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The Arithmetic of Elliptic Curves *

John T. Tate (Cambridge, Mass.)

§ 1. Introduction

After curves of genus 0O (e.g. lines and conics in the plane) come
curves of genus 1, or “elliptic” curves (e.g. plane cubics or intersections
of quadric surfaces in three-space). Elliptic curves are the first examples
of abelian varieties. Their points of finite order give the first non-trivial
examples of étale cohomology groups. The action of Galois groups on
these leads both to the classical theory of complex multiplication as
well as to systems of non-abelian extensions which may contain clues
to non-abelian class field theory. Elliptic curves are intimately connected
with the theory of modular forms, in more ways than one.

In the early sections I have tried to give a brief introduction to the
fundamentals of the subject, using explicit formulas to by-pass chunks
of general theory when possible. The later sections are a survey of recent
work with emphasis on three main topics: (1) The problem of rational
points, the Shafarevitch group, and the conjecture of Birch and Swinner-
ton-Dyer. (2) Modular curves and Weil’s astounding idea that every
elliptic curve over the rational field is “modular”. (3) Serre’s theorem
that the Galois groups obtained from points of finite order on elliptic
curves are “as big as possible”. I hope to be able to convey some idea
of these advances here, illustrating them by numerical examples discussed
in the last section.

§ 2. Weierstrass Models
In these lectures we will use the term elliptic curve to mean an abelian
variety of dimension 1, or, what is the same, an irreducible non-singular
projective algebraic curve of genus 1 furnished with a point O, the
origin for the group law. Any such curve E, defined over a field K,
has a plane cubic model of the form

Vita xy+ayy=x"+a, x> +a, x+aq (1)

* Revised version of a survey, distributed in conjunction with the Colloquium Lectures
given at Dartmouth College, Hannover, August 29-September 1, 1972 (77th summer
meeting of the A.M.S.).
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180 J.T. Tate

where x and y are coordinates in the affine plane and the coefficients g;
are in our ground field K. We call (1) a Weierstrass equation because in
characteristics #2, 3 we can replace x and y by

ai+4a,

@=X+T, ' =2y+a;x+a;,

and (1) becomes of the form
() =40~g, p—2g;.

In the projective plane the curve (1) has a unique point at infinity which
we call 0 and take as the origin for the group law. It is a point of inflection
with the line at infinity as tangent; the other lines through O are the
“vertical” lines, x = const.

Given an Eq. (1), i.e, given five elements a,,a,,a;,d,,a¢ in K, we
define associated quantities b, ¢;, 4, and j by the following formulas.
The subscripts indicate weights. The quantity 4, of weight 12, is called
the discriminant; its non-vanishing is necessary and sufficient for the
curve (1) to be non-singular, hence elliptic.

b,=a%+4a, cy=b3-24b,(=12g,)
b4=ala3+2a4 Céz—bg+36b2b4_216b6(:216g3)
b¢=a%+4aq A= —bibg—8b3—27b2+9b,b, bs(=g3—27g3) (2)

3
be=b,ds—a,dyas+a,al —a? j=—‘j‘-(=1728J).

These quantities are related by
4bg=b, bs—b% and 17284 =c3—c2. 3)

An invariant differential on (1) is

B dx _dp(2)
w= 2y+alx+a3 (_ SO/(Z) —d2> (4)

A Weierstrass model (1) for an elliptic curve E over K is unique
up to a coordinate transformation of the form

x=ulx'+r, y=udy+su’x +t (5)
with r,s,t,ue K, u=0. Under such a change we have

w=uw, (6)
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and the transformation rules for the a’s, b’s, ¢’s, 4 and j are:

udy=a;+2s ubby=bg+3rbg+3r’b,+r3b,+3r*
way=a,—sa+3r—s* ulbg=bg+2rby+r’b,+4r>
wray=ay+ra+2t ut by=b,+rb,+6r
utdy=a,—say+2ra, urby=hb,+12r )

—(t+rs)a,+3r2=2st
ubag=ag+ra,+r*a,+r*—tas—rta,—t?

U4 C:L=C4, u() c‘6:66~ u12 A/: A, _],=J

If two elliptic curves E and E’ are isomorphic, then j=j'; the
converse is true over an algebraically closed field K, as is not hard
to check using the formulas above.

If P is a point on E we denote the corresponding prime divisor
by (P). We let D~ D’ denote linear equivalence of divisors. The group
law on E, which is commutative and denoted by +, is determined
intrinsically by the rule

||M=

together with the fact that O is the identity element, i.e., 0+P=P for
all P. On a Weierstrass model (in fact on any plane cubic model in
which 0 is a point of inflection) it follows that for three points P, Q, R
on E we have P+Q+R=0<(P)+(Q)+(R)~3(0) < (P)+(Q)+(R) is
the intersection cycle of a line with E. (This means simply P, Q, and R
collinear if P+Q+R+P; if P=Q=*R, it means that the tangent to E
at P meets E also in R; and if P=Q=R it means that P is a point of
inflection.)

It is easy to make the addition law on a Weierstrass model (1) very
explicit. Let B,=(x,, y;) and P,=(x,, ¥,) be two points +0 on the curve.
Then B+ P,=0 < x;=x, and y,+ y, +a, x+ a3 =0. Otherwise, we find
the sum B +P,=P=(x;3,y;) as follows: Let y=Ax+v be the line
through B and P, (tangent to E at B, if E=PB). Then x,,x,, x; are
the roots, with correct multiplicities, of the cubic equation in x obtained
by substituting A x+v for y in (1). Hence x; can be calculated from
X;+ X, +x3=4*+a, A—a,, then y; from —a, x;—a;—y;=4x;+v. Of
course, if the coordinates of the points F and P, lie in the ground
13*

HM:

i
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field K, those of P, do also. Thus the set E (K) of K-rational points on E,
consisting of 0 and the solutions (x, y)e K x K of Eq.(1), is a group.

Even if E is not an elliptic curve, but a singular plane cubic of the
form (1), the prescription just given makes the set of non-singular points
E,, on E into a group. In this case E is a rational curve of genus 0, with
one singularity, S, a node or cusp. The situation is as follows:

If A=0 and ¢, #0 (so j=o0) then S is a node and is rational over K.
If

y=a;x+p; and y=o,x+p,

are the two tangents to E at S then the map

y=ax—p, o)

P=(x, y)>
y—oyx—f,

is an isomorphism of E,, with the multiplicative group G,,. If «; and «,
are in K, this isomorphism is defined over K and E, (K)~K*; if not,
then o, and o, are conjugate quadratic irrationalities over K and

E, (K)~(gp. of elts. of norm 1 in the quad. ext. K(a)/K).

