules; we denote by G_{ℓ} the image of Gal($\left.K_{s} / K\right)$ in Aut $\left(T_{\ell}\right)$, and by I_{ℓ} the inertia subgroup of G_{ℓ}. The Lie algebras $g_{\ell}=\operatorname{Lie}\left(G_{\ell}\right),{\underset{\ell}{\ell}}^{i_{\ell}}=\operatorname{Lie}\left(I_{\ell}\right)$ are subalgebras of $\operatorname{End}\left(V_{\ell}\right)$ and we will determine them under suitable assumptions on K and v; note that, since I_{ℓ} is an invariant subgroup of G_{ℓ}, its Lie algebra \underline{i}_{ℓ} is an ideal of g_{ℓ}.

If $\mathrm{j}=\mathrm{j}(\mathrm{E})$ is the modular invariant of E (cf. 1.1), we consider the cases $\mathrm{v}(\mathrm{j})<0$ and $\mathrm{v}(\mathrm{j}) \geq 0$ separately.
A.1. The Case $\mathrm{v}(\mathrm{j})<0$.

In this section we assume that the modular invariant j of the elliptic curve E has a pole, i.e. that $v(j)<0$.

A.l.1. The elliptic curves of Tate

Let q be an element of K with $\mathrm{v}(\mathrm{q})>0$, and let Γ_{q} be the discrete subgroup of K^{*} generated by q. Then, by Tate's theory of ultrametric theta functions (unpublished - but see Morikawa, Nagoya

Math. Journ., 1962), there is an elliptic curve E_{q} defined over K with the property that, for any finite extension K^{\prime} of K, the analytic group $K^{\prime *} / \Gamma_{q}$ is isomorphic to the group $E_{q}\left(K^{\prime}\right)$ of points of E_{q} with values in K^{\prime}. The equation defining E_{q} can be written in the form

$$
y^{2}+x y=x^{3}-b_{2} x-b_{3}
$$

with

$$
b_{2}=5 \sum_{n \geq 1} n^{3} q^{n} /\left(1-q^{n}\right) \text { and } b_{3}=\sum_{n \geq 1}\left(7 n^{5}+5 n^{3}\right) q^{n} / 12\left(1-q^{n}\right)
$$

these series converging in K. The modular invariant $j(q)$ of E_{q} is given by the usual formula

$$
j(q)=\frac{\left(1+48 b_{2}\right)^{3}}{q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}}=\frac{1}{q}+744+196884 q+\ldots,
$$

a series with integral coefficients. The function field of E_{q} consists of the fractions F / G, where F and G are Laurent series

$$
F=\sum_{-\infty}^{+\infty} a_{n} z^{n}, \quad G=\sum_{-\infty}^{+\infty} b_{n} z^{n}
$$

with coefficients in K, converging for all values of $z \neq 0, \infty$, and such that $F(q z) / G(q z)=F(z) / G(z)$.

Since the modular invariant j of the given elliptic curve E is such that $v(j)<0$, and since the series for $j(q)$ has integral coefficients, one can choose q so that $j=j(q)$. The elliptic curves E and E_{q} become then isomorphic over a finite extension of K (which can be taken to be of degree 2). Hence, after possibly replacing K by a finite extension, we may assume that $E=E_{q}$.

A.1.2. An exact sequence

We conserve the notation of A.l.l. Let E_{n} be the kernel of multiplication by ℓ^{n} in K_{s}^{*} / Γ_{q}. If μ_{n} is the group of ℓ^{n}-th roots of unity in K_{s}, we have an injection $\mu_{n} \rightarrow E_{n}$. On the other hand, if $z \in E_{n}$, we have $z^{\ell^{n}} \in \Gamma_{q}$, and hence there exists an integer c such that $z^{\ell^{n}}=q^{c}$. If we associate to z the image of c in $Z / \ell^{n} Z$, we obtain a homomorphism of E_{n} into $Z / \ell^{n} Z$, and the resulting sequence

$$
\begin{equation*}
0 \rightarrow \mu_{\mathrm{n}} \rightarrow \mathrm{E}_{\mathrm{n}} \longrightarrow \mathrm{Z} / \ell^{\mathrm{n}} \mathrm{Z} \longrightarrow 0 \tag{1}
\end{equation*}
$$

is an exact sequence of $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right)$-modules, $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right)$ acting trivially on $Z / \ell^{n} Z$. Passing to the limit, we obtain an exact sequence of Galois modules

$$
\begin{equation*}
0 \longrightarrow \mathrm{~T}_{\boldsymbol{\ell}}(\mu) \longrightarrow \mathrm{T}_{\boldsymbol{l}}\left(\mathrm{E}_{\mathrm{q}}\right) \longrightarrow \mathrm{Z}_{\boldsymbol{l}} \longrightarrow 0 \tag{2}
\end{equation*}
$$

where $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right)$ acts trivially on Z_{ℓ}. Tensoring with Q_{ℓ}, we obtain the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{~V}_{\boldsymbol{\ell}}(\mu) \longrightarrow \mathrm{V}_{\boldsymbol{\ell}}\left(\mathrm{E}_{\mathrm{q}}\right) \longrightarrow \mathrm{Q}_{\boldsymbol{\ell}} \longrightarrow 0 \tag{3}
\end{equation*}
$$

We now show that this sequence of $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right)$-modules does not split. To do this we introduce an invariant \mathbf{x} which belongs to the group $\underset{\rightleftarrows}{\lim } \mathrm{H}^{l}\left(\mathrm{G}, \mu_{\mathrm{n}}\right)$, where $\mathrm{G}=\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right)$. Let d be the coboundary homomorphism:

$$
H^{o}\left(G, Z / \ell^{n} Z\right) \longrightarrow H^{1}\left(G, \mu_{n}\right)
$$

with respect to the exact sequence (1) and let $x_{n}=d(1)$. The invariant x is the element of $\lim H^{l}\left(G, \mu_{n}\right)$ defined by the family $\left(x_{n}\right), n \geq 1$.
PROPOSITION - (a) The isomorphism $\delta: \mathrm{K}^{*} / \mathrm{K}^{*^{\boldsymbol{n}}} \rightarrow \mathrm{H}^{\mathrm{l}}\left(\mathrm{G}, \mu_{\mathrm{n}}\right)$ of
Summer theory transforms the class of $q \bmod K^{*} \quad$ into x_{n}.
(b) The element x is of infinite order.
(Recall that δ is induced by the coboundary map relative to the exact sequence

$$
\left.1 \rightarrow \mu_{\mathrm{n}} \rightarrow \overline{\mathrm{~K}}^{*} \xrightarrow{\mathrm{n}} \overline{\mathrm{~K}}^{*} \longrightarrow 1 .\right)
$$

