
{2. Metaplectlc Groups and .Representations. 

In [21] Kubota constructs a non-trivlal two-fold covering group 

of GL2(g) over a totally imaginary number field. In this Section 

I shall describe the basic properties of such a group over an 

arbitrary number field and complete some details of Kubota's con- 

struction at the same time. I shall also recall Well's construction 

in a form suitable for our purposes. 

I start by discussing the local theory and first collect some 

elementary facts about topological group extensions. 

Let G denote a group and T a subgroup of the torus regarded 

as a trivial G-space. A tvp-cocyc.le (or multiplie.r, or factor set) 

on G is a map from Ox G to T satisfying 

(2.1) 

and 

~(glg2,g3~(gl, g2 ) = c(gl, g2g3)~(g2, g3) 

(2.2) ~(g,e) =~(e,g) = 1 

for all g'gl in G . in additlonl if G is locally compact, a 

will be called Borel if it is Borel measurable. 

Following Moore [28], let Z2(G,T) denote the group of Borel 

2-cocycles on G and let B2(G,T) denote its subgroup of "trivial" 

cocycles (cocycles of the form s(gl) s(g2)s(glg2 )-I with s a map 

from G to T). Then the quotient group H2(G,T) (the two- 

dimensional cohomology group of G with coefficients in T) 

represents equivalence classes of topological coverings groups of 

G by T which are central as group extensions. 

To see this, let ~ be a representative of the cohomology 

class ~ in H2(G,T). Form the Borel space GX T and define 

multiplication in GX T by 

(2.3) [gl'~;1][g2'~;2) = [glg2'~(gl 'g2)r  
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One can check that G• T is a standard Borel group and that the 

product of Haar measures on G and T is an invarlant measure 

for GX T. Thus by [25] G• T =~ admits a unique locally compact 

topology compatible with the given Borel structure. 

Note that the natural maps from T to ~ and ~ to G are 

continuous. (They are homomorphisms, and obviously Borel, hence 

they are automatically continuous.) The latter map, moreover, 

induces a homeomorphism of ~/T with G. Thus we have an exact 

sequence of locally compact groups 

i ~ T -~ ~-~ G-~ i . 

This sequence is central as a group extension and depends only on 

the equivalence class of e . Its natural Borel cross-sectlon is 

~: g ~ (g, I) 



2. I. Local T heor[. 

Let F denote a local field oT zero characteristic. If F 

is archimedean, F is ~q or C; if F is non-archimedean, F 

is a finite algebraic extension of the p-adic field Qp 

If F is non-archlmedean, let 0 denote the ring of integers 

of F, U its group of units, P its maximal prime ideal, and 

a generator of P . Let q = lwl-I denote the residual characteristic 

of F . 

The local metaplectlc group is defined by a two-cocycle on 

GL2(F) which involves the Hilbert or quadratic norm residue symbol 

of F . 
o 

The Hilbert sy~ibol (',') is a symmetric bilinear map from 

F xx F x to Z 2 which takes (x,y) to I iff x in F x Is a norm 

from F(J~). In particular, (x,y) is identically 1 if y is a 

square. Thus (',') is trivial on (FX) 2 • (FX) 2 for every F and 

trivial on F x• F x itself if F = ~ . 

Some properties of the Hilbert symbol which we shall repeatedly 

use throughout this paper are collected below. 

Proposition 2.1. (i) For each F, (',.) is continuous, 

(2.41 (a,bl = (~,-ab) = (a,(l-a)bi , 

and 

(2.5 (a,b) = (-ab,a+b) ; 

(ii) If q is odd, (u,v) is identically i on U x U; 

(ill) If q is even, and v in U is such that vml(4), 

then (u,v) is ident.lcally 1 on U . 

The proof of this Proposition can be gleaned from Section 63 

of O'meara [31] and Chapter 12 of Artin-Tate [i]. 

ab 
Now suppose s = [cd] 6 SL2(F) and set x(s) equal to c 

or d according if c is non-zero or not. 
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Theorem 2.2. The map ~: SL2(F) • SL2(F) ~ Z 2, defined by 

(2.6) ~(Sl, S2) :(X(Sl),X(S2))(-X(Sl)X(S2),X(SlS2) ) , 

is s Borel two-cocycle on SL2(F ). Moreover, this cocycle is 

cohomologically trivial if and only if F = @ . 

This Theorem is the main result of [20]. According to our 

preliminary remarks it determines an exact sequence of topological 

groups 

1 ~ z 2 ~ s~2(F) ~ SL2(F) ~ I 

where SL2(F) is realized as the group of pairs [s,~] with multl- 

plication given by (2.3). The topology for SL2(F), however, is 

not the product topology of SL2(F) and Z 2 unless F = @ . Indeed, 

suppose N is a neighborhood basis for the identity in SL2(F). 

Then a neighborhood basis for SL2(F) is provided by the sets (U, 1) 

where UeN and ~(U,U) is identically one. 

Proposition 2. 3 . 

extension of SL2(F) 

just constructed. 

If F/@, each non-trivial topological 

by Z 2 is isomorphic to the group SL2(F ) 

Proof. If F =~, each such extension is automatically a con- 

nected Lie group, hence isomorphic to "the" two-sheeted cover of 

SL2(F) obtained by factoring its universal cover by 2~. Suppose, 

on the other hand, that F is non-archlmedean. What has to be 

shown is that H2(SL2(F),Z2) =Z 2. For this we appeal to a result 

of C. Moore's. 