If 4=0 and ¢, =0 (so j indeterminate), then S is a cusp. If S is rational
over K (which i1s automatic if K is perfect or of characteristic +2, 3),

then the map 1
(10)

" (slope PS)—(slope of tangent at S)

is an isomorphism of E, with the additive group G,, defined over K,
and E, (K)~K™.

By means of the formulas (7) it is easy to determine the structure
of the group of automorphisms of an elliptic curve E. If j=0, 1728 then
the only non trivial automorphism is P+> —P. If charK 2,3 and
j=0 (resp. j=127) then E can be taken in the form y?= x>+ ay (resp.
y?=x3+a, x) and the only automorphisms are of the form (x, y)r>
(u? x, uy) with u®=1 (resp. u*=1). If char K=3 (resp. char K =2) and
Jj=0=1728 then, over an algebraically closed field, E can be taken of
the form y?=x3—x (resp. y* —y=x>) and AutE is a non-commutative
group of order 12 (resp. 24). More precisely:

The group of order 12 can be presented by two generators s, t with
the relations s*=1, t*=1, sts™'=t¢""; its quotient by {+1}={l1,s?}
is SL, (F,)= &3, as one sees by considering its action on the 2-division
points.

The group of order 24 is isomorphic to SL,(F;), as one sees by
considering its action on the 3-division points; it is a semi-direct product
of a cyclic group of order 3 by a quaternion group of order 8 (normal
subgroup).
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§ 3. Expansions near 0; the Formal Group
Let E be defined by a Weierstrass Eq. (1). Let

Z=——, W=-——, 80 x=i, y=——" (11)
y y w w

The equation for E in the affine (z, w)-plane is
w=2z>+a zwHa, 22 wtaywi+a,zwi+ags wl. (12)

The point O is given by (z, w)=(0,0), and z is a local parameter at 0.
From (12) we get the formal expansion
w=z +a,z* +(al+a,) 2’ +(a} +2a,a,+a;) 2°
+(at+3ata,+3a,a3+ad+ag)z" + - (13)
=2(14+A,z2+ 4,25+,

where A, is a polynomial of weight n in the a; with positive integral
coefficients. From (13) and (11) we get

x=z 2—a,z '—a,—ayz—(a, +a,a;) 2>+ -,
(14)
y=—z'x=—z3+a z7*+,
as the formal expansion of x and y. Clearly, the coefficients of these
expansions have coefficients in Z[a,,a,, as,d,,ae]. The same is true
for the expansion of the invariant differential w:

w=dz(1+a,z+(ai +a,) 2* +(a3 +2a,a,+2a;) 2°

(15)
+(@t+3ata,+6a,as+a3+2a,) 2t +-),

because
o dx/dz =2z 4.
dz  2y+ayxtay —2z 4.
_ dy/dz B -3z 4.
C3xP2ayxtag—ayy =3z 4+

has coefficients in Z[3, aj, ..., a¢], but also in Z[§,ay, ..., ag].

Finally, if B,=F,+ P, and P.=(z;, w;), then we can express z;=F(z,, z,)
as a formal power series in z; and z,, with coefficients in Z[ay, ..., ac]-
The expansion begins

Flzy,2))=21+ 2z, —ay 2,2, —ay(2} 2, + 2, 23)
3 3 2.2 (16)
—2a3(z7z,+ 2z, 23)+(a a, —3az) zy 25+ -+
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This is the “formal group on one parameter” associated with E,
cf. [4], [7], (161, [59], [79].

For each integer n=>1 we have, formally,

z(nP)=y,(z(P)), (17)
where the series {, are defined inductively by
WI(Z)=Z, ‘/jn+1(z)=F(Z"//n(Z))' (18)
For example, we have
lﬁ2(2)=22—‘7122_251223“‘(‘7102_7“3)24‘1“"' (19)
and
Y3(2)=3z-3a,z>+(ai —8a,) 2 +3(@a,a, —13a;) z* +---.  (20)

In characteristic p >0, for any formal group on one parameter, the
series ¥/, is of the form

Yp()=c 27" +cy 22"+ ey 227+, with ¢ %0,

where h is an integer =1, or oo (h= o0 means ¥ ,(z)=0). This h is called
the height; it determines the formal group up to isomorphism over an
algebraically closed ground field [26]. The formal group of an elliptic
curve E is of height 1 or 2, because the isogeny p: E — E is of degree p’
(see below), and p" is the inseparable part of that degree. If the height
is 1, E is said to be ordinary, or to have non-zero Hasse invariant; if the
height is 2, E is said to be supersingular, or to have Hasse invariant 0.
Concerning the Hasse invariant, cf. e.g. [13]; also [60], [97]. It can be
defined as the coefficient of z” in ¥ ,(z), which is equal (in char. p) to
the coefficient of zP~!dz in the z-expansion (15) of w=dz(1+---), and
is determined up to multiplication by an element of (K*)?~ 1.

Over an algebraically closed field of characteristic p=+0, there is
only a finite number of supersingular curves, up to isomorphism. The
number is roughly p/12; more precisely we have the following “mass-
formula”, due to Eichler and Deuring [13]:

1 p—1

|AutE| 24 @D

E supersingular

Here |AutE| denotes the number of automorphisms of E over the
algebraically closed field. In conjunction with the results on autE
stated at the end of §2, this formula is a convenient memory aid, being
equivalent to the following: For p=2, 3 the only supersingular invariant
is j=0=123. For p>5, there are [p/12] supersingular values of j
different from 0 or 123, and j=0 (resp. 123) is supersingular for p=11
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or Smod 12 (resp. for p=11 or 7mod 12). It is worth noticing that the
number of these supersingular j’s is equal (for p=3) to

1 + genus of the I, (p) modular curve
and to

dimension of modular forms of weight p+ 1 on SL,(Z).

This is more than simple coincidence (see e.g. the last § of Deligne-
Rapoport in [84]).

