To begin with we will need to following facts.

Fact 1:

Let n=p]"' - ... p.* be the decomposition of the number n into primes p1, ..., pr. Then
a=b (modn)
if and only if

a=b (mod p)

(1)
a=b (mod pzk).
Proof:
Suppose a = b (mod n). Then p{* - ... -pp* | (a —b). Since pi* | pi* - ... p* for each ¢ € {1,...,k} we find
pit | (@ —b) for each i € {1,...,k}. Thus the Congurences 1 hold.

Conversely suppose the Congruences 1 hold. Then p* | (a — b) for each ¢ € {1,...,k}. Thus a =b (mod n).
Fact 2:

In a field if ab = 0 then either a = 0 or b = 0.
Proof:

Suppose ab = 0. If a # 0 then there exists an element ¢~ in the field such that a=' - @ = 1. This implies

b=a"'la-b=a"1-0=0.

Therefore either a or b is zero.

Next we turn our attention to the exercises.

Question 1:

Let R be the set of elements of the form a + by/—11, where a and b are in Z. An element p of R is said to be a
prime in R if any divisor of p in R is either 1, —1,p, or —p. Show that p = 3 is a prime in R. Find elements a and
b in R such that p = 3 divides ab but p divides neither a nor b. (This shows that the analogue of Gauss’s lemma
fails to be true in R.)

Solution:

First we will show that 3 is prime. Consider the function f : R — Z defined by f(a + by/—1) = a® + 11b%. This
is called the morm function. One can check that

f((a+bv/=11)(c+ V=11d)) = f(a + bvV—11)f(c + vV—11d).
To check this, notice
f(a+bv=11)(c +V/—11d)) = f(ac — 11bd + /—11(ad + bc))
= (ac — 11bd)* + 11(ad + be)?
=a’c® + 11°0°d° + 11a°d® + 116°¢?
= (a® + 116%)(c* + 11d?)

= fla+bv—11)f(c+ v—11d).
Suppose
3 = (a4 bvV—11)(c + dv/—11) (2)

for some integers a, b, ¢c and d.Then
9=f(3)= f(la+bv/—11)(c+dv—11)) = f(a+ bv/—11) f(c + dvV—11).
However, as f(a + byv/—11) and f(c + dv/—11) are integers we find f(a + bv/—11) = 1,3 or 9. Notice that



1. if f(a +by/11) = 1 then a + by/—11 = +1,
2. if f(a+bV/11) =9 then a + by/—11 = £3, and
3. f(a+ bV11) = a® 4 11b? can never equal 3.
Thus a + bv/11 = +1 or +3. Similarly ¢ + dv/11 = +1 or +3. Therefore 3 is prime in R.
Alternate, (less elegant) way to show 3 is prime. Suppose

3= (a + bv—11)(c + dv/—11) (3)

for some integers a, b, ¢ and d.
We wish to show that (a + bv/—11), (¢ + dy/—11) € {£1,+3}. Indeed, expanding the equation we find:

3=ac—11bd and (4)
0=ad+ bc (5)

Suppose first that b # 0 then by Equation 5 we find

—ad
c=——
b
Substituting this back into Equation 4 gives:
2
LT

= (Zi - 11) (—bd).

As bd is an integer and |‘;—z + 11| > 11 this is clearly impossible.
We now suppose that b = 0. Then by Equation 4 we find 3 = ac. Thus a # 0 and so by Equation 5 we have
d = 0. The Equation 3 now reduces to 3 = ac with a, ¢ integers. Since 3 is a prime in the integers, a,c € {£1,+3}.

Now, to solve the second part of the exercise. Notice that 3|(a 4+ by/—11) if and only if 3|a and 3|b. Consider
the product:

(1+V=11)(2+ v=11) = (2 - 11) 4+ (1 + 2)v—11

= -9+ 3v—11.

Thus 3|(1 + v—11)(2 + v/—11), but 31 (2++/—11) and 31 (1 4+ +/—11). Thus Gauss’ lemma fails in R.

Question 2:

An integer is said to be N-smooth if all its prime divisors are less than or equal to N. Show that

[Me-p= ¥

p<N n>1,N smooth

where the product on the left is taken over the primes less than N, and the (infinite) sum on the right is taken over
all the N-smooth integers n > 1. (Hint: remember how to sum an infinite geometric series! Note also the crucial
role played by the fundamental theorem of arithmetic in your argument.)

Solution:
The statement is empty for N = 1. Let p1,pa, ... denote the prime numbers ordered so that p; < p;y1.
We claim that:

n

[Mo-5H"'= ¥ oo

n
i=1 al,...,aneNpl Pn

We show this by induction on n.