Let E F denote the (finite cyclic) group of roots of unity - 

in F . Consider the short exact sequence 

l~Z 2 ~ ~ / z  2~ l 

The corresponding long exact sequence of cohomology groups is 
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' ' ' ~ I ( s ~ ( F ) , ~ / Z 2 )  ~2(SL2(F) ,Z 2) ~H2(SS2(F),S ;) 

H2(SL2(F),EF/Z2) +H3(SL2(F),Z2) ~''' . 

Recall that HI(sL2(F),T ) =Hom(SL2(F),T). Moreover SL2(F) equals 

its commutator subgroup. Therefore Hl(sL2(F),EF/Z2) =[1] and 

H2(SL2(F),Z 2) imbeds as a subgroup of H2(SL2(F),EF). But from 

Theorem 10.3 of [29] it follows that H2(SL2(F),EF) =E F . Thus the 

deaired conclusion follows from the fact that H2(SL2(F),Z 2) is 

non-trlvial and each of its elements obviously has order at most 

two. [] 

Remark 2.4. As already remarked, a non-trlvial two-fold cover 

of SL2(F) for F a n on-archimedean field seems first to have 

been constructed by Well in [47]. His construction, which we shall 

recall in Subsection 2.3, is really an existence proof. His general 

theory leads first to an extension 

where T i s  the  t o r u s  and M p(2)  i s  a group o f  u n i t a r y  o p e r a t o r s  

on L2(F). Then it is shown that Mp(2) determines a non-trlvlal 

element of order two in H2(SL2(F),T). 

Remark 2. 5 . In [20] Kubota constructs n-fold covers of SL2(F ). 

His idea is to replace Hilbert's symbol in (2.6) by the n-th power 

norm residue symbol in F (assuming F contains the n-th roots 

of unity). In [29] Moore treats similar questions for a wider range 

of classical p-adic linear groups. 

Now we must extend ~ to 

a = as2(F) 
In fact we shall describe a two-fold cover of G which is a trivial 

non-central extension of SL2(F) by F x, i.e. a seml-direct product 
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of these groups. 

ab i 0 
If g = [cd] belongs to G, write g = [0 det(g) ]p(g) where 

[ a ~cSL2(F) (2.7) P(g) = c 

For gl'g2 in G, define 

(2.8) cz*(gl, g2) =ct(p(gl )det(g2) 

where 

I 0 -I I 0 
(2.9) sY = [0 y] S[o y] 

and 

, p ( g 2 ) )  v ( d e t ( g 2 ) , p ( g l ) )  

= f  1 i~ e/O 
(2. lO) v ( y ,  s) \ ( y , d )  o t h e r w i s e  

i f  s = [c ] '  Note t h a t  t h e  r e s t r i c t i o n  o f  c~ ~ to  SL2(F) X SL2(F) 

coincides with a �9 

Proposltion 2.6. If ycF x, and ~=[s,~] c~2(F) , put ~Y 

equal to {sY,~v(y,s)]. Then s-~s y is an automorphism of SL2(F), 

and the seml-direct product of SL2(F) and F x it determines is 

isomorphic to the covering group ~ of G determined by (2.10). 

Proof. It suffices to prove that 

~ ( s  l ,  s 2) = ~ ( s l Y ,  s2Y) v ( y ,  s 1) v ( y ,  s 2) v (y ,  s 1 s 2) 

and this is verified in Kubota [21] by direct computation. 

Remark 2.7. We shall refer to ~ as "the" metaplectic group 

even though there are several (cohomologically distinct) ways to 

extend ~ to G �9 We shall also realize it as the set of pairs 

[g,~] with g ~ G, ~ ~ Z 2, and multiplication described by 

[gl,~l][g2,~2] = {gl, g2,~*(gl, g2)~l~2] �9 

Now let B,A,N, and K denote the usual subgroups of G �9 

Thus 
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A= , ai~F , 

a 2 

a 2 

and K is the standard maximal compact subgroup of G (U(2) if 

F =~, 0(2) if F =R, and GL(2,0) otherwise). 

If H is an[ subgroup of G, H will denote its complete 

inverse image in ~ . Moreover, if ~ splits over H, then 

is the direct product of Z 2 and some subgroup H' of 

isomorphic to H . We shall denote H' by H even though H' 

need not be uniquely determined by H . 

In general, it is important to know whether or not ~ splits 

over the subgroups listed above. In particular, the Proposition 

below is useful in constructing the global metaplectic group. (Recall 

that if x belongs to a non-archimedean field its order is defined 

by the equation x=w~ u eU.) 

Proposition 2.8. Suppose F/C or ~ and N (as usual) 

is a positive integer divisible by h . Then ~ splits over the 

compact group 

= ab 
[[c d ] 6K: a ~l, c ~0(mod ~)] 

ab 
More precisely, for g = [c d ] e G, set 

a b f(c,d det(g)) if cd~0 and ord(c) is odd 

(2.11) s([ c d]) - 
L 1 otherwise 

Then for all gl, g 2 e K N , 

(2.12) ~*(gl, g 2) = S(gl)s(g2)s(glg2) -1 

Proof. Theorem e of [21] asserts that (2.12) is valid for all 

ab ab 
gl, g 2 in [[c d ] e K: [c d ] ~ 12(m~ N)]. But careful inspection 
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of Kubota's proof reveals that the conditions b--0(mod N) and 

d i l(mod N) are superfluous. Indeed Kubota's proof is computational 

and the crucial observation which makes it ~ork is the Lemma below. 

