
MATH 235: Assignment 1 solutions

2.a)
⋃N
n=1[−n, n] = [−N,N ],

⋂N
n=1[−n, n] = [−1, 1].

b)
⋃∞
n=1[n, n+ 1] = [1,∞),

⋃∞
n=1(n, n+ 2) = (1,∞).

c)
⋃∞
n=1(n, n+ 1) = (1,∞)\N,

⋃∞
n=1(1/n, 1] = (0, 1]

d)
⋂∞
n=1An = {0, 1} (Note that 0 ∈ N and hence in this intersection, many people

forgot this. Also the definition of An runs through ALL x ∈ N, not just 1 element
as some of you were confused about. For example A2 = {0, 1, 4, 9, . . .} contains all
perfect squares in N.

e) The best way to solve this problem is to draw the sets for a few small n (both even
and odd!) and try to observe limiting and intersecting points of the curves y = xn,
then prove these limits hold. For example, every curve contains {(0, 0), (1, 1)}.
When x ≥ 1, the curves y = xn all lie “underneath” the curve y = x and as n gets
large, they approach the segment (1,∞)×{1} from above (and also (1,∞)×{−1}
from below for even n). This tells you all you need to know about the intersection /
union for the parts where x ≥ 1. When 0 < x < 1, all the curves lie “above” y = x
(or below y2 = x in the even case and y < 0) and the points on the line segment
(0, 1)×{1} (also (0, 1)×{−1} in even case) are never attained but are limits of the
An (in the even case). Again this tells you what you need for 0 < x < 1. Clearly
when x = 0, the only point in the intersection is (0, 0) while {0} × (−∞, 0] lies
in the union. For x < 0, there will be no points in the intersection because An is
disjoint from this set when n even. For the union however, again observe that the
curves are bounded from above by y = x for −1 ≤ x ≤ 0 and approach the limiting
ray (−∞,−1)× {−1} from below while never actually attaining it. We conclude:⋃

Bn = (−∞,−1)× (−∞,−1) ∪ {(x, y) : −1 ≤ x ≤ 0 & y ≤ x}
∪(0, 1)× (−∞, 1) ∪ {(x, y) : 1 ≤ x & y ≤ x}⋂

Bn = {(x, y) : 0 ≤ x ≤ 1 & −
√
x ≤ y ≤ x} ∪ (1,∞)× (−1, 1)

Below is a simple sketch of the sets. It is a good check of your understanding to
make sure you can identify the diagram with what I wrote above.
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3. Proof by induction: Since it is clear that 03 = 0 = 02, the base case is obvious.
Assume the claim holds for all 0 ≤ n < N . Then

N∑
i=0

i3 =
N−1∑
i=0

i3 +N3

= (1 + . . .+ (N − 1))2 +N3

=
N2(N − 1)2

22
+N3 By Euler’s formula

=
N2(N2 − 2N + 1 + 4N)

4

=
N2(N + 1)2

22

= (1 + . . .+ (N − 1) +N)2 again by Euler’s formula.

Thus it holds for N . Hence by induction, the formula holds for all n ∈ N

4. Solution 1: As was suggested in the hint, we first compute g(n) := f(0, n).
It is not hard to see that g(n) − g(n − 1) = n because there are n points on the
diagonal starting at (0, n− 1). Therefore, g(n) = 0 + 1 + . . .+ n which is given by
Euler’s formula g(m) = n(n+1)

2 . Now observe that f(m,n) = f(m− 1, n+ 1) + 1 so
long as m > 0. Applying this recursively, we deduce

f(m,n) = f(0,m+ n) +m.

Therefore f(m,n) = g(m+ n) +m = (m+n)(m+n+1)
2 +m.

Solution 2: Consider the diagonals of points Dk := {(m,n) : m+n = k}, k ∈
N. If m + n = k, then obviously the point (m,n) lies on the k-th diagonal. Each
diagonal contains k + 1 points, thus there are exactly

1 + 2 + . . .+ k =
k(k + 1)

2
=

(m+ n)(m+ n+ 1)
2

points counted before the k-th diagonal (since all points on diagonals less than k
are counted before the points on Dk). (m,n) is the (m + 1)-th point counted on
Dk, and f(m,n) is equal to the number of points counted up to (m,n) minus 1,
because we start at 0. Therefore

f(m,n) =
(m+ n)(m+ n+ 1)

2
+ (m+ 1)− 1 =

(m+ n)(m+ n+ 1)
2

+m.

Note: Solution 1 and solution 2 are virtually identical in their logic if not their
wordings. I included both because they were the two most common approaches
used in the solutions handed in. However the statement “g(n) − g(n − 1) = n
because there are n points on the diagonal starting at (0, n− 1)” is something that
was missing from virtually everyone’s proof that was similar to solution 1. It is
good to recognize patterns, but you need to explain why they are occurring so that
you can be sure they will continue.
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5.a) y = x3 + 3x + 1, so using variables a, b, c, d for the coefficients, we have a =
1, b = 0, c = 3, d = 1. Thus ∆ = −4(1)(3)3 − 27(1)2(1)2 < 0, so there is 1 real root.
Via Cardano’s method for the depressed cubic we have

t1 = u+ v

=
3

√
−1

2
+

√
1
4

+
27
27

+
3

√
−1

2
−

√
1
4

+
27
27

=
3

√
−1 +

√
5

2
+

3

√
−1−

√
5

2

b) y = x3 − 3x+ 1, so this time ∆ = −4(1)(−3)3 − 27(1)2(1)2 > 0. Hence there are
3 real roots. Thus we also need to solve for variables u, v.

t1 = u+ v

=
3

√
−1

2
+

√
1
4
− 27

27
+

3

√
−1

2
−

√
1
4
− 27

27

=
3

√
−1 + i

√
3

2
+

3

√
−1− i

√
3

2

=
3
√
e2πi/3 +

3
√
e−2πi/3.

