
189-346/377B: Number Theory

Solutions to Assignment 6

1. Let p be an odd prime. Show that −2 is a quadratic residue modulo a
prime p if and only if p is a prime of the form m2 + 2n2.

Solution: If p is of the form m2 +2n2, then the residue class of (m/n) modulo
p (which makes sense because n is non-zero modulo p!) is a square root of −2
modulo p. The interesting direction is the converse. For this, following the
approach developped in class for sums of two squares, we begin by showing
that the ring Z[

√
−2] admits unique factorisation into irreducible elements,

and that in particular the gcd of two elements a and b in Z[
√
−2] is always

a linear combination (with coefficients in Z[
√
−2]) of a and b. To prove this,

one proceeds as was done in class to show that there is a euclidean division
algorithm. More precisely, given a and b in Z[

√
−2] with b 6= 0, we show that

there exists q and r in that same ring such that

a = bq + r, rr̄ < bb̄.

To see this, write a/b = u + v
√
−2 with u, v ∈ Q, and let q = x + y

√
−2

be the element of Z[
√
−2 for which the coordinates x and y are the closest

integers to u and v respectively. By construction,

norm(a/b − q) ≤ (1/2)2 + 2 · (1/2)2 = 3/4,

and hence
norm(a − bq) ≤ 3/4norm(b).

Since r = a−bq, this concludes the claim about the Euclidean division. Now,
by proceeding exactly as was done in class for Z[i], one shows that the gcd
of a and b is of the form ra + sb for some r, s ∈ Z[

√
−2].

Once this preparatory work is done, we reason exactly as was done in
class for sums of two squares. More precisely, if −2 is a quadratic residue
modulo p, then we may find an integer t ≤ (p + 1)/2 such that t2 + 2 =: mp
is divisible by p, but not by p2. Now let a = gcd(t +

√
−2, p). CLearly the
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integer aā divides p, since it divides both mp = t2 + 2 and p2. But we also
know that a is a linear combination of t +

√
−2 and p, hence its norm is

congruent, modulo p, to the norm of t +
√
−2, which is 0 mod p, therefore

the norm of a is divisible by–hence equal to–p. But writing a = r + s
√
−2,

this gives r2 + 2s2 = p, as was to be shown.

2. Use question 1 and quadratic reciprocity to get a complete characterisation
of all the integers that are of the form m2 + 2n2.

Quadratic reciprocity tells us that −2 is a quadratic residue modulo a
prime p if and only if p = 1 or 3 modulo 8. Hence the set of primes of the
form m2 + 2n2 is precisely the set of primes which are congruent to 1 or 3
modulo 8.

To caracterise the integers that can be written in this way, we first observe
that if r is any integer of the form m2 + 2n2, then, after factoring out the
common divisor d of m and n we have

r = d2(m2

0 + 2n2

0) = d2r0, with gcd(m0, n0) = 1.

To characterize r0, we note that any rational prime p dividing r0 is necessarily
congruent to 1, 2 or 3 modulo 8, since the class of (m0/n0) modulo p is a
square root of −2 modulo p. It follows that any integer of the form m2 +2n2

is necessarily of the form d2p1 · · · pr, where the pj’s are primes which are
congruent to 1, 2 or 3 modulo 8. Conversely, any integer of that form can
certainly be written in the form m2+2n2–this follows from the case of primes,
by the multiplicativity of the norm in Z[

√
−2].

3. Repeat questions 1 and 2 with m2 + 2n2 replaced by m2 + 3n2.

Solution. The ideas here are exactly the same as for the case m2 + 2n2,
replacing the ring Z[

√
−2] by the ring Z[

√
−3]. The final answer is that an

integer r can be written in the form m2 + 3n2 is and only if it is of the form
d2p1 · · · pr, where d is an arbitrary integer and the pj are primes which are
either 0 or 1 modulo 3.

4. Show that there are primes p for which −5 is a quadratic residue modulo
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p, yet which are not of the form m2 + 5n2.

Solution: It is not hard to produce such examples. For example, −5 = 32

(mod 7), but 7 is not of the form m2 + 5m2, clearly. The same if true of 3
since −5 = 12 (mod 3).

5. Make a list of the integers ≤ 100 that can be written in the form m2 +5n2,
and 2m2 +2mn+3n2. Can you formulate some conjectures about how these
sets of integers behave? (You may find it useful to write each integer in
factored form.)