§ 4. Isogenies and /-Adic Homology

An isogeny is a non-zero homomorphism ¢: E, — E, of elliptic
curves. Its degree, dego, can be defined either as the degree of the
corresponding function field extension K(E,)/K(E,), or as the total
intersection multiplicity I, -.I; of the graph of ¢ with the graph of the
0-homomorphism, on the product E, x E,. More precisely, the separable
part of the field extension degree is equal to the number of points of
intersection and the inseparable part to their multiplicities. An isogeny
¢@: E,— E, induces a dual isogeny ¢': E, — E, in the other direction,
because an elliptic curve, being its own Jacobian, is self dual. If s (sum)
is the canonical map from divisors of degree 0 to points defined by
s()_ni(P))=Y n;P, then we have ¢'(s,(D))=s,(¢*(D)) for a divisor D
of degree 0 on E,, where ¢* denotes “inverse image under ¢ ”. We have

(@)=0, ¢'o@=multn. by deg =< ¢’ o
degp=dego’, @i+@2=(@+@), (poh)=y'o¢".

All these rules are easy consequences of the theory of divisors on the
product E, x E,, i.e., of “correspondences”. So also is the fundamental
fact that deg¢g is a quadratic function of ¢, i.e., if ¢;; E,— E, are
homomorphisms, then deg(} m; ;) is a quadratic form in the integral
variables m; (we put deg0=0). In particular, for any integer m>0 the
multiplication by m in E is m(id); and is therefore an isogeny of degree m”.
We denote this isogeny by my and its kernel by E,,. Granting all this,
there follows

Theorem 1. Let E be an elliptic curve defined over a field K.

a) If K is separably closed and m an integer not divisible by the
characteristic of K, then E(K) is divisible by m, and its subgroup E,, (K)
of elements of order dividing m is isomorphic to (Z/mZ)x(Z/mZ), the
product of two cyclic groups of order m.

b) If K is algebraically closed of characteristic p>0, then E(K) is
divisible by p. If E is ordinary, then E,(K)xXZ/p"Z, but if E is super-
singular, then E . (K)=0.
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For example, if K=C, the complex field, then we have E(C)~C/L,
where L=Zw,+Zw, is a “period lattice” in C. Hence, for any

integer m>0,

E,(C)= (711— L) IL~L/mL=(Z/mZ) ® L~Z/mZ)x(Z/mZ)

is indeed a free module of rank 2 over the ring Z/mZ. Moreover it has
a homological interpretation, as the 1-homology of E with coefficients
mod m, because L can be identified with H,(C/L,Z). In view of
Theorem 1, if E is an elliptic curve over any field K and K a separable
algebraic closure of K, it is reasonable to view E, (K,) as the 1-dimen-
sional homology of E with coefficients in Z/mZ, which, in fact, it is
in the étale cohomology theory of M. Artin and Grothendieck. Taking
m=1[" ] a prime #char(K), and passing to the projective limit as n — oo
we get Weil’s l-adic space

If K=C,
as above

T/(E)=limE,.(K) " =" im(Z/"Z)® L=Z,® L,

which is a free module of rank 2 over the ring Z, of l-adic integers, and
plays the role of H, (E, Z,).

Going back to the case K=C we note that the intersection pairing
of 1-cycles induces an alternating form on L=H,; with values on Z,
making A% L~Z. The algebraic analog is Weil’s “e,,-pairing”

em’ Ep(Ky) % E, (K= p1, (K) (23)
with values in m-th roots of unity. Passage to the limit with m=/["

furnishes identifications
Az, T(E)~T, (). (24)

An endomorphism ¢: E — E induces an endomorphism ¢, of T,(E)
which can be represented by a 2 x 2 l-adic matrix, once a base for 7; is
chosen, and which has a determinant, trace, and characteristic poly-
nomial independent of that choice. Naturally ¢ is adjoint to ¢ with
respect to the e,-pairings, so we have ¢, ¢, At,=t, A@;t, in the sense
of (24). Replacing t, by ¢,t, and using ¢’ @ =deg¢ gives @, t; A, t,=
(deg @) (t; A t,), i.e., det o, =deg . Replacing ¢ by m—¢, meZ, we get
that deg(m—o)=f,(m) for all m, where f(X)=det(X—¢,) is the
characteristic polynomial of ¢,. Hence f(X)=X?—(Tr¢)X +(deg¢)
has coefficients in Z, independent of I. Call it f(X). Since deg(m—n¢)=0
all m, n we have (Tr@)? —4 deg <0, or, what is the same, the complex
roots of f(X)=0 (“eigenvalues of ¢”) are conjugate, of absolute value
Vdego; if p¢Z, these two roots generate an imaginary quadratic field.
It is customary (although slightly abusive) to identify ¢ with one of these
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roots, hence to speak of ¢ as a “number” in some quadratic imaginary
field; one then writes Trpo=¢ +@ and degp=¢ o.

Let N, be the number of fixed points of ¢ acting on E(K). If I —¢ is
separable, then the fixed points have multiplicity 1 and

N,=deg(1—@)=1-Tro+degp=(1—0¢)(1-9), (25)

a “Lefschetz fixed point formula™.

For a concrete discussion of how to compute isogenies on Weierstrass
models, see Vélu [78].

§ 5. Finite Ground Field

Let k be a finite field of characteristic p with g=p* elements. In
characteristic p the map x+ x% is a field isomorphism, and x=x?<>xek.
Hence, if V is an algebraic variety defined by equations f;(x,, ..., x,)=0
with coefficients in k, the map (x,, ..., x,) > (x{, ..., x%) induces a rational
map 7y, of Vinto itself, called the Frobenius endomorphism of V relative
to k, whose fixed point set is just the set V (k) of k-rational points on V.

Let E be an elliptic curve over k. Then n=m, is a purely inseparable
isogeny of degree ¢ of E.

Theorem 2. The order of the group E (k) is
|E(k)]=1~Trn+q. (26)

It differs from 1 +q by at most 2]/5

This theorem, conjectured by E. Artin in his thesis, was proved by
Hasse in the 1930’s, and later generalized to curves of higher genus
and abelian varieties by Weil. It is an immediate consequence of the
considerations at the end of the last section. Indeed, m being purely
inseparable has differential 0, so 1 —n has differential the identity and
is separable.

Remark. We may identify 7 with an integer of an imaginary quadratic
field (or of Q), with |r|=g?, cf. §4. Conversely, any such integer is “the
Frobenius endomorphism” of an elliptic curve over F,, determined
up to F,-isogeny; this follows from Deuring [13] and has been generalized
to abelian varieties by Honda and Tate [75], [77].

