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Exercise 1

Yes, the set S is a subring of M2(R). Let us check this fact.

• 1M2(R) ∈ S: in fact, 1M2(R) = ( 1 0
0 1 ) ∈ S.

• S is closed under addition: let ( a b
0 c ) , (

r s
0 t ) ∈ S, then

(
a b
0 c

)
+

(
r s
0 t

)
=

(
a+ r b+ s
0 c+ t

)
∈ S.

• S is closed under multiplication: let ( a b
0 c ) , (

r s
0 t ) ∈ S, then

(
a b
0 c

)
·
(
r s
0 t

)
=

(
ar as+ bt
0 ct

)
∈ S.

Exercise 2

Let R be a subring of Q. Then 1 ∈ R. Since R is closed under addition,

2 = 1 + 1 , 3 = 2 + 1 , 4 = 3 + 1 , . . . ∈ R.

By induction, it is easy to see that N ⊆ R. Therefore R can’t be finite.

Exercise 3

Let f : Q(
√
−2) → Q(

√
−2) be the given function, i.e.,

f(a+ b
√
−2) = a− b

√
−2.

It is obvious that f is bijective. So it is enough to show that f is a homo-
morphism of rings.
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First, let us show it preserves addition:

f((a+ b
√
−2) + (c+ d

√
−2)) = f((a+ c) + (b+ d)

√
−2)) = (a+ c)− (b+ d)

√
−2

= (a− b
√
−2) + (c− d)

√
−2) = f(a+ b

√
−2) + f(c+ d

√
−2).

Now we check it preserves multiplication:

f((a+ b
√
−2) · (c+ d

√
−2)) = f((ac− 2bd) + (ad+ bc)

√
−2)) = (ac− 2bd)− (ad+ bc)

√
−2

= (a− b
√
−2) · (c− d

√
−2) = f(a+ b

√
−2) · f(c+ d

√
−2).

This finishes the exercise.

Exercise 4

[EXISTENCE]
Notice that f : Z → R defined by

f(n) =

{
n · 1R := 1R + · · ·+ 1R, n ≥ 0
−(|n| · 1R) := −(1R + · · ·+ 1R), n < 0

(where 1R + · · ·+ 1R is the sum of 1R taken n times) is a ring homomorphism.
[UNIQUENESS]
Now we show that f is the only possible homomorphism from Z to R. Let

g : Z → R be a homomorphism (possibly different from f). We want to show
that g is necessarily equal to f .

By the axioms of a homomorphism, we have that g(1) = 1R. Using that
g has to preserve addition, we obtain that g(2) = g(1 + 1) = g(1) + g(1) =
1R + 1R = 2 · 1R. Similarly, g(3) = g(2 + 1) = g(2) + g(1) = 3 · 1R. Using this
idea, it is easy to show by induction that g(n) = n · 1R for n ≥ 1.

We know that for any homomorphism of rings g(0) = 0 and g(−n) = −g(n).
This shows that g = f , showing uniqueness.

Exercise 5

Let R be a finite integral domain. To show that R is a field, it is enough to
show that any element r ∈ R\{0} has a multiplicative inverse.

So let r ∈ R\{0}. Consider the set {rn | n ≥ 1} ⊆ R. Since R is finite, this
set must also be finite. This means that there are n, a > 0 such that rn = rn+a.
This implies that

rn(ra − 1) = 0.

Since R has no zero divisors,

either [rn = 0] or [ra − 1 = 0].

If rn = 0, since R has no zero divisors, r = 0, which is a contradiction. There-
fore, ra = 1. But this implies that

r · ra−1 = 1,

which shows that ra−1 is a multiplicative inverse of r.
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Exercise 6

The subset I = F ⊂ F [X] = R is not an ideal of R because X ∈ R, 1 ∈ F but
X = X · 1 (∈ I.

Exercise 7

The subset I here is an ideal of Z× Z. Let us check that

• I is closed under addition: if (m, 0), (n, 0) ∈ I, then

(m, 0) + (n, 0) = (m+ n, 0) ∈ I.

• I is closed under multiplication by an element of Z× Z: if (a, b) ∈ Z× Z
and (m, 0) ∈ I, then

(a, b) · (m, 0) = (am, 0) ∈ I.

