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Motivations

Let E/Q be an elliptic curve over Q. In previous lectures we have highlighted the importance

of the Kummer exact sequence:

0 −→ E(Q)/nE(Q) −→ H1(GQ, E[n]) −→ H1(GQ, E(Q))[n] −→ 0 (1)

in the study of E(Q). For example, we can prove that E(Q) is finitely generated (Mordell-

Weil Theorem) by proving that the left-hand term of (1) is finite. This is not immediately

clear from (1), since H1(GQ, E[n]) is infinite in general, but the situation can be remedied

by imposing local conditions at the primes dividing n and at the primes of bad reduction.

We can then refine (1) to obtain an injection:

E(Q)/nE(Q) ↪−→ H1
f (GQ, E[n]) (2)

into a Selmer group which will always be finite, giving Mordell-Weil. Moreover, the cok-

ernel of this injection is closely related to the Birch and Swinnerton-Dyer conjecture,

and any understanding of it should translate into some progress towards the full BSD. A

detailed account of this construction, together with several examples, can be found in [Sil85].

Generalizing (2) to a smooth projective algebraic curve X/Q of higher genus g > 1

immediately presents some difficulties. For starters, there is no group law on X that is

compatible with its structure of algebraic variety, hence there are no ‘multiplication-by-n’

maps available. We can attempt to circumvent this problem by working with the Jacobian

variety JX associated to X, an abelian variety of dimension g defined over Q, and a chosen

embedding ι : X ↪→ JX . One can then attempt to study the injection:

JX(Q)/nJX(Q) ↪−→ H1(GQ, JX [n]) (3)
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by imposing local conditions, and hope to gain information about the structure of X(Q)

via the embedding X(Q) ↪→ JX(Q). This approach, for example, was successfully employed

by Mazur in [Maz77] to compute the Q-rational points of the modular curves X1(N) and

X0(N). Knowledge of these rational points gives a complete classification of the rational

torsion structures occuring in elliptic curves over Q.

The Jacobian approach, however, has no hope of giving satisfactory answers for general

curves X/Q: taking Jacobians in fact kills a huge part of the arithmetic-geometric structure

of X. This phenomenon is perhaps easier to explain at the topological level first. If we

extenend scalars to C, the complex points X(C) have the structure of a compact complex

manifold, and JX(C) has the structure of a torus Cn/Λ. Now the fundamental group of X(C)

is the free group on 2g generators modulo some ‘gluing’ conditions, and it is not abelian as

soon as g > 1. However, it is not hard to show that:

π1(Cn/Λ; 0) ' Λ ' π1(X(C); b)ab,

hence all the ‘non-abelian’ topological information contained in π1(X(C); b) is lost when

taking Jacobians.

A similar phenomenon occurs at the algebraic level. First, we package all the exact

sequences (3) into an inverse system, and take the limit:

ĴX(Q) ↪−→ H1(GQ, T (JX))

where T (JX) =
∏

` T`(JX) is the full Tate module of JX . The theory of the étale funda-

mental group, pioneered by Grothendieck in [Gro61], constructs for any algebraic variety

an analog πet
1 of the topological fundamental group. For JX , and indeed for any abelian

variety, we recover the Tate module: if we let

JX = JX ×SpecQ SpecQ

then

T (JX) ' πet
1 (JX ; o). (4)

But πet
1 (X; b) is a genuinely new, non-abelian invariant of X, for which we have:

πet
1 (X; b)ab ' πet

1 (JX ; o)

just as in the topological case. Therefore, whereas for elliptic curves (which have abelian

fundamental group) the Kummer map (1) should suffice to understand rational points, for
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a general curve X of higher genus the map (3) does not seem to capture all the structure of

X(Q).

The goal of this lecture is to explain how to replace (1) and (3) by the étale period

map:

X(Q) −→ H1(GQ, π
et
1 (X; b)) (5)

for curves X of higher genus. The fact that πet1 (X; b) is not abelian places this map in the

realm of non-abelian group cohomology, a topic covered in the last lecture. In particular,

by the non-abelian cohomology philosophy, the set on the right of (5) can be interpreted as

the set of torsors under πet1 (X; b). The section conjecture of Grothendieck (Conjecture

1.24 below) states that the map (5) is a bijection for curves of genus g > 2. A proof of this

conjecture seems today to be beyond the reach of our current techniques.

