
189-457B: Algebra 4

Assignment 4

Due: Wednesday, March 22

1. Does every extension K of degree 4 over a field F contain a sub-extension
of degree 2 over F ? If yes, prove your statement, and if no, give a counterex-
ample.

The following series of exercises is meant to get you to prove that every finite

group occurs as the Galois group of some finite extension K/F , where F is

itsef a finite extension of Q.

2. Let p be a prime number and let Sp denote the group of permutations on
p elements. Show that any subgroup G ⊂ Sp that contains a transposition
(i.e., a permutation that interchanges two elements and leaves all others
fixed) and a permutation of order p is necessarily equal to Sp. Show that
the same conclusion holds if G contains a transposition and acts transitively

on {1, 2, . . . , p}. Finally, show that this conclusion is false if the prime p is
replaced by an even integer > 2.

3. Using the result in part 2, show that any irreducible polynomial in Q[x] of
degree p having exactly p− 2 real roots has Galois group Sp over Q (i.e., the
automorphism group of its splitting field acts on the roots of this polynomial
as the full permutation group on p elements.)
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4. If f(x) ∈ R[x] is any polynomial having exactly k distinct real roots, show
that there exists ε > 0 for which f(x) + a has exactly k real roots, for all
a ∈ R with |a| < ε. Give an example to show that the assumption that the
roots of f(x) are distinct is essential for the conclusion to hold.

5. For any n, show that there is an irreducible polynomial in Q[x] of degree n
having exactly n − 2 real roots. (Hint: starting with any polynomial f(x) ∈
Q[x] with exactly n−2 distinct real roots, exercise 4 shows that f(x)+a has
the same property for infinitely many a ∈ Q. Now, make a judicious choice
of f(x) ∈ Z[x] and a ∈ Q for which the Eisenstein irreducibility criterion can
be applied.)

6. Show that every finite groupcan be realised as a subgroup of Sp for a
large enough prime p. Conclude from this and from what you have done in
exercises 2-5 that every finite group is the Galois group of an extension K/F ,
where F is itself a finite extension of Q.

Remark: It is natural to ask whether any finite group can occur as the Galois
group of a finite extension of Q. This is widely believed to be the case, but
a proof is not known. The problem of realising any finite group as a Galois
group of an extension of Q is known as the “inverse problem of Galois theory”,
and is one of the most famous open problems in the subject.
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7. Show that any sequence of elements xi ∈ Q̄ (or in any field, for that
matter) that satisfies the recursion

xi−1xi+1 = xi + 1, for all i ≥ 1

is necessarily periodic of period 5. If (x1, x2, x3, x4, x5) is the basic period in
such a sequence, show that the 5 elementary symmetric functions of x1, . . . , x5

can be expressed in terms of the quantities

s := x1 + · · ·+ x5, t = x1x2 + x2x3 + x3x4 + x4x5 + x5x1

by the formulae

x1 + · · ·x2 = s; x1x2 + x1x3 + · · ·x4x5 = s + t + 5;

x1x2x3 + · · ·x1x2x4 + · · · + x3x4x5 = s2 + s − 2t − 5;

x1x2x3x4 + · · · + x2x3x4x5 = 2s + t + 5; x1x2x3x4x5 = s + 3.

8. Using exercise 7, show that the degree 5 polynomial

x5 − sx4 + (s + t + 5)x3 − (s2 + s − 2t − 5)x2 + (2s + t + 5)x − (s + 3)

with coefficients in the field Q(s, t) of rational functions in the two indeter-
minates s and t has Galois group contained in the dihedral group D10 of
cardinality 10.

9. Experimental exercise. This exercise assumes some familiarity with a
computer algebra package like Pari/GP, which is available for free on the
internet. Enter the three-variable polynomial

f = x5 − s ∗ x4 + (s + t + 5) ∗ x3 − (s2 + s− 2 ∗ t− 5) ∗ x2

+(2 ∗ s + t + 5) ∗ x− (s + 3)

in the Pari command line, and ask Pari to calculate the Galois group of the
specialised polynomial as the parameters s and t range over all integer values
between 1 and 10, by typing something like

for(s = 1, 10, for(t = 1, 10, print(polgalois(eval(f)))))

What do you observe?
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