We include its proof since Kubota does not. 

ab d K N Then Lemma 2..9. Suppose k = [c ] c �9 

s(k) =f(c,d(det k)) if c%0 and c~U 
(2.13) \ 1 otherwise. 

Proof. Throughout this proof assume [ac d] ~b K N . In particular, 

dot(k) --ad-bc belongs to U . 

Suppose first that c~0 and c ~U . Then clearly cd~0 . 

Indeed d =0 implies that dot(k) =-bc, a contradiction since 

c~U implies -bc~U ~ Thus if order (c) is odd, 

s(k) = (c~d(det(k)) 

by definition. 

On the other hand, if ord(c) =2n (where n~0 since c~U) 

it remains to prove that 

(c,d(det k)) = 1 . 

But d(det k) =ad2-dbc, so kcK N implies that d(det k) -~l(mod 4). 

Thus 

(c,d(det(k))) = (w2nu, u ') = (u,u') =i 

by (iii) of Proposition 2.1. 

To complete the proof it suffices to verify that c ~0 and 

c~U if cd~0 and ord(c) is odd. This is obvious, however, 

since if c cU, then ord(c) =0, a contradiction, since ord(c) 

must be odd. F~ 

Note that when the residual characteristic of F is odd, 

~--K : GL(2,0F). 
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Definitien 9.10. If F =~ or C, let s(g) denote the 

function on G which is identically one. If F is non-archimedean, 

let s(g) be as in (9.11), and in general, let ~(gl, gg) denote 

the factor set ~*(gl,g2 ) s(gl) s(g2)s(glg 2) 

Obviously ~ determines a covering group of G isomorphic 

to ~ . But according to Proposition 2.8, its restriction 

KNX K N is identically one. Thus ~N is isomorphic to K~• Z 2 , 

and K N lifts as a subgroup of ~ via the map k~ {k,l]. For 

this reason we shall henceforth deal exclusively with ~ . 

Lemma 9. II. Suppose 

F ~i xi] 

gi = ~ B, 
o 

Then ~(gl, g2) = (~i,~2) 

Proof. Since 

i=1,2 

it follows that 

~i xi = 0 ~i xi 

0 h i ~i~DL 0 ~[l 

det(gi) P(gi) , 

- i  = ( ~ { I , ~ I ) ( - W I I w 2  , 

But using (2.4) together with the symmetry and billnearlty of Hllbert's 

symbol, this last expression is easily seen to equal (Wl,~2). 

Thus the Lemma follows from the identity 



20 

(2.1~) sIE~0 ~Jl = 1 

valid for all [ ~] r B. [] 

Corollary 2.12. Suppose Y = [~ 0]. Then V = {Y,~ is 

central in ~ iff y is a square in A. 

Proof. Suppose V' = {Y',C'] = [[~0' O,],C, is arbitrary in 

~. Then V V' = Y' Y iff {YY',~(Y,Y')CC] = [Y'Y,~(Y',Y)~'] iff 

/3(y,y') = #3(y',y) iff 

(2.z5) (~,~,) = (~,,x) 

4 

So suppose first that y is a square in A. Then both ~ and 

are squares in F x and (2.15) obtains by default (both sides equal 

one for all ~',k'). 

On the other hand, if ~, say, is not a square in F x, then 

by the non-triviality of Hilbert's symbol, 

(~,k') = -i for some h' ~ F x 

This means that (2.15) fails for ~' = I, say. Thus V will not 

I 0 
commute with {[0 ~,],I} and the proof is complete. [] 

Corollary 2.12'. The subgroup N of G lifts as a subgroup 

of ~. So does A 2 with 

A 2 = {y ~ A: y = 8 2 , 6 ~ A] �9 

Proof. Obvious. 

Corollary 2.13. Fix F J g. Then: 

(a) The center of ~ is 

z o (F x) 2] 
z ( g )  = { [ [ o  z ] ' g ] :  z ~ 

(b) Suppose 

G - '2  = [ { g , ( : ]  ~'G: det(g) c (FX) 2] 

Then the center of G -J2 is g = [[[~ 0 z ] , ( ~ ] :  z ~ F  x]  �9 
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Proof. Since g=[g,~] eZ(~) only if geZ(G), i.e. only 

o z o],r if g = [~ Z] with z eF x, it suffices to prove that {[0 z 

ab commutes with ever[ g' =([c ],~') eG iff z is a square in F x 

zO g, = Clearly [[~ 0],~] commutes with g' iff ~([0 z ]' ) 

~(g,, [~ o z]), But a simple computation shows that 

and 

a,(K  > = < z , c /  

0 
~*(g',[~ Z]) = (z,c)(z, det(g') 

So since 

s(g,)-ls([~ o z o z o z o g,), z])-Is(g'[o z])=s([ 0 z ] -Is(g' )-iS( [o z ] 

0 
{[~ z],(~} ~ Z(~) if and only if 

(2.16) (z, det(g')) = i 

for all ~' ~ G, 

[ [~ o z(~) z],~] c 
det(g') ~ (FX) 2, 

established. 

or, since Hilbert's symbol is non-trivial, 

iff z is a square. On the other hand, if 

(2.16) holds for all z, and hence (b) too is 

[] 



2.2. Global Theory. 

In this paragraph, F will denote an arbitrary number field, 

v a place of F, F v the completion of F at v, and ~ the 

adeles of F. Thus the G of Section 2.1 becomes G v = GL2(Fv), 

its maximal compact subgroup is K v, A is A v, etc. Our interest 

henceforth is in the global group 

G~ = GL 2 ( ~ )  

and its two fold cover %. 