The goal of the next lecture will be to setup Minhyong Kim’s program, which replaces

(5) with more tractable analogs. In particular, we will construct the Qp-pro-unipotent

completion of πet
1 (X; b), which will be denoted by π

u,Qp

1 (X; b), and define the unipotent

period map:

X(Q) −→ H1(GQ, π
u,Qp

1 (X; b)). (6)

One of the advantages of replacing πet1 (X; b) with π
u,Qp

1 (X; b), as we shall see, is that the

action of GQ on π
u,Qp

1 (X; b) can be computed in terms of the action on T (JX), a feature not

available in the full étale case. Moreover, as we will see in future lectures, we can impose

local conditions at p and at the primes of bad reduction to obtain a map

X(Q) −→ H1
f (GQ, π

u,Qp

1 (X; b)) (7)

where the right-hand side acquires the structure of a pro-algebraic variety, a so-called Selmer

variety. In a way, this can be seen as a unipotent, non-abelian substitute for the injection

X ↪→ JX , and for this reason Kim calls (7) the unipotent Albanese map. The study

of this map, despite it being a coarse approximation of the étale period map (5), already

yields important results about rational points on hyperbolic curves, as we shall see in detail

in future lectures.

1 Fundamental groups: the algebraic theory

1.1 The topological π1

Traditionally, the first construction encountered in algebraic topology is the functor

π1 : (Top; ∗) −→ Gps
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from the category of pointed topological spaces to the category of groups. This functor is

constructed by attaching to the pair (X; b) the group of homotopy classes of loops based at

b. One soon learns that this geometrically intuitive definition is unsuitable for computations

even in the simplest non-trivial examples, such as that of the circle S1. Instead, the subject

acquires its depth by its interplay with the theory of covering spaces.

Let Cov(X) be the category of covering spaces of X, whose morphisms are continuous

maps over X, and consider the fiber functor:

Fb : Cov(X) −→ Sets

{f : Y 7→ X} 7−→ f−1(b).

Theorem 1.1. Suppose X is connected, locally path-connected and semi-locally simply con-

nected. Then the functor Fb is representable, i.e. there exists a covering space X̃b ∈ Cov(X)

such that:

Fb = Hom(X̃b,−)

as functors Cov(X)→ Sets.

Proof. [Hat02] Proposition 1.38.

We call X̃b the universal covering space of (X; b). As a set, X̃b is constructed as the

set of homotopy classes of paths in X starting at b. The covering map is given by:

f̃ : X̃b −→ X

[γ] 7−→ γ(1)

so that the fiber f̃−1(x) can be identified with π1(X; b, x). In particular, the fiber above b is

precisely π1(X; b). From this description we see that the natural right action of π1(X; b) on

X̃b, given by pre-composition of paths, induces a map

π1(X; b) −→ Autop
Cov(X)(X̃b) (8)

since the action respects the fibers of f̃ .

Theorem 1.2. The map (8) is an isomorphism.

Proof. [Hat02] Proposition 1.39.
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In particular, we deduce that X̃b is simply connected: it must be its own universal

covering space by the universal property, hence

π1(X̃b; b̃) = Autop

Cov(X̃b)
(X̃b) = {id}.

Conversely, any simply connected covering (Y ; a) → (X; b) must be the universal covering

space: the covering map X̃b → Y has degree |π1(Y ; a)| = 1, hence it is a homeomorphism.

This criterion translates the problem of computing fundamental groups to that of computing

simply connected covering spaces, and can be used to compute fundamental groups in many

basic instances.

Example 1.3. The punctured complex plane (C×; 1) has a covering map given by:

exp : (C; 0) −→ (C×; 1)

z 7−→ ez.

Since C is simply connected, it is the universal covering space of (C×; 1). Therefore

π1(C×; 1) = exp−1(1) = 2πiZ ' Z.