Assertion (a) is proved by an easy computation. To prove (b), note that the valuation v defines a homomorphism

$$
\mathrm{f}_{\mathrm{n}}: \mathrm{K}^{*} / \mathrm{K}^{*^{\mathrm{n}}} \rightarrow \mathrm{Z} / \ell^{\mathrm{n}} \mathrm{Z}
$$

and hence a homomorphism

$$
\mathrm{f}: \lim _{\rightleftarrows} K^{*} / \mathrm{K}^{*^{\mathrm{n}}} \rightarrow \mathrm{Z}_{\ell}
$$

If we identify x with the corresponding element of $\lim _{\hookleftarrow} K^{*} / K^{*^{\ell}}$, as in (a), we have $f(x)=v(q)$, hence x is of infinite order.

COROLLARY - The sequence (3) does not split.

Assume it does, ie. there is a G-subspace X of $V_{\ell}\left(E_{q}\right)$ which is mapped isomorphically onto Q_{ℓ}. Let $X_{T}=T_{\ell}\left(\mathrm{E}_{\mathrm{q}}\right) \cap \mathrm{X}$. The image of X_{T} in Z_{ℓ} is $\ell^{\mathrm{N}} \mathrm{Z}_{\ell}$, for some $\mathrm{N} \geq 0$. It is then easy to see that $\ell^{N_{x}}=0$, and this contradicts the fact that x is of
infinite order.

A.1.3. Determination of g_{ℓ} and ${\underset{\ell}{\ell}}^{i_{l}}$

We keep the notation of A.l.1 and A.l.2. If X is a onedimensional subspace of $V_{\ell}=V_{\ell}(E)$, let \underline{r}_{X} denote the subalgebra of End $\left(V_{\ell}\right)$ consisting of those endomorphisms u for which $u\left(V_{\ell}\right) \subset X$, and let \underline{n}_{X} be the subalgebra of ${\underset{X}{X}}$ formed by those $u \in \underline{r}_{X}$ with $u(X)=0$.

THEOREM - (a) If k is algebraically closed and $\ell \neq p$, then there is a one-dimensional subspace X of V_{ℓ} such that $g_{\ell}=\underline{n}_{X}$.
(b) If k is algebraically closed and $\ell=p$, then there is a one-dimensional subspace X of V_{ℓ} such that $g_{\ell}=r_{X}$.
(c) If k is finite, then $g_{\ell}=r_{X}$ for some one-dimensional subspace X of V_{ℓ}, and $\underline{i}_{\ell}=\underline{n}_{X}\left(\underline{\text { resp. }} \underline{i}_{\ell}=\underline{r}_{X}\right.$) if $\ell \neq p$ (resp. $\ell=\mathrm{p}$) .

Proof. Note first that, since g_{ℓ} and ${\underset{f}{\ell}}$ are invariant under finite extension of K, we may assume that $E=E_{q}$.
(a) In this case, K contains the ℓ^{n}-th roots of unity, hence Gal($\left.K_{s} / \mathrm{K}\right)$ acts trivially on $\mathrm{T}_{\ell}(\mu)$. Consequently, there is a basis e_{1}, e_{2} of $T_{\ell}(E)$ such that, for all $\sigma \in \operatorname{Gal}\left(K_{s} / K\right)$, we have $\sigma\left(\mathrm{e}_{1}\right)=\mathrm{e}_{1}, \sigma\left(\mathrm{e}_{2}\right)=\mathrm{a}(\sigma) \mathrm{e}_{1}+\mathrm{e}_{2}$ with $\mathrm{a}(\sigma) \in \mathrm{Z}_{\ell}$. Moreover, the homomorphism $\sigma \longmapsto a(\sigma)$ cannot be trivial since the sequence (3) does not split. It follows that $\operatorname{Im}(a)$ is an open subgroup of Z_{ℓ}, and hence that $g_{\ell}=\underline{n}_{X}$ with $X=V_{\ell}(\mu)$.
(b) Since $\ell=\mathrm{p}$, we must have $\operatorname{char}(\mathrm{K})=0$ as $\ell \notin \operatorname{char}(\mathrm{K})$. In this case, the action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on $\mathrm{V}_{\ell}(\mu)$ is by means of the character $X_{\ell}(c f$. chap. I, l.2) which is of infinite order. It follows
that $\underline{g}_{\boldsymbol{l}}=\underline{r}_{X}$, where $X=V_{\ell}(\mu)$; in fact, $g_{\boldsymbol{g}} \supset \underline{\mathrm{n}}_{\mathrm{X}}$ since the sequence (3) does not split, and we cannot have $g_{\ell}=\underline{n}_{X}$.
(c) Since k is finite, the action of $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{s}} / \mathrm{K}\right)$ on $\mathrm{T}_{\ell}(\mu)$ is not trivial nor even of finite order. Hence, the argument used in (b) shows that $g_{\ell}=\underline{r}_{X}$, where $X=V_{\ell}(\mu)$. Applying (a) to the completion of the maximal unramified extension of K, we see that $\underline{i}_{\ell}=\underline{n}_{X}$ if $\ell \neq p$, and that $\underline{i}_{\ell}=\underline{r}_{X}$ if $\ell=p$.

Exercise

In case (a), shows that $\operatorname{Im}(a)=\ell^{n} Z_{\ell}{ }^{\prime}$ where ℓ^{n} is the highest power of ℓ which divides $v(q)=-v(j)$.

A.1.4. Application to isogenies

Here, we ass me that k is finite and K is of characteristic 0 (i.e. K is a finite extension of Q_{p}).

THEOREM - Let $q, q^{\prime} \in K^{*}$ with $v(q)$ and $v^{\prime}\left(q^{\prime}\right)>0$. Let $E=E_{q}$ and $E^{\prime}=\mathrm{E}_{\mathrm{q}^{\prime}}$ be the corresponding elliptic curves over K . Then the following are equivalent:
(1) E_{q} is K -isogenous to $\mathrm{E}_{\mathrm{q}^{\prime}}$.
(2) There are integers $A, B \geq 1$ such that $q^{A}=q^{\prime}{ }^{B}$.
(3) $V_{p}(E)$ and $V_{p}\left(E^{\prime}\right)$ are isomorphic as $\operatorname{Gal}(\bar{K} / K)$-modules.