If g and g' are arbitrary in G~, put ~v(g,g') = ~(gv, g~), 

if g = (gv) and g' = (g~). According to Proposition 2.8, 

~v(g,g' ) = i for almost every v. Thus it makes sense to define 

on %• by 

(2 .17)  ~ ( g , g ' )  = ~ ~ v ( g , g ' )  
v 

the product extending over all the primes of F. Since ~ is 

obviously a Borel factor set on GA it determines an extension 

of G~ which we shall denote by ~A and realize as the set of 

pairs [g,~], g e G~, ~ e Z 2, with group multiplication given by 

{ g l , ~ l ] { g 2 ,  C2] = [ g l g 2 , ~ ( g l ,  g2 )c l~2  ]. 

Important subgroups of G~ include 

N = H K N 
KO v<~ V 

and 

G F = GL 2 ( F ) .  

Proposition 2..!~.. The subgroup ~0 of 

of ~ via the map k 0 ~ [ko, l]- 

Proof. Proposition 2.8. 

Proposition 2...15. For each u e G F, let 

s~(u = ~ Sv(V) 
v 

G~ lifts to a subgroup 
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the product extending over all (finite) primes v of F. Then 

the map 

V ~ {V, s~(v) ] 

provides an isomorphism between G F and a subgroup of %" 

a b G F, the v-order of Proof. Note first that if Y = [c d ] e 

c is 0 for almost every v. Thus Sv(Y ) : i for almost every 

v and the product appearing in (2.18) is finite, i.e. sA(y ) is 

well-defined. To prove the Proposition it will suffice to prove that 

(2.18) s ~ ( y ) s A ( y ' ) / ~ ( y , V ' )  = s~(YV') 

for all y, y' in G F. 

So fix y and y' in G F. For almost all v, all the entries 

of y and y' will be units. Thus ~v(y,y') = i for almost all v. 

(By Proposition 2.1, Hilbert's symbol is trivial on units if v 

is finite and the residual characteristic of F v is odd.) On 

the other hand, for all v, 

~v(y,u = (rl, r2)v(rs,r~) v 

with r I, r 2, r 3, r 4 e P. Consequently, by the product formula 

for Hilbert's symbol (quadratic reciprocity for F), 

~ v ( y , y , )  = 1 . 
v 

That is, 

~(~,y' ) : s~(x)s~(~' ) s~(yx' ) 

as was to be shown. [] 

Because of this Proposition we can make sense now out of the 

homogeneous space 

where Z 0 denotes the subgroup of the center of G ,consisting of 
oo oo 

[~ 0]. (Cf. Corollaries 2.12' and 2.13. ) positive real matrices 

This space will be the focus of our attention in Section 3. 
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The Proposition below makes it possible to relate functions 

on ~ with classical forms defined in the upper half-plane. Before 

stating it we collect some facts concerning the quadratic power 

residue symbol. 

Suppose a,b ~F x with b relatively prime to a and 2 �9 

Let S denote the set of archimedean places of F. Suppose that 

Ordv( b ) 
(b) = I1 v 

v 

where (b) denotes the F-ideal generated by b and the product extends 

over all prime ideals of O F (the ring of integers of F). 0nly 

finitely many v will be such that Ordv(b) /0 and each such v will 

be relatively prime to 2 and a . 

The quadratic power residue symbol (a) is then 1 if x 2 =a 

has a solution in 0 v and -i otherwise. The quadratic power residue 

symbol (b) is 
ordv(b) 

v/S 

42 
Now consider the congruence subgroup 

(2,20) rl ( ~ b ~) = {[ d] { SL(2,0): a ~ d ~ 1, o ~ O(N)]. 

Clearly 

(2.21) r z ( N )  : a F n a ~ I<oN 

0 the product of the connected components of where G O ~ = ~ Gv, 
vES 

�9 ~ a b the archzmedean completions of Go Note that for any [c d ] in 

SL(2,0), d is relatively prime to c and 2o 

Proposition 2.16. If d is relatively prime to c and 2, let 

(2.22)  (-~)s : (-~) n (c,d) 
VE S V 

If y = [a b] belongs to FI(N) , put 

((~) if e/0 
( 2 . 2 3 )  x ( y )  = s 

otherwise. 
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Then 

(2 ,24)  

f o r  

tha t 

%(Y) = x(~) 

~ rl(~)- 

Proof. From the definition of everything in sight it follows 

s~(~) = n Sv(~) = n sv(Y) 
v v finite 

Thus the Proposition is obvious if 

of (2.24) are then one). 

Assume now that c / 0 and recall that 

relatively prime. By Lemma 2~ 

#c,d, det(y)) v c / 0 if 

Sv(Y) 

=t ~ 1 otherwise 

c = 0 (since both sides 

c and d are 

and c ~ U v 

Therefore 

sv(~) 
= I(~ aet Y)v if vfc 

otherwise 

and consequently 

s&(y) =v~c(C,d(dety ))v" 

By assumption, det(Y) is a unit for each v. Moreover, 

det(y) m I(4). Thus by Proposition 2.1, and the product fromula 

for Hilbert's symbol 

vINc(c'det Y)v = v~c (c'det(Y)) v~SH (c, dety) = I. 