Example 1.4. The complex points (A(C); o) ' (Cn/Λ; 0) of an abelian variety of dimension

n have a covering map:

p : (C; 0) −→ (C/Λ; 0).

Since C is simply connected,

π1(A(C); o) = p−1(0) = Λ ' Z2n.

Example 1.5. For the doubly-punctured plane C − {0, 1} the construction of a universal

covering space is a bit more involved... unless you are a number theorist. Consider in fact the

congruence subgroup Γ = Γ(2) ⊂ SL2(Z) of matrices which reduce to the identity modulo 2.

This group acts on the complex upper half-plane via linear fractional transformations, and

the action factors through PSL2(Z). It is well-known that the quotient H/Γ is in bijection

with pairs (E, {e1, e2}) of an elliptic curve over C together with a choice of basis for the full

2-torsion E[2]. On the other hand, such elliptic curves can always be written in the form:

y2 = x(x− 1)(x− λ), λ ∈ C− {0, 1}
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by [Sil85] Proposition III.1.7. The composition:

H −→ H/Γ '−→ C− {0, 1}
(E, {e1, e2}) 7−→ λ

is a covering map, which can be written down explicitly in terms of modular functions for

Γ(2). Since H is simply connected, we must have:

π1(C− {0, 1}; b) ' Γ ⊂ PSL2(Z)

for any base point b. Now the group Γ is freely generated by

(
1 2

0 1

)
and

(
1 0

2 1

)
so we

have:

π1(C− {0, 1}; b) ' Z ∗ Z

as intuition dictates. Note that the same is true for P1 − {0, 1,∞}.

In the examples above the groups π1 were computed without any mention of paths: only

the functorial properties of π1 have been used. Therefore, it seems that π1 itself should admit

a category-theoretical description. To this end, note that by Theorem 1.1 we have:

Aut(Fb) = Aut(Hom(X̃b,−))

and by Yoneda’s lemma:

Aut(Hom(X̃b,−)) = Aut(X̃b).

Combined with Theorem 1.2, we observe that:

π1(X; b) = Aut(Fb) (9)

and by an entirely analogous reasoning:

π1(X; b, x) = Isom(Fb, Fx). (10)

We have thus found an entirely functorial decription of path and loop spaces, which is

the starting point for the algebraic theory of fundamental groups.

1.2 The étale π1

Let now X/k be an algebraic variety over an aglebraically closed field k. Ideally we would

like to define a functor:

(Vark; ∗) −→ Gps
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from the category of pointed varieties over k to the category of groups, which recovers the

topological π1 when evaluated on algebraic varieties over C. Let us say right away that this is

not possible, mainly because for a complex algebraic variety X the Zariski topology on X/C
is of an entirely different nature than the analytic topology on X(C). For example, in the

algebraic setting the notion of path is not at all well-behaved (e.g. a path in an irreducible

curve is a point). Moreover the notion of a local homeomorphism (let alone that of covering

space) is too restrictive for the Zariski topology. For example the projection of the variety

X = {y − x2 = 0} ⊂ C2 onto the y-axis minus the origin, which is a covering map in the

analytic topology, is not even a local homeomorphism in the Zariski topology: no Zariski

open set of C2 can be chosen so that it intersects only one ‘branch’ of X.

Grothendieck’s insight was to replace the notion of a covering space by that of finite

étale covers (Definition 1.11 below) and then use the functorial description (9) of the

fundamental group to avoid the use of paths. The result is a functor

πet
1 : (Vark; ∗) −→ PfGps

from the category of pointed algebraic varieties over k to the category of profinite groups.

When k = C, the functor computes π̂1, the profinite completion of the topological funda-

mental group. In other words, the profinite completion of the topological π1 of a complex

algebraic variety has a purely algebraic description!

The starting point for the definition of an algebraic notion of local isomorphism is to

observe that the inverse function theorem for a morphism f : X → Y of complex algebraic

varieties gives an entirely algebraic criterion to establish whether f is a local isomorphism.

This observation motivates the following definition.

