
189-346/377B: Number Theory

Assignment 5

Solutions

1. An integer n is said to be square-free if its prime factorisation is of the
form

n = p1p2 · · · pr,

where p1, . . . , pr are distinct primes. Show that for all real s > 1,

ζ(s)

ζ(2s)
=

∑
n∈S

1

ns
,

where

ζ(s) = 1 +
1

2s
+

1

3s
+ · · ·

is the Riemann zeta function, and S is the set of positive square free integers.

Solution: By the Euler product factorisation for the Riemann zeta-function,

ζ(s)

ζ(2s)
=

∏
p

(1 − p−s)−1(1 − p−2s) =
∏
p

(1 + p−s),

the products being taken as usual over all the primes. Expanding the last
product as an infinite sum, one observes that one obtains a term of 1/ns

exactly once for each n which admits a factorisation as a product of distinct
primes with multiplicity one:

∏
p

(1 + p−s) =
∑
n∈S

1

ns
.

2. Using a Sieve argument (or otherwise), show that the number of square-
free integers that are less than or equal to x is equal to

ζ(2)−1x + o(x).
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Solution: For any integer r, let p1, . . . , pr denote the first r primes, and let
sr(x) denote the number of integers ≤ x that are not divisible by any of p2

1,
p2

2, up to p2
r. Then by the same sieve argument as was used in class to show

that π(x) grows at most like x/ log log x, we can see that

sr(x) = x
r∏

j=1

(1 − p−2
j ) + e(r, x),

where e(r, x) ≤ 2r. Now, letting r = [log(x)], we have 2r = o(x) as was
seen in class, and

∏r
j=1(1 − p−2

j ) = 1/ζ(s) + o(1). The result follows. (Note
that this proof is less delicate than the argument we carried out in class,
essentially because the infinite sum defining ζ(s) converges at s = 2 while it
diverges at s = 1.

3. Show that any integer of the form 4n+3 always has a prime divisor of the
form 4k +3. Use this to give a proof that there are infinitely many primes of
the form 4k + 3, analogous to Euclid’s proof of the infinitude of primes that
was recalled in class. Show by a similar argument that there are infinitely
many primes of the form 3k + 2.

Solution: If all the prime divisors of an integer are of the form 4k + 1, then
the same is true of the integer itself. Hence any integer of the form 4n + 3
must have a prime divisor of the form 4k +3. To see that there are infinitely
many primes of the form 4k+3, let q1, . . ., qn be any finite set of such primes
and observe that the integer 4q1 · · · qn−1 is necessarily divisible by a prime q
of the form 4k +3 which is not already in that set. The argument for primes
of the form 3k + 2 is identical (and was also seen again in class.)

4. Let d be a prime. Show that any prime p which does not divide d but
divides the integer

nd−1 + nd−2 + · · · + 1

(n ∈ Z) is necessarily of the form kd + 1. Use this to show that there are
infinitely many primes of the form kd + 1. (Hint: assume otherwise, and
study the asymptotics of #{nd−1 + · · ·+n+1, n ≤ x1/d} as x−→∞ in two
different ways to derive a contradiction.)

Solution. If p divides nd−1+· · ·+1, then it also divides (n−1)(nd−1+· · ·+1) =
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nd − 1. Hence the residue class of n modulo p is an element of order dividing
d, hence either n = 1 or n is of order (exactly) d. If n ≡ 1 (mod p), then p
would have to divide nd−1 + · · · + 1 ≡ 1 + · · · + 1 = d (mod p), which we
have assumed is not the case. Hence the class of n is of order d in (Z/pZ)×.
In particular, the group (Z/pZ)× has cardinality divisible by d, and therefore
p ≡ 1 (mod d).

To show that there are infinitely many primes of the form kd+1, suppose
on the contrary that there are only finitely many such primes, p1, . . . , pr, and
consider the set S(X, d) of integers ≤ X of the form nd−1+· · ·+1. On the one
hand, the cardinality of S(X, d) grows asymptotically like cX1/(d−1) for some
constant c as X gets large (as is true for the set of values of any polynomial
of degree d − 1). On the other hand, every integer in S(X, d) is of the
form pe1

1 · · · per
r where the exponents ej are bounded by logpj

(X) = cj log(X).
Hence there are at most c′ log(X)r such integers for some other constant c′.
This is a contradiction since, for all α > 0 (however small) and for all M > 0
(however large), we always have

lim
X−→∞

(Xα − (log(X))M) = ∞.

Note that a similar idea was already used in a previous assignment...

The following exercises are taken from the textbook by Levesque.

5. (Section 6.2, exercise 7 from Levesque.)
Show that, for all s > 1,

∞∑
n=1

1

ns
·

∞∑
n=1

µ(n)

ns
= 1,

where µ(n) is the Möbius function defined by µ(n) = (−1)t if n is a product
of t distinct primes, and µ(n) = 0 if t is divisible by the square of some prime.

Solution. This follows from the factorisation formula for ζ(s) after noting
that

ζ(s)−1 =
∏
p

(1 − p−s) =
∑
n

µ(n)n−s.

6. Show that if f(x) is a continuous, monotonically decreasing function which
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tends to 0 as x−→∞, and if the series
∑

∞

n=1 f(n) diverges, then the function

F (n) :=
n∑

j=1

f(j)

satisfies
F (n) ∼

∫ n

1
f(x)dx.

Proof. This follows from the trick we have already used a number of times
in class, in which we approximate

∫ n
1 f(x)dx both from above and below by

a Riemann sum:

F (n) − f(1) =
n∑

j=2

f(j) ≤
∫ n

1
f(x)dx ≤

n−1∑
j=1

f(j) ≤ F (n).

It follows from this that

|F (n) −
∫ n

1
f(x)dx| ≤ f(1),

and therefore the ratio
∫ n
1 f(x)dx/F (n) tends to 1 as n−→∞.

7. (Section 6.4, exercise 9 from Levesque.)
Let logk x be the k-th iterate of the logarithm function, defined recursively
by

log1 x = log x, logk x = log logk−1 x.

Is there a continuous increasing function f(x) such that limx→∞ f(x) = ∞,
yet f(x) = o(logk x) for all k ≥ 1? If so, exhibit such a function.

Solution: Let
h(m) = eee···

(m times),

and let
f(x) = least m such that h(m) > x.

To see that f(x) grows more slowly than logk(x), write

x = eee···

y

(k times),
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which is always possible once x is sufficiently large. Then it is not hard to
see that

logk(x) = y, f(x) = f(y) + k,

and hence the result follows since clearly f(y)/y tends to 0.

Math 377 only:
8. Section 6.8., exercise 4 in Levesque.

Solution: The method of proof is very similar to what was worked out in class
for the case q = 5. (The fact that all Dirichlet characters mod 8 have values
in Z makes it easier to work with products throughout rather than taking
the logarithm of the Dirichlet L-series as we did in class, but otherwise the
ideas are the same.)
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