~c ( = (c,d)v, which means it suffices Consequently v c,d(det y) v~c 

to prove 

(2.25) v~c(C'~)v = (~)s- 
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To simplify matters, assume F has class number one. 

(The Proposition is undoubtedly true without this assumption.) 

To prove (2.25) recall the following basic formulas ([14], 

Chapter 13): for each prime integer w in F dividing both 

c and 2, 

( 2 . 2 6 )  (~)  = ~ ( w , d ) v  
YES 

v]2 

(Supplementary Reciprocity Law)~ for each prime w which divides 

c but not 2, 

(2 .27)  (~) = (w,d)  w H (w ,d )v  
vcS 
v12 

(Power reciprocity formula). Note that if d is a v-unit for 

odd v dividing c, (w,d)v = i. Consequently (2.26) can be 

rewritten as 

= H (w,d)  v ~ (w,d)  v (2.28) (~) vlc ws 
vZ2 vl 2 ~ 

ordw(C) 
Now suppose c : ~ w By the multiplicativity 

wLc 
of the power residue symbol, (2.28) and (2.27) can be multiplied 

for each w]c to obtain 

= (v cIC,dlvl ( c , d l v .  
V~Soo 

Thus the proof is complete. (Units play no role since [ac ~] ~ FI(N) 

implies (u,d)v = i.) [] 

Two special cases of Proposition 2.16 will be of particular 

interest in SeCtion 3. The first assume F is a totally imaginary 

number field, in which case 

(2.29) X(Y) = I (~) i f  c ~ 0 

l 0 otherwise 
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since (c,d)~ is identically one. 

Corollary 2.17. (Cf. Kubota [19], cf. Theorem 6.1 of Bass- 

Mi!nor-Serre [2]). If F is totally imaginary, X(u defines a 

Character of FI(N ), i.e. X(u165 : X(YI)X(Y2) for all u165 

Proof. Since F is totally imaginary, ~ is identically 

G0K N one on ~ 0 in G~. So suppose u and Y2 are arbitrary in 

FI(N ). Since YI and u belong to GF, 

s~(~l~ 2) : ~(yl,u165 

(by (2.18)). But ~A(yI,u = i. Thus the Corollary is immediate 

from Proposition 2.16. [] 

The existence of such a character (with the assumption that 

F is totally imaginary) provides a starting point for Kubota's 

recent investiations ([21] through [23]). Its relation to the 

congruence subgroup problem is discussed in [2]. 

The second example I have in mind assumes F = Q. In this case, 

if c 0, c>0 or d>0 

X(') = I-(i~ if c f 0' c ( 0 and d ( 0 i f  c = 0. 

Now X no longer defines a character of FI(N) (~ is not a 

trivial extension of G ). However X(Y) is still a "multiplier 

system" for ~I(N). More precisely, if u = [a ~], let J*(y,z) = 
C 

(ez+d) I/2. Here w I/2 is chosen so that -~/2 < arg(w I/2) ~ ~/2. 

Then IX(Y)1 : I and 

X(Ylu 
(2.31) ~I~l)~(Y2) 

J~ (u J~(u z) 
j* (~1u , z) 

for all y ~FI(N). I.e., X(~) is a multiplier system for FI(N) 

of dlmension 1/2. 



2.3. Well's Metaplectic Representation. 

In this Section I want to sketch Well's general theory of the 

metaplectic representation and reformulate parts of it in a form 

suitable for the construction of automorphic forms on the metaplectic 

group. 

Roughly speaking, to each abstract symplectic group, one 

associates a projective representation (Weil's metaplectic represen- 

tation). This representation operates in L 2 of the group and its 

associated multiplier is of order two. Thus Well's representationre- 

produces a two fold covering group which repreduces ST2(F) when the 

underlying group is SL(2). 

We begin by recalling some basic properties of projective 

representations and the group extensions they determine. 

If H is a Hilbert space, the torus imbeds in the obvious way 

as a central subgroup of U(H) equipped with the strong operator 

topology. A projective (unitary) representation of G in H is 

then a continuous homomorphism ~* from G to U(H)/T �9 

Our interest will be in the cocycle (or multiplier) represen- 

tations of G canonically associated to such projective representations 

~*. These are obtained by choosing a Borel cross-section f of 

U(H)/T in U(H) and introducing the map m =fo~*. If f(T) = i, 

this map from G to U(H) must automatically be Borel and satisfy 

(2.32) 

and 

(2.33) 

for all gl, g2 c G. 

r e) ::I 

~(gl)~ g2 ) = ~(gl, g2)~(gl, g2) 

Here ~ is a Borel function from G • G to 

T which (by the associative law in G ) must be a two-cocycle 

on G with values in T . 

Note that ~ above obviously depends on the choice of 

cross-section f �9 However, if f' is another such cross-section, 
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the cocycle it determines will be cohomologous to a . Thus each 

projective representation uniquely determines an element of H2(G,T). 

Any Borel map from G to U(H) satisfying (2.32) and (2.33) 

is called a multiplier representation with multiplier a (o~ 

simply, an a-representation) and all such representation arise from 

projective representations as above. More precisely, if ~ is 

any a-representation, set ~* = po~, where p is the natural 

projection from U(H) to U(H)/T . Then ~ : f~*, and 

lles in the cohomology class determined by ~* �9 In this sense, 

each projective representation is essentially a family of multiplier 

representations with cohomologous multipliers. 