The zeta function of the curve E/k (cf. e.g. [54]) is:

Sen@™)
(1=g)(1—4¢'7%)"
where

Jeu(X)=det(l —-n X)=1—(Tra) X +qX*=(1—-nX)(1 -7 X), (28)

and Theorem 2 implies that its zeros are on the line Re(s)=14.

27

Cen(s)=
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We define fg,(X) also when E is not an elliptic curve, but a curve of
Weierstrass type (1) with a singularity, S. There are three cases as discussed
at the end of §1. We put

1-X, if Sanode withtangentsrational over k
Jex(X)=31+X, if §anode with tangents quadratic over k (29)
1, if Sacusp.

Then (27) holds in all cases, E singular or not. So does the relationship

|E, (k)| =qf(@"). (30)

§ 6. Local Fields

The group E(C) of points on an elliptic curve over the complex field
is a connected compact complex Lie group of complex dimension 1, so
is isomorphic to the product of two circles.

The group E(R) of points on an elliptic curve over the real field is a
compact real Lie group of dimension 1 with one or two components
(according as 4<0 or 4>0), and is therefore isomorphic to the circle
group or to its product with a group of order 2.

Suppose now that K is a field complete with respect to a discrete
valuation, v. Let R denote the ring of integers in K, p a prime element
in R, and k=R/pR the residue field. Assume v normalized so that
v(p)=1. Let E be an elliptic curve over K. There exist Weierstrass Egs. (1)
for E with coefficients a;e R. Among all such, choose one for which v(4)
is minimal. We call such an equation a minimal Weierstrass equation for E.
Using the Eqgs. (7) it is a simple matter to check that any two such minimal
equations are related by a transformation (5) with r, s, te R and u invertible
in R. This will mean that the following considerations are essentially
independent of our choice of minimal Eq.(1). In particular, the Weier-
strass curve E over k got by reducing (1) modulo the prime in R is unique
up to a transformation of the form (5) over k.

A point P in projective n-space over K can be represented by a set of
coordinates (xgq, ..., X,) such that x;eR all i and x; invertible in R for
some i (i.e., such that 0=Min v(x;)), and then on reducing the x; mod p R
we get a point P=(%,, ..., X,) in projective n-space. For n=2 this “reduc-
tion map” P+ P from P,(K) to P, (k) obviously carries E(K) to E (k).
We put L

Ey(K)={PeE(K)|PeLE, (k)}, (31)

E,(K)={PeE(K)|P=0}. (32)

Recall (cf. §1) that E,; denotes the non-singular part of E, and is a group.
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Theorem 3. a) The set E,(K) is a subgroup of finite index in E(K).

b) The reduction map is a homomorphism of E,(K) onto E, (k) with
kernel E,(K).

c) The map P — z(P)= — x(P)/y(P) is an isomorphism between E,(K)
and the group of points on the formal group (16) with coordinate z in the
prime ideal of R.

That E,(K) is a subgroup and is mapped homomorphically to E, (k)
by reduction follows from the fact that reduction carries lines into lines.
The homomorphism is onto by Hensel’s lemma, and its kernel is E,(K)
by definition. The finiteness of index in a) depends on the minimality of
the Eq.(1); see the discussion following the “addendum toTheorem 3”
below. Part (c) is clear; a point P=(x, y) in E(K) is in E, (K) if and only
if x and y are not in R, i.€., v(x), v(y)<0. Then (1) shows 3 v(x)=2v(y) and
consequently v(z)>0. Conversely, if v(z)>0 then formulas (14) define a
point P=(x, y) such that z(P)=z.

Corollary 1. The group E,(K) is uniquely divisible by integers m not
divisible by char (k).

Because such an m is invertible in R, and hence the series ¥, (z)=
mz+ - (cf.(18)) has an inverse function in R[[z]].

If char(k)=p>0 the Newton polygon of y,(z) gives information
about points of order p* in E;(K); cf. [30], [59]. In particular, if p is
unramified in R, e.g. if R=Z,, then E,(K) is torsion-free unless p=2
and a, is odd, in which case its torsion subgroup is of order 2.

We say E has good, or stable, reduction at v, if Eisan elliptic curve, i.e.,
if A0, i.e.,ifv(4)=0. Then je R and its residue J is the modular invariant
of E. If E is singular with a node we say E has multiplicative, or semistable,
reduction at v. This happens if and only if v(4)>0, but v(c,)=0, and
then j¢ R. If E has a cusp, then E has additive, or unstable reduction at v,
this occurs if and only if v(4)>0 and v(c,)>0. In this case there is a finite
(ramified) extension K" of K over which E has either good reduction
(if je R), or multiplicative reduction (if j¢ R).

Let K,,, and K denote the maximal unramified extension of K
and the separable closure of K, respectively. Thus the residue field of K,
(for the unique extension of v) is k,, and we have

Gal(ky/k)~Gal(K,,,/K)~G/I,,

where G,=Gal(K,/K) is the Galois group of K, over K and I,=
Gal(K/K,,,) its inertia subgroup. If G, acts on a set T we say T is un-
ramified at v if I, acts trivially on it. This being said we can state the
“criterion of Ogg-Néron-Shafarevitch”:
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Theorem 4. The following conditions are equivalent

(@) E has good reduction at v,

(b) E,.(K) unramified at v for all m not divisible by char(k),
(c) T)(E) is unramified at v for some prime l= char (k).

When these condition;s hold, the reduction homomorphism induces an
isomorphism E,, (K ,,)~E, (k) for all m not divisible by char (k).

For the proof, see [45] and [56]. Corollaries are, that good reduction
at v is invariant under K-isogeny, and that if T,(E) is unramified at v for
one prime l=#char(k), it is so for all such I.

In case of potential good reduction (je R), I, actson T,(E) (for [ & char(k))
through a finite quotient group, tamely if char(k)#2, 3, and the quotient
group and the character of the representation are independent of [
(cf. [56], but note that the functorial argument with Néron’s model made
there can be replaced by Weierstrass equation calculations in the case of
elliptic curves).

In case j¢ R many aspects of the situation are made transparent by
the existence of an analytic uniformization covering all of E, not just E,.
Consider the classical formulas

's) 3 n ©
ca=1+240Y ]"‘fl A=q [0 —q"y* (33)
n=1 - n=1
and
3
1
j=%=?+744+196884q+--~. (34)

These make sense for ge K with 0<v(q)<oo (i.e., 1>]|g|>0) and, in
our non-archimedean field K, the relation (34) gives a bijection between
the set of all such g and the set of je K with v(j)<O0 (i.e., j¢ R). Any such ¢
generates an infinite cyclic discrete subgroup ¢* of the multiplicative
group G,,. In the classical case, C*/q* is an elliptic curve with invariant j
given by (34). The same is true over K!

