
To begin with we will need to following facts.

Fact 1:
Let n = pa1

1 · . . . · p
ak

k be the decomposition of the number n into primes p1, . . . , pk. Then

a ≡ b (mod n)

if and only if

a ≡ b (mod pa1
1 )

... (1)

a ≡ b (mod pak

k ).

Proof:
Suppose a ≡ b (mod n). Then pa1

1 · . . . · p
ak

k | (a − b). Since pai
i | p

a1
1 · . . . · p

ak

k for each i ∈ {1, . . . , k} we find
pai

i | (a− b) for each i ∈ {1, . . . , k}. Thus the Congurences 1 hold.
Conversely suppose the Congruences 1 hold. Then pai

i | (a− b) for each i ∈ {1, . . . , k}. Thus a ≡ b (mod n).

Fact 2:
In a field if ab = 0 then either a = 0 or b = 0.

Proof:
Suppose ab = 0. If a 6= 0 then there exists an element a−1 in the field such that a−1 · a = 1. This implies

b = a−1 · a · b = a−1 · 0 = 0.

Therefore either a or b is zero.

Next we turn our attention to the exercises.

Question 1:

Let R be the set of elements of the form a + b
√
−11, where a and b are in Z. An element p of R is said to be a

prime in R if any divisor of p in R is either 1,−1, p, or −p. Show that p = 3 is a prime in R. Find elements a and
b in R such that p = 3 divides ab but p divides neither a nor b. (This shows that the analogue of Gauss’s lemma
fails to be true in R.)

Solution:
First we will show that 3 is prime. Consider the function f : R→ Z defined by f(a + b

√
−1) = a2 + 11b2. This

is called the norm function. One can check that

f((a + b
√
−11)(c +

√
−11d)) = f(a + b

√
−11)f(c +

√
−11d).

To check this, notice

f((a + b
√
−11)(c +

√
−11d)) = f(ac− 11bd +

√
−11(ad + bc))

= (ac− 11bd)2 + 11(ad + bc)2

= a2c2 + 112b2d2 + 11a2d2 + 11b2c2

= (a2 + 11b2)(c2 + 11d2)

= f(a + b
√
−11)f(c +

√
−11d).

Suppose

3 = (a + b
√
−11)(c + d

√
−11) (2)

for some integers a, b, c and d.Then

9 = f(3) = f((a + b
√
−11)(c + d

√
−11)) = f(a + b

√
−11)f(c + d

√
−11).

However, as f(a + b
√
−11) and f(c + d

√
−11) are integers we find f(a + b

√
−11) = 1, 3 or 9. Notice that
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1. if f(a + b
√

11) = 1 then a + b
√
−11 = ±1,

2. if f(a + b
√

11) = 9 then a + b
√
−11 = ±3, and

3. f(a + b
√

11) = a2 + 11b2 can never equal 3.

Thus a + b
√

11 = ±1 or ±3. Similarly c + d
√

11 = ±1 or ±3. Therefore 3 is prime in R.

Alternate, (less elegant) way to show 3 is prime. Suppose

3 = (a + b
√
−11)(c + d

√
−11) (3)

for some integers a, b, c and d.
We wish to show that (a + b

√
−11), (c + d

√
−11) ∈ {±1,±3}. Indeed, expanding the equation we find:

3 = ac− 11bd and (4)
0 = ad + bc (5)

Suppose first that b 6= 0 then by Equation 5 we find

c =
−ad

b

Substituting this back into Equation 4 gives:

3 =
−a2d

b
− 11bd

=
(

a2

b2
+ 11

)
(−bd).

As bd is an integer and |a
2

b2 + 11| > 11 this is clearly impossible.
We now suppose that b = 0. Then by Equation 4 we find 3 = ac. Thus a 6= 0 and so by Equation 5 we have

d = 0. The Equation 3 now reduces to 3 = ac with a, c integers. Since 3 is a prime in the integers, a, c ∈ {±1,±3}.

Now, to solve the second part of the exercise. Notice that 3|(a + b
√
−11) if and only if 3|a and 3|b. Consider

the product:

(1 +
√
−11)(2 +

√
−11) = (2− 11) + (1 + 2)

√
−11

= −9 + 3
√
−11.

Thus 3|(1 +
√
−11)(2 +

√
−11), but 3 - (2 +

√
−11) and 3 - (1 +

√
−11). Thus Gauss’ lemma fails in R.