Throughout this paper we shall want to distinguish between 

representations of the metapletic group which factor through Z 2 

and those that do not. Moreover, we shall often want to confuse 

those that don't with cocycle representations of GL(2). 

In general, if ~ is an extension of the locally compact 

group G by some subgroup T of the torus we shall call 

~enuine if ~(t) = tol for all t e T ~ G �9 For the sake of 

exposition we assume below that multiplication in ~ is determined 

by some fixed cocycle a . 

Proposition 2.18. Let g : G~ denote the (Borel) cross- 

section g(g) = (g,l) and suppose ~ is a genuine 

representation of ~. Then: 

(a) The map ~og from G toU(H) is an a-representation 

of G; 

(b) The correspondence ~ ~ ~og is a bijection between 

the collection of genuine representations of ~ and ~-representa- 

tions of G; 

(c) This correspondence preserves unitary equivalence and 

direct sums. 

Proof. Part (a) follows immediately from the fact that 
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g(glg2 ) = e(gl, g2)t(gl)g(g2). To prove (b), suppose ~' is an 

e-representation of G in H and define 

~(t~(g)) = t~,(g). 

Then ~ is a Borel homomorphism of ~ into U(H), whence 

continuous, and obviously "genuine". The rest of the proposition 

follows from the fact that an operator A intertwines the 

e-representations ~i and ~ if and only if it intertwines the 

corresponding ordinary representations ~I and ~2" 

We shall now describe Weil's construction in earnest. 

The symplectic groups of Weil's general theory are attached to 

locally compact abe!ian groups G so the notation <x,x*> will 

denote the value of the character x* in G* (the dual group to G) 

at x e G. Since Weil's theory is essentially empty unless G is 

isomorphic to G* we shall assume throughout that this is the case. 

Example 2.19. Let denote a local field of characteristic zero 

and V a finite-dimensional vector space defined over F. Fix q to be a 

non-degenerate quadratic form on V and T the canonical non-trivial 

additive character of F described in [46]. The identity 

<X,Y> = T(q(X,Y)), (X,Y c V) 

where 

q(X,Y) = q(X+Y)-q(X)-q(Y), 

establishes a self-duality for the additive group of V 

equipped with its obvious topology. Thus Well's theory will be 

applicable in particular to G = V together with (q,T). This 

example in fact will suffice for the applications we have in mind. 

For each w = (u,u*) ~n Gx G* let U'(w) denote 

the unitary operator in L2(G) defin@d by 

u'(w)~(x) = <x,u*>~x~u). 
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Then U'(Wl)U'(w2) = F(Wl, W2)U'(Wl+W2) where 

 (Wl, W 2) = <ul,u > 

if W i = (Ui, U[). That is, U' is a multiplier representation 

of G • G* with multiplier I/F and the family of operators 

U(w,t) = tU'(w) (w e G~ G, t e T) 

comprises a group with composition law given by 

(2.38) (wl, t l ) (w2,  t 2) = (Wl+W2, F(Wl,W2)tlt2). 

In particular, the multiplier representation U' determines an 

extension of Gx G* by T which is cal~ed the Heisenberg group 

of G and denoted by A(G) o Yn case G = ~, A(G) is (the 

exponentiation of) the familiar Heisenberg group 

0 i x* 

0 0 i 

In general, T is the center of A(G); A(G) may be viewed 

either as G• G* • T equipped with the group law (2.34) or as the 

group of operators [U(w,t)] (in which case it is denoted by ](G)). 

The crucial fact is that U(w,t) is an irreducible representation; 

in fact, U(w,t) is the unique irreducible representation of A(G) 

which leaves T pointwise fixed. Therefore at least the first 

part of the result below is plausible. 

Theorem 2.20 (Segal). Let B0(G ) denote the group of 

automorphisms of A(G) leaving T pointwise fixed, 

the normalizer of ~ in L2(G), and let 

Bo(a) 
be the natural projection. Then PO is onto with kernel T. 

In other words, there exists a multiplier representation 
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of B0(G) in L2(G) whose range (choosing the constant in all 

possible ways) coincides with BO--~-- ~. Indeed if s c B0(G), the 

formula uS(w,t) = U((w,t))s) defines an irreducible unitary 

representation of A(G) which fixed A(G) pointwise and hence is 

equivalent to U. Therefore U((w,t)s) : r-l(s)U(w,t)r(s) for 

some unitary operator r(s) in L2(G) (uniquely determined up to 

a scalar in T) and 

s ~ r(s) 

determines a multlp]!er representation of B0(G ) (the Well 

representation) satisfying P0(r(s)) : So 

This "abstract" Weil representation is relevant to SL(2) 

since B0(G) is the semi-direct product of (GX G*)* and an 

abstract symplectic group which reduces to SL2(F) when G = F. 

More precisely, s~nce s in B0(G ) fixes (l,t), it is 

completely determined by its restriction to G• G* • [i] where it is 

of the form (w,l) ~ (w~,f(w)). Thus on G• G* • T it is of the 

form (~,f) where 

(w,t)s = (w,t)(a,f) = (wa,f(w)t), 

a is an automorphism of G • G*, f~ G • G* ~ T is continuous, and 

F(Wl~,W2~) f(w1+w 2) 
(2.35) F(Wl,W21 : f(wl)f(w 7 

Conversely, each pair (o,f) satisfying (2.35) defines an 

automorphism of A(G) fixing T pointwise, so B0(G):[(~,f)] , 

with group law 

(~,f)(~,~,) : (~,,f") 

if f"(w) : f(w)f'(w~). 