The case n = 1 holds since it is the formula for the sum of a geometric series. Suppose it holds for n = k, we
wish to show it holds for n = k + 1. We have by induction:

k+1
a B 1 1
(1-21) 1 - - -
Pi - pal e pak Ak+1
i=1 ai,...,ar N1 k api1EN Pry1

As these are absolutely convergent series, we may (freely) rearrange terms while taking the product. The previous
equation can thus be written as:

k+1
1
1\—1 __
[Ho-27"={ X am
i=1 al,...,ak+1€Np1 DPry1

This completes the induction.
Now, if p,, is the largest prime less than N then:

n

[To-bH=Ta-2H"= ¥ -

a]‘ ... a/n
p<N i=1 al,...,aneNpl Pn

Notice by the Fundamental Theorem of Arithmetic that the N-smooth numbers are precisely the numbers

an

p?l"'pn .

[Mo-p= >

p<N n>1,N smooth

We see that

(again as the series is absolutely convergent, the order of the summation can be ignored).

Question 3:
Show that

and conclude that there are infinitely many primes. This remarkable proof was discovered by Leonhard Euler.

Solution:

Notice that the numbers from 1,..., N are always N-smooth numbers. This means that the sum

SIIEEDS

n>1,N smooth

Sl
S|

However, we know the harmonic series diverges; that is,

Thus by the Comparison Test this proves
1
li — = 0.
R
n>1,N smooth

However, by the previous Exercise this proves

lim (1—-1H7! = 0.
N—o00 P
p<N

If there were only finitely many primes then the product on the left hand side would be finite. Therefore, this
the product on the left must be a product of infinitely many terms which proves there are infinitely many primes.

Question 4:

Solve the following congruence equations:



1. 3z =5 (mod 7)

2. 3z =1 (mod 11)
3. 3x =6 (mod 15)
4. 6z =14 (mod 21).

Solution:

First we will find a solution to 3z = 5 modulo 7. We know by Fermat’s Little Theorem that 3% = 1 modulo 7.
Thus
3-3=1 (mod 7).

Multiplying both sides by 5 we find
3-35.5=5 (mod 7).

Thus 3° - 5 is a solution to 3z = 5 modulo 7. We can simplify the number 3° - 5 as follows:
35.5=(32.32.3).5=2-2-3.-5=60=4 (mod 7).

Thus 4 is a solution to 3z = 5 modulo 7.

Next we will find a solution to 3z = 1 modulo 11. By Fermat’s Little Theorem that 3'° = 1 modulo 11. Thus
3-3=1 (mod 7).
Thus 3Y is a solution to 3z = 1 modulo 11. We can simplify the number 3° as follows:
39=32.32.32.32.3=(-2)-(-2) - (-2)-(-2)-3=48=4 (mod 11).

Thus = = 4 is a solution to 3z =1 (mod 11).

Now we will find a solution to 3z = 6 modulo 15. This is the same as finding the elements between 0 and 14
which are solutions to = 2 modulo 5. Clearly, 2 is a solution. As 2 = 7 = 12 modulo 5, these are the other
solutions to x = 2 modulo 5. Thus z = 2,7, 12 are the solutions to 3x = 6 modulo 15.

The congruence 6x = 14 modulo 21 has no solution because no matter what number we choose for x the left
hand side 6z is divisible by 3, while the other side of the congruence 14 is not divisible by 3.

Question 5:
Show that a® = a (mod 30), for all integers a.

Solution:

By Fact 1 it suffices to show the following congruences hold:

a®=a (mod 2) (6)
a®=a (mod 3) (7)
a®=a (mod 5) (8)

First we will show Congruence 6 holds. Clearly it holds if a =0 (mod 2). If a Z 0 (mod 2) then a =1 (mod 2).
This means a is an odd number, and so a® is also an odd number. Thus a® = 1 (mod 2). In either case we find
Congruence 6 holds.

Next we will show Congruence 7 holds. Again it holds if @ = 0 (mod 3). If a # 0 (mod 3) then by Fermat’s
Little Theorem a? = 1 (mod 3). Thus

a®=ad*?" =(@*? a=1"-a=a (mod 3).

Thus in either case we find Congruence 7 holds.
Finally Congruence 8 is exactly Fermat’s Little Theorem in the case p = 5. Thus as the we have proven the
Congruences 6-8 hold. This proves our statement.



Question 6:

Find an element a of Z;; such that every non-zero element of Z1; is a power of a. (An element with this property
is called a primitive root mod 11.) Can you do the same in Zos?

Solution:
Notice that

( )

( )

( )
23 =8 ( )
21=16=5 ( )
25=2".2=5.2=10 (mod 11)
260=25.2=10.2=20=9 ( )
27=20.2=9.2=18=7 ( )
2¥=2".2=7.2=14=3 ( )
29=2%.2=3.2=6 ( )
210=2%.2=6-2=12=1 ( )

As every non-zero element of Zq1 occurs as a power of 2 we have shown 2 is a primative root mod 11.