Proof. (2) $\Longrightarrow(1)$. It suffices to show that E_{q} and $E A_{q}$ are isogenous over K. But every meromorphic function F / G invariant under multiplication by q is invariant under multiplication by q^{A}; hence the function field of E_{q} is contained in the function field of $E_{q^{\prime}}$ i.e., E_{q} and $E_{q^{\prime}}$ are isogenous.
$(1) \Longrightarrow(3) . \quad$ Trivial.
$(3) \Longrightarrow(2)$. Choose an isomorphism φ of $V_{p}(E)$ onto $V_{p}\left(E^{\prime}\right)$. Since $V_{p}(\mu)$ is the only one-dimensional subspace of $V_{p}(E)$ (resp. $\left.V_{p}\left(E^{\prime}\right)\right)$ stable by $G=G a l(\bar{K} / K), \varphi$ maps $V_{p}(\mu)$ into itself. Moreover, after multiplying Φ by an homothety, we may suppose that φ maps $\mathrm{T}_{\mathrm{p}}(\mathrm{E})$ into $\mathrm{T}_{\mathrm{p}}\left(\mathrm{E}^{\prime}\right)$. We then have a commutative diagram:

where ρ (resp. σ) is the multiplication by a p-adic integer r (resp. s). If x, x^{\prime} are the elements of $\underset{l_{i m}}{ } H^{l}\left(G, \mu_{n}\right)$ associated to E and E^{\prime} (cf. A.l.2), the commutativity of (4) shows that

$$
r x=s x^{\prime} .
$$

But the valuation v yields a homomorphism of
$\lim _{¿} H^{1}\left(G, \mu_{n}\right)=\lim K^{*} / K^{* P^{n}}$ into Z_{p}, and we have seen that the image of x is $v(q)$, and the image of x^{\prime} is $v\left(q^{\prime}\right)$. Hence

$$
r v(q)=s v\left(q^{\prime}\right)
$$

We will now show that the element

$$
z=q^{v\left(q^{\prime}\right)} / q^{\prime} v(q)
$$

is a root of unity. First of all, the image of z in $\underset{\longleftrightarrow}{ } K^{*} / K^{* P^{n}}$ is a p^{a}-th root of unity; in fact, this image is

$$
\mathrm{v}\left(\mathrm{q}^{\prime}\right) \mathrm{x}-\mathrm{v}(\mathrm{q}) \mathrm{x}^{\prime} \text {, }
$$

and multiplying by s, we find 0 in virtue of the above formulae (note that $\underset{\rightleftarrows}{\lim } \mathrm{K}^{*} / \mathrm{K}^{{ }^{*} \mathrm{P}^{\mathrm{n}}}$ is a Z_{p}-module, hence multiplication by s makes sense). We then use the fact that the kernel of
$\mathrm{K}^{*} \longrightarrow \underset{\longleftrightarrow}{\lim } \mathrm{~K}^{*} / \mathrm{K}^{* \mathrm{P}^{\mathrm{n}}}$ is k^{*} (viewed, as usual as a subgroup of K^{*}). To see this, one decomposes K^{*} as a product $Z \times k^{*} \times U^{1}$, where U^{l} is the group of units congruent to 1 . The functor $A \longmapsto \underset{~ l i m}{ } A / A^{p^{n}}$ transforms Z into Z_{p}, kills k^{*} and leaves U^{l} unchanged, since U^{l} is a finitely generated Z_{p}-module. Hence, we have $z \in k^{*}$, and z is a root of unity. This implies (l), q.e.d.

Remark

The equivalence (1) $\Longleftrightarrow(2)$ was remarked by Tate. It is true without any hypothesis on K .

Exercise

Show that the hypothesis " k is finite" may be replaced by ' k is algebraic over F_{p}.'
A.1.5. Existence of transvections in the inertia group

Let E be the elliptic curve E_{q} (cf. A.1.1), let $\widetilde{\mathrm{G}}_{l}$ be the image of $\operatorname{Gal}\left(\mathrm{K}_{s} / K\right)$ in $\operatorname{Aut}\left(\mathrm{T}_{\ell} / \ell \mathrm{T}_{\ell}\right)$, and let $\tilde{\mathrm{I}}_{\ell}$ be the inertia subgroup of \widetilde{G}_{ℓ}. We assume that v is normalized, i.e. that $\mathrm{v}\left(\mathrm{K}^{*}\right)=\mathrm{Z}$.

PROPOSITION - If ℓ does not divide $v(q), \frac{\text { then }}{l_{l}} \tilde{\mathrm{I}}_{\boldsymbol{l}}$ contains a transvection, i.e. an element whose matrix is $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ for a suitable F_{ℓ}-basis of $\mathrm{T}_{\ell} / \ell \mathrm{T}_{\ell}$.

Proof. After possibly replacing K by a larger field, we can suppose that the residue field k is algebraically closed, and that K contains the ℓ-th roots of unity. In fact, if $\ell \neq p$, this last condition is implied by the first; if $\ell=p$, we must adjoin these roots; but the degree of the extension thus obtained divides $\ell-1$, hence is prime to ℓ, and the valuation of q remains prime to ℓ. This being said, the hypothesis on $\mathrm{v}(\mathrm{q})$ shows that $\mathrm{q}^{l / \ell}$ is not in K. Thus there is an automorphism $s \in \operatorname{Gal}\left(K_{s} / K\right)$ such that $s\left(q^{1 / \ell}\right)=q^{l / \ell}$, with $z \neq 1$. Then z is a primitive ℓ-th root of unity, and $z, q^{l / \ell}$ form a basis of T_{ℓ} modulo ℓT_{ℓ}. Since $s(z)=z$, we see that the image of s in $\widetilde{\mathrm{G}}_{\ell}=\tilde{\mathrm{I}}_{\ell}$ is the required transvection.

A.2. The case $v(j) \geq 0$

In this section we assume that the modular invariant j of the elliptic curve E is integral, i.e. that $v(j) \geq 0$. Hence, after possibly replacing K by a finite extension, we may assume that E has good reduction (cf. 1.2). We also assume that K is of characteristic zero.
A.2.1. The case $\ell \neq \mathrm{p}$

Suppose that $\ell \neq \mathrm{p}$. Since E has good reduction, the module T_{ℓ} can be identified with the Tate module $\mathrm{T}_{\ell}(\tilde{\mathrm{E}})$ of the reduced curve \widetilde{E}, cf. 1.3. Hence the inertia algebra ${\underset{i}{l}}$ is 0 . If the
residue field k is finite, the group G_{ℓ} is topologically generated by the Frobenius F_{ℓ}. Hence, in this case, $g_{\ell}=\operatorname{Lie}\left(G_{\ell}\right)$ is a onedimensional subalgebra of $\operatorname{End}\left(V_{\ell}\right)$.

