189-346/377B: Number Theory Assignment 5

Solutions

1. An integer n is said to be *square-free* if its prime factorisation is of the form

$$n=p_1p_2\cdots p_r,$$

where p_1, \ldots, p_r are *distinct* primes. Show that for all real s > 1,

$$\frac{\zeta(s)}{\zeta(2s)} = \sum_{n \in S} \frac{1}{n^s},$$

where

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

is the Riemann zeta function, and S is the set of positive square free integers.

Solution: By the Euler product factorisation for the Riemann zeta-function,

$$\frac{\zeta(s)}{\zeta(2s)} = \prod_{p} (1 - p^{-s})^{-1} (1 - p^{-2s}) = \prod_{p} (1 + p^{-s}),$$

the products being taken as usual over all the primes. Expanding the last product as an infinite sum, one observes that one obtains a term of $1/n^s$ exactly once for each n which admits a factorisation as a product of distinct primes with multiplicity one:

$$\prod_{p} (1+p^{-s}) = \sum_{n \in S} \frac{1}{n^{s}}.$$

2. Using a Sieve argument (or otherwise), show that the number of squarefree integers that are less than or equal to x is equal to

$$\zeta(2)^{-1}x + o(x).$$

Solution: For any integer r, let p_1, \ldots, p_r denote the first r primes, and let $s_r(x)$ denote the number of integers $\leq x$ that are not divisible by any of p_1^2 , p_2^2 , up to p_r^2 . Then by the same sieve argument as was used in class to show that $\pi(x)$ grows at most like $x/\log \log x$, we can see that

$$s_r(x) = x \prod_{j=1}^r (1 - p_j^{-2}) + e(r, x),$$

where $e(r, x) \leq 2^r$. Now, letting $r = [\log(x)]$, we have $2^r = o(x)$ as was seen in class, and $\prod_{j=1}^r (1 - p_j^{-2}) = 1/\zeta(s) + o(1)$. The result follows. (Note that this proof is less delicate than the argument we carried out in class, essentially because the infinite sum defining $\zeta(s)$ converges at s = 2 while it diverges at s = 1.

3. Show that any integer of the form 4n + 3 always has a prime divisor of the form 4k + 3. Use this to give a proof that there are infinitely many primes of the form 4k + 3, analogous to Euclid's proof of the infinitude of primes that was recalled in class. Show by a similar argument that there are infinitely many primes of the form 3k + 2.

Solution: If all the prime divisors of an integer are of the form 4k + 1, then the same is true of the integer itself. Hence any integer of the form 4n + 3must have a prime divisor of the form 4k + 3. To see that there are infinitely many primes of the form 4k + 3, let q_1, \ldots, q_n be any finite set of such primes and observe that the integer $4q_1 \cdots q_n - 1$ is necessarily divisible by a prime qof the form 4k + 3 which is not already in that set. The argument for primes of the form 3k + 2 is identical (and was also seen again in class.)

4. Let d be a prime. Show that any prime p which does not divide d but divides the integer

$$n^{d-1} + n^{d-2} + \dots + 1$$

 $(n \in \mathbf{Z})$ is necessarily of the form kd + 1. Use this to show that there are infinitely many primes of the form kd + 1. (Hint: assume otherwise, and study the asymptotics of $\#\{n^{d-1} + \cdots + n + 1, n \leq x^{1/d}\}$ as $x \longrightarrow \infty$ in two different ways to derive a contradiction.)

Solution. If p divides $n^{d-1} + \cdots + 1$, then it also divides $(n-1)(n^{d-1} + \cdots + 1) =$

 $n^{d} - 1$. Hence the residue class of n modulo p is an element of order dividing d, hence either n = 1 or n is of order (exactly) d. If $n \equiv 1 \pmod{p}$, then p would have to divide $n^{d-1} + \cdots + 1 \equiv 1 + \cdots + 1 = d \pmod{p}$, which we have assumed is not the case. Hence the class of n is of order d in $(\mathbf{Z}/p\mathbf{Z})^{\times}$. In particular, the group $(\mathbf{Z}/p\mathbf{Z})^{\times}$ has cardinality divisible by d, and therefore $p \equiv 1 \pmod{d}$.