Question 2:
An integer is said to be N -smooth if all its prime divisors are less than or equal to N . Show that∏

p≤N

(1− 1
p )−1 =

∑
n≥1,N smooth

1
n

where the product on the left is taken over the primes less than N , and the (infinite) sum on the right is taken over
all the N -smooth integers n ≥ 1. (Hint: remember how to sum an infinite geometric series! Note also the crucial
role played by the fundamental theorem of arithmetic in your argument.)

Solution:
The statement is empty for N = 1. Let p1, p2, . . . denote the prime numbers ordered so that pi < pi+1.
We claim that:

n∏
i=1

(1− 1
pi

)−1 =
∑

a1,...,an∈N

1
pa1
1 · · · p

an
n

We show this by induction on n.
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The case n = 1 holds since it is the formula for the sum of a geometric series. Suppose it holds for n = k, we
wish to show it holds for n = k + 1. We have by induction:

k+1∏
i=1

(1− 1
pi

)−1 =

 ∑
a1,...,ak∈N

1
pa1
1 · · · p

ak

k

 ∑
ak+1∈N

1
p

ak+1
k+1


As these are absolutely convergent series, we may (freely) rearrange terms while taking the product. The previous
equation can thus be written as:

k+1∏
i=1

(1− 1
pi

)−1 =

 ∑
a1,...,ak+1∈N

1
pa1
1 · · · p

ak+1
k+1


This completes the induction.

Now, if pn is the largest prime less than N then:∏
p≤N

(1− 1
p )−1 =

n∏
i=1

(1− 1
pi

)−1 =
∑

a1,...,an∈N

1
pa1
1 · · · p

an
n

Notice by the Fundamental Theorem of Arithmetic that the N -smooth numbers are precisely the numbers

pa1
1 · · · pan

n .

We see that ∏
p≤N

(1− 1
p )−1 =

∑
n≥1,N smooth

1
n

(again as the series is absolutely convergent, the order of the summation can be ignored).

Question 3:
Show that

lim
N→∞

∏
p≤N

(1− 1
p )−1

 =∞.

and conclude that there are infinitely many primes. This remarkable proof was discovered by Leonhard Euler.

Solution:
Notice that the numbers from 1, . . . , N are always N -smooth numbers. This means that the sum∑

n≥1,N smooth

1
n
≥

N∑
n=1

1
n

.

However, we know the harmonic series diverges; that is,

lim
N→∞

N∑
n=1

1
n

=∞.

Thus by the Comparison Test this proves

lim
N→∞

∑
n≥1,N smooth

1
n

=∞.

However, by the previous Exercise this proves

lim
N→∞

∏
p≤N

(1− 1
p )−1 =∞.

If there were only finitely many primes then the product on the left hand side would be finite. Therefore, this
the product on the left must be a product of infinitely many terms which proves there are infinitely many primes.

Question 4:
Solve the following congruence equations:
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1. 3x ≡ 5 (mod 7)

2. 3x ≡ 1 (mod 11)

3. 3x ≡ 6 (mod 15)

4. 6x ≡ 14 (mod 21).

Solution:
First we will find a solution to 3x ≡ 5 modulo 7. We know by Fermat’s Little Theorem that 36 ≡ 1 modulo 7.

Thus
3 · 35 ≡ 1 (mod 7).

Multiplying both sides by 5 we find
3 · 35 · 5 ≡ 5 (mod 7).

Thus 35 · 5 is a solution to 3x ≡ 5 modulo 7. We can simplify the number 35 · 5 as follows:

35 · 5 ≡ (32 · 32 · 3) · 5 ≡ 2 · 2 · 3 · 5 ≡ 60 ≡ 4 (mod 7).

Thus 4 is a solution to 3x ≡ 5 modulo 7.

Next we will find a solution to 3x ≡ 1 modulo 11. By Fermat’s Little Theorem that 310 ≡ 1 modulo 11. Thus

3 · 39 ≡ 1 (mod 7).

Thus 39 is a solution to 3x ≡ 1 modulo 11. We can simplify the number 39 as follows:

39 ≡ 32 · 32 · 32 · 32 · 3 ≡ (−2) · (−2) · (−2) · (−2) · 3 ≡ 48 ≡ 4 (mod 11).

Thus x ≡ 4 is a solution to 3x ≡ 1 (mod 11).