A.2.2. The case $\ell=p$ with good reduction of height ${ }^{2}$

Here we assume that the reduced curve \widetilde{E} is of height 2 ; recall that, if A is an abelian variety defined over a field of characteristic p, its height can be defined as the integer h for which $p h$ is the inseparable part of the degree of the homothety 'multiplication by p." An elliptic curve is of height 2 if and only if its Hasse invariant (cf. Deuring [9]) is 0 . Since E has good reduction, it defines an abelian scheme E_{v} over O_{K}, hence a p-divisible group $E(p)$ over O_{K} (cf. Tate [39], 2.1-see also [26], §1, Ex. 2). The Tate module of $E(p)$ can be identified with T_{p}. The connected component $E(p)^{\circ}$ of $E(p)$ coincides with the formal group (over O_{K}) attached to E_{v}; the height of \tilde{E} is precisely the height of this formal group (in the usual sense). In our case, we have $E(p)=E(p)^{0}$ since the height is assumed to be 2 .

THEOREM - One has $g_{p}=\underset{p}{i}$. This Lie algebra is either End $\left(V_{p}\right)$ or a non-split Cartan subalgebra of End $\left(V_{p}\right)$.
(Recall that a non-split Cartan subalgebra of $\operatorname{End}\left(V_{p}\right)$ is a commutative subalgebra of rank 2 with respect to which V_{p} is irreducible. It is given by a quadratic subfield of $\left.\operatorname{End}\left(V_{p}\right).\right)$

Proof. The Lie algebra g_{p} has the property that $g_{p} z=V_{p}$ for any non zero element z of V_{p} (cf. [27], p. 128, Prop. 8). In particular, V_{p} is an irreducible g_{p}-module; its commuting algebra is either a field of degree 2 (which is then necessarily equal to g_{P}) or the
field Q_{p}, in which case g_{p} is a priori $s \ell_{2}$ or $g \ell_{2}$. But $g_{p} \neq s \ell_{2}$ since $\Lambda^{2} V_{p}$ is canonically isomorphic to $V_{p}(\mu)$, and the action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on $\mathrm{V}_{\mathrm{p}}(\mu)$ is by means of the character X_{p}, which is of infinite order (indeed, no finite extension of K can contain all p^{n}-th roots of unity, $n=1,2, \ldots)$. Hence the Lie algebra g_{P} is either End $\left(V_{p}\right)$ or a non split Cartan subalgebra of $\operatorname{End}\left(V_{p}\right)$. Since the above applies to the completion of the maximal unramified extension of K, we have the same alternative for $\underset{P}{i}$. Moreover, ${\underset{P}{P}}^{i}$ contained in $g_{P} \cdot$ We have a priori three possibilities:
(a) ${\underset{p}{p}}^{i_{p}}=\operatorname{End}\left(V_{p}\right)$.
(b) ${\underset{p}{p}}^{i_{p}} g_{p}$ is a non split Cartan subalgebra of $\operatorname{End}\left(V_{p}\right)$.
(c) ${\underset{P}{p}}^{i}$ is a Cartan subalgebra and $g_{p}=\operatorname{End}\left(V_{p}\right)$.

However, ${\underset{f}{p}}$ is an ideal of g_{p}. Hence, (c) is impossible, and this proves the theorem.

Remarks

1) By a theorem of Tate ([39], §4, cor. 1 to th. 4), the algebra g_{P} is a Cartan subalgebra of $\operatorname{End}\left(\mathrm{V}_{\mathrm{p}}\right)$ if and only if $\mathrm{E}(\mathrm{p})$ has "formal complex multiplication," i.e. if and only if the ring of endomorphisms of $E(p)$, over a suitable extension of K, is of rank 2 over Z_{p}. There exist elliptic curves without complex multiplication (in the algebraic sense) whose p-completion $E(p)$ have formal complex multiplication.
2) Suppose that g_{p} is a Cartan subalgebra of $\operatorname{End}\left(V_{p}\right)$, and let $H=g_{p} \cap \operatorname{Aut}\left(V_{p}\right)$ be the corresponding Cartan subgroup of $\operatorname{Aut}\left(V_{p}\right)$. If N is the normalizer of H in $\operatorname{Aut}\left(V_{p}\right)$, then one knows that N / H is cyclic of order 2. Since $G_{p} \subset N$, it follows that G_{p} is commutative if and only if $G_{p} \subset H$. The case $G_{p} \subset H$ corresponds to the case where the formal complex multiplication of $E(p)$ is
defined over K, and the case $G_{p} T H$ corresponds to the case where this formal multiplication is defined over a quadratic extension of K.
3) Suppose that G_{p} is commutative, and that the residue field k is finite. Let F be the quadratic field of formal complex multiplication (i.e. $\quad g_{\mathrm{p}}$ itself, viewed as an associative subalgebra of $\operatorname{End}\left(V_{p}\right)$). If U_{F} denotes the group of units of F, the action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on V_{p} is given by a homomorphism

$$
\varphi: \operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K}) \longrightarrow \mathrm{U}_{\mathrm{F}}
$$

By local class field theory, we may identify the inertia group of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})^{\mathrm{ab}}$ with the group U_{K} of units of K . Hence the restriction φ_{I} of φ to the inertia group is a homomorphism of U_{K} into U_{F}. To determine φ_{I}, we first remark that the action of $\operatorname{End}(E(p))$ on the tangent space to $E(p)$ efines an embedding of F into K. For that embedding, one has (compare with chap. III, A.4)

$$
\varphi_{\mathrm{I}}(\mathrm{x})=\mathrm{N}_{\mathrm{K} / \mathrm{F}}\left(\mathrm{x}^{-1}\right), \quad \text { for all } \mathrm{x} \in \mathrm{U}_{\mathrm{K}}
$$

Indeed, by a result of Lubin (Ann. of Math. 85, 1967), there is a formal group E^{\prime} which is K-isogenous to $E(p)$, and has for ring of endomorphisms the ring of integers of F. But then, if $E^{\prime \prime}$ is a Lubin-Tate group over K (cf. Lubin-Tate [17]), the formal groups E^{\prime} and $E^{\prime \prime}$ are isomorphic over the completion of the maximal unramified extension of K (cf. Lubin [16], th. 4.3.2). Hence to prove the formula (*), we may assume that $E(p)$ is a Lubin-Tate group, in which case the formula ($*$) follows from the main result of [17].