Solution: The table of all integers ≤ 100 of the form m2+5m2 with gcd(m, n) =
1, along with their factorisations, is as follows:

1, 6 = 2 × 3, 9 = 3 × 3, 14 = 2 × 7, 21 = 3 × 7, 29 = 29,

30 = 5 × 2 × 3, 41 = 41, 45 = 3 × 3 × 5, 46 = 2 × 23, 49 = 7 × 7,

61 = 61, 69 = 3 × 23, 70 = 2 × 5 × 7, 81 = 34,

89 = 89, 94 = 2 × 47

Right off the bat, there are several interesting patterns that can be inferred
from this table. For instance, it appears that the primes of the form m2+5m2

are either equal to 5, or are congruent to 1 or 9 modulo 20. (These are the
primes 29, 41, 61, and 89.) Furthermore, the same statement seems to be
true of the integers that are not divisible by 2 or 5, and appear in this table.
These are the integers 1, 9, 21, 29, 41, 49, 61, 69, 81 and 89. The data
suggests that these are precisely the integers that are congruent to 1 or 9
modulo 20!

When examining the factorisations, one sees appearing the primes 2, 3,
7, 23 and 47, which are not of the form n2 + 5m2 even though they divide
an integer of this form. On the other hand, these primes are all of the
form 2m+2mn + 3n2, and they are all congruent to either 3 or 7 modulo 21.
From these simple observations, it would appear that, as far as the integers
r that are relatively prime to 2 and 5 are concerned, they are of the form
m2 + 5m2 (resp. 2m2 + 2mn + 3n2) if and only if they are congruent to 1
or 9 (resp. to 3 or 7) modulo 21. Note that, in particular, of p and q are
both of the form m2 + 5n2 then so is their product, while if p and q are
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of the form 2m2 + 2mn + 3n2, then their product is of the form m2 + 5m2.
Can you explain this empirical pattern algebraically, by writing down explicit
formulas for passing from a representation of p and q as a value of one of
those two quadratic forms, to the desired representation for the product?

These are some of the most striking patterns you could observe... of
course the question was somewhat open-ended and there was no clear ”right
answer”– the main point was to get you staring at these patterns and think-
ing about them a bit – understanding what goes on leads to the theory of
Gaussian composition of binary quadratic forms and the “class group” of
quadratic rings, one of the central achievements of Gauss’s Disquisitiones
which is nicely explained in somewhat more modern language in Granville’s
notes.

6. By elementary arguments (working in Z) show that the diophantine equa-
tion x2 + 1 = yn has no solution when

1. x is odd and n > 1.

2. n is even.

Use this to show that if n > 1, then there exists a Gaussian integer a + bi
for which x + i = (a + bi)n. Conclude that b = ±1 and that the equation in
question has no solution for n = 3, 5 and 7.

Solution. The first part can be done by elementary arguments. Namely, if x
is odd then x2 + 1 ≡ 2 (mod 4) and hence cannot be a perfect nth power
for any n > 1 (since the power of 2 dividing it is exactly 2). Also, if n = 2m
is even then the equation can be written as (ym−x)(ym +x) = 1, from which
we obtain either ym −x = ym +x = 1 or ym −x = ym +x = −1, which leads
(by solving linear equations!) to y = ±1 and x = 0. (So the second part was
not quite right: there are two “trivial” solutions (x, y) = (0,±1) when n is
even!...)

Thanks to these elementary considerations, in studying the equation x2 +
1 = yn, we may restrict our attention to the case where x is even and n is
odd.

Now, for the second part of the question, we can rewrite the equation
x2 + 1 = yn as

(x + i)(x − i) = yn. (1)
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But the gcd of x + i and x − i clearly divides 2i = (1 + i)2, and therefore
must be 1 since the fact that x is even precludes the possibility that 1 + i
divides x + i. By the unique factorisation principle that was explained in
class, it follows that both x + i and x − i are perfect n-th powers in Z[i], up
to multiplication by a unit. But since we are assuming n is odd, each of these
units – namely 1,−1, i and −i– is a perfect nth power as well, and therefore
there is a Gaussian integer a + bi such that

x + i = (a + bi)n. (2)

Expanding the right hand side using the binomial theorem, and examining
the imaginary part, we see that this imaginary part is divisible by the integer
b, and therefore b divides 1, and hence b = ±1.