Definition 1.6. A morphism f : X → Y of varieties over an algebraically closed field k is

étale if it is smooth of relative dimension 0. This means

(I) Locally: If f is given by

f : X = Spec

(
A[X1, . . . , Xn]

(p1, . . . , pn)

)
−→ Spec(A) = Y

where A is a k-algebra, then f is étale if and only if

det

(
∂pi
∂Xj

)
(x) ∈ k×

for all x ∈ X.
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(II) Globally: For all x ∈ X, there are open neighborhoods U of x and V of f(x) such

that f(U) ⊂ V and f |U comes from restriction of a morphism of type (I).

Example 1.7. The projection of y = x2 onto the y-axis minus the origin is étale if char(k) 6=
2.

Example 1.8. The map x 7→ xn from Gm/k to itself is étale if char(k) - n.

Example 1.9. The multiplication-by-n map on an abelian variety A/k is étale char(k) - n.

Example 1.10. The projection of {xy − 1 = 0} onto the x-axis is étale.

As a safety check, note that when k = C a morphism of complex varieties f : X → Y

induces a local isomorphism for the analytic topology on the complex points f : X(C) →
Y (C), and vice-versa ( [Mum99] III.5 Corollary 2).

The algebraic notion of a covering space is the following.

Definition 1.11. A morphism f : Y → X of algebraic varieties over an algebraically closed

field k is a finite étale morphism if it is finite and étale. We call Y a finite étale cover of X.

Example 1.12. All the maps in Examples 1.7, 1.8 and 1.9 are finite étale.

Example 1.13. The map in Example 1.10 is not finite, hence not finite étale.

Remark 1.14. When k = C the concept of finite étale map coincides with that of a finite

covering map for the analytic topology. In fact, while the étale requirement on f replaces the

notion that a covering map must be a local homeomorphism, the finite requirement replaces

the idea that a covering map should have at least one ‘sheet’ covering the entire base space

(and no more than finitely many, for finite coverings). This is to avoid that open inclusions

are coverings, as in Example 1.10, and ensure surjectivity.

Let now FEtCov(X) be the category of finite étale maps f : Y → X (morphisms are

morphisms of k-varieties over X), and fix a closed point b ∈ X(k). Define the étale fiber

functor:

F et
b : FEtCov(X) −→ Sets

{f : Y → X} 7−→ f−1(b) = Spec(f∗(OY )b ⊗OX,b
k(b)).

Inspired by (9), define the étale fundamental group of (X; b) by

πet
1 (X; b) := Aut(F et

b ) (11)
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and similarly

πet
1 (X; b, x) := Isom(F et

b , F
et
x ) (12)

for any other closed point x ∈ X(k).

Remark 1.15. Similar definitions can be given for any pair (S; b) of a scheme and a geometric

point on it. This is necessary, for example, if one wants to study how πet
1 (X; b) varies in

a family of algebraic varieties. The ultimate reference for this general approach is SGA-1

[Gro61].

Just as in the topological case, definitions (11) and (12) are as conceptually satisfying

as they are unworkable. We wish then to find an algebraic analog for the universal covering

space X̃b, i.e. we wish to represent the étale fiber functor F et
b . Intuitively, it is clear that this

is not possible in general: we need to find a finite étale cover that dominates all others, but

any two finite covers can be combined (fiber product) to give a finite cover that dominates

both of them. This intuition suggests that the analog of a universal covering space for finite

étale maps should be an inverse limit of finite covers, where the inverse sytem is constructed

via fiber products. Of course, the resulting object will not be a variety, but only a pro-

variety: we have landed upon the concept of a pro-representable functor.

Definition 1.16. Let C be a category, and F a set-valued functor on C. We say F is pro-

representable if there exists an inverse system P = (Pα, φαβ) of objects of C indexed by a

directed partially ordered set I, and a functorial isomorphism:

lim
→

Hom(Pα, X) ' F (X)

for each object X in C.

Theorem 1.17. The étale fiber functor F et
b is pro-representable.