Now we will find a solution to 3x ≡ 6 modulo 15. This is the same as finding the elements between 0 and 14
which are solutions to x ≡ 2 modulo 5. Clearly, 2 is a solution. As 2 ≡ 7 ≡ 12 modulo 5, these are the other
solutions to x ≡ 2 modulo 5. Thus x ≡ 2, 7, 12 are the solutions to 3x ≡ 6 modulo 15.

The congruence 6x ≡ 14 modulo 21 has no solution because no matter what number we choose for x the left
hand side 6x is divisible by 3, while the other side of the congruence 14 is not divisible by 3.

Question 5:

Show that a5 ≡ a (mod 30), for all integers a.

Solution:
By Fact 1 it suffices to show the following congruences hold:

a5 ≡ a (mod 2) (6)

a5 ≡ a (mod 3) (7)

a5 ≡ a (mod 5) (8)

First we will show Congruence 6 holds. Clearly it holds if a ≡ 0 (mod 2). If a 6≡ 0 (mod 2) then a ≡ 1 (mod 2).
This means a is an odd number, and so a5 is also an odd number. Thus a5 ≡ 1 (mod 2). In either case we find
Congruence 6 holds.

Next we will show Congruence 7 holds. Again it holds if a ≡ 0 (mod 3). If a 6≡ 0 (mod 3) then by Fermat’s
Little Theorem a2 ≡ 1 (mod 3). Thus

a5 ≡ a2·2+1 ≡ (a2)2 · a ≡ 12 · a ≡ a (mod 3).

Thus in either case we find Congruence 7 holds.
Finally Congruence 8 is exactly Fermat’s Little Theorem in the case p = 5. Thus as the we have proven the

Congruences 6-8 hold. This proves our statement.
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Question 6:
Find an element a of Z11 such that every non-zero element of Z11 is a power of a. (An element with this property

is called a primitive root mod 11.) Can you do the same in Z24?

Solution:
Notice that

20 ≡ 1 (mod 11)

21 ≡ 2 (mod 11)

22 ≡ 4 (mod 11)

23 ≡ 8 (mod 11)

24 ≡ 16 ≡ 5 (mod 11)

25 ≡ 24 · 2 ≡ 5 · 2 ≡ 10 (mod 11)

26 ≡ 25 · 2 ≡ 10 · 2 ≡ 20 ≡ 9 (mod 11)

27 ≡ 26 · 2 ≡ 9 · 2 ≡ 18 ≡ 7 (mod 11)

28 ≡ 27 · 2 ≡ 7 · 2 ≡ 14 ≡ 3 (mod 11)

29 ≡ 28 · 2 ≡ 3 · 2 ≡ 6 (mod 11)

210 ≡ 29 · 2 ≡ 6 · 2 ≡ 12 ≡ 1 (mod 11)

As every non-zero element of Z11 occurs as a power of 2 we have shown 2 is a primative root mod 11.

Notice that in Z24 there are both invertible elements and non-invertible elements. If a is an invertible element
then gcd(a, 24) = 1. Thus gcd(an, 24) = 1 for any power n. This proves a cannot generate all the elements because
it will never generate the non-invertible elements.

On the other hand, if a is a non-invertible element then gcd(a, 24) 6= 1. Thus gcd(an, 24) 6= 1 for any power n.
This proves a cannot generate all the elements because it will never generate the invertible elements. Therefore no
matter which element we choose it will never be able to generate all the non-zero elements.

Even more than this is true, however. As a2 ≡ 1 for every invertible element, there does not exist an invertible
element which could generate all the invertible elements.

Question 7:

Prove or disprove: if x2 ≡ 1 in Zn, and n is prime, then x ≡ 1 or x ≡ −1 (mod n). What if n is not prime?

Solution:
Notice that

x2 − 1 ≡ (x + 1)(x− 1).

Since Zn is a field when n is a prime, by Fact 2 the above equation proves x + 1 = 0 or x− 1 = 0. Thus x ≡ 1 or
x ≡ −1 (mod n).

If n is not a prime then Zn is not a field. Hence we cannot use Fact 2. In this case the statement is false.
A counter-example to the statement in the case where n is composite occurs when n = 8. Here 32 ≡ 1 (mod 8),
although 3 6≡ ±1 (mod 8).

Question 8:
List the invertible elements of Z5 and Z12.

Solution:
The invertible elements in Zn are those which are relatively prime to n.