Theorem 5. For q as above, Gm/qZ=Eq is an elliptic curve over K.
It has a minimum Weierstrass equation with c,, A, and j as above. It is
characterized, up to K-isomorphism by the fact that it has the given
J-invariant, together with the fact that its reduction is of split multiplicative
type (ie., E"q has a node with tangents rational over K).

I found this theorem in 1959 and would like to apologize for never
having officially published it. The most complete reference for it at
present is [51]. Mumford [38] has found a very non-obvious generaliza-
tion to curves of higher genus. For the generalization to abelian varieties,
see McCabe [88] and Raynaud [96].
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Theorem 5 gives an isomorphism E, (K)~K */q% under which the
subgroup (E,), (K) corresponds to the group of units in R, and (E,), (K)
to the group of units =1.

If E is another elliptic curve over K with the same j-invariant as E,,
then there is a unique separable quadratic extension Ky/K such that E
becomes isomorphic to E, over Ky, and then E(K)~A4/q” where A4 is
the group of elements in K whose norm to K is a power of g. The extension
K /K is unramified if and only if E has multiplicative reduction, in which
case the residue field extension of K;/K is generated by the tangents at
the node of E.

Addendum to Theorem 3. Let E be an elliptic curve over K. If E has
split multiplicative reduction, then E(K)/E,(K) is cyclic of order v(4)=
—v(j). In all other cases E(K)/E,(K) is of order <4.

If E has split multiplicative reduction, then Ex E, for some ¢, and
the claim follows from the discussion above, because v(4)=v(q). The
other cases can be checked out laboriously working with Weierstrass
equations (following an algorithm given in a letter to Cassels, see [85]),
but more insight can be gained by considering Néron’s minimal model.
Indeed, the projective two-dimensional scheme over R defined by a
minimal Weierstrass equation may not be regular at the singular point
of its special fiber E (if E is singular). By resolving this possible singularity,
one obtains a regular projective scheme & over R whose special fiber &
may be any one of the 10 well-known types consisting of several irreducible
components with multiplicities as pictured, e.g., in [21] and [39]. The
non-singular points on the special fiber ¢ form an algebraic group &,,
over k whose connected component is E,, and we have E(K)/E, (K)~
&,.(k)/E, (k). The addendum above now follows, because, except for
Kodaira’s type I, (Néron’s (b,)), which corresponds to our E,, with
v(g)=m, no other type of special fiber has strictly more than 4 com-
ponents of multiplicity 1.

We can do no more here than mention briefly the duality, in case k
is finite, between the compact profinite group E(K) and the discrete
torsion group H'(Gal(K/K), E(K,)), cf. [73], [93].

We close this section by mentioning the exponent of the conductor of
E at v. This is a certain integer f= f, =20 which is a measure of the badness
the reduction of E at v and is invariant under isogeny. It is 0 for good
reduction and 1 for multiplicative reduction. For additive reduction we
have f=2+06 where 620 is a certain “measure of wild ramification”
which can be defined in terms of the action of the inertia group I, on the
points of finite order, and which is 0 except in case char k=2 or 3, cf. [45],
[49], and [56]. If n is the total number of irreducible components of the
special fiber of Néron’s model (not counting their multiplicities) over the
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algebraic closure k of k, Ogg has shown, by checking case by case, that
f=v(d)+1-n.

It would be interesting to know what is behind this mysterious equality.

§ 7. Global Fields; the Group E (Q)

Global fields are finite extensions of the rational field Q or of a field
k(T), k finite. But we shall usually simply illustrate the ideas with the
example K=Q. Let E be an elliptic curve over Q.

Theorem 6. The group E(Q) is finitely generated.

This was proved by Mordell 50 years ago. Soon after, Weil, in his
thesis, generalized it to abelian varicties over number fields. Néron
proved it for abelian varieties over any finitely generated field (cf. [23]
and [24]).

We give only the briefest outline of the proof. A full account, and
further references, can be found in Cassel’s survey [9],and also in Mordell’s
recent book on Diophantine equations. The first step is to construct a
“height” function. After Néron [40], it is natural to use the canonical
height. If x=m/n is a rational number in lowest terms, we define h(x)=
log Max(|m|, |n]). One shows then that there is a unique real-valued
function h on E(Q) such that #(2 P)=4 h(P), and such that the difference
h(P)—h(x(P)) is bounded as P runs over E(Q), where x is the “x-coordi-
nate” function in any Weierstrass equation for E over Q. Moreover, the
bound is effectively calculable in terms of the coefficients of the equation
(see e.g. Manin-Zarkin [90], where however the elliptic curve is not given
by a Weierstrass equation, but as an intersection of two quadrics in
3-space). The function h is quadratic, in the sense that the function

(P, QYE L(h(P+Q)—h(P)—h(Q)) (35)

is biadditive on E(Q)x E(Q).

Now it is straightforward to show that if, for some integer m=2,
the points P represent all cosets of mE(Q) in E(Q), and if hy > h(R) all i,
then E (Q) is generated by the set of points P such that h(P)< h,. Since that
set is finite for any h,, Theorem 1 will follow if we prove that E(Q)/mE (Q)
is finite; that is the second part of the proof.

To do this, one produces an exact sequence
E(Q-">E(Q)—*> 8™ 1, -0, (36)

in which S, the Selmer group for m, is finite and effectively computable,
and in which III, is the set of elements of order dividing m in the Shafare-
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vitch group LI of E/Q. This takes care of the finiteness statement, but does
not yet give an effective method of constructing generators. The trouble
is that there is no known method of computing III,,! However, for each
integer n=1 there is a commutative diagram

E(Q) s i, — 0

Jld. ”n{ Jmulm by m" 1 (37)

E(Q)—=—S§™ ——1ll, ——0

in which the middle column is effectively computable (in principle).
Computing it is called making the n-th descent, if 1 understand the
classical terminology properly, and yields a refinement of (36), namely

E(Q-"»>EQ—*>S™"—m" U, —0, (38)

where ™™ is the image of ™ under B,.