There are obviously different choices of u and v that we can take (depending on
choice of cube root) but we must have uv = −(−3)/3 = 1. Thus the 3 possible
choices are

(u, v) = (e2πi/9, e−2πi/9), (e8πi/9, e−8πi/9), (e−4πi/9, e4πi/9).

Therefore the 3 real roots are

2 cos(2π/9)
2 cos(4π/9) = 2(2 cos(2π/9)2 − 1)

2 cos(8π/9) = 2(2(2 cos(2π/9)2 − 1)2 − 1.

6. a) There are numerous options to pick, just remember that surjective means
every element of B needs to be hit. An example solution is

f1 = {(1, a), (2, b), (3, c), (4, c)}
f2 = {(1, a), (2, b), (3, c), (4, b)}
f3 = {(1, a), (2, b), (3, c), (4, a)}
f4 = {(1, c), (2, b), (3, c), (4, a)}

(Notation: Here the map f1 represented as a set of pairs means f1(1) = a, f1(2) = b,
etc.)
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b) Again, here is an example

f1 = {(a, 1), (b, 2), (c, 3)}
f2 = {(a, 1), (b, 2), (c, 4)}
f3 = {(a, 4), (b, 2), (c, 3)}
f4 = {(a, 1), (b, 4), (c, 3)}

c) A function is determined by where it sends each element. There are 4 elements
of A, and each can go to any of the 3 elements of B. Hence there are 34 = 81 total
functions from A to B.
d) A surjective function from A to B is determined by the following choices: (1)
Which element of B gets hit twice? (2) Which 2 elements of A hit the element
chosen in (1)? (3) Where do the remaining two elements of A go?
There are 3 choices for (1), 6 choices for (2) and 2 choices for (3) (Note that to be
surjective, the 2 remaining elements must go to 2 distinct points). Thus the total
number of surjective functions is 6 · 3 · 2 = 36.
e) Because the cardinality of A is larger than that of B, there are no injective
functions from A to B.
f) Same reasoning as (c), there are 43 = 64 functions from B to A.
g) There are no surjective functions from B to A due to cardinality of A larger than
that of B.
h) As in d, this comes down to counting our choices. An injective function from
B to A is determined by: (1) which element of A is not hit? (2) Which of the
remaining 3 elements does a hit? (3) Which of the remaining 2 elements does b hit?
There are 4 choices for (1), 3 choices for (2), and 2 choices for (3). Hence there are
24 injective functions.

7. a) Let J : X → X be the function x→ f(g(x)) and let K : X → X be the
function x→ g(h(x)). Then

(f · J)(x) = f(J(x))
= f(g(h(x))
= K(h(x))
= (K · h)(x)

Therefore f · (g · h) = (f · g) · h.

b) There are many easy choices that work here. The important thing is to
make sure that you define X and your two functions actually map X into itself
(many of you did not do this). For example:

X = R, f(x) = x2, g(x) = x+ 1.

Then f(g(1)) = 4 and g(f(1)) = 2. Note that I showed these two functions are not
equal by evaluating them at a point. This is better than simply writing out the
formula and stating “they aren’t equal”, because the same function can be written
in many different ways. Note that for example if X = R, the following choices of
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functions would be bad

f = log(x), f =
√
x, f =

1
x

because these functions are not defined on all of R. If X = Z, then the function
f = 1

2x would be bad because it would not map X into itself.

8. Observe that (1 + i)2 = 1 + 2i− 1 = 2i. Hence

(1 + i)83 = (1 + i)((1 + i)2)41

= (1 + i)(2i)41

= i(1 + i)(241) Note i4 = 1
= −241 + i · 241

9.

321456 = 123654 ∗ 2 + 74148
123654 = 74148 ∗ 1 + 49506
74148 = 49506 ∗ 1 + 24642
49506 = 24642 ∗ 2 + 222
24642 = 222 ∗ 111 + 0

Hence GCD(321456, 123654) = 222.

10. Let X = {x ∈ N : (a + b) + x = a + (b + x), ∀a, b ∈ N}. We wish to show
X = N, which we will do by induction. Base case: x = 0. Then for all a, b we have

(a+ b) + 0 = a+ b by Peano’s first axiom
= a+ (b+ 0) again by the first axiom.

Thus 0 ∈ X. Now suppose all natural numbers up to an including N lie in X.
Then

(a+ b) + S(N) = S((a+ b) +N) by Peano’s second axiom
= S(a+ (b+N)) by induction hypothesis
= a+ S(b+N) second axiom
= a+ (b+ S(N)).

Hence it holds for the successor of N (namely N + 1). Thus by induction X = N.

11. There is a very obvious injection from any set A into its power set, namely
send x ∈ A to the subset {x} ∈ 2A. The existence of an injection shows |A| ≤ |2A|.
Thus it suffices to show the sets do not have equal cardinality, ie. there does not
exist a bijection between them. To prove this we suppose otherwise and derive a
contradiction.
Hence suppose φ : A→ 2A is bijective. Let U ⊂ A be defined as the set

U := {x ∈ A : x /∈ φ(x)}.
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Since φ is bijective, there must be some element y ∈ A such that φ(y) = U . Is
y in U? If y ∈ U = φ(y) then by definition of U , y /∈ U . On the other hand if
y /∈ U = φ(y), then by definition of U , y ∈ U . So if we assume either case, we
conclude y must be both an element of U and also not an element of U . Obviously
this is a contradiction and hence our assumption that such a φ existed in the first
place cannot hold.