A.2.3. Auxiliary results on abelian varieties

Let A and B be two abelian varieties over K, with good reduction, so that the associated p-divisible groups $A(p)$ and $B(p)$ are defined (these are p-divisible groups over the ring O_{K}, cf. Tate [39]). Let \widetilde{A} and \widetilde{B} (resp. $\widetilde{A}(p)$ and $\widetilde{B}(p)$) be the reductions of A and B (resp. of $A(p)$ and $B(p))$.

THEOREM 1-Let $\widetilde{\mathrm{f}}: \widetilde{\mathrm{A}} \longrightarrow \widetilde{\mathrm{B}}$ be a morphism of abelian varieties, and let $\widetilde{f}(p)$ be the corresponding morphism of $\widetilde{A}(p)$ into $\widetilde{B}(p)$. Assume there is a morphism $f(p): A(p) \longrightarrow B(p)$ whose reduction is $\tilde{f}(p)$. Then, there is a morphism $f: A \longrightarrow B$ whose reduction is \tilde{f}.

A proof of this 'lifting' theorem has been given by Tate in a Seminar (Woods Hole, 1964), but has not yet been published; a different proof has been given by W. Messing (L. N. 264, 1972).

THEOREM 2 - Assume $T_{p}(A)$ is a direct sum of Z_{p}-modules of rank 1 invariant under the action of $\operatorname{Gal}(\bar{K} / K)$. Then every endomorphism of \widetilde{A} lifts to an endomorphism of A, i.e., the reduction homomorphism $\operatorname{End}(A) \longrightarrow \operatorname{End}(\widetilde{A})$ is surjective (and hence bijective, since it is known to be injective).

Using theorem l, one sees that it is enough to show that any endomorphism of $\widetilde{A}(p)$ can be lifted to an endomorphism of $A(p)$. But the assumption made on T_{p} implies (cf. Tate [39], 4.2) that $\mathrm{A}(\mathrm{p})$ is a product of p -divisible groups of height 1 . Hence we are reduced to proving the following elementary result:

LEMMA - Let H_{1}, H_{2} be two p-divisible groups over O_{K}, both of height one. Then the reduction map:
$\operatorname{Hom}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right) \longrightarrow \operatorname{Hom}\left(\widetilde{\mathrm{H}}_{1}, \widetilde{\mathrm{H}}_{2}\right)$ is bijective.

Proof. This is clear if both H_{1} and H_{2} are étale. If both are not étale, their duals are étale and we are reduced to the previous case. If one of them is étale, and the other is not, one checks readily that $\operatorname{Hom}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\operatorname{Hom}\left(\tilde{\mathrm{H}}_{1}, \tilde{\mathrm{H}}_{2}\right)=0$.

COROLLARY - Assume:
(i) $V_{p}(A)$ is a direct sum of one-dimensional subspaces stable under $\operatorname{Gal}(\bar{K} / K)$.
(ii) The residue field k of K is finite.

Then A is isogenous to a product of abelian varieties of (CM) type (in the sense of Shimura-Taniyama [34], cf. also chap. II, 2.8).

Proof. Assumption (i) implies that $T_{p}(A)$ contains a lattice T^{\prime} which is a direct sum of free Z_{p}-modules of rank l stable under $\operatorname{Gal}(\bar{K} / K)$. One can find an isogeny $A_{1} \longrightarrow A$ such that $T_{p}\left(A_{1}\right)$ is mapped onto T '. This means that, after replacing A by an isogenous variety, we may apply Th. 2 to A, ie. $\operatorname{End}(A) \longrightarrow \operatorname{End}(\tilde{A})$ is an isomorphism. But, since k is finite, it follows from a result of Tate [38] that $Q \otimes \operatorname{End}(\tilde{A})$ contains a semisimple commutative Q-subalgebra Λ of rank $2 \operatorname{dim}(A)$ (this is not explicitly stated in [38], but follows easily from its 'Main Theorem'). Hence, the same is true for $Q \otimes \operatorname{End}(A)$. If we now write Λ as a product of commutative fields Λ_{a}, one sees that A is isogenous to a product $\prod A_{a}$, where A_{a} has complex multiplication of type Λ_{a}, q.e.d.
A.2.4. The case $\ell=p$ with good reduction of height l

In this section, we assume that the reduced curve $\widetilde{\mathrm{E}}$ is of height 1 i. e. that its Hasse invariant is $\neq 0$ (cf. Deuring [9]). The connected component $E_{1}=E(p)^{\circ}$ of the p-divisible group $E(p)$
attached to E (cf. Tate [39]) is then a formal group of height 1. Since $E(p)$ is an extension of E_{l} by an étale group, we obtain an exact sequence of $\operatorname{Gal}(\bar{K} / K)$-modules

$$
\begin{equation*}
0 \rightarrow \mathrm{X} \rightarrow \mathrm{~V}_{\mathrm{p}} \longrightarrow \mathrm{Y} \longrightarrow 0 \tag{*}
\end{equation*}
$$

where X corresponds to the Tate module of E_{1}, and Y to the points of order a power of p of \tilde{E}.

THEOREM - Suppose that the residue field k is finite. Then the following statements are equivalent:
(a) The elliptic curve E has complex multiplication over K.
(${ }^{\prime}$) The elliptic curve E has complex multiplication over an extension of K .
(b) There exists a one-dimensional subspace D of V_{p}, which is a supplementary subspace of X, and is stable under the action of G_{p}.
(b') There exists a one-dimensional subspace D of V_{p} which is a supplementary subspace of X, and is stable under the action of $g_{p}=\operatorname{Lie}\left(G_{p}\right)$.

Proof. If D is stable under the action of G_{p}, it is also stable under the action of its Lie algebra g_{p}, hence $(b) \Longrightarrow\left(b^{\prime}\right)$. Conversely, if D is stable under g_{p}, its transforms by G_{p} are in finite number; a standard mean value argument then shows that the sequence (*) splits, hence $\left(\mathrm{b}^{\prime}\right) \Longrightarrow(\mathrm{b})$. The implication $(\mathrm{b}) \Longrightarrow(\mathrm{a})$ (the only nontrivial one) follows from the corollary to theorem 2 of A.2.3. Conversely, if E has complex multiplication by an imaginary quadratic field F, the group $\operatorname{Gal}(\bar{K} / K)$ acts on V_{p} through $F \otimes Q_{p}$ (see chap. II, 2.8) and this action is thus semi-simple. Consequently, the
exact sequence ($*$) splits; this shows that $(\mathrm{a}) \Longrightarrow(\mathrm{b})$, hence also that $\left(a^{\prime}\right) \Longrightarrow\left(b^{\prime}\right)$. Since $(a) \Longrightarrow\left(a^{\prime}\right)$ is trivial, the theorem is proved.