Now let Sp(G) denote the abstract symplectic group of 

automorphlsms of G~ G* which leave invariant the bicharacter 
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F(Wl,%) <Xl, X~> 
F(~2,~ l) = ~  (~i = (xi'x~)) 

Using (2.35) one checks that if (a,f) = s e Bo(G) 

Our claim was that the exact sequence 

( 2 . 3 6 )  1 + (GX G*)* + B0(G) ~ Sp(G) + 1 

actually splits. 

To check this it is convenient to describe Sp(G) 

matrix form. Since each ~ e Aut(Gx G*) 

where 

write 

and define 

then a r Sp(G). 

in 

is of the form 

(x,x*) ~ (x,x~)(y ~) 

~:G ~ G, t3:G ~ G*, u  + G*, we s h a l l ,  f o l l o w i n g  W e l l ,  

o =  [ u  , 

~I = [_~ - ], 

where ~* denotes the appropriate map dual to ~. Then 

~ Aut(G• G*) is symplectic iff a~ I = I. 

a b on G • G* by Given [c d ] = a ~ Sp(G), define fq 

f~ (u, u~) = <u, 2 - 1 u ~ > < 2 - 1 u ~ y  6 ~, u~><u*y, u~> . 

Here we are assuming, as we do throughout, that x ~ 2x is an 

automorphism of G. Then f~ and a satisfy (2.35) and the map 

-, (q, f) 

is a monomorphism of sp(G) into B0(G ) which splits (2.36). 

In short, Theorem 2.20 produces an exact sequence 

(2 .37)  1 ~ T-~ BO--(-C7, B0(G) + 1 

and Bo(G ) contains a copy of Sp(G). 



Example 2.21. Suppose F is local and G = (V,q,T) is as 

in Example 2.19. Then SL2(F) can be imbedded homomorphically in 

Sp(G) by allowing each element of F to act on V via 

scalar multiplication. (Since ~* = a for each ~ e F, ~ = [a ~]eSL(2,F) c 

obviously satisfies a~ i = i; note that Sp(G) = SL2(F) if G = V 

but in all other cases properly contains it.) From this it follows that 

one can associate to each quadratic form (q~V) a natural projective 

representation of SL(F) in L2(V) which we shall call the Well 

representation attached to (q~V) and denote by rq. 

Before further analyzing this representation we need to adapt 

Weil'sgeneraltheorytothespecialcontext of Examples 2.19 and 2.21. 

Recall that V is a vector space over F and ~ is a non-trlvlal 

additive character of F (fixed once and for all). If X* belongs 

to the linear dual V* we shall denote its value at X in V 

by [X,X*]. The natural isomorphism between V and V* is then 

[X,Y] = q(X,Y). 

Using [.,.] in place of <-,.> one can now "linearlze" 

the theory Just sketched, introducing: 

(a) the bilinear form B(Zl, Z2) = [XI,X~] in place of the 

blcharacter F(WI,W2); 

(b) the Heisenberg group A(V) in place of A(G); 

(c) the symplectic group Sp(V) in place of Sp(G); and 

(d) the pseudo-symplectic group Ps(V) in place of B0(G). 

A typical element of Ps(V) is of the form (~,f) where 

a e Aut(VXV*) belongs to Sp(V) and f:V• V* ~ F satisfies 

(2.38) f ( z l + z 2 ) - f ( Z l ) - f ( z  2) = B(Zl~,Z2~)-B(zl,  z2). 

This relation, of course, is the linearlization of (2.35): taking 

of both sides of it yields (2.35). Note that Ps(V) ~B0(G). In fact 

Ps(V) is the subgroup of B0(G) consisting of pairs (o,f) with 

f quadratic; cf. (2.39) below. 

Note now that (2.38) associates to each o in Sp(V) one 

and only one quadratic form on VxV*. ~We are assuming F 
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has characteristic zero, in particular, characteristic not equal 

to two.) Therefore the homomorphism 

(a,f) § f 

is an isomorphism between Ps(V) and Sp(V) 

Since the same map from B0(G) to Sp(G) has kernel 

isomorphic to (G• the analogy between the exponentiated 

and unexponentiated ~heories breaks down here. However, the map 

(2.39) (~,f) ~ > (~,~~ 

does imbed Ps(V) homomorphically in Bo(G) so we can still 

obtain an extension of Ps(V) by pulling back (2.37) through ~: 

1 > T > Mp(V) ~ > Sp(V) > 1 

I 

The group 

Mp(v) ={(s,~) ~ Ps(V)x~): p0(~) =~(s)] 

is Well's general metaplectic group. It is a central extension 

of sp(v) by T . 

Weil's results concerning the non-triviality of Mp(V) include 

the following: 

(a) Mp(V) always reduces to an extension of Sp(V) by 

Z2, i.e. the cohomology class it determines in H2(G,T) is of 

order 2 ; 

(b) the extension Mp(V) is in general non-trivial; in 

particular, if F~@, and V is one-dimensional, Mp(V) is always 

a non-trivial cover of Sp(V) by Z 2 . 

These results yield a (topological) central extension 

(2.4o) l~ z 2 ~%7(v) ~ sp(v) + i 
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which by Proposition 2.3 must coincide with 

1 ~ Z 2 ~ ~r2(F ) ~ S~(F) ~ 1 

when V=F. I.e., Well's metaplectic group generalizes the meta- 

plectic cover of SL2(F ) constructed in 2.2. 

