
189-346/377B: Number Theory

Assignment 3

Corrections

1. Find the remainder in the division of 310000001 by 707, i.e., the unique
r ∈ Z such that

310000001 = 707q + r, 0 ≤ r ≤ 706.

Solution. Since 10000001 ≡ 5 (mod 6), it follows that

310000001 ≡ 35 ≡ 5 (mod 7),

while, by a similar argument

310000001 ≡ 31 ≡ 3 (mod 101).

Now, it follows from the Chinese remainder theorem that

310000001 ≡ 306 (mod 707).

2. Solve completely the following congruence equations. More precisely, given
the equation f(x) ≡ 0 (mod N), list all the solutions between 0 and N − 1.
(You may use a computer to help yourself with the intermediate calculations
if they get too lengthy, but you should justify the steps of the calculation.)

a) x2 + 1 ≡ 0 (mod 65).
b) x3 + x + 1 ≡ 0 (mod 115).

Solution. a) You can solve the equation modulo 5 and 13 seperately; each
of these equations has two distinct roots mod 5 and 13 respectively. Now
invoke the Chinese remainer theorem, to get a total of four possible roots
modulo 65.

b) There is a single root of this equation modulo 11, namely, 2. Now, to
find the root modulo 115, use Hensel’s Lemma.
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3. Let p be an odd prime, let a be an integer, and let d be an exponent which
is not divisible by p, for which

ad ≡ 1 (mod p).

Show that the sequence (apn

) is a Cauchy sequence in Qp which converges
p-adically to a root of the polynomial xd − 1, and moreover that all roots of
this polynomial are given in this way. Conclude that the number of distinct
roots of the polynomial xd − 1 in the field Qp of p-adic numbers is equal to
gcd(d, p − 1).

Soution. If M ≤ N are (large) integers, then the difference

apM

− apN

= apM

(1 − apN
−pM

) = apM

(1 − apM (pN−M
−1)) = apM

(1 − bpM

),

where b = apN−M
−1. But note that, since p− 1 divides pN−M − 1, the integer

b is necessarily congruent to 1 modulo p. By what we have seen in class,

bpM

≡ 1 (mod pM+1),

so that pM+1 divides 1 − bpM

, and therefore apM

− apN

. Therefore

|apM

− apN

|p ≤ p−M .

In particular, for any real ε > 0, it suffices to choose an integer B > 0 for
which p−B < ε to ensure that

|apM

− apN

|p ≤ ε, for all M, N > B.

It follows that the sequence apn

is a Cauchy sequence.
To see that this Cauchy sequence converges to a dth root of unity, note

that (apn

)d = cpn

with c = ad ≡ 1 (mod p). Therefore cpn

≡ 1 (mod pn+1)
and it follows that the sequence (apn

)d converges to 1 in the p-adic metric,
as was to be shown.

4. List all the primitive roots modulo p = 37 and modulo 25.

Solution. A direct calculation. Note that there are ϕ(ϕ(37)) = ϕ(36) = 12
primitive roots modulo 37, and ϕ(20) = 8 primitive roots modulo 25.
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5. Let g be the smallest positive integer that is a primitive root modulo 37.
Compute the value of g, and the mod 37 discrete logarithm logg(12).

Solution. This integer is g = 2, and the discrete log of 12 to the base g is 28
(mod 36).

6. Let p be an odd prime. Let j be an element of Z/pZ, and consider the
polynomials in Z/pZ[x], depending on a parameter j ∈ Z/pZ and defined by

fj = (x − j)
p−1

2 − 1, gj = (x − j)
p−1

2 + 1.

Show that
xp − x = (x − j)fj(x)gj(x).

Conclude that the roots of fj and gj are disjoint subsets Aj and Bj of Z/pZ
satisfying

Aj ∪ Bj = Z/pZ − {j}.

Give a simple description of Aj and Bj.

Solution. The key point is that the sets Aj (resp. Bj) of roots of fj (resp. gj)
are precisely the elements r of Z/pZ for which r − j is a non-zero quadratic
residue (resp. non-residue) modulo p. It follows that

{1, . . . , p − 1} = Aj ∪ Bj ∪ {j},

in which the union above is a disoint union. The identity

xp − x = (x − j)fj(x)gj(x)

follows directly from this after noting that the polynomials on both sides ave
the same p distinct roots and have the same leading coefficient of one.

7. Find the roots of the equation

f(x) = x3 − 432157053 ∗ x2 − 340972635592 ∗ x + 42461236607868

modulo the prime 982451653 by calculating the gcd of f(x) and x982451653 −x
with Pari.
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Hint. It is easy to launch the calculation in the wrong way and ask Pari to do
something impossibly long. You will know you started on the wrong foot if
your calculation takes more than 1 or 2 seconds. In that case it will probably
not end in a billion years, or you will get a stack overflow before that.

The following Pari commands may come in handy to avoid these potential
pitfalls.

• The command Mod(n, p) creates a PARI object which is the residue
class of n mod p. Arithmetic operations on this object will always be
performed mod p.

• The command Mod(f(x), g(x)) will create a PARI object which is the
residue class of the polynomial f(x), taken modulo the polynomial g(x).

• PARI is perfectly happy to work with expressions like

Mod(5, 7) ∗ x2 − Mod(4, 7)

which is how you would want to represent a polynomial with entries in
Z/7Z.