Now the standard procedure for finding generators for E(Q) is,
as Barry Mazur puts it, the following: By day, one makes descents,
computing §™=8§m1>8m258m3)5 ... By night, one computes
T,cT,= Ty < --- where T, is the subgroup of $*™ generated by the images
under o of the points P=(x, y) on E for which h(x)<n. If, some happy
day or night, one arrives at T,= S/, then one knows that m/~'IIl,,=0
and that the points P=(x, y) with h(x)<n generate E(Q)/mE(Q). From
these it is easy to get generators for E(Q), as described above. On the
other hand, if II,, contains an infinitely divisible element, £ =0, such that
for all j there exists &;elll with E=m! ¢;, then we are doomed to continue
computing through all eternity®.

Being optimistic, we suppose that this does not happen, and in fact
make

Conjecture 1. The Shafarevitch group Il is finite.

This is not known to be true for a single elliptic curve. However,
in thousands of special cases one has shown that the 2 or 3 primary
component (I is a torsion group) is finite, as a result of the successful
carrying out of the above procedure for m=2 or 3. Moreover the con-
jectures of Birch and Swinnerton-Dyer produce an integer which is
naturally- interpreted as the order of III (see below).

If LI is finite, then its order is a square, for Cassels [8] has constructed
a canonical alternating biadditive map I x Il — Q/Z which is non-
degenerate if LI is finite.

While we are on the subject of rational points and constructibility,
let us mention that C.L.Siegel’s famous theorem to the effect that on

' Or give up (edit. ).
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any affine model for E there are only finitely many points with integral
coordinates, which was non-constructive for so long, has recently been
made constructive by A.Baker and J. Coates [3]. They prove

Theorem 7. Let F(x,y) be an absolutely irreducible polynomial of
degreee n with integer coefficients having absolute values at most M such
that the curve F(x, y)=0 has genus 1. Then all integer solutions F(x, y)=0
satisfy

Max (|x], |y|)<exp exp exp(2 M)°"". (39)

Incidentally, their method of proof is to reduce to the Weierstrass
equation case, which had been treated earlier by Baker, with a somewhat
better bound. But this problem of integral points involves completely
different concepts from those we are discussing and we mention it only
in passing.

Let E(Q),,, denote the torsion subgroup of E(Q). In view of Theorem 6,
E(Q),o, 1s finite and

E(Q)~Z" X E(Q) s> (40)

where r is a certain integer >0 called the rank of E over Q. In all known
explicit examples the rank is quite small.
The curve y*=x3+Ax2+Bx has rank =7 (very probably 7) for

A=-3.511.13.17.19.23.29.31.37
with B=1692602, B=2843738 or B=2877338.

These curves were recently discovered by C.Pomerance and D.E.
Penney [95] by computer search. I don’t know of any explicit example
of rank >7. However, by spezialisation arguments, Néron [94] has
shown there must be elliptic curves over Q with rank =11, and I would
guess that there is no bound on the rank. Shafarevitch and I [64] have
shown that the rank can be arbitrarily large if we take as ground field the
field of rational functions in one variable over a finite constant field
instead of the field of rational numbers.

Perhaps one reason that questions about E(Q) are so difficult is that
the adele methods which are so successful with linear algebraic groups
look like a mess in the case of elliptic curves. Since E is a projective
variety, the groups E(R) and E(Q,) are compact. Hence the map

EQ—ER)x[]EQ,)
p
takes E(Q) to a non-closed subgroup of the product (except in case of

rank 0). One good thing about the situation, however, is that the closure
of E(Q) in [JE(Q,) is the biggest profinite group in which E(Q) can be
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dense, i.e. the “congruence subgroup problem ” has an affirmative answer
for E (Serre [52]).

The torsion subgroup of E (Q) is effectively computable in the practical
as well as theoretical sense, by well-known means (cf. [9], Thms. 17.2 and
22.1). By far the best way to get an upper bound for the amount of torsion
on a specific curve is to reduce mod p for various primes p. For example,
if E is given by a Weierstrass equation with integer coefficients whose
reduction mod p for some prime p gives a non-singular curve E, then
E(Q),,. is mapped injectively into E(Z/p Z) if p odd, and with a kernel
of order at most 2 if p=2, for the kernel is in the group of points on a
formal group over Z, by Theorem 3. For example, if the equation for E
is congruent to y?=x>—x—1(mod 3) then E(Q) has no torsion, because
that congruence has no solutions.

It is conjectured that, for each number field K of finite degree, the
order of E(K),,, is bounded as E ranges over all elliptic curves defined
over K. In 1969, Manin [31] proved that, for each prime p, the order of the
p-primary part of E(K),,. is bounded. More recently, Demjanenko has
published proofs of the full conjecture [12], and of an even stronger one
[86]. However, there seem to be gaps in his arguments, and the status
of the conjecture is unclear at the moment; it deserves clarification 2.

Over the rational field, it is known that, if E(Q) has a point of order m,
then either m< 10,m=12, or mis divisible by a prime p = 23. Using methods
of Demjanenko, Kubert [87] also proves that m is not divisible by the
square of any prime /=5 for which Fermat’s last theorem is true. An
excellent account of the problem is given by Ogg in [46] and [47], where he
explains the connection with the modular curve X,(m) which para-
metrizes pairs (E, P) consisting of an elliptic curve E with a point P of
order m. For m<10 and m=12, X, (m) is a rational curve, so it is trivial
to get plenty of elliptic curves over Q with a point of those orders. For
example, the point P=(0, 0) is of order 7 on the curve

V24l +d—d*) xy+(d*—d*) y=x>+(d*—d*) x*
for any d, and that curve is elliptic if
A=d"(d—1)"(d*-8d*+5d+1)=*0.

§ 8. L-Series
Let E be an elliptic curve over Q, and let (1) be a global minimal
Weierstrass equation for E. (In general, if K is the field of fractions of
a Dedekind ring R, there is for each E over K a certain ideal class in R,

2 About [12], Cassels wrote in Math. Reviews (vol. 44, 1972, n° 2755): “... Unfortunately,
the exposition is so obscure that the reviewer has yet to meet someone who would vouch
for the validity of the proof; on the other hand he has yet to be shown a mistake that un-
ambiguously and irretrievably vitiates the argument.” (edit.)

14 Inventiones math., Vol.23
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who’s 12th power is 1, which is the obstruction to the existence of a
Weierstrass equation for E with coefficients in R which is simultaneously
minimal for all primes of R. Hence, if R is aprincipal ideal domain like Z,
or more generally if the class group of R has no 2- or 3-torsion, there
is such a “global minimal equation”.) For each prime p the reduction
of (1) (mod p) defines a curve E (p) over the prime field F,. Let A, denote
the number of points of E (p) rational over F,. Note that 4 p 18 one more
than (because of the point O at infinity) the number of solutions of the
congruence

vita, xy+ayy=xd+a, x*+a, x+ae (mod p).

