Selected Solutions to Assignment 3

Question 3

We first want to show that f(x) is separable, we take its derivative which is simply f'(x) = -1 (we note that the field has characteristic p). Then we have that gcd(f, f') = 1 implying that f is separable (lemma 7.2.2 in Goren's notes). This thus implies that K/F is Galois.

We now look at $GL_2(F_p)$, and note that $|GL_2(F_p)| = p(p-1)^2(p+1)$. We intend to show that $Gal(K/F) \subseteq GL_2(F_p)$. The crucial remark is that the set R of roots of f(x) is not just a set, but is also equipped with a structure of a vector space over F_p , namely, it is closed under addition as well as multiplication by scalars in F_p . (This unusual feature of R arises from the fact that f(x) is a *linear polynomial*, i.e., an F- linear combination of monomials of the form x^{p^j} .) Furthermore, the Galois automorphisms of K over $F = F_p(t)$ act on Rnot just as permutations on this set of p^2 elements (which would merely imply that the Galois group is contained in the symmetric group S_{p^2} on p^2 elements) but actually operates on R as F_p -linear transformations. All of this implies that

$$Gal(K/F) < GL_2(F_p),$$

implying that $Gal(K/F) \subseteq GL_2(F_p)$ and one concludes that $[K : F]|p(p-1)^2(p+1)$.

Question 4

We know that the Galois group in question here is $(\mathbb{Z}/7\mathbb{Z})^{\times} = (\mathbb{Z}/6\mathbb{Z})$. The subgroups are isomorphic to $(\mathbb{Z}/2\mathbb{Z})$, $(\mathbb{Z}/3\mathbb{Z})$, and the identity. Each subgroup corresponds to a subfield. We'll look at $(\mathbb{Z}/3\mathbb{Z})$ here. We take its elements as id, σ_2, σ_4 , then an element that fixes the field is $a := \zeta + \zeta^2 + \zeta^4$, whose Galois conjugate is $b := \zeta^6 + \zeta^5 + \zeta^3$. Thus we get that one of the subfields is $\mathbb{Q}(\zeta + \zeta^2 + \zeta^4)$. An easy calculation shows that a + b = -1 and ab = 2 – the fact that these expressions are rational was expected, given that they are preserved under the full group of symmetries of $Q(\zeta)$. It follows that a and b satisfy the polynomial $x^2 + x + 2$, therefore

$$a, b = \frac{-1 \pm \sqrt{-7}}{2}.$$

It is rather interesting that the field of seventh roots of unity contains a square root of -7.

Question 5

Let *E* be the splitting field of f(x) over *F*. By assumption, Gal(E/F) acts as the full permutation group S_n on the roots of f(x), and hence Gal(E/K)acts as S_{n-1} on the n-1 roots of $g(x) \in K[x]$. Since this action is transitive, it follows that g(x) is irreducible in K[x].

Question 6

We want to show that $F(\alpha^2) \subseteq F(\alpha)$ and $F(\alpha) \subseteq F(\alpha^2)$. The first assertion is obvious, since obviously $\alpha \cdot \alpha = \alpha^2$. The other way a little trickier but not too hard. We note that α solves $x^2 - \alpha^2$, and hence we know that

$$[F(\alpha):F(\alpha^2)] \le 2$$

So then we get that

$$[F(\alpha):F] = [F(\alpha):F(\alpha^2)][F(\alpha^2):F]$$

But then since F satisfies an irreducible polynomial of odd degree over F, we know that $[F(\alpha) : F(\alpha^2)]$ is odd, implying that $[F(\alpha) : F(\alpha^2)]$ is also odd. Since then $[F(\alpha) : F(\alpha^2)] \le 2$, and it must be odd, we know now that $[F(\alpha) : F(\alpha^2)] =$, implying that $F(\alpha) \subseteq F(\alpha^2)$, and we are done.

Question 9

Let us view σ as an *F*-linear transformation acting on *K*. Since $\sigma^p = 1$ its eigenvalues consist of *p*-th roots of unity. Since these roots of unity are contained in *F*, it follows that σ is diagonalisable. Furthermore, $\sigma \neq 1$, hence there is a non-trivial *p*-th root of unity, ζ , which is an eigenvalue for σ . Let $b \in K$ be an associated eigenvector. Since $\sigma(b) = \zeta b \neq b$, it generates a non-trivial extension of *F*, hence it generates all of *K* since *K* is of prime degree over *F*. Furthermore, $a = b^p$ is fixed by σ , since $\sigma(b^p) = \sigma(b)^p = (\zeta b)^p = b^p$. It follows that $K = F(b) = F(a^{1/p})$.

Question 10a)

Noting that the polynomials are irreducible (Einstein Criterion), we start by doing

$$F(u^{1/p}, v^{1/p}) \cong (\frac{F[x]}{(x^p - u)})[y]/(y^p - v)$$

Then we have that

$$[F(u^{1/p}, v^{1/p}) : F] = [F(u^{1/p}, v^{1/p}) : F(v^{1/p})][F(v^{1/p} : F] = deg(x^p - u)deg(y^p - v) = p^2.$$

Question 10b)

Let $\sigma \in Aut(K/F)$. Since $x^p - u = (x - u^{1/p})^p$ is the minimal polynomial of $u^{1/p}$ over F, the automorphism σ must send $u^{1/p}$ to another root of the same polynomial, but there is only one such root, hence σ fixes $u^{1/p}$. By the same reasoning it also fixes $v^{1/p}$ and it follows that $\sigma = 1$. Hence $Aut(K/F) = \{1\}$. This means that K is not Galois over F.

Question 10c)

With $\alpha \in F$, define a new field

$$F_{\alpha} = \left\{ a + b(u^{1/p} + \alpha v^{1/p}) | a, b \in F \right\}$$

We clearly have that $F \subseteq F_{\alpha} \subseteq K$. We know further that

$$p^{2} = [K:F] = [K:F_{\alpha}][F_{\alpha}:F]$$

implying that $[F_{\alpha}: F] \in \{1, p, p^2\}$. Since $(a + bu^{1/p} + \alpha bv^{1/p})^p = a^p + b^p u + \alpha b^p v \in F$ (this holds due to the field having characteristic p), which then implies that $[F_{\alpha}: F] \neq p^2$. But then clearly $F_{\alpha} \neq F$, then we must have $[F_{\alpha}: F] = p$. Thus for different values of $\alpha \in F$, we get different fields F_{α} that have degree p over F, and there are an infinite number of them since F is infinite.