Solution. The unique root is 432157842, as shown by the following PARI
dialogue. (The computer output is in regular characters, and the input I’ve
typed in is in boldface).
? p = 982451653
%1 = 982451653
? f= x3 - Mod(432157053,p)*x2 - Mod(340972635592,p)*x

+ Mod(42461236607868,p)
%2 = x3 + Mod(550294600, 982451653)*x2 + Mod(920539652, 982451653)*x

+ Mod(658616861, 982451653)

? g= Mod(x,f)p-x
%3 = Mod(Mod(426137915, 982451653)*x2 + Mod(224349607, 982451653)*x

+ Mod(369846355, 982451653), x3 + Mod(550294600, 982451653)*x2 +

Mod(920539652, 982451653)*x + Mod(658616861, 982451653))

? gcd(f,g)
%4 = Mod(Mod(387231511, 982451653)*x + Mod(870854745, 982451653),

x3 + Mod(550294600, 982451653)*x2 + Mod(920539652, 982451653)*x +

Mod(658616861, 982451653))
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? r = - 870854745/ 387231511 % p
%5 = 432157842

? x=r
%6 = 432157842

? eval(f)
%7 = Mod(0, 982451653)

The following problems are optional for Math 346

8. In order to transmit its diplomatic cables, the US state department decides
to use the integer

n = 14123649035237187026276838358010713633075515397488286

5074356572388972394874625465333820363740152221,

a product of two fairly large primes of roughly equal size, as the public key
in its RSA cryptosystem. Julian Assange has just learned that one of the
prime factors of n is of the form 1 + k, where k is only divisible by primes
that are less than 50. Explain why this is good news for Wikileaks, and give
the prime factorisation of n.

Hint. You will need to use Pari for this, but the computer calculation that
you carry out should not be lengthy and requires no programming.

Note. This is of course a made-up example. In “real life”, the RSA standard
calls for a public key that is about 1024-bit, or roughly 300 decimal digits,
long. And it is also common practice to avoid using primes p for which p− 1
is divisible only by small primes!

Solution. The idea is that, if n = pq and p − 1 is divisible only by primes
< 50, and a is any integer, then, after letting M be the product of all p less
than 50, raised to a suitable large power ([logpn] will do, or you can just take
the power to be 400, which is overkill, but easier to program), we will have

b := aM ≡ 1 (mod p).
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Of course, this number is huge, but it is enough to compute it mod n. One
can then recover the prime p by calculating gcd(b − 1, n). This method of
factoring large integers is called the Pollard p−1 method. Its scope is severely
restricted by the fact that the integer n to be factored has to have a prime
divisor p for which p − 1 is only divisible by “small” primes. (A number
with this property is called a smooth number, or a nombre friable in the more
sugestive french terminology.)

Here is a sample PARI script that factors n by the Pollard approach.

? n = 1412364903523718702627683835801071363307551539748828650743565
72388972394874625465333820363740152221;

? a = Mod(2,n);
? P = primes(15)
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

? for(j=1,15, p = P[j]; a= a(p400))
? a
%2 = Mod(10382245446865264567580379861832535504091234264291656

301438254940510163309374605257565070518644400,

141236490352371870262768383580107136330755153974882865074

356572388972394874625465333820363740152221)

? A = component(a,2)
%3 = 10382245446865264567580379861832535504091234264291656

301438254940510163309374605257565070518644400

? p = gcd(A-1,n)
%4 = 393050634124102232869567034555427371542904833

? q = n/p
%5 = 359334085968622831041960188598043661065388726959079837

? isprime(p)
%6 = 1

? isprime(q)
%7 = 1

? n-p*q
%8 = 0

9. Using the notations of Problem 6, show that for any polynomial h(x) in
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Z/pZ[x],

gcd(h(x), fj(x)) =
∏

a∈Aj

h(a)=0

(x − a), gcd(h(x), gj(x)) =
∏

b∈Bj

h(b)=0

(x − b).

Assuming that h(x) has r distinct roots in Z/pZ, and following the heuristic
that (Aj, Bj) is, as j varies, a “random” partitioning of Z/pZ into disjoint
subsets of equal size, estimate the likelihood that both these factors of h(x)
are different from 1 when j is chosen at random.

Solution. Each of the sets Aj and Bj has size (p − 1)/2. If p is large, the
probability that any of the roots would be equal to j is negligible, and the
probability that all r roots would fall in Aj is roughly (1/2)r. Hence the
probability that al roots would lie in either Aj or Bj is (1/2)r−1, which is
always less than a half, as soon as r > 1. (If r = 1, of course, there is
nothing to do...) So one can hope to factor h(x) probabilistically by varying
j at random and computing gcd(h(x), fj(x). For any given j this might fail
to produce a non-trivial factorisation, but the probability of failure at each
trial is less than 50%, and hence the probability of failure after (say) 30
repeated trials would be very small indeed. Such a probabilistic approach,
while not completely satisfying in theory, works very well in practice and
a lot of number theoretic problems admit efficient probabilistic solutions of
this sort.

10. Use what you’ve learned in the previous problem to compute the square
root of 3 modulo the prime

p = 29927402397991286489627837734179186385188296382227

Note. Pari will allow you to do this with a built-in command. Don’t
cheat! In particular you should explain the steps of the calculation you’ve
carried out.
Solution. Here is a simple PARI script to extract the square root of 3 mod p
using probabilistic methods.

? p = 29927402397991286489627837734179186385188296382227;
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? X = Mod(x, x2-Mod(3,p));
? X((p−1)/2)-1
%3 = Mod(Mod(13285869736145025017620546586099806932382506128591,

29927402397991286489627837734179186385188296382227)*x - 1,

x2 + Mod(29927402397991286489627837734179186385188296382224,

29927402397991286489627837734179186385188296382227))

? a = 1/13285869736145025017620546586099806932382506128591
% p

%4 = 9930206810443788563233802024120234411959222003546

? a2 % p
%5 = 3

Note that, in this calculation, the first try, with the natural value of j = 0,
already worked. This was because 3 has a unique square root mod p that is
a quadratic residue modulo p. You might try to think about the primes for
which this happens. (And, this question will be pursued in assignment 4...)
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