Proof. We construct the inverse system by taking Galois covers of X, i.e. connected covers

fα : Xα → X such that the group AutX(Xα) acts transitively on the fibers. These form a

directed set, since for any two Galois covers Xα, Xβ, we can form the fiber product Xα×XXβ,

a finite étale cover, and find a maximal finite étale cover of it which is Galois over X. Now

there is no unique choice of morphisms φαβ : Xβ → Xα. We must require them to fix a

choice of elements {bα ∈ f−1
α (b)} for each α. The existence of such compatible system of

morphisms is guaranteed by the Galois property. Moreover, once the choice of {bα ∈ f−1
α (b)}

is fixed, the compatible system is unique. For details, see [Sza09] Proposition 5.4.6.
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It is a formal consequence of the definitions that the étale fundamental group can be

computed directly from the inverse system X̃b = {(Xα; bα)}α.

Theorem 1.18. Let X/k be an algebraic variety over an algebraically closed field k. Let

b ∈ X(k) be a closed point and let X̃b = {(Xα; bα)}α be the pro-algebraic variety of Theorem

1.17. If f̃ = {fα} denotes the map f̃ : X̃b → X, then:

(a) πet
1 (X; b) = f̃−1(b).

(b) πet
1 (X; b, x) = f̃−1(x) for any other point x ∈ X(k).

Proof. It suffices to prove (b), (a) being a special case. By Yoneda’s lemma:

Nat(F et
b , F

et
x ) = Hom(X̃x, X̃b) = Fx(X̃b) = f̃−1(x).

Moreover, note that any element in Hom(X̃x, X̃b) must necesserily be invertible, by the

universal properties of both X̃x and X̃b, so that:

Nat(F et
b , F

et
x ) = Isom(F et

b , F
et
x ) = πet

1 (X; b, x).

Example 1.19. Suppose char(k) = 0 and consider (Gm/k; 1), where Gm/k = Spec(k[t, t−1]).

Then the maps [n] : t 7→ tn give a compatible system G̃m/k = {[n] : Gm/k → Gm/k; 1}n of

Galois covers, in the sense of Theorem 1.17. We then have

πet
1 (Gm/k; 1) = f̃−1(1) = µ̂ = proj limµn ' Ẑ

the projective limit of the n-th roots of unity. When k = C we have Gm(C) = C×, and

comparing with Example 1.3 we confirm that

πet
1 (Gm/C; 1) = ̂π1(C×; 1)

as it was stated at the outset. Moreover, we have:

πet
1 (Gm/k; 1, x) = f̃−1(x)

which is the projective limit of n-th roots of x.

Example 1.20. Suppose char(k) = 0 and let (A/k; o) be an abelian variety of dimension d.

The maps [n] : A → A form a compatible system Ão = {([n] : A → A; o)}n in the sense of

Theorem 1.17. Therefore:

πet
1 (A; o) = f̃−1(o) = T (A) ' Ẑ2d
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the full Tate module of A (compare with Example 1.4). Moreover,

πet
1 (A; o, x) = f̃−1(x)

is a compatible system of n-division points of x.

1.3 The homotopy exact sequence

Suppose now we allow k to be any field, not necesserily algebraically closed. Then Definition

1.11 still makes sense, only in the definition of étale we require the various determinants to

be non-zero possibly in finite field extensions of k.

Example 1.21. When X = Spec(k) the theory is already highly non-trivial. Finite étale

covers correspond to finite étale aglebras A over k, i.e. products of finite separable field

extensions of k. We can then try and construct a ‘universal covering space’ X̃ as in Theorem

1.17. Now the connected covers of X correspond to finite separable field extensions of k,

and the Galois covers correspond to Galois extensions. The role of the base point is played

by the scheme-theoretic point Spec(k̄) → X, for an algebraic closure k ⊂ k̄. We form then

a compatible system X̃k̄ = {Lα, Spec(k̄) → Spec(Lα)}α in the sense of Theorem 1.17. Now

for any Galois extension Lα/k the set Spec(Lα ⊗ k̄), which is the fiber above Spec(k̄)→ X,

is a finite set of points indexed by the embeddings Lα ↪→ k̄, which are all contained inside

ks. We deduce that:

πet
1 (X; Spec k̄ → X) = Gal(ks/k).