Exercise 8

Let N be the set of nilpotent elements of R (a commutative ring), i.e.,

N = {s ∈ R | sn = 0, for some n > 0}.

Then N is an ideal of R. Let us prove this fact:

• N is closed under multiplication by an element of R: if r ∈ R and s ∈ N ,
then sn = 0 for some n > 0 and, hence,

(rs)n = rnsn = rn · 0 = 0,

which shows that rs ∈ N .

• N is closed under addition: if s, t ∈ N , then sa = tb = 0 for some a, b > 0
and, hence, by the binomial theorem,

(s+ t)a+b =
a+b∑

j=0

(
a+ b

j

)
sjta+b−j .

Now, for each j ∈ {1, 2, . . . , a+ b}, we have that

either [j ≥ a] or [a+ b− j ≥ b],

which implies that

either [sj = 0] or [ta+b−j = 0],

meaning that (s+ t)a+b = 0 and, thus, s+ t ∈ N .
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Now, if R is not commutative, then N is not necessarily an ideal of R. As
an example, let R = M2(Z), which is not commutative, and A = ( 0 1

0 0 ) ∈ R.
Then A2 = 0, which implies that A ∈ N .

Now take B = ( 0 0
1 0 ) ∈ R. Then

C := B ·A =

(
1 0
0 0

)

is not in N (in fact, Cn = C (= 0, for all n > 0).

Exercise 9

In this case, I is not an ideal. As a counter-example, take f : Z → R defined by
f(n) = 1, for all n ∈ Z. Clearly f ∈ I.

Now take g : Z → R defined by g(n) = n, which is an element of R.
Then gf is not an element of I. In fact,

(gf)(0) = g(0)f(0) = 0 · 1 = 0 (= 1 = g(1)f(1) = (gf)(1).

Exercise 10

In this case, I is an ideal. Let us prove this.

• I is closed under addition: if f, g ∈ I, then

(f + g)(0) = f(0) + g(0) = 0 = f(1) + g(1) = (f + g)(1)

and, hence, f + g ∈ I.

• I is closed under multiplication by an element of R: if f, g ∈ I, then

(fg)(0) = f(0)g(0) = 0 = f(1)g(1) = (fg)(1)

and, hence, fg ∈ I.

Exercise 11

Let I be an ideal of F [x]. If I = {0}, then I = (0) and the proof is finished.
Assume now that I (= {0}.

Consider the set X = {n ∈ N | deg(f(x)) = n for some f(x) ∈ I\{0}}. The
set X ⊆ N is clearly non-empty and, hence, by the well-ordering principle, there
exists

n0 = minX

the smallest number in X.
By construction, there is a polynomial f0(x) ∈ I such that deg(f0(x)) = n0

and any other polynomial of I has degree at least n0. The exercise will be
finished with the claim below.
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Claim. The ideal I is generated by f0(x), i.e.,

I = (f0(x)).

Proof. By the axioms of an ideal, it is easy to see that (f0(x)) ⊆ I. Therefore,
it suffices to show that I ⊆ (f0(x)).

Take f(x) ∈ I. We know, by Euclidean division, that there exists polynomi-
als q(x), r(x) ∈ F [x] such that

f(x) = q(x)f0(x) + r(x)

and deg(r(x)) < n0 or r(x) = 0.
But then r(x) = f(x) − q(x)f0(x) ∈ I (because both f(x) and f0(x) are in

I. By the minimality of n0, it follows that r(x) = 0. Hence

f(x) = q(x)f0(x) ∈ (f0(x)).

We now prove that Z[x] has ideals that are not principal. Consider the ideal
J := (2, x) = {2f(x) + xg(x) | f(x), g(x) ∈ Z[x]} ⊆ Z[x].

Claim. The ideal J is not the whole ring Z[x].

Proof. If it was, we would have that 1 ∈ J , i.e.,

1 = 2f(x) + xg(x)

for some f(x), g(x) ∈ Z[x].
Then

1 = 2f(0),

with f(0) ∈ Z, which is impossible because 1/2 (∈ Z.

Claim. The ideal J is not principal.

