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Exercise 1

Yes, the set S is a subring of My(R). Let us check this fact.
° 1M2(R) € S: in fact, 1]\/[2(R) = (%?) es.

e S is closed under addition: let (g2),(§7) € S, then

a b r s\ _f(a+r b+s
(0 c>+<0 t)_ 0 c+t>65'

e S is closed under multiplication: let (&%), (57) €S, then
a b r s\ __(ar as+0bt
<0 c>'(0 t><0 ct )65'

Let R be a subring of Q. Then 1 € R. Since R is closed under addition,

Exercise 2

2=1+1,3=24+1,4=3+1,... €R.

By induction, it is easy to see that N C R. Therefore R can’t be finite.

Exercise 3
Let f: Q(v/—2) — Q(v/—2) be the given function, i.e.,
fla+bv/=2)=a—b/-2.

It is obvious that f is bijective. So it is enough to show that f is a homo-
morphism of rings.



First, let us show it preserves addition:
flla+bv/=2)+ (c+dv-2)) = f((a+c)+ (b+d)vV=2))=(a+c)— (b+d)vV/-2
= (a—bV=2) + (c — d)vV=2) = f(a+ b/=2) + f(c+dV=2).
Now we check it preserves multiplication:

fla+bv/=2) - (c+dv=2)) = f((ac—2bd) + (ad + bc)\/—2)) = (ac — 2bd) — (ad + bc)y/—2
=(a—b/=2) (c—dv-2) = fla+b/=2) - f(c+ d/-2).

[\

This finishes the exercise.

Exercise 4

[EXISTENCE]
Notice that f : Z — R defined by
f(n): n-lg:=1g+- -+ 1g, n>0
—(n|-1g) :=—(Agr+---+1g), n<0

(where 1g + -+ + 1 is the sum of 1; taken n times) is a ring homomorphism.

[UNIQUENESS]

Now we show that f is the only possible homomorphism from Z to R. Let
g : Z — R be a homomorphism (possibly different from f). We want to show
that g is necessarily equal to f.

By the axioms of a homomorphism, we have that g(1) = 1. Using that
g has to preserve addition, we obtain that ¢g(2) = g(1+ 1) = ¢g(1) + g(1) =
1p +1g =2 1g. Similarly, g(3) = g(2+ 1) = ¢g(2) + g(1) = 3 - 1. Using this
idea, it is easy to show by induction that g(n) =mn-1g for n > 1.

We know that for any homomorphism of rings ¢g(0) = 0 and g(—n) = —g(n).

This shows that g = f, showing uniqueness.

Exercise 5

Let R be a finite integral domain. To show that R is a field, it is enough to
show that any element r € R\{0} has a multiplicative inverse.

So let » € R\{0}. Consider the set {r™ | n > 1} C R. Since R is finite, this
set must also be finite. This means that there are n,a > 0 such that r* = r?*e,
This implies that

r(r*—1)=0.

Since R has no zero divisors,
either [r"=0] or [r®*—1=0].

If r™ = 0, since R has no zero divisors, r = 0, which is a contradiction. There-
fore, r* = 1. But this implies that

rortTt =1,

which shows that r%~! is a multiplicative inverse of r.



Exercise 6

The subset I = F C F[X]| = R is not an ideal of R because X € R, 1 € F but
X=X-1¢1

Exercise 7
The subset I here is an ideal of Z x Z. Let us check that
e I is closed under addition: if (m,0), (n,0) € I, then

(m,0) + (n,0) = (m +mn,0) € I.

e I is closed under multiplication by an element of Z x Z: if (a,b) € Z X Z
and (m,0) € I, then

(a,b) - (m,0) = (am,0) € I.
Exercise 8
Let N be the set of nilpotent elements of R (a commutative ring), i.e.,
N={se€ R|s" =0, for some n > 0}.
Then N is an ideal of R. Let us prove this fact:

e N is closed under multiplication by an element of R: if r € R and s € N,
then s™ = 0 for some n > 0 and, hence,

(rs)" =r"s"=r"-0=0,
which shows that rs € N.

e N is closed under addition: if s,# € N, then s* =t = 0 for some a,b > 0
and, hence, by the binomial theorem,

a+b a+b ) .
(s+1)* =" ( : >sjt“+b_3.
=0~ Y
Now, for each j € {1,2,...,a + b}, we have that
either [j>a] or [a+b—j >0,
which implies that

either [s/ =0] or [t*T =0,

meaning that (s +¢)?T? = 0 and, thus, s +¢ € N.



Now, if R is not commutative, then N is not necessarily an ideal of R. As
an example, let R = M(Z), which is not commutative, and A = (J}) € R.
Then A% = 0, which implies that A € N.

Now take B = (99) € R. Then

1 0
ceman(}0)

is not in N (in fact, C* = C # 0, for all n > 0).

Exercise 9

In this case, I is not an ideal. As a counter-example, take f : Z — R defined by
f(n)=1, for all n € Z. Clearly f € I.

Now take g : Z — R defined by g(n) = n, which is an element of R.