Therefore the theory of the étale fundamental group for Spec(k) coincides with Galois theory

over k.

As Example 1.21 shows, when k is not algebraically closed a new type of étale covers

appear, which we may call of arithmetic type, as opposed to the ones of geometric type of

the previous section. For example, if L/k is a finite separable field extension and X/k is a

variety, then X×k Spec(L) is a finite étale cover of X/k. Now if we choose a geometric point

b̄ : Spec(k̄) −→ X

then it should be clear by now how to define the étale fundamental group πet
1 (X; b̄). The

following theorem of Grothendieck essentially shows that πet
1 (X; b̄) can be computed by its

geometric and arithmetic covers.

Theorem 1.22 (Homotopy exact sequence). Let X/k be a geometrically irreducible variety

over a field k. Fix an algebraic closure k̄ and a separable closure ks ⊂ k. Let b̄ : Spec(k̄)→ X
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be a geometric point and let X̄ := X ×k Spec(ks). Then the sequence of profinite groups

1 −→ πet
1 (X̄; b̄) −→ πet

1 (X; b̄) −→ Gal(ks/k) −→ 1 (13)

induced by the maps X̄ → X → Spec(k), is exact.

Proof. [Sza09] Proposition 5.6.1.

We are now in a position to state Grothendieck’s section conjecture, which was our

main motivation for the study of the étale fundamental group. Note in fact that with the

hypotheses of Theorem 1.22, any k-rational point

x : Spec(k) −→ X

of X gives rise by functoriality to a map σx:

Gal(ks/k) ' πet
1 (Spec(k); k̄)

σx−→ πet
1 (X; x̄)

where x̄ is the geometric point obtained by base change to k̄. If we compose with a choice

of isomorphism:

λ : πet
1 (X; x̄) −→ πet

1 (X; b̄)

then the composition:

πet
1 (X; b̄) Gal(ks/k)

πet
1 (X; x̄)

σxλ

is a section of the exact sequence (13). But the isomorphisms λ : πet
1 (X; x̄) → πet

1 (X; b̄)

are in bijection with the elements of

πet
1 (X; b̄, x̄) = Isom(F et

b̄ , F
et
x̄ )

and any two isomorphisms λ are conjugate under πet
1 (X; b̄) (just as in the topological case).

We therefore have a map:

X(k) −→ [πet
1 (X; b̄, x̄)] = { conjugacy classes of sections of (13)}
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or, in the language of torsors, a map:

X(k) −→ H1(Gal(ks/k), πet
1 (X; b̄))

x −→ [πet
1 (X; b̄, x̄)].

which is exactly the map (see (5)) that we set out to define .

Example 1.23. Let (E; o) be an elliptic curve over Q and let x ∈ E(Q) be a rational

point. The associated torsor πet
1 (X; ō, x̄) is never trivial in H1(GQ, π

et
1 (E; ō)). In fact, any

GQ-invariant isomorphism

πet
1 (E; ō)

'−→ πet
1 (X; ō, x̄)

gives GQ-equivariant isomorphisms

E[n]
'−→ E[n]x := {P ∈ E(Q) : nP = x}

for any n ≥ 1, by Example 1.20. Since o ∈ E[n](Q) for any n, this means that we can find

a rational point Pn ∈ E[n]x(Q) for any n. Now a theorem of Mordell ([Sil85] III.6.4) shows

that there exists a ‘height function’ h : E(Q)→ R≥0 such that:

h(x) = h([n]Pn) ≥ n2h(Pn) + CE

where CE is a constant depending only on E. As n→∞, this would require h(Pn) to become

arbitrarily small. But there are only finitely many points in E(Q) of bounded height.

The main open question about the étale period map (5) is the following:

Conjecture 1.24 (Grothendieck’s section conjecture). Let X/k be a geometrically irre-

ducible curve of genus ≥ 2 over a field k finitely generated over Q. Then (5) is a bijection.

The injectivity of (5), which seems plausible in light of Example 1.23, has been verified

by Grothendieck. The surjectivity, however, remains an open question.
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