To show that there are infinitely many primes of the form kd+1, suppose on the contrary that there are only finitely many such primes, p_1, \ldots, p_r , and consider the set S(X, d) of integers $\leq X$ of the form $n^{d-1} + \cdots + 1$. On the one hand, the cardinality of S(X, d) grows asymptotically like $cX^{1/(d-1)}$ for some constant c as X gets large (as is true for the set of values of any polynomial of degree d-1). On the other hand, every integer in S(X, d) is of the form $p_1^{e_1} \cdots p_r^{e_r}$ where the exponents e_j are bounded by $\log_{p_j}(X) = c_j \log(X)$. Hence there are at most $c' \log(X)^r$ such integers for some other constant c'. This is a contradiction since, for all $\alpha > 0$ (however small) and for all M > 0(however large), we always have

$$\lim_{X \to \infty} (X^{\alpha} - (\log(X))^M) = \infty.$$

Note that a similar idea was already used in a previous assignment...

The following exercises are taken from the textbook by Levesque.

5. (Section 6.2, exercise 7 from Levesque.) Show that, for all s > 1,

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \cdot \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = 1,$$

where $\mu(n)$ is the Möbius function defined by $\mu(n) = (-1)^t$ if n is a product of t distinct primes, and $\mu(n) = 0$ if t is divisible by the square of some prime.

Solution. This follows from the factorisation formula for $\zeta(s)$ after noting that

$$\zeta(s)^{-1} = \prod_{p} (1 - p^{-s}) = \sum_{n} \mu(n) n^{-s}.$$

6. Show that if f(x) is a continuous, monotonically decreasing function which

tends to 0 as $x \longrightarrow \infty$, and if the series $\sum_{n=1}^{\infty} f(n)$ diverges, then the function

$$F(n) := \sum_{j=1}^{n} f(j)$$

satisfies

$$F(n) \sim \int_{1}^{n} f(x) dx.$$

Proof. This follows from the trick we have already used a number of times in class, in which we approximate $\int_1^n f(x)dx$ both from above and below by a Riemann sum:

$$F(n) - f(1) = \sum_{j=2}^{n} f(j) \le \int_{1}^{n} f(x) dx \le \sum_{j=1}^{n-1} f(j) \le F(n).$$

It follows from this that

$$|F(n) - \int_{1}^{n} f(x)dx| \le f(1),$$

and therefore the ratio $\int_{1}^{n} f(x) dx / F(n)$ tends to 1 as $n \longrightarrow \infty$.

7. (Section 6.4, exercise 9 from Levesque.)

Let $\log_k x$ be the k-th iterate of the logarithm function, defined recursively by

$$\log_1 x = \log x, \qquad \log_k x = \log \log_{k-1} x.$$

Is there a continuous increasing function f(x) such that $\lim_{x\to\infty} f(x) = \infty$, yet $f(x) = o(\log_k x)$ for all $k \ge 1$? If so, exhibit such a function.

Solution: Let

 $h(m) = e^{e^{e^{\cdots}}}$ (*m* times),

and let

f(x) = least m such that h(m) > x.

To see that f(x) grows more slowly than $\log_k(x)$, write

$$x = e^{e^{e^{\dots y}}}$$
 (k times),

which is always possible once x is sufficiently large. Then it is not hard to see that

$$\log_k(x) = y, \qquad f(x) = f(y) + k,$$

and hence the result follows since clearly f(y)/y tends to 0.

Math 377 only:

8. Section 6.8., exercise 4 in Levesque.

Solution: The method of proof is very similar to what was worked out in class for the case q = 5. (The fact that all Dirichlet characters *mod* 8 have values in **Z** makes it easier to work with products throughout rather than taking the logarithm of the Dirichlet *L*-series as we did in class, but otherwise the ideas are the same.)