Proof. Assume, by contradiction, that J is principal, say

J = (f0(x))

for some polynomial f0(x) ∈ Z[x].
In particular, we have that

2 = f0(x)r(x)

for some r(x) ∈ Z[x]. Looking at the degrees, we obtain that deg(f0(x)) =
deg(r(x)) = 0. So, f0(x) = a0, r(x) = r0 ∈ Z. Moreover, 2 = a0r0 says that
a0 = ±1 or ±2.

a0 cannot be ±1 because then J = Z[x] (why?).
So f0(x) = a0 = ±2.
But x ∈ J implies that

x = f0s(x) = ±2s(x)

for some s(x) ∈ Z[x], which is also impossible (why?).
This shows that our initial assumption (that J is principal) is not correct.
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Exercise 12

Let us start proving that R[x]/(x2 + 1) ∼= C.
Recall that

C = {a+ bi | a, b ∈ R}
and

i2 = −1.

There is a natural homomorphism

ϕ : R[x] −→ C
f(x) +−→ f(i)

It is easy to see that ϕ is surjective. Therefore, by the isomorphism theorem,

R[x]/ ker(ϕ) ∼= C.

Now we just need to show that

ker(ϕ) = (x2 + 1).

In case you don’t remember: ker(ϕ) = {f(x) ∈ R[x] | ϕ(f(x)) = 0} =
{f(x) ∈ R[x] | f(i) = 0}.

By the proof of last exercise, the only thing we need to show is that p(x) =
x2+1 is a polynomial of smallest degree in ker(ϕ). Notice first that p(x) ∈ ker(ϕ)
(this is clear because i2−1 = 0). Now, if we take a non-zero polynomial of degree
< 2, then it can’t be in ker(ϕ). This follows from the fact that a+ bi can only
be zero if a = b = 0.

We now prove the second part of the exercise: that C[x]/(x2 + 1) ∼= C× C.
Consider the homomorphism

ψ : C[x] −→ C× C
f(x) +−→ (f(i), f(−i)) .

Claim. The homomorphism ψ is surjective.

Proof. Take (a+ bi, c+ di) ∈ C×C. We want to show that there is f(x) ∈ C[x]
such that f(i) = a+ bi and f(−i) = c+ di.

The following polynomial satisfies the desired property and shows that psi
is surjective:

f(x) =
a+ bi

2i
(x+ i) +

c+ di

−2i
(x− i).

Now, by the isomorphism theorem,

C[x]/ ker(ψ) ∼= C× C.

Like before, our final job is to show that ker(ψ) = (x2 +1). And, again, this
is the same as showing that the polynomial p(x) = x2 + 1 is a polynomial of
smallest degree in ker(ψ). This final step is pretty much the same as the final
step of the first part of the exercise, so we leave it for you! :)

6



Exercise 13

It is easy to see that Q(
√
−5) is a ring and that Z[

√
−5] is a subring of Q(

√
−5).

It suffices than to show that Q(
√
−5) is a field, which amounts to showing that

every non-zero element of it has a multiplicative inverse.
So take a+ b

√
−5 ∈ Q(

√
−5)\{0}, i.e., a, b ∈ Q are not both zero. We want

to show it has an inverse in Q(
√
−5).

Note that (magic!)

(a+ b
√
−5)(a− b

√
−5) = a2 + 5b2 =: r ∈ Q\{0}

and, thus,
(a+ b

√
−5)(a/r − b/r

√
−5) = 1,

showing that
(a/r − b/r

√
−5) ∈ Q(

√
−5)

is a multiplicative inverse of a+ b
√
−5.

Exercise 14

You are really brave! Reading the solution to the second optional problem! So
let’s continue!

Actually that magical little trick from the last exercise comes from a function
known as the ”norm function”. Here it is in all its glory:

N : Q(
√
−5) −→ Q

a+ bi +−→ (a+ b
√
−5)(a− b

√
−5) = a2 + 5b2.

You can show that N preserves multiplication, i.e.,

N(zw) = N(z)N(w)

for all z, w ∈ Q(
√
−5).

Moreover, if we restrict the norm function to Z[
√
−5], the image lands in Z,

i.e.,
N : Z[

√
−5] −→ Z

a+ bi +−→ (a+ b
√
−5)(a− b

√
−5) = a2 + 5b2.

