
189-346/377B: Number Theory

Corrections to assignment 4

1. Solve the equation
6x = 11 (mod 512)

by using the power series expansion for the logarithm, as seen in class. Some
of this calculation is a bit tedious so you may want to do it on the computer.
Check that the value of x you obtain is the correct one by computing 6x

(mod 512) directly.

Solution: This is an exercise in calculating p-adic logarithms (for p = 5).
Indeed, by what we saw in class we know that

x =
log(1 + 10)

log(1 + 5)
=

10 − 102/2 + 103/3 − · · ·+ 1011/11 − · · ·
5 − 52/2 + 53/3 − · · · + 511/11 − · · · .

Since we are only interested in the value of x modulo 511, we can neglect
all terms in numerator and denominator that involve 12th powers or more –
but not 11th powers, because the denominator in the ratio of logarithms is
divisible by 5, exactly once! This is the main subtlety to keep into acount. If
you calculate numerators and denominators modulo 511 seperately, and then
perform the division, you will get a wrong answer.

With this caveat, the following Pari dialogue shows that x = 29342597 is
the right answer.

? num = sum(j=1,11,(-1)ˆ(j+1)*10ˆj/j)
%1 = 5676224330780/693
? den = sum(j=1,11,(-1)ˆ(j+1)*5ˆj/j)
%2 = 20177960045/5544
? x = num/den
%3 = 9081958929248/4035592009
? x = x % (5ˆ11)
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%4 = 29342597
? Mod(6,5ˆ12)ˆx
%5 = Mod(11, 244140625)

2. Show that 10101j

converges to a square root of −1 in the field Q101 of
101-adic numbers.

Solution: This is very similar to a problem that was already given in last
week’s assignment.

3. Show that, if ζ = e(2πi)/5 = cos 2π/5 + i sin 2π/5 is the primitive 5th root

of unity, and if ω = −1+
√

5
2

is the golden ratio, then

ζ + ζ−1 = ω.

Use this to show that, if p is an odd prime, the Legendre symbol ( 5
p
) is equal

to 1 if and only p ≡ ±1 (mod 5).

Solution. For the first part, if we set x = ζ + ζ−1, then we have

x2 = ζ2 + ζ−2 + 2, x2 + x = ζ + ζ−1 + ζ2 + ζ−2 + 2 = 1,

where the last equality follows from the fact that the sum of the four distinct
primitive 5th roots of unity is equal to = 1. Hence ζ + ζ−1 satisfies the
quadratic equation x2 + x − 1 = 0, and is > 1, therefore it is equal to ω.

For the second part of the problem, we can proceed by calculating ωp

(mod p) in two different ways, exactly as was done in class for the case of

ω =
√

2+
√
−2

2
= ζ8.

4. Let p be a prime which is congruent to 3 modulo 4. Show that the square
root of a mod p, if it exists, is equal to a

p+1

4 . Conclude that there is a
polynomial time algorithm (in log(p)) for calculating square roots mod p.

Solution: This follows from the fact that

(a
p+1

4 )2 = a
p+1

2 = a
p−1

2 a =

(

a

p

)

a.
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The polynomial time algorithm for calculating the square root of a mod p
proceeds by calculating a

p+1

4 by the method of successive squaring which
requires roughly log p multiplications in Z/pZ.

5. Evaluate the Legendre symbols ( 503
773

) and (501
773

) using the law of quadratic
reciprocity.

Solution. A direct calculation shows that

(
503

773
) = (

773

503
) = (

270

503
) = (

30

503
) = (

2

503
)(

3

503
)(

5

503
)

= 1 ×−(
503

3
) × (

503

5
) = 1 × 1 × (−1) = −1.

The calculation for ( 501
773

) is similar.

6. Decide (by hand, without a computer!) which of the following congruences
have a solution:

a) x2 ≡ 2455 (mod 4993);
b) 1709x2 ≡ 2455 (mod 4993);
c) x2 ≡ 245 (mod 27496);
d) x2 ≡ 5473 (mod 27496);
Try your hand at solving the congruence equations (either by hand, or,

if you get tired, by computer.)

Solution. The relevant Legendre or Jacobi symbols can be calculated by
repeated applications of quadratic reciprocity, as in the previous exercise.

7. If n is an integer that is prime to 3, show that the all the odd primes
dividing n2 +3 are congruent to 1 modulo 3. Use this to show that there are
infinitely many primes of the form 3k + 1.