Now, in the case n = 3, the equation (2) becomes

x = a3 − 3ab2, 3a2b − b3 = 1.

From this and the fact that b = ±1, we find that 3a2−b2 = ±1, and therefore
3a2 = 0 or 2. Hence a = 0, so that x = 0, which leads to the “trivial” solution
x = 0, y = 1 of the original equation. (This solution is there, so the question
was not formulated correctly; but nonetheless we have shown that there are
no other solutions aside from these obvious and not-so-interesting ones.)

7. Solve the Pell equation x2 − 133y2 = 1 by using the continued fraction
method (clearly indicate all the steps that you follow).

I hope that you did this one by hand, because, although it is a bit long, it
is also rather fun and it is good to gain some proficiency in calculations like
this. We note first that

√
133 = 11.53....

The following sequence of calculations:
√

133 = 11 + (
√

133 − 11);

1√
133 − 11

=

√
133 + 11

12
= 1 +

√
133 − 1

12
;

12√
133 − 1

=
12(

√
133 + 1)

132
=

√
133 + 1

11
= 1 +

√
133 − 10

11
;

11√
133 − 10

=
11(

√
133 + 10)

33
=

√
133 + 10

3
= 7 +

√
133 − 11

3
;

5



3√
133 − 11

=
3(
√

133 + 11)

12
=

√
133 + 11

4
= 5 +

√
133 − 9

4
;

4√
133 − 9

=
4(
√

133 + 9)

52
=

√
133 + 9

13
= 1 +

√
133 − 4

13
;

13√
133 − 4

=
13(

√
133 + 4)

117
=

√
133 + 4

9
= 1 +

√
133 − 5

9
;

9√
133 − 5

=
9(
√

133 + 5)

108
=

√
133 + 5

12
= 1 +

√
133 − 7

12
;

12√
133 − 7

=
12(

√
133 + 7)

84
=

√
133 + 7

7
= 2 +

√
133 − 7

7
;

7√
133 − 7

=
7(
√

133 + 7)

84
=

√
133 + 7

12
= 1 +

√
133 − 5

12
;

12√
133 − 5

=
12(

√
133 + 5)

108
=

√
133 + 5

9
= 1 +

√
133 − 4

9
;

9√
133 − 4

=
9(
√

133 + 4)

117
=

√
133 + 4

13
= 1 +

√
133 − 9

13
;

13√
133 − 9

=
13(

√
133 + 9)

52
=

√
133 + 9

4
= 5 +

√
133 − 11

4
;

4√
133 − 11

=
4(
√

133 + 11)

12
=

√
133 + 11

3
= 7 +

√
133 − 10

3
;

3√
133 − 10

=
3(
√

133 + 10)

33
=

√
133 + 10

11
= 1 +

√
133 − 1

11
;

11√
133 − 1

=
11(

√
133 + 1)

132
=

√
133 + 1

12
= 1 +

√
133 − 11

12
;

12√
133 − 11

=
12(

√
133 + 11)

12
=

√
133 + 11 = 22 + (

√
133 − 11)

shows that the continued fraction expansion of
√

133 is given by

√
133 = [11, 1, 1, 7, 5, 1, 1, 1, 2, 1, 1, 1, 5, 7, 1, 1, 22]

where the bar denotes an infinite period sequence (with period length 16).
Now, the sequence of convergents is calculated in the following table:
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an 11 1 1 7 5 1 1 1 2 1 1
pn 11 12 23 173 888 1061 1949 3010 7969 10979 18948
qn 1 1 2 15 77 92 169 261 691 952 1643

p2
n − 133q2

n −12 11 −5 4 −13 9 −12 7 −12 9 −13

an 1 5 7 1 1 22
pn 29927 168583 1210008 1378591 2588599
qn 2595 14618 104921 119539 224460

p2
n − 133q2

n 4 −3 11 −12 1

This calculation shows that the fundamental solution to x2−113y2 = 1 is
given by (x, y) = (2588599, 224460). While not exactly for the faint of heart,
it is striking that such calculations can be performed at all without calculator
or computer. Mathematicians like Fermat revelled in carrying them out in
even more complicated cases— this was how he knew that the fundamental
solution to the Pell equation x2−61y2 = 1 is (1766319049, 226153980)... Try
doing this one if you are feeling brave!

Math 377 students only:

8. Section 8.4, Problem 4 in Leveque.

9. Section 8.4, Problem 5 in Leveque.
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