We want to show that the only invertible elements in Z[
√
−5] are 1,−1. Let

z ∈ Z[
√
−5] be an invertible element. Then there exists an element w ∈ Z[

√
−5]

such that
vw = 1.

But then taking norms,

N(v)N(w) = N(vw) = N(1) = 1

Calling v = a+ bi, we have the following equation in Z

(a2 + 5b2)N(w) = 1.
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Since the equation is in Z we have that

a2 + 5b2 = ±1.

Hence the only possible values of a and b are:

a = ±1 and b = 0.

Therefore
z = ±1

as we wanted.
Notice we proved that an element z ∈ Z[

√
−5] is invertible if and only if

N(z) = 1.

Exercise 15

Let us show that 2 ∈ Z[
√
−5] is irreducible. Assume that

2 = zw

for some z, w ∈ Z[
√
−5].

Our goal is to show that either z or w is invertible (i.e., either N(z) = 1 or
N(w) = 1).

Taking norms yield
4 = N(2) = N(z)N(w).

Since N(a+ b
√
−5) = a2 + 5b2, we see that the only solutions are

N(z) = 4 and N(w) = 1

or
N(z) = 1 and N(w) = 4.

In any case, either z or w is invertible, as we wanted.
The proof that the other numbers are irreducible is similar and will be left

for you.

Exercise 16

We have the simple remark

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5),

which shows that we don’t have unique factorization in Z[
√
−5].
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Exercise 17

Let us prove that I := (2, 1 +
√
−5) is not principal.

Suppose, by contradiction, that I = (z). Then

2 = zw
1 +

√
−5 = zv

for some w, v ∈ Z[
√
−5].

Taking norms yield
4 = N(z)N(w)
6 = N(z)N(v).

By recalling that
N(a+ b

√
−5) = a2 + 5b2,

we see that we must have
N(z) = 1,

which implies that z = ±1 which is not true (prove that −1 (∈ I).
The same kind of argument proves that the other two ideals are not principal.
Let us now prove that (2, 1 +

√
−5) is not a product of non-trivial prime

ideals (in the sense defined in exercise 18). A “non-trivial” ideal here means an
ideal that is not the whole ring.

We start with a claim.

Claim 1. The ideal (2, 1 +
√
−5) is a maximal ideal.

Proof. Let J be an ideal such that

(2, 1 +
√
−5) ! J.

Our goal is to show that J is necessarily the whole ring, i.e., that 1 ∈ J .
Let α = a+ b

√
−5 ∈ J\(2, 1 +

√
−5), where a, b ∈ Z. Then we can write

a = 2m+ εa and b = 2n+ εb,

for some m,n ∈ Z and εa, εb ∈ {0, 1}.
Since 2(m+ n

√
−5) ∈ (2, 1 +

√
−5), we obtain that

εa + εb
√
−5 = α− 2(m+ n

√
−5) ∈ J\(2, 1 +

√
−5),

i.e., one of the following elements are in J (and not in (2, 1 +
√
−5)):

1,
√
−5, 1 +

√
−5.

In any of these cases, since 1 +
√
−5 ∈ J , we have that 1 ∈ J .
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Note that the product of two ideals is never an ideal bigger than the original
ones, i.e.,

IJ ⊆ I and IJ ⊆ J.

Hence, if (2, 1 +
√
−5) = IJ , then

I = (2, 1 +
√
−5) or I = Z[

√
−5]

and the same applies for J :

J = (2, 1 +
√
−5) or J = Z[

√
−5].

Since I and J can’t both be (2, 1 +
√
−5) (because exercise 18 says that, in

this case IJ = (2) (= (2, 1 +
√
−5)), we must have that either I is trivial or J is

trivial.
A similar argument shows that the other two ideals are not product of two

non-trivial ideals.

Exercise 18

Let us show that (2, 1 +
√
−5)2 = (2). It is easy to see that (2, 1 +

√
−5)2 is

generated by
22, 2(1 +

√
−5), (1 +

√
−5)2 = −4 + 2

√
−5

Since they are all multiples of 2, we have that (2, 1 +
√
−5)2 ⊆ (2).

Now, note that
2 = −(1 +

√
−5)2 + 2(1 +

√
−5)

which implies that (2) ⊆ (2, 1 +
√
−5)2.

The same kind of argument shows the other two equalities.
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