Solution. If an odd prime p divides x2 + 3, then x is a square root of −3
modulo p, and hence p ≡ 1 (mod 3) by quadratic reciprocity. To conclude
that there are infinitely primes of this form, one can argue by contradiction,
and assume that there are only k such primes, p1, . . . , pk. Then it would
follow that every integer of the form n2 + 3 is of the form pe1

1 · · · pek

k . But
the number of such integers that are less than X is bounded by a constant
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multiple of (log X)k, since each exponent ej must be less than log(X)/ log(pj).
On the other hand, the number of integers less than X that are of the form

n2 + 3 is roughly
√

X. This is a contradiction, since
√

(X) grows faster than

any power of log(X).

For Math 377 students only.

8. What can you say about exercise 4 when p ≡ 1 (mod 4)?

Solution. This was an open-ended question, whose main purpose was to
make you realise that the method used in exercise 4 breaks down in this
case. The most natural generalisation, which works when p = 5 (mod 8),

is to consider the expression a
p+3

8 , whose square is a
p+3

4 = a
p−1

4 a. This
produces a square root of a when a is a fourth power modulo p, and a square
root of −a when a is a square but not a fourth power. So this leads to a
polynomial time algorithm for extracting square roots mod p for certain a,
but a completely general algorithm for extracting square roots in polynomial
time, in a completely deterministic way, is an interesting problem that has
led to a lot of research in number theory. For a brief summary of the main
facts, and some references, see
http://en.wikipedia.org/wiki/Quadratic residue

#Complexity of finding square roots

9. Let a be an element of (Z/pZ)×, and view the function x 7→ ax as a
permutation on the p− 1 elements in (Z/pZ)×. Show that this permutation
is even if (a

p
) = 1, and is odd if (a

p
) = −1. (This statement is known as

Zolotarev’s lemma.)

Solution. This problem is easier than I thought when I posed it (provided
you are comfortable with the notion of the sign of a permutation, which you
learn in a first course in group theory.) Indeed, the permutation σ attached
to a primitive root g is just a single cycle of length p − 1, and hence is an
odd permutation since p−1 is even. Now, if a = ge is any element of Z/pZ×,
its associated permutation is σe, which is even if e is even, and odd if e is
odd. But the former holds if a is a quadratic residue, and the latter, if a is
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a quadratic non-residue.

10. Can Hensel’s lemma, which is used to solve equations of the form f(x) = 0
over the p-adic numbers when f is a polynomial, be extended to the setting
where f is a power series with rational coefficients? Discuss. Use what you
have learned to solve the equation

x + log(x) = 4 (mod 310)

numerically (on the computer). (Here log(x) refers to the 3-adic logarithm,
which is given on 1 + 3Z by the formula

log(1 + t) =
∞
∑

j=1

(−1)j+1tj/j.)

Solution. Newton iteration works just as well with analytic functions (given
locally by a power series expansion) as it does for polynomials. The proof
of Hensel’s lemma given in class allowing the solution of f(x) = 0 extends
directly to the setting where f(x) is a power series rather than a polynomial,
the only difference being that the expansion of f(x) about the root is an
infinite (but still onvergent!) sum rather than a finite one.

To solve the equation

f(x) := x + log(x) − 4 = 0 (mod 310),

we observe first that

f(1) = −3 ≡ 0 (mod 3), f ′(1) = 1 + 1 = 2 6= 0 (mod 3),

hence we are in a good position to apply Hensel’s lemma, starting with the
“initial approximation” r0 = 1, and making the recursive substitution

rn+1 = rn − rn + log(rn) − 4

1 + 1/rn
.

The following dialogue in Pari illustrates how this is done in practice:

? r = 1+ O(3ˆ10)
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%1 = 1 + O(3ˆ10)
? for(j=1,4, r = r -(r+log(r)-4)/(1+1/r))
? r
%2 = 1 + 2*3 + 3ˆ2 + 3ˆ3 + 3ˆ5 + 2*3ˆ6 + 3ˆ9 + O(3ˆ10)
? r+log(r)
%3 = 1 + 3 + O(3ˆ10)

The pedagogical purpose of this exercise was to make you appreciate more
fully the analytic nature of p-adic numbers. The above PARI dialogue also
illustrates how p-adic numbers can be handled computationally. Note that
in the dialogue above, only four iterations were performed, to obtain the
solution modulo 310. Can you justify why this is enough? (Of course, any
larger number of iterations would have worked fine, as well.)

Note also that the way in which I have handled p-adic numbers in this
solution is more efficient than the way they were handled in exercise 1, where
I did not make use of the p-adic logarithm function that is built into PARI,
but programmed it myself. You might want to revisit the solution to exercise
1, using the more powerful commands in PARI that are illustrated in my
solution to exercise 10.

6