Notice that in Zs4 there are both invertible elements and non-invertible elements. If a is an invertible element
then ged(a,24) = 1. Thus ged(a™,24) = 1 for any power n. This proves a cannot generate all the elements because
it will never generate the non-invertible elements.

On the other hand, if a is a non-invertible element then ged(a,24) # 1. Thus ged(a™,24) # 1 for any power n.
This proves a cannot generate all the elements because it will never generate the invertible elements. Therefore no
matter which element we choose it will never be able to generate all the non-zero elements.

Even more than this is true, however. As a? = 1 for every invertible element, there does not exist an invertible
element which could generate all the invertible elements.

Question 7:
Prove or disprove: if 2 =1 in Z,,, and n is prime, then 2 =1 or = —1 (mod n). What if n is not prime?
Solution:
Notice that
22 —1=(z41)(z—1).
Since Z,, is a field when n is a prime, by Fact 2 the above equation proves t +1=0orx —1=0. Thus x =1 or
z=—1 (mod n).

If n is not a prime then Z, is not a field. Hence we cannot use Fact 2. In this case the statement is false.
A counter-example to the statement in the case where n is composite occurs when n = 8. Here 32 = 1 (mod 8),
although 3 # £1 (mod 8).
Question &:

List the invertible elements of Zs and Zio.

Solution:

The invertible elements in Z,, are those which are relatively prime to n.
In Zs the invertible elements are 1,2,3 and 4, where the bar denotes the equivalence class (mod 5).

In Z15 the invertible elements are 1,5,7 and 11, where the bar denotes the equivalence class (mod 12).

Question 9:
Show that p is prime if and only if p divides the binomial coefficient (¥) for all 1 <k <p .
Solution:



We will assume that we know that the binomial coefficient is an integer. Suppose p is a prime number. Recall
the formula for the binomial coefficient:

(Z) B (1....-1@1)(.1':'.:?-(;)_1@))'

As k <pitisclear that pt (1-...-k). As k> 11it is also clear that pt (1-...- (p—k)). Thus p does not divide the
denominator of the equation above. However, p divides the numerator. Therefore p divides the binomial coefficient
(P) for any 1 < k < p.

Conversely suppose p is not a prime number. Then we need to show that there exists at least one natural
number k where 1 < k < p such that p does not divide the binomial coefficient (Z) To do this choose a prime g
that divides p and let m = 23, so that p = mg. Then choose k = (m — 1)q. This means

()= (")

_ 1-...o(m=1)g-((m—=1)g+1)-...-mgq
L-...-m—=Dg)(1-...- (mg— (m—1)q))
Cancelling off (1-...-(m —1)q) from both the numerator and denominator proves
P\ _ (m=1)g+1)-...-mq
k 1-...-¢q

Notice the only number in the set {(m — 1)g+ 1, (m — 1)g+ 2,...,mq} which is a multiple of ¢ is the number mgq.
Thus ¢ divides both the numerator and dominator exactly once, which means p { (¥). Thus if p is not prime then
p does not divide the binomial coefficient (2’) for all 1 < k < p. This proves the converse to the statement.

Question 10:

Using the result of Exercise 9, prove that if p is prime, then a? = a (mod p) for all integers a (Fermat’s little
theorem) by induction on a.

Solution:

We will prove this separately for positive and negative numbers.

For the positive case we will use induction. Firstly, this is true in the case where a = 0 which is the base case
for our induction in both cases. Now for the purpose of induction suppose that k? = k (mod p), we would like to
show that (k+1)? =k +1 (mod p).

Indeed we have:
(k+1)7 =k + (11’) Pl (ppl) Kl

And by the previous exercise <}z> kP=1 =0 (mod p) for 1 < ¢ < p—1 and thus

kp—i—<117)k”_1+---+(ppl)k:”‘l—i—lzkp—l—l (mod p).

By our inductive assumption we know that k& = k modulo p, thus
(k+1)P=k+1 (mod p).

This proves the inductive step for positive numbers and thus completes the proof for this case.
To prove the result for the negative case notice that since:

(—a)’ = (~1)?a” = (~1)a  (mod p)

it suffices to show that (—1)? = —1 (mod p). In the event that p is odd we have (—1)? = —1 and this completes
the result. In that event that p is even, that is p = 2, we have (=1)2 =1 = —1 (mod 2) and the result again holds.
This proves the result for negative numbers



Question 11:

Show that if n = 1729, then a™ = a (mod n) for all a, even though n is not prime. Hence the converse to
Exercise 10 is not true.

Solution:

First notice 1729 has the prime decomposition
1729 =7-13-19.

