Abstract Algebra II

Math 251

???day, August ??, 2012 Time: ?:00 am to ??:00 pm

Examiner: Prof. H. Darmon

Associate Examiner: Prof. E.Z.Goren

INSTRUCTIONS

- 1. Please write your answers clearly in the exam booklets provided.
- 2. You may quote any result/theorem seen in the lectures or in the assignments without proving it (unless, of course, it is what the question asks you to prove).
- 3. This is a closed book exam.
- 4. Translation dictionary is permitted.
- 5. Calculators are not permitted.

This exam comprises the cover page and two pages of questions, numbered 1 to 10. Each question is worth 10 points.

1. a) Let F be a field, and let V be the set of $m \times n$ matrices with entries in F. Explain (briefly) why V is a vector space over F, and compute its dimension by exhibiting an *explicit basis* for V.

b) Suppose that V is the set of all (infinite) sequences with values in F, having only finitely many non-zero values. (I.e., a typical element of V is a sequence $(a_1, a_2, \ldots, a_n, \ldots)$ with $a_i \in F$ and such that $a_i = 0$ for all $i \geq M$ for a suitable M depending in general on the sequence (a_i) .) Does V have a countable basis? Justify your answer.

2. A generalised Fibonnaci sequence is a sequence $(a_0, a_1, \ldots, a_n, \ldots)$ of real numbers satisfying the recursive relation

$$a_{n+1} = a_{n+1} + a_n, \qquad \text{for all } n \ge 0.$$

Show that the set of such sequences is a vector space over the field \mathbf{R} of real numbers, and compute its dimension.

3. a) Let f(x) be a polynomial with coefficients in a field F, and let V = F[x]/(f(x)) be the quotient of the polynomial ring F[x] by the ideal generated by f(x), viewed as a vector space over F. Let $T: V \longrightarrow V$ be the linear transformation given by T(p(x)) = (x+1)p(x).

a) Compute the minimal polynomial of T.

b) Compute the characteristic polynomial of T.

- c) Give a necessary and sufficient condition on f(x) for T to be diagonalisable over F.
- d) Give a necessary and sufficient conditon on f(x) for T to be invertible.

4. A projection is a linear transformation (on a finite-dimensional vector space) satisfying the relation $T^2 = T$. Show that a projection is always diagonalisable.

5. Let V be the real vector space of all functions of the form $g(x)e^x$, where g is a real polynomial of degree ≤ 3 , and let $T: V \longrightarrow V$ be the linear transformation given by

$$T(f) = f + 2f'.$$

Write down a basis for V and the matrix of T relative to this basis.

6. Define the following terms:

a) The dual space V^* of a vector space V;

b) The dual linear map T^* attached to a linear transformation $T: V \longrightarrow W$. Be sure to specify what the domain and target of T^* are, and to write down the formula defining T^* .

c) Show that $(T_1T_2)^* = T_2^*T_1^*$ for all $T_1: V \longrightarrow W$ and $T_2: U \longrightarrow V$.

7. Let V be the vector space F^7 of 7-tuples of elements of a field F, and let W be the kernel of the map $M: F^7 \longrightarrow F^3$ described by the following 3×7 matrix (relative to the standard bases of course)

Show that two vectors in V having all but *exactly one* coordinate in common cannot both belong to W.

8. Let \mathbf{R}^3 be equipped with the standard inner product. Starting with the basis (1, 1, 0), (2, 2, 3), (3, -1, 2) of \mathbf{R}^3 , compute the orthonormal basis that is derived from it by performing the Gramm-Schmidt orthogonalisation process.

9. A linear transformation T on a finite-dimensional Hermitan inner product space is said to be *self-adjoint* if it satisfies the relation $T^* = T$.

a) If v_1 and v_2 are eigenvectors for T associated to *distinct* eigenvalues, show that they are orthogonal.

b) Show that a self-adjoint T has an eigenvalue, and that all its eigenvalues are real.

10. Let $V = \mathbf{R}^3$ equipped with the standard dot product and resulting distance function, and let W be the hyperplane (i.e., subspace of dimension 2) defined by the equation

$$W = \{(x, y, z) \text{ with } x + y = 2z\}.$$

Compute the vector in W which is closest to the vector (1, 1, 1), relative to the standard Euclidean distance.