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Exercise 1
a) 23+ 3z +1
In this case, the discriminant is

2 33
1 +42—7>0

which means there is only one real solution.

b) 23 -3z +1

In this case, the discriminant is

—3)3
12+4%:—3<0

which means there are more than 1 solution. The solutions are given by

U+ v
where u3,v? are roots of
y2 +y+1
and
uv = 1.
The roots of
y2 +y+1

(computed using the quadratic formula) are given by
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The cube roots of '3 are given by

i
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9, e'oe's =¢e' and €'

Similarly, the cube roots of e are given by

An cAr 2w -107w SAm cArw - 167
e | etTelE =el' and e

So the solutions are
C+¢t L ¢t and (T4 (T

where
- 27
(:=¢€"9.

In other words, the solutions are

(co ( 5
(cos(?”) + zsm(%’r
(cos(2F) + isin(2F

T) + isin (29 ) + (Cos(%’r) — isin(%))
N+ (cos(E) —isin(3))~
)7+ (cos(3F) - isin(2F]

or, written in a different way,

2cos(%) , 2cos(¥) and  2cos(L4T)

9
Exercise 2

a

To define a function from S to T', we need to define the images of each element
of S. So, for instance, a € S could be mapped to either = or y (both in T'). The
same applies to b, ¢ € S. Therefore, we have 23 = 8 functions S — T.

b

For a function to be injective, the target must be at least of the same size as

the domain. Since |S| > |T|, there is no injective function S — T.

C

To be surjective, the image of the function must be equal to its target, which
in our case is T = {x,y}. So there must be at least one element of S being

mapped to z and one being mapped to y.

Since |S| = 3, there are two possibilities for such a surjective function:

(i) there are exactly 2 points being mapped to x (and, hence, 1 point being

mapped to y); or

(i) there is exactly 1 point being mapped to z (and, hence, 2 points being

mapped to y).



To count how many possibilities falling in the first case, we need to count in
how many times we can split the set S in two subsets, one having 2 elements
and the other one having 1 element. This is the same as counting how many
subsets of S having 2 elements there are. And the answer to this question is

3 3!
(2> o

Similarly, the number of possibilities in the second case is also

3 3!
(2> o

So, there are 6 surjective functions S — T.

Exercise 3
a

Notice that, by definition, fg = f o g, where

(fog)(z) = f(g(x)).

To prove two functions are the same, it is enough to show they are equal

when evaluated at each point. Now,

[f(gh)l(z) = [f o (g o W)(z) = f((g o h)(x)) = f(g(h(x))),

and

[(fg)h](x) = [(f o g) o W)](z) = (f ° g)(h(x)) = fg(h(x))).
This proves f(gh) = (fg)h.

b
Define f,g: N — N by
fn):=n? and g(n)=n+ L
Then
(fg)(n) = Flg) = fn+ 1) =+ 12 and  (gf)(n) = g(/(n))
And therefore
M) =(1+1)2=4 and (gf)(1)=12+1=2.

shows that fg # gf.



Exercise 4
Let z := 1 4+ v/3i and notice that the polar representation of z is given by
z=2¢'5.

Thus
- )
LU _ 9111 ,i5111 _ 9111 ,i37r

Since
37w = 18(27m) + ,
we obtain that

LU — 9l (i2m)18 gim _ 9111 (7). (1) = o111

is an integer.

Exercise 5
We are going to use the following fact (which can itself be proved by induction):

1

Now we prove by induction that for all n > 1
P24 n®=(1+2+ - +n)

The base case n =1 is trivial.
We therefore assume it holds for n and prove it for n + 1.

P+22 4+ 440+ (n+1)P = 142+ - +n)?+(n+1)3
2 2
= n(gijl)+(n+1)3
(n+1)2 % + (n+1)]
- (n+2)*
(n+1)?(n+2)*

= (1+22+--~+(n+1))2.

Exercise 6

910091 = 3619251+ 1722
3619 = 1722-24175
1722 = 175-94 147

175 = 147-1+28
147 = 28-5+4+7
28 = 7-4+0

Since 7 is the last non-zero remainder,

ged (910091, 3619) = 7.



Exercise 7

First we show that 7 divides 8™ — 1 for all n > 0.
It is known that

" —1l=(z—- D" +2" 2+ 1)

for every number z (cf. example 2.3.5 in notes).
Therefore
8" —1=7-(8" 1 +8" 2 4. 48 +1)

is clearly divisible by 7.

We now prove by induction that 49 divides 8" — 7n — 1 for all n > 0.