Put
t,=1+p—A4,. (41)

If p¥4, then ¢, is the “trace of Frobenius” and satisfies |t,,|§2]/};.
If pl4, then t,=1, —1, or 0, according as E(p) has a node with rational
tangents, a node with tangents quadratic over F,, or a cusp.

One associates with E/Q an “L-function”

1 1
Lg(s)= H H

pl4 (1_lpp43) pr4a 1 —tpp_s—}-p

This “Euler product™ converges for Res>3. Expanded out, it is a
Dirichlet series Y c,n™* whose p-th coefficient for p prime is ¢,=1,,.

The conductor, N, of E is defined by
N=][]p", (43)

pl4

where f, is the exponent defined at the end of §6. Let
Ee(s)=N*2Q2m)~°I'(s) Lg(s). (44)

(42)

1-2s "

Conjecture 2. The function Eg(s) is holomorphic in the whole s plane
and satisfies a functional equation

Ep(s)=wég(2—s), with w=+1.

This is a special case of a vast conjecture about zeta functions
attached to the cohomology of any dimension of any algebraic variety
over any global field (cf. Serre’s discussion [57] and Deligne’s appendix
to it). For elliptic curves with complex multiplication, over any number
field, the conjecture is true (Weil [81], Deuring [14]) and is proved by
showing Ly is a Hecke L-series with Grossencharacter. For certain
modular curves over Q the conjecture is true (Eichler, Shimura [65])
and is proved by showing Lp is the Mellin transform of a modular
form. The philosophy of Weil and Langlands seems to be that every



The Arithmetic of Elliptic Curves 197

zeta function associated with any algebraic variety is some sort of
transform of a modular form on a semisimple or reductive algebraic
group. I don’t know anything more definite in general, but in the case
of elliptic curves over Q, Weil [82] has the following precise conjecture,
for which overwhelming evidence has already accumulated.

Conjecture 3. Let E be an elliptic curve over Q. Let N be its conductor,
and Lg=Y c,n™* its zeta function. Then the function f(1)=Y c,e*™",
Sor t in the upper half plane, is a cusp form of weight 2 for the congruence
subgroup Iy (N) of the modular group SL,(Z), which is an eigenfunction
Jor the Hecke operators T,, p¥ N, and satisfies f|W=—wf, where
Wt=—1/Nt and w= =+ 1 is the sign in the functional equation of con-
jecture 2. Moreover there is a rational map ¢: X,(N)— E defined over Q
such that o @ is a multiple of the differential form represented by f(t) dt
on Xy (N).

Here X,(N) is the modular curve over Q which, over C, is the
compactification of the quotient of the upper half plane by I3 (N). (Con-
cerning modular forms see Hecke’s collected work, Ogg’s Benjamin
notes, Shimura [67], and the Proceedings of the Antwerp Summer
School [84], [85].)

The forms f(t) obtained from elliptic curves of conductor N should
be “new-forms” for Iy (N), in the sense of Atkin-Lehner [2]. Thus, the
number of such forms which are eigenfunctions for the Hecke operators
with rational eigenvalues should be equal to the number of isogeny
classes of elliptic curves over Q with conductor N. A lot of experimental
evidence points to the truth of this. A computer search for elliptic
curves of small conductor was initiated by Swinnerton-Dyer, and
continued by Birch, Tingley, Vélu (cf. [85]); for each N <200, the right
number of isogeny classes was found. Moreover, much theoretical work
has been done (e.g. [44], [61]) to determine the elliptic curves over Q
with given conductor. All of this supports Conjecture 3.

For any given N it is possible, in principle, to check Conjecture 3
for curves of conductor N. The point is that Baker’s methods now
make effective (cf. remark in Coates [11]) the theorem of Siegel used
by Shafarevitch [62] to prove

Theorem 8. Let K be an algebraic number field and S a finite set of
places of K. Then, up to isomorphism, there is only a finite number of
elliptic curves over K with good reduction outside S.

Incidentally, the corresponding theorem should be true for abelian
varieties of any dimension, with a fixed polarization degree. If it were
true for dimension 2 and degree 1 then, as Serre remarks, one could
prove the isogeny conjecture stated at the end of §9, by the methods
of [75].

14*



198 J.T. Tate

For formal group considerations related to Conjecture 3, see [7]
and [17].

Shimura ([69], [68]) has recently verified Conjecture 3 for the
elliptic curves over Q with complex multiplication.

The part of Conjecture 3 before the word “moreover” has a
generalization from Q to arbitrary global fields which has been proved
by Deligne in the function field case (cf. [83]).

In view of Conjecture 3, it is natural to study elliptic curves over Q
which do come from modular functions, since presumably all do. Such
curves have an incredibly rich structure whose exploitation may well
lead to progress on the question of rational points; cf. Birch [6],
Manin [33], [89], Mazur [34], [91], and Mazur-Swinnerton-Dyer [92].

Another conjecture for which there is overwhelming evidence is
that of Birch and Swinnerton-Dyer [5], concerning the behavior of
Lg(s) at s=1.

For each prime p|4, let cpz(E(Qp) : Eq(Q,)) where E, is as defined
in (31); in other words, let ¢, be the number of components of multi-
plicity 1 rational over F, on the special fiber of Néron’s minimum model
for E at p (cf. end of § 6). Also, let @ be the differential form (4) associated
with a global minimal model for E (note that it is unique up to sign,
because +1 are the only units in Z), and put

a= | lol.
E(R)
In other words, a is either the positive real period of @ or twice that
period, depending on whether E(R) is connected or has two components.

Conjecture 4. a) The order of the zero of Lg(s) at s=1 is equal to the
rank v of the group E(Q).
b) Let B, P,, ..., B be r independent points in E(Q) and let B=) ZP,
be the subgroup of E(Q) which they generate. Then
Lg(s) det<P,PY
lim 1y~ 5 Q) By ,,I,:,["”
where [I] is the order of the Shafarevitch group of E over Q, where o
and the c, are as defined just above, and where { , ) is the height
pairing (35).
This remarkable conjecture relates the behavior of a function L at
a point where it is not at present known to be defined to the order of
a group LI which is not known to be finite! It has been corroborated
numerically in thousands of cases ([5], [71]), and it fits well with the
modular point of view [6], [34]. Other evidence is reviewed in [9]
and [72]. Recently Razar [50] checked it (mod2) for some infinite
families of curves over Q.
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The generalization to abelian varieties over arbitrary global fields
is discussed in [76]. The situation over functions fields is encouraging.
There, part (a) implies part (b), up to a power of the characteristic.
Furthermore, Milne [36] has proved both parts in char+2 for elliptic
curves with constant j+0, 123. And M. Artin and H. Swinnerton-Dyer
[1] have proved (a) for an elliptic curve defined over a field of rational
functions k(t), k finite, by an Eq. (1) in which the coefficients a;=a;(t)
are polynomials in ¢ with degree a;<2i.