In Z5 the invertible elements are 1, 2, 3 and 4, where the bar denotes the equivalence class (mod 5).
In Z12 the invertible elements are 1, 5, 7 and 11, where the bar denotes the equivalence class (mod 12).

Question 9:

Show that p is prime if and only if p divides the binomial coefficient
(

p
k

)
for all 1 < k < p .

Solution:
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We will assume that we know that the binomial coefficient is an integer. Suppose p is a prime number. Recall
the formula for the binomial coefficient:(

p

k

)
=

1 · . . . · p
(1 · . . . · k)(1 · . . . · (p− k))

.

As k < p it is clear that p - (1 · . . . · k). As k > 1 it is also clear that p - (1 · . . . · (p− k)). Thus p does not divide the
denominator of the equation above. However, p divides the numerator. Therefore p divides the binomial coefficient(

p
k

)
for any 1 < k < p.
Conversely suppose p is not a prime number. Then we need to show that there exists at least one natural

number k where 1 < k < p such that p does not divide the binomial coefficient
(

p
k

)
. To do this choose a prime q

that divides p and let m = p
q , so that p = mq. Then choose k = (m− 1)q. This means(

p

k

)
=
(

mq

(m− 1)k

)
=

1 · . . . · (m− 1)q · ((m− 1)q + 1) · . . . ·mq

(1 · . . . · (m− 1)q)(1 · . . . · (mq − (m− 1)q))

Cancelling off (1 · . . . · (m− 1)q) from both the numerator and denominator proves(
p

k

)
=

((m− 1)q + 1) · . . . ·mq

1 · . . . · q

Notice the only number in the set {(m− 1)q + 1, (m− 1)q + 2, . . . ,mq} which is a multiple of q is the number mq.
Thus q divides both the numerator and dominator exactly once, which means p -

(
p
k

)
. Thus if p is not prime then

p does not divide the binomial coefficient
(

p
k

)
for all 1 < k < p. This proves the converse to the statement.

Question 10:
Using the result of Exercise 9, prove that if p is prime, then ap ≡ a (mod p) for all integers a (Fermat’s little

theorem) by induction on a.
Solution:

We will prove this separately for positive and negative numbers.
For the positive case we will use induction. Firstly, this is true in the case where a = 0 which is the base case

for our induction in both cases. Now for the purpose of induction suppose that kp ≡ k (mod p), we would like to
show that (k + 1)p ≡ k + 1 (mod p).

Indeed we have:

(k + 1)p = kp +
(

p
1

)
kp−1 + · · ·+

(
p

p− 1

)
kp−1 + 1.

And by the previous exercise
(

p
`

)
kp−1 ≡ 0 (mod p) for 1 ≤ ` ≤ p− 1 and thus

kp +
(

p
1

)
kp−1 + · · ·+

(
p

p− 1

)
kp−1 + 1 ≡ kp + 1 (mod p).

By our inductive assumption we know that kp ≡ k modulo p, thus

(k + 1)p ≡ k + 1 (mod p).

This proves the inductive step for positive numbers and thus completes the proof for this case.
To prove the result for the negative case notice that since:

(−a)p = (−1)pap ≡ (−1)pa (mod p)

it suffices to show that (−1)p ≡ −1 (mod p). In the event that p is odd we have (−1)p = −1 and this completes
the result. In that event that p is even, that is p = 2, we have (−1)2 ≡ 1 ≡ −1 (mod 2) and the result again holds.
This proves the result for negative numbers
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Question 11:
Show that if n = 1729, then an ≡ a (mod n) for all a, even though n is not prime. Hence the converse to

Exercise 10 is not true.

Solution:
First notice 1729 has the prime decomposition

1729 = 7 · 13 · 19.

Thus by Fact 1 we see that
a1729 ≡ a (mod 1729)

if and only if

a1729 ≡ a (mod 7) (9)

a1729 ≡ a (mod 13) (10)

a1729 ≡ a (mod 19) (11)

By Fermat’s Little Theorem we know that
a6 ≡ 1 (mod 7).

Thus
a1729 ≡ a6·288+1 ≡ (a6)288 · a ≡ 1288 · a ≡ a (mod 7).

This proves Congruence 9.
Next we will prove Congruence 10. By Fermat’s Little Theorem we know that

a12 ≡ 1 (mod 13).

Thus
a1729 ≡ a12·144+1 ≡ (a12)144 · a ≡ 1144 · a ≡ a (mod 13).