As usual, the base case n = 0 is trivial. We now assume it holds for n and
show it for n + 1.

We know 49 divides

8" —Tn—1=78""14 .. 4841)—Tn=T708""14-- - +8+1—n).

Hence, 7 divides 8"~ ! 4. +84+1—n.
We now want to show that 49 divides

8" Tn+1)—1=78"+---+8+1—(n+1)),
which is equivalent to proving that 7 divides
8"+ +8+1—(n+1)=@""1+---+8+1—n)+ (8" —1).

But the first term on the right-hand side is divisible by 7 by the induction
hypothesis and the second term is divisible by 7 by the first part of this exercise.
This finishes the solution of this exercise.

Exercise 8
Recall that the addition law was defined on N as follows:
0+m:=m and S(n)+m:=S(n+m).
Moreover, it was proved in class that this addition is commutative (i.e.,

n+m=m+n).
We now want to show it is associative, i.e.,

(r+s)+t=r+(s+1t)

for all r,s,t € N.
To prove this, we fix s and ¢t and use induction on r.
Let’s prove the base case r = 0:

O+s)+t=s+t=0+(s+1).



Now we assume it holds for r and show it for S(r):

(S(r)+s)+t = Sr+s)+t=S({(r+s)+t)=Sr+(s+1))
= S(r)+(s+1),

where the third equality follows from the induction hypothesis and the other
ones follow from the definition of addition on N.

Exercise 9

To show that |A| < [2|, we need to show that |A| < [24] and |A| # [24].

It is easy to show that |A| < |24|. In fact, construct the injection f : A — 24
given by f(a) := {a}.

Now we need to show that |A| # [24], i.e., we need to show that there is
no bijection A — 24. To prove this, we take a function ¢ : A — 24 and show
it can’t be surjective. Given a function ¢ : A — 24, we may construct the
following subset of A:

X:={acA|la¢ggla)}ec2?

(note this makes sense because g(a), being an element of 24, is a subset of A).

Claim. X is not in the image of g.

Proof. Suppose X is in the image of g. Then, there exists ag € A such that
X = g(ao).

We may ask ourselves: is ag € X7

If ap € X, it satisfies the condition to be in X, namely: ag & g(ap). But
g(ag) = X. Soag & X.

On the other hand, if ag € X, it does not satisfies the condition to be in X,
namely: ag € g(ag) = X.

The conclusion is, if there is ag € A such that X = g(ag), then it satisfies
the following:

ag € X & ap € X,

which is obviously impossible (unless you live in a crazy logical world...). O

We showed that if we have a function g : A — 24, it can’t be surjective.
In particular, there is no bijective function A — 24, meaning |A| # |24| as we
wanted to show.

Exercise 10

We first prove that if the decimal expansion of a number becomes periodic, then
it is a rational number.

The first step is to note that if the decimal expansion stops, then it is rational.
Indeed, if

rT=m.ai---ap,



for m € Z and a; € {0,...,9}, then
W0r=uez

and, thus,
U

BT

Now, if x is any number whose decimal expansion becomes periodic, we may
write T as

T

r=y+10"°z

where y is a number whose decimal expansion stops (hence, rational) and z is
a number whose decimal expansion is periodic and satisfies 0 < z < 1.
So, it remains only to show that z is rational (since a sum of rational numbers
is again rational).
Suppose
z=0.a1a2---ata1as---a¢ ...,

i.e., the digits a - - - a; just keep repeating in the expansion of z.
Then it is easy to see that

10'2 = w + z,

where w is the integer whose digits are ag - - - ay, i.e., w = a1 10t 4+ - -4 a,_1104+
as and, so,
w

SR

We now prove the converse: if a number is rational, then its decimal expan-
sion becomes periodic.

For this, we need to understand how to write the decimal expansion of a

rational number . We may assume 0 < m < n (the other cases can be

reduced to this one). So

— :0.a1a2... .
n
To find a;, we use Euclidean division for 10m and n, i.e.,
10m=a1 -n+mr

where 0 < r; < n.
To find as, we use Euclidean division for 10r; and n, i.e.,

10r1 = ag -n+ 1o

where 0 < ry < n.
In general, to find a;, we use Euclidean division for 107;_; and n, i.e.,

10r;,_1 =a; -n+r;

where 0 < r; < n.



So, the digit a; depends only on the remainders of the divisions by n of the
previous step. Since these remainders can only be one of the

0,1,...,n—1

it follows that at some point, the remainder will start repeating and then the
digit a; will start repeating.