For the super-generalization of part (a), see [74].

§ 9. Action of Galois on Points of Finite Order
Let K be a number field, K an algebraic closure of K and G the
Galois group of K over K. Let E be an elliptic curve over K. The group
G operates naturally on E(K). If n is an integer =1, let E,=E,(K)
denote the set of points Pe E(K) such that n P=0. As we have seen (§4),
E, is a free (Z/n Z)-module of rank 2, and the action of G on E,, is given
by a homomorphism

¢,: G— Aut(E,)~GL,(Z/nZ).

The group ¢,(G) is the Galois group of the extension of K obtained
by adjunction of the coordinates of the points of E,.

The properties of ¢, are well known in case E has complex multi-
plication (cf. [15]). Suppose therefore that E does not have complex
multiplication. Then Serre [55], [59], has proved:

Theorem 9. The index of ¢,(G) in Aut(E,)~GL,(Z/nZ) is bounded
by a constant depending only on E and K, not on n.
Note the analogy with the theory of cyclotomic extensions. For each

integer n > 1, the group u, of n-th roots of 1 in K is a free (Z/n Z)-module
of rank 1, and the action of G on it is given by a homomorphism

Y. G— Aut(u,)~GL,(Z/nZ).

The boundedness of the index of x,(G) in Aut(y,) is an immediate
consequence of the fact that y, is surjective if K=Q (“irreducibility
of the cyclotomic polynomial™). Moreover, the cyclotomic theory is
part of the elliptic theory. Since Weil’s e,-pairing (23) gives a G-iso-
morphism A% E,~p,, we have

det@,(0)=y,(0) for cgeG.

Thus the GL,/SL, part of the story is just cyclotomic theory.

Serre’s methods are quite effective when j is not an algebraic
integer, for then the v-adic analytic theory for a place v with v(j)<0
furnishes transvections in ¢,(G). For example:
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Proposition. Let E be an elliptic curve over Q with discriminant
A= H pi and with square free conductor N =] p;. Suppose | is a prime
not dividing one of the e;, or >5. Then ¢,(G)=Aut(E)~GL,(F) unless
A,=0 (mod ) for all pt A. (A, is the number of points on the reduction
of E modp.)

Of course G operates on the [-adic modules ’1}(E)=leil'n_E,n and on
the vector spaces V/(E)=Q,®gz, T;(E). If E and E’ are K-isogenous,
then V,(E) and V,(E’) are isomorphic G-modules. Is the converse true?

Conjecture 5. Suppose E and E’ are elliptic curves over K such that
VI(E) and V|(E') are G-isomorphic for some prime | (hence for all [). Then
E and E' are K-isogenous.

Serre has proved this in case the modular invariant j of E is not an
algebraic integer, using the v-adic analytic theory (cf. [55], ch. IV, §2.3).
It would be very interesting to prove it in general.

§ 10. Examples
Here are some examples of curves over Q which illustrate various
points of the general theory we have discussed. Weil’s conjecture
predicts that there is no elliptic curve E over Q with conductor N <11.
There are three known curves with N=11 (cf. [78]), all isogenous as
they should be. Two of them are

P4 y=x3—x2 (4= —11, j= =2'%/11)
and
P24y=x3—x2—10x-20 (d=—11°% j=—-2'2313/11%).

They correspond to the modular groups I3(11) and I;(11) respectively.
They have rank 0, and the conjecture of Birch and Swinnerton-Dyer
is true for them if the latter has trivial Il ([27], [72]). Serre’s theory
(see prop. above) shows that for primes /=5 one has ¢,(G)=AutE,.
The prime /=35 is an exception, because each curve has a rational point
of order 5. But the most striking thing about them is their L-function:
if we define integers c, by

q[TA=g [TA—q""*=} c.q",
n=1 n=1 n=1
then

0

¢

n=1MN
To prove this is the same as to show that the number of solutions of
the congruence y>+y=x>—x? (modp) is p—c, for every prime p.
Eichler showed this for all p outside an unknown finite exceptional set,



The Arithmetic of Elliptic Curves 201

and it follows from Igusa [19], [20] that Eichler’s exceptional set is
in fact empty (see also Deligne-Rapoport’s paper in [84]).

Our next example is the curve
w+ovdi=wd.

To get it in minimal Weierstrass form, put

3w 9(u—v)
xX= , V=3 +
u+v u-+v

(I

and it becomes
yr—y=x*-7 (N=27,4=-3% j=0).

There are only three rational points (i.e., Fermat’s last theorem is true
for exponent 3), and there is convincing numerical evidence that the
conjecture of Birch and Swinnerton-Dyer is true for it (cf. [71]). In the
Disquisitiones Gauss proved that the number of rational points on the
curve (mod p) is

p+1, if p=—1 (mod3),

~
N
S
P
0

Q
o
<

Fig. 1. The curve y? + y=x3—x
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and is
p+1—t,, if p=1 (mod3),

where ¢, is the unique integer = —1 (mod 3) such that 4p=1;+27B*
for some integer B. Weil interpreted Gauss’ result as meaning that
Lg(s) was a certain Hecke L-series for the field Q(}/—3). The curve
has complex multiplication by the third roots of unity, and the points
of finite order generate abelian extensions over that field.

The group of rational points on the curve
y24+y=x3—x (N=37,4=37, j=2233/37)
is infinite cyclic, generated by P=(0,0). We have
P=(0,0) 3P=(=1—1) 5P=(—3 7P=(-3%)
2P=(1,0) 4P=(2, -3) 6P=(6,14) 8P=(3%, —%%).

“etc.”. There are 5 points (mod 2) and 7 (mod 3). This shows there is
no torsion, but in fact, by Serre’s proposition above, it shows much
more, namely that ¢,(G)=Aut(E,) for every prime /!
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