This proves Congruence 10.
Finally we will prove Congruence 11. By Fermat’s Little Theorem we know that

a18 ≡ 1 (mod 19).

Thus
a1729 ≡ a18·96+1 ≡ (a18)96 · a ≡ 196 · a ≡ a (mod 19).

This proves Congruence 11.

Question 12:
Using Fermats little theorem, describe an algorithm that can sometimes detect whether a large integer (say, of

100 or 200 digits) is composite. It is important that your algorithm be more practical than, say, trial division which
would run for well over a billion years on a very fast computer with a number of this size!

Solution:
Given a large integer n, we pick a random a with 1 < a < n and compute an−1 (mod n). If an−1 6≡ 1 (mod n),

then n cannot be prime by Fermat’s Little theorem. Note that we can efficiently compute an−1 (mod n) using a
repeated squaring algorithm: compute a2k

for values of k with 2k < n − 1 and reconstruct an−1 using the binary
expansion of n− 1.

Additional Remark: We can ask how likely we are to find an a that reveals the compositeness of n. Given a
composite n, there certainly exist values of a so that an−1 6≡ 1 (mod n): we can take any a with gcd(a, n) 6= 1. But
such values may be exceedingly rare: if n = pq is a product of two large primes then the probability of randomly
hitting a with gcd(a, n) 6= 1 is 1

p + 1
q .

In fact, there exist composite numbers, called Carmichael numbers, so that for any a with gcd(a, n) = 1 and
1 < a < n we have an−1 ≡ 1 (mod n). The smallest example is 561 = 3 · 11 · 17. A large Carmichael number will
defeat the primality test described above with high probability. While rare, Carmichael numbers aren’t that rare:
the number of Carmichael less than x is at least x2/7.
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A better algorithm is described in the next problem.

Question 13:

Show that if p is prime, and gcd(a, p) = 1, then a(p−1)/2 = 1 or−1 (mod p). Show that this statement ceases to be

true when p = 1729. More generally, show that if p−1 = 2rm with m odd, the sequence (ap−1, a
p−1
2 , a

p−1
4 , . . . , a

p−1
2r )

(taken modulo p) starts off with a sequence of 1’s and that the first term that differs from 1 is equal to −1. This
remark is the basis for the Miller-Rabin primality test which is widely used in practice.
Solution:

1. There first term of the sequence starts off with a 1 since ap−1 ≡ 1 (mod p).

2. Let t = a(p−1)/2 (mod p). We know that t2 ≡ ap−1 ≡ 1 (mod p). By Exercise 7 we must have t = 1 or
t = −1. So the second term in the sequence is ±1.

3. Suppose that a(p−1)/2 ≡ 1 (mod p) then again by Exercise 7 we find a(p−1)/4 ≡ 1 (mod p) or a(p−1)/4 ≡ −1
(mod p). This means that if the second term in the sequence is 1 then the third term in the sequence is ±1.

4. Continuing we find the sequence starts off with a sequence of 1’s and the first term that differs form 1 is equal
to −1.

Note that p = 1729 is not prime; in fact 7 divides 1729. So 71728 can’t possibly be congruent to 1 or −1, since

it must be divisible by 7. Hence the sequence (ap−1, a
p−1
2 , ...) does not start with a ±1.

Additional Remark 1: The Miller-Rabin test works as follows. Write p−1 = 2h ·k for a positive integer h and an
odd integer k. Suppose that 1 < a < p and a2m·k = 1 for some m with 1 ≤ m ≤ h. Then a2m−1·k must be 1 or −1
by the reasoning given above. So to test p for primality, we choose such a random a and compute ak, a2k, . . . , a2h·k.
If we ever progress to 1 from something other than 1, we know that p can’t be prime.

For example, for 1729, choose a = 2. Note that 1728 = 26 · 33. So we compute

227 ≡ 645 (mod 1729)

254 ≡ 1065 (mod 1729)

2108 ≡ 1 (mod 1729)

So 1729 can’t be prime, since 10652 ≡ 1 (mod 1729). You can think about the Miller-Rabin test as an efficient
method to generate such contradictions.

Additional Remark 2: Note that the probability of finding such an a is much higher than the probability of
finding an a that fails the primality test given in the previous problem. In fact, 1729 is a Carmichael number, but
our first choice of a showed its compositeness using the Miller-Rabin test. It can be shown that for a fixed odd n,
the probability of a randomly chosen a proving the compositeness of n via the Miller-Rabin Test is at least 3/4.
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