COROLLARY 1- If E has no complex multiplication, g_{p} is the Borel subalgebra \underline{b}_{x} of $\operatorname{End}\left(V_{p}\right)$ formed by those $u \in \operatorname{End}\left(V_{p}\right)$
 ${ }^{\mathrm{b}} \mathrm{X}$ formed by those $u \in \operatorname{End}\left(V_{p}\right)$ such that $u\left(V_{p}\right) \subset X$.

Let X_{X} and X_{Y} be the characters of $\operatorname{Gal}(\bar{K} / K)$ defined by the one-dimensional modules X and Y. Since k is finite, X_{Y} is of infinite order. If X is the character defined by the action of $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ on $\mathrm{V}_{\mathrm{p}}(\mu)$, the isomorphisms

$$
\mathrm{X} \otimes \mathrm{Y} \simeq \Lambda^{2} \mathrm{~V}_{\mathrm{p}} \simeq \mathrm{~V}_{\mathrm{p}}(\mu)
$$

show that $X_{X} X_{Y}=X$. Hence the restriction of X_{X} and $X_{X} X_{Y}^{-1}$ to the inertia subgroup of $\operatorname{Gal}(\bar{K} / K)$ are of infinite order. This shows first that g_{P} is either \underline{b}_{X} or a Cartan subalgebra of \underline{b}_{X}; since the second case would imply (b^{\prime}), it is impossible, hence $g_{p}=\underline{b}_{x}$. Similarly, one sees first that $\frac{i}{P}$ is contained in \underline{r}_{X}, then that its action on X is non trivial; since it is an ideal in $g_{P}=\underline{b}_{X}$, these properties imply $\frac{i_{p}}{}=\underline{r}_{X}$.

Remark

The above result is given in [25], p. 245, Th. 1, but misstated: the algebra \underline{r}_{X} has been wrongly defined as formed of those u such that $u(X)=0$ (instead of $\left.u\left(V_{p}\right) \subset X\right)$.

COROLLARY 2 - If E has complex multiplication, g_{p} is a split Cartan subalgebra of $\operatorname{End}\left(V_{p}\right)$. If D is a supplementary subspace
to X stable under $G a l(\bar{K} / K)$, then X and D are the characteristic
subspaces of g_{p} and the inertia algebra $i p$ is the subalgebra of End $\left(V_{p}\right)$ formed by those $u \in \operatorname{End}\left(V_{p}\right)$ such that $u(D)=0, u(X) \subset X$.

The proof is analogous to the one of Cor. land in fact simpler).
.

BIBLIOGRAPHY

[1] E. ARTIN - Collected Papers (edited by S. Lang and J. Tate), Addison-Wesley, 1965.
[2] E. ARTIN and J. TATE - Class field theory. Harvard, 1961.
[3] M. ARTIN et A. GROTHENDIECK - Cohomologie étale des schémas. Sém. Géom. alg., I. H.E.S., 1963/64, Bures sur Yvette.
[4] W. BURNSIDE - The Theory of Groups (Second Edit.). Cambridge Univ. Press, 1911.
[5] J. CASSELS - Diophantine equations with special reference to elliptic curves. J. London Math. Soc., 41, 1966, p. 193-291.
[6] J. CASSELS and A. FRÖHLICH - Algebraic Number Theory. Academic Press, 1967.
N. ČEBOTAREV - Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehठren. Math. Annalen, 95, 1925, p. 151-228.
[8] C. CHEVALLEY - Deux théorèmes d'arithmétique. J. Math. Soc. Japan, 3, 1951, p. 36-44.
[9] M. DEURING - Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg, 14, 1941, p. 197-272.
[10] J. IGUSA - Fibre systems of Jacobian varieties, I. Amer. J. of Maths., 78, 1956, p. 171-199; II, id., p. 745-760; III, id., 81, 1959, p. 453-476.
[11] S. KOIZUMI and G. SHIMURA - On Specializations of Abelian Varieties. Sc. Papers Coll. Gen. Ed., Univ. Tokyo, 9, 1959, p. 187-211.
A. P. OGG - Abelian curves of small conductor. Journ. für die reine und ang. Math., 226, 1967, p. 204-215.
T. ONO - Arithmetic of algebraic tori. Ann. of Maths., 74, 1961, p. 101-139.
G. PÓLYA und G. SZEGÖ - Aufgaben und Lehrsatze aus der Analysis. Band I. Springer-Verlag, 2te Aufl., 1954.
I. SAFAREVIX - Algebraic Number Fields. Proc. Int. Congress, Stockholm, 1962, p. 163-176 (A.M.S. Transl., Ser. 2, vol. 31, p. 25-39).
[24] J.-P. SERRE - Sur les groupes de congruence des variétés abéliennes. Izv. Akad. Nauk. S.S.S.R., 28, 1964, p. 3-20.
[25] J. -P. SERRE - Groupes de Lie ℓ-adiques attachés aux courbes elliptiques. Coll. Clermont-Ferrand, C.N.R.S., 1964, p. 239-256.
[26] J.-P. SERRE - Groupes p-divisibles (d'après J. Tate). Sém. Bourbaki, 1966/67, exposé 318.
[27] J. -P. SERRE - Sur les groupes de Galois attachés aux groupes p-divisibles. Proceed. Conf. on Local Fields, Springer-Verlag, 1967, p. 113-131.
[28] J.-P. SERRE - Lie algebras and Lie groups. Benjamin, New York, 1965.
[29] J.-P. SERRE - Corps Locaux. Hermann, Paris, 1962.
[30] J.-P. SERRE - Dépendance d'exponentielles p-adiques. Sém. Delange-Pisot-Poitou, 7 e année, 1965/66, exposé 15.
[31] J.-P. SERRE - Résumé des cours 1965/66. Annuaire du Collège de France, 1966-67, p. 49-58.
[32] J. -P. SERRE and J. TATE - Good reduction of abelian varieties, Ann. of Math. 88 (1968), p. 492-517
[33] G. SHIMURA - A reciprocity law in nonsolvable extensions. Journal für die reine und ang. Math., 221, 1966, p. 209220.
[34] G. SHIMURA and Y. TANIYAMA - Complex multiplication of abelian varieties and its applications to number theory. Publ. Math. Soc. Japan, 6, 1961.
[35] Y. TANIYAMA - L functions of number fields and zeta functions of abelian varieties. Journ. Math. Soc. Japan,