Then ¢f is not an element of I. In fact,

(9£)(0) = g(0)f(0) =0-1=0#1=g(1)f(1) = (¢/)(1).

Exercise 10

In this case, I is an ideal. Let us prove this.

e [ is closed under addition: if f,g € I, then

(f +9)(0) = £(0) +9(0) =0 = f(1) + 9(1) = (f +9)(1)
and, hence, f+g € 1.

e [ is closed under multiplication by an element of R: if f,g € I, then

(f9)(0) = f(0)g(0) = 0 = f(1)g(1) = (fg)(1)

and, hence, fg € I.

Exercise 11

Let I be an ideal of F[z]. If I = {0}, then I = (0) and the proof is finished.
Assume now that I # {0}.

Consider the set X = {n € N | deg(f(x)) = n for some f(z) € I\{0}}. The
set X C N is clearly non-empty and, hence, by the well-ordering principle, there
exists

ng = min X

the smallest number in X.

By construction, there is a polynomial fo(x) € I such that deg(fo(z)) = no
and any other polynomial of I has degree at least ng. The exercise will be
finished with the claim below.



Claim. The ideal T is generated by fo(x), i.e.,

I'=(fo(x)).
Proof. By the axioms of an ideal, it is easy to see that (fo(z)) C I. Therefore,
it suffices to show that I C (fo(z)).
Take f(z) € I. We know, by Euclidean division, that there exists polynomi-
als ¢(x),r(z) € F|z] such that
f(x) = q(@) fo(z) + r(x)

and deg(r(x)) < ng or r(xz) = 0.
But then r(z) = f(x) — g(x) fo(z) € I (because both f(z) and fo(z) are in
I. By the minimality of ng, it follows that r(z) = 0. Hence
f(@) = a(z) fo(z) € (folx)).
O

We now prove that Z[z] has ideals that are not principal. Consider the ideal
Ji=(2,2) = {2f(2) + zg(2) | f(z),9(x) € Z[x]} C Z[z].
Claim. The ideal J is not the whole ring Z[x].

Proof. If it was, we would have that 1 € J, i.e.,
1=2f(z) 4+ zg(x)

for some f(x),g(x) € Z|x].
Then
1=2f(0),
with f(0) € Z, which is impossible because 1/2 ¢ Z. O

Claim. The ideal J is not principal.

Proof. Assume, by contradiction, that J is principal, say

J = (fo(x))

for some polynomial fy(z) € Z[z].
In particular, we have that

2 = fo(x)r(z)

for some r(x) € Z[z]. Looking at the degrees, we obtain that deg(fo(z)) =
deg(r(z)) = 0. So, fo(x) = ag,r(x) = ro € Z. Moreover, 2 = agry says that
ag = =1 or £2.

ag cannot be +1 because then J = Z[x] (why?).

So fo(z) = ag = £2.

But z € J implies that

x = fos(x) = £2s(x)

for some s(z) € Z[x], which is also impossible (why?).
This shows that our initial assumption (that J is principal) is not correct. [



Exercise 12

Let us start proving that R[z]/(z% + 1) = C.
Recall that
C={a+bi|abeR}
and
i? = —1.

There is a natural homomorphism
v: Rlz] — C
flx) — [
It is easy to see that ¢ is surjective. Therefore, by the isomorphism theorem,
Rx]/ ker(p) = C.
Now we just need to show that
ker(p) = (2% +1).

In case you don’t remember: ker(p) = {f(x) € Rlz] | ¢(f(z)) = 0} =
{f(x) € Rla] | £(5) = O}.

By the proof of last exercise, the only thing we need to show is that p(z) =
2241 is a polynomial of smallest degree in ker (). Notice first that p(z) € ker(¢p)
(this is clear because i2—1 = 0). Now, if we take a non-zero polynomial of degree
< 2, then it can’t be in ker(p). This follows from the fact that a + bi can only
be zero if a =b = 0.

We now prove the second part of the exercise: that C[z]/(z? +1) =2 C x C.

Consider the homomorphism

v: Clz] — CxC
fl@) — (f(@), f(=0)).

Claim. The homomorphism 1 is surjective.

Proof. Take (a+bi,c+ di) € C x C. We want to show that there is f(z) € C|x]
such that f(i) = a + bi and f(—i) = ¢+ di.

The following polynomial satisfies the desired property and shows that psi
is surjective:

a+ bi c+di

f(z) = 5; (x+1)+ —5; (x —1).

Now, by the isomorphism theorem,
Clz]/ ker(yp) =2 C x C.

Like before, our final job is to show that ker(1)) = (2% 4+ 1). And, again, this
is the same as showing that the polynomial p(x) = 22 + 1 is a polynomial of
smallest degree in ker(¢)). This final step is pretty much the same as the final
step of the first part of the exercise, so we leave it for you! :)



Exercise 13

It is easy to see that Q(y/—5) is a ring and that Z[\/=5] is a subring of Q(y/—5).
It suffices than to show that Q(y/—5) is a field, which amounts to showing that
every non-zero element of it has a multiplicative inverse.