Thus by Fact 1 we see that
a'™ =a (mod 1729)

if and only if

a'™ =a (mod 7) 9)
a'™ =a (mod 13) (10)
'™ =qa (mod 19) (11)

By Fermat’s Little Theorem we know that
a®=1 (mod 7).

Thus
ql729 — ,6-288+1 — ( 6

a8)288 . = 1288 .

~—

a=a (mod7).

This proves Congruence 9.
Next we will prove Congruence 10. By Fermat’s Little Theorem we know that

a'?=1 (mod 13).

Thus
q1729

=g = ()M g =1" . g =0 (mod 13).
This proves Congruence 10.
Finally we will prove Congruence 11. By Fermat’s Little Theorem we know that

a® =1 (mod 19).

Thus
al™ = 189+ = (¢18)% .4 =1% .4 =4 (mod 19).

This proves Congruence 11.

Question 12:

Using Fermats little theorem, describe an algorithm that can sometimes detect whether a large integer (say, of
100 or 200 digits) is composite. It is important that your algorithm be more practical than, say, trial division which
would run for well over a billion years on a very fast computer with a number of this size!

Solution:

Given a large integer n, we pick a random a with 1 < @ < n and compute a”~! (mod n). If a1 £ 1 (mod n),
then n cannot be prime by Fermat’s Little theorem. Note that we can efficiently compute a”~! (mod n) using a

n=1 using the binary

repeated squaring algorithm: compute a2" for values of k with 2¥ < n — 1 and reconstruct a
expansion of n — 1.

Additional Remark: We can ask how likely we are to find an a that reveals the compositeness of n. Given a
composite n, there certainly exist values of a so that a”~! # 1 (mod n): we can take any a with ged(a,n) # 1. But
such values may be exceedingly rare: if n = pq is a product of two large primes then the probability of randomly
hitting a with ged(a,n) # 1 is % + %.

In fact, there exist composite numbers, called Carmichael numbers, so that for any a with ged(a,n) = 1 and
1 <a <n wehave a® ! =1 (mod n). The smallest example is 561 = 3 - 11 - 17. A large Carmichael number will
defeat the primality test described above with high probability. While rare, Carmichael numbers aren’t that rare:
the number of Carmichael less than z is at least 22/7.



A better algorithm is described in the next problem.

Question 13:

Show that if p is prime, and ged(a, p) = 1, then a?~1/2 = 1 or —1 (mod p). Show that this statement ceases to be
p—1 p-1 p—1
true when p = 1729. More generally, show that if p—1 = 2"m with m odd, the sequence (a’?~,a 2 ,a 4 ,...,a 27 )
(taken modulo p) starts off with a sequence of 1’s and that the first term that differs from 1 is equal to —1. This
remark is the basis for the Miller-Rabin primality test which is widely used in practice.

Solution:

1. There first term of the sequence starts off with a 1 since a?~* =1 (mod p).

2. Let t = a®»Y/2 (mod p). We know that t> = a?~' = 1 (mod p). By Exercise 7 we must have t = 1 or
t = —1. So the second term in the sequence is +1.

3. Suppose that a?~1/2 = 1 (mod p) then again by Exercise 7 we find a?~1/* = 1 (mod p) or a?~D/* = —1
(mod p). This means that if the second term in the sequence is 1 then the third term in the sequence is +1.

4. Continuing we find the sequence starts off with a sequence of 1’s and the first term that differs form 1 is equal
to —1.

Note that p = 1729 is not prime; in fact 7 divides 1729. So 71728 can’t possibly be congruent to 1 or —1, since

p—1
it must be divisible by 7. Hence the sequence (a?~!,a 2 ,...) does not start with a +1.

Additional Remark 1: The Miller-Rabin test works as follows. Write p—1 = 2"k for a positive integer h and an
odd integer k. Suppose that 1 < a < p and a®*" % =1 for some m with 1 < m < h. Then a2 F must be 1 or —1
by the reasoning given above. So to test p for primality, we choose such a random a and compute a*,a?*, ..., a2"*.
If we ever progress to 1 from something other than 1, we know that p can’t be prime.

For example, for 1729, choose a = 2. Note that 1728 = 26 - 33, So we compute
22" = 645 (mod 1729)
254 =1065 (mod 1729)
2198 =1 (mod 1729)
So 1729 can’t be prime, since 1065 = 1 (mod 1729). You can think about the Miller-Rabin test as an efficient
method to generate such contradictions.

Additional Remark 2: Note that the probability of finding such an a is much higher than the probability of
finding an a that fails the primality test given in the previous problem. In fact, 1729 is a Carmichael number, but
our first choice of a showed its compositeness using the Miller-Rabin test. It can be shown that for a fixed odd n,
the probability of a randomly chosen a proving the compositeness of n via the Miller-Rabin Test is at least 3/4.