9, 1957, p. 330-366.
[36] J. TATE - Algebraic cycles and poles of zeta functions. Proc. Purdue Univ. Conf., 1963, p. 93-110, New York, 1965.
[37] J. TATE - On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki, 1965/66, exposé 306.
[38] J. TATE - Endomorphisms of Abelian Varieties over finite fields. Inven. math., 2, 1966, p. 134-144.
[39] J. TATE - p-divisible groups. Proc. Conf. on Local Fields, Springer-Verlag, 1967, p. 158-183.
[40] A. WEIL - Variétés abéliennes et courbes algébriques. Hermann, Paris, 1948.
[41] A. WEIL - On a certain type of characters of the idèle-class group of an algebraic number field. Proc. Int. Symp. Tokyo-Nikko, 1955, p. l-7.
[42] A. WEIL - On the theory of complex multiplication. Proc. Int. Symp. Tokyo-Nikko, 1955, p. 9-22.
[43] A. WEIL - Adèles and algebraic groups (Notes by M. Demazure and T. Ono). Princeton, Inst. Adv. Study, 1961.
[44] A. WEIL - Basic Number Theory. Springer-Verlag, 1967.
A. WEIL - Ueber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Annalen, 168, 1967, p. 149-156.
[46] H. WEYL - Über die Gleichverteilung von Zahlen mod. Eins. Math. Annalen, 77, 1914, p. 313-352.

SUPPLEMENTARY BIBLIOGRAPHY

[47]. S. BLOCH and K. KATO—p-adic étale cohomology, Publ. Math. I.H.E.S. 63 (1986), p. 107-152.
[48] F. BOGOMOLOV-Sur l'algébricité des représentations l-adiques, C. R. Acad. Sci. Paris 290 (1980), p. 701-703.
[49] H. CARAYOL-Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. E.N.S. 19 (1986), p. 409-468.
[50] P. DELIGNE-Formes modulaires et représentations l-adiques, Séminairc Bourbaki 1968/69, exposé 355, Lecture Notes in Math. 179, p. 139-186, Springer-Verlag, 1971.
[51] P. DELIGNE—Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math. 33, A.M.S. (1979), vol. 2, p. 313-346.
[52] P. DELIGNE-Hodge cycles on abelian varieties, Lecture Notes in Math. 900, p. 9-100, Springer-Verlag, 1982.
[53] P. DELIGNE-Motifs et groupes de Taniyama, Lecture Notes in Math. 900, p. 261-279, Springer-Verlag, 1982.
[54] G. FALTINGS-Endlichkeitssätze für abelsche Varietäten über Zahlkörpcm, Invent. Math. 73 (1983), p. 349-366; Erratum, ibid. 75 (1984), p. 381.
[55] G. FALTINGS—p-adic Hodge theory, Journal A.M.S. 1 (1988), p. 255-299.
[56] G. FALTINGS, G. WÜSTHOLZ et al—Rational Points, Vieweg, 1984.
[57] J.-M. FONTAINE-Groupes p-divisibles sur les corps locaux, Astérisque 4748, S.M.F., 1977.
[58] J.-M. FONTAINE-Modules galoisiens, modules filtrés et anneaux de BarsoltiTate, Astérisque 65 (1979), p. 3-80.
[59] J.-M. FONTAINE-Sur certains types de représentations p-adiques du groupc de Galois d'un corps local, construction d'un anneau de Barsoti-Tate, Ann. of Math. 115 (1982), p. 529-577.
[60] J.-M. FONTAINE-Formes différentielles et modules de Tate des varićtćs abéliennes sur les corps locaux, Invent. Math. 65 (1982), p. 379-409.
[61] J.-M. FONTAINE—Représentations p-adiques, Proc. Int. Congress 1983, vol. 1, p. 475-486.
[62] J.-M. FONTAINE and W. MESSING-p-adic periods and p-adic étale cohomology, Contemp. Math. 67 (1987), p. 179-207.
[63] G. HENNIART-Représentations l-adiques abéliennes, Séminaire de Thćoric des Nombres 1980/81, Birkhäuser-Verlag 1982, p. 107-126.
[64] N. KATZ-Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), p. 481-502.
[65] R. P. LANGLANDS—Modular forms and l-adic representations, Lecture Notcs in Math. 349, p. 361-500, Springer-Verlag, 1973.
[66] R. P. LANGLANDS-Automorphic representations, Shimura varictics, and motives. Ein Märchen, Proc. Symp. Pure Math. 33, A.M.S. (1979), vol. 2, p. 205-246.
[67] D. MUMFORD—Families of abelian varieties, Proc. Symp. Pure Math. IX, A.M.S. 1966, p. 347-351.
[68] M. OHTA-On l-adic representations attached to automorphic forms, Jap. J. Math. 8 (1982) p. 1-47.
'[69] K. RIBET-On l-adic representations attached to modular forms, Invent. Math. 28 (1975), p. 245-275; II, Glasgow Math. J. 27 (1985), p. 185-194.
[70] K. RIBET-Galois action on division points of abelian varieties with many rcal multiplications, Amer. J. Math. 98 (1976), p. 751-804.
[71] K. RIBET--Galois representations attached to eigenforms with Nebentypus, Lecture Notes in Math. 601, p. 18-52, Springer-Verlag, 1977.
[72] S. SEN—Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. 97 (1973), p. 160-170.
[73] J.-P. SERRE—Une interprétation des congruences relatives à la fonction τ dc Ramanujan, Séminaire D.P.P. 1967/68, n ${ }^{\circ} 14$ (=Oe.80).
[74] J.-P. SERRE-Facteurs locaux des fonctions zêta des variétés algébriqucs (définitions et conjectures), Séminaire D.P.P. 1969/70, nº19 (=Oe.87).
[75] J.-P. SERRE—Sur les groupes de congruence des variétés abéliennes II, Izv. Akad. Nauk S.S.S.R. 35 (1971), p. 731-735 (=Oe.89).
[76] J.-P. SERRE—Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), p. 259-331 (=Oe.94).
[77] J.-P. SERRE-Congruences et formes modulaires (d'après H.P.F. SwinnertonDyer), Séminaire Bourbaki 1971/72, nº416 (=Oe.95).
[78] J.-P. SERRE—Représentations l-adiques, Kyoto Symp. on Algebraic Number Theory, 1977, p. 177-193 (=Oe.112).
[79] J.-P. SERRE-Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), p. 155-188 (=Oe.119).
[80] J.-P. SERRE—Résumé des cours de 1985-86, Annuaire du Collège de France, 1986, p. 95-100.
[81] H. P. F. SWINNERTON-DYER-On l-adic representations and congrucnces for coefficients of modular forms, Lecture Notes in Math. 350, p. 1-55, Springer-Verlag, 1973; II, ibid. 601, p. 63-90, Springer-Verlag, 1977.
[82] L. SZPIRO Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque 127, S.M.F., 1985.
[83] M. WALDSCHMIDT-Transcendance et exponentielles en plusieurs variablcs, Invent. Math. 63 (1981), p. 97-127.
[84] A. WILES--On ordinary λ-adic representations associated to modular forms, preprint, Princeton, 1987.
[85] J.-P. WINTENBERGER-Groupes algébriques associés à certaines représentations p-adiques, Amer. J. Math. 108 (1986), p. 1425-1466.
[86] Y. G. ZARHIN—Abelian varieties, l-adic representations and SL $_{2}$, Math. USSR Izv. 14 (1980), p. 275-288.
[87] Y. G. ZARHIN—Abelian varieties, l-adic representations and Lie algebras. Rank independence on l, Invent. Math. 55 (1979), p. 165-176.
[88] Y. G. ZARHIN-Weights of simple Lie algebras in the cohomology of algebraic varieties, Math. USSR Izv. 24 (1985), p. 245-281.