So take a + by/—5 € Q(v/=5)\{0}, i.e., a,b € Q are not both zero. We want
to show it has an inverse in Q(v/=5).

Note that (magic!)
(a4 bvV/=5)(a — by/=5) = a® + 5b* =: r € Q\{0}
and, thus,
(a4 bvV=5)(a/r —b/rv/=5) = 1,
showing that
(a/r —b/rv/=5) € Q(v/=5)

is a multiplicative inverse of a + b/—5.

Exercise 14

You are really brave! Reading the solution to the second optional problem! So
let’s continue!

Actually that magical little trick from the last exercise comes from a function
known as the "norm function”. Here it is in all its glory:

N: QW-5 — Q
a+bi — (a+by/=5)(a—by/=5)=a®+5b%

You can show that N preserves multiplication, i.e.,
N(zw) = N(z)N(w)
for all z,w € Q(v/—5).

Moreover, if we restrict the norm function to Z[v/—5], the image lands in Z,

ie.,
N: Z[v-5] — Z
a+bi — (a+by/=5)(a—by/=5)=a?+ 5b%

We want to show that the only invertible elements in Z[v/—5] are 1, —1. Let
z € Z[/—5] be an invertible element. Then there exists an element w € Z[/—5]
such that

vw = 1.

But then taking norms,
N(w)N(w) = N(vw) =N(1) =1
Calling v = a + bi, we have the following equation in Z

(a® + 5b*)N(w) = 1.



Since the equation is in Z we have that
a® 4 5b* = £1.
Hence the only possible values of a and b are:
a==x1 and b=0.

Therefore
z==1

as we wanted.
Notice we proved that an element z € Z[/—5] is invertible if and only if
N(z)=1.
Exercise 15
Let us show that 2 € Z[v/—5] is irreducible. Assume that

2= zw

for some 2z, w € Z[v/=5].
Our goal is to show that either z or w is invertible (i.e., either N(z) =1 or
N(w) =1).
Taking norms yield
4= N(2) = N(z)N(w).

Since N(a + by/—5) = a® + 5b%, we see that the only solutions are
N(z) =4 and N(w) =1

or
N(z) =1 and N(w) = 4.

In any case, either z or w is invertible, as we wanted.
The proof that the other numbers are irreducible is similar and will be left
for you.

Exercise 16

We have the simple remark
2-3=6=(1+V=5)(1 - V=5),

which shows that we don’t have unique factorization in Z[v/—5].



Exercise 17
Let us prove that I := (2,14 +/—5) is not principal.
Suppose, by contradiction, that I = (z). Then

2= zw

1++vV-5=2zv

for some w,v € Z[v/-5].
Taking norms yield
4= N(z)N(w)
6 = N(z)N(v).

By recalling that
N(a + bv/~=5) = a® + 5b?,

we see that we must have
N(z) =1,

which implies that z = £1 which is not true (prove that —1 & I).

The same kind of argument proves that the other two ideals are not principal.

Let us now prove that (2,1 + v/=5) is not a product of non-trivial prime
ideals (in the sense defined in exercise 18). A “non-trivial” ideal here means an
ideal that is not the whole ring.

We start with a claim.

Claim 1. The ideal (2,1 ++/—5) is a mazimal ideal.
Proof. Let J be an ideal such that
(2,14 v=5) C J.

Our goal is to show that J is necessarily the whole ring, i.e., that 1 € J.
Let o = a+bv/—5 € J\(2,14++/—5), where a,b € Z. Then we can write

a=2m+e¢, and b=2n+ ¢,

for some m,n € Z and €4, €, € {0,1}.
Since 2(m + nv/—5) € (2,1 + /—5), we obtain that

€a + eV —=5=a—2(m+nv-=5) € J\(2,1+vV-5),
i.e., one of the following elements are in J (and not in (2,1 ++/—5)):
1, V=5, 1+ 5.

In any of these cases, since 1 ++/—5 € J, we have that 1 € J. O



Note that the product of two ideals is never an ideal bigger than the original
ones, i.e.,

IJCI and [IJCJ.
Hence, if (2,1 + v/=5) = I.J, then
I=(2,1++-5) or I=Z[/-5
and the same applies for J:
J=(2,1++/-5) or J=Z[-5].

Since I and J can’t both be (2,1 + v/—5) (because exercise 18 says that, in
this case I.J = (2) # (2,14 +/—5)), we must have that either I is trivial or J is
trivial.

A similar argument shows that the other two ideals are not product of two
non-trivial ideals.

Exercise 18
Let us show that (2,1 + v/=5)% = (2). It is easy to see that (2,1 + /=5)? is
generated by
22.2(1+v=5), (1 +V=5)* = =4+ 25
Since they are all multiples of 2, we have that (2,1 +1/=5)? C (2).
Now, note that
2=—(14++v/-5)2+2(1+V-5)

which implies that (2) C (2,1 +/—=5)%
The same kind of argument shows the other two equalities.
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