INDEX

Admissible (character) : III.A.2.
Almost locally algebraic : III.3.3.
Anisotropic (torus) : II.A.1.
Arithmetic (subgroup) : II.A.1.
Associated (algebraic morphism ... with a locally
algebraic representation) : III.1.1, III.2.1.
Aut(V) : Notations.
C, C_{m} : II.2.1.
Čebotarev's theorem : I.2.2.
Character group (of a torus) : II.2.1.
$c(\varphi): I I I . A .2$.
$C=\dot{\bar{K}}$: III.1.2.
$c_{K / E}$: III.A.6.Exer.1.
Compatible (representations) : I.2.3, I.2.4.
Complex multiplication : II.2.8, IV.2.1.
Conductor (of a locally algebraic representation) : III.2.2.
C_{∞}, c_{ω} : II.3.1.
D : II.2.1.
Decomposition group : I.2.1.
Defined over k (representation ...) : II.2.4.
Density (of a set of places) : I.2.2.
$\varepsilon:$ II.2.2.
ε_{ℓ} : II.2.3.
Elliptic curve : IV.1.1.
$E_{L^{n}}$: IV.1.3.
E_{m} : II.2.1.
E_{q} : IV.A.1.1.
Equidistribution : I.A.1.
\widetilde{E}_{v} : IV.1.2.
Exceptional set (of a strictly compatible system) : I.2.3.
$\varphi \sim \varphi^{\prime} \quad$: III.A.2.
ω_{L} : II.2.5.
$F_{v}, f_{v}: I I .2 .3$.
Frobenius element : I.2.1.
Frobenius endomorphism : II.2.8, IV.1.2.
$\Gamma_{E}: I V . A .3$.
$G_{\ell}: I V .2 .2$.
\tilde{G}_{Z} : IV.3.1.
$\underline{8}_{\mathcal{L}}:$ IV.2.2, IV.APp.
GL_{V} : Notations.
$-G_{m}: I I .1 .1$.
Good reduction (of an elliptic curve) : IV.1.2.
Grössencharakter of type (A_{0}) : II.2.7.
Height : IV.A.2.2.
Hodge-Tate decomposition : III.1.2.
Hodge-Tate module : III.1.2.
I, I_{m} : II.2.1.
Idèle : II.2.1.
Idèle classes : II.2.1.
\underline{i}_{ℓ} : IV.App.
Inertia group : I.2.1.
Integral (representation) : I.2.3.
Isogeny, isogenous curves : IV.1.3.
$j: I V .1 .1$.
$\overline{\mathrm{K}}, \mathrm{K}_{\mathrm{s}}$: Notations.
\&-adic representation (of a field) : I.1.1.
λ-adic representation (of a field) : I.2.3.
Lattice : I.1.1.
L-function : I.2.5.
Locally algebraic (representation) : III.1.1, III.2.1, III.2.4, III.3.3.

Modular invariant (of an elliptic curve) : IV.1.1.
Modulus (of a locally algebraic representation) : III.2.2.
Multiplicative type (group of ...) : II.1.3.
Néron-0gg-Šafarevič (criterion of ...) : IV.1.3.
Rational (representation) : I.2.3, I.2.4.
Reduction (of an elliptic curve) : IV.1.2.
$\operatorname{Rep}_{k}(H): I I .2 .4$.
Šafarevič (theorem of ...) : IV.1.4.
S_{m} : II.2.2.
Strictly compatible (system of representations) : I.2.3, I. 2.4 .

Supp(m): II.2.1.
Tate's elliptic curves : IV.A.1:1.
Tate's theorem : III.1.2, III.A.7.
$\theta_{\varphi}:$ II.2.4.
$\mathrm{T}_{\ell}(\mu):$ I.1.2.
T_{m} : II.2.2.
Torus : II.1.1.
Transvection : IV.3.2.
$T=R_{K / Q}\left(G_{m / K}\right): I I .1 .1$.
$U_{m}, U_{v_{g} m}$: II.2.1.
Uniformly distributed (sequence) : I.A.1.
Unramified (representation) : I.2.1.
$V_{\boldsymbol{L}}(\mu): I .1 .2$.
Weierstrass form (of an elliptic curve): IV.1.1.

$$
\begin{aligned}
& X_{E}: \text { III.A.4. } \\
& X_{\mathcal{L}}: I .1 .2 . \\
& X(T), X\left(T_{m}\right): \text { II.3.1. } \\
& Y, Y^{0}, Y^{-}, Y^{+}: \text {II.3.1, II.A.2. } \\
& \Sigma_{K}: I .2 .1 . \\
& \Sigma_{K}^{\infty}, \bar{\Sigma}_{\mathrm{K}}: \text { II.2.1. }
\end{aligned}
$$