Although Well's construction does not immediately yield an 

explicit factor set for S-L2(F) it does a priori realize this group 

as a group of operators. In fact, it provides a host of representations 

for this group. These correspond to quadratic forms over F and in 

explicit terms are realized as follows. 

Fix a Haar measure dTy on F such that the Fourier transform 

~(x)  = ~ f ( y ) ~ ( 2 x y ) d  y 

s a t i s f i e s  ( f )  (x )  = f ( - x ) .  R e c a l l  t h a t  T i s  the c a n o n i c a l  c h a r a c t e r  

of F whose conductor is O F . Given (q,V), fix an orthogonal 

basis XI,...,X n of V such that if X :~xiXi, then q(X) =q(xl,...,Xn) 

= ~i x , with ~i=5 q(Xi'Xi)" Let T i denote the character 

Ti(Y) = T(giY) of F, i = l,...,n, and let diY denote the 

corresponding Haar measure on F, normalized as above. 

If F is non-archimedean~ the limit 

Y(Ti) = me~lim ~pm~i(y2)diY 

is known to exist (by Well [AT] it is an eighth root of unity). 

Consequently the invariant 

v ( q , ~ )  = n ~ ( ~ i  ) 
i = l  

is well-defined. If F=R, and ~i(x) = exp(~ r set y(~i ) 

equal to exp(�88 sgn(%i) ) and define Y(q,T) as above. Finally, 

if F =C, set Y(q,T) identically equal to i . The Fourier transform 

on L2(V) is defined to be 
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$(X) = ~ %(Y)T(q(X,Y))dY 
V 

n 

where dY= Z diY �9 
i=l 

Theorem 2.22. For each t eF x let T t denote the character 

of F defined by Tt(x) = ~(tx) and denote y(q,r ) by y(q,t). 

Suppose we use (q,V,T) to imbed SL2(F) in Sp(V) (and B0(V)). 

Then a cross-section of S-p(V) over SL2(F) (c.f. (2.40)) is 

provided by the maps 

(2 .4 l )  

( 2 . 4 2 )  

(~ e L2(V)). More precisely, for each t eF x, 

to a multiplier representation of SL2(F) in 

cocyele is of order two. 

1 b r (  1 b )~ (X )  = ( X ) ) ~ ( X )  [0 1 ] + [0  1 ] T t ( b q  

0 -i r( 0 -i [1  0 ] ~ i 1  0 ] ) ~ ( x )  = ~ ( q ' t ) - l ~ ( - X )  

these maps extend 

L2(V) whose associated 

Remark 2.23. In (2.42) the Fourier transform is taken with 

respect to T t and Haar measure dtY = Itln/2dy. Thus 

A 
(X) = ~ 9(Y)~t(q(X,Y))Itln/2dy �9 

v 

Proof of Theorem 2.22. Without loss of generality we assume 
n 

t :I. Since dY: H d.Y it is easy to check that the operators 
t:l ~ 

in question are tensor products of the operators in L2(F) 

corresponding to ~i' namely 

r([ol ~] ) f ( •  = ~i(b~2)f~(xl, 

and 

-I r([ ~ O]If(x) =~(~)-l?(-x) , 

i = l,...,n. Thus the Theorem is reduced to the case V:F, 

q(x) =x 2, precisely Theorem I.A.I of Sha!ika [35]. 

We note that SL2(F) is generated by elements of the form 
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I b 0 -I 
[0 1 ] and [I 0 ] subject to certain relations. Thus one could 

follow Shalika directly and prove Theorem 2.22 by checking that these 

i b 0 -I 
relations are preserved by the operators r([0 1 ]) and r([l 0 ])" 

In any case, the resulting multiplier representation of SL2(F) 

will be denoted r and called "the" Well representation attached q 

to the quadratic form q. (This is an explicit realization of the 

of Example 2.21). 

Corollary 2.24. r is ordinary if and only if V is even 
q 

dimensional. 

We conclude this Section with some remarks. Although the group 

of operators B0(G) is irreducible (it contains T(G)), the 

representations rq are never irreducible. In fact, their 

decomposition is now known to be of great importance for the theory 

of automorphic forms and group representations. 

For the case when q is the norm form of a quadratic field, 

see [35], [45], [36], and [18]; for the case when q is the norm 

form of a division algebra in four variables see [37] and [18]. As 

already remarked in the Section I, no such complete results have 

yet been obtained when q is a quadratic form in an odd number of 

variables. This is because until recently no one seriously attacked 

the representation theory of the two-fold covering groups of SL2(F). 

In these Notes we shall describe how a We~l representation in 

one and three variables decomposes and how its decomposition relates 

automorphic forms on GL(1) and GL(2) to automorphic forms on 

the metaplectic group. The general philosophy is explained in 

Subsection 2.4. 



2.4. A philosophy for Well's representation. 

The purpose of this Subsection is to describe a simple principle 

which (though unproven) underlies most of the results of these Notes. 

Roughly speaking, the idea is that quadratic forms index I-i 

correspondences between automorphic forms on the metaplectic group 

and automorphic forms on the orthogonal group. 

Let F denote a local or global field of characteristic zero, 

(q,V) a quadratic space over F, and r the corresponding q 

representation of SL2(F ). Let H denote the orthogonal group 

of q. This group acts on L2(V) through its natural action on 

V. The resulting representation of H in L2(V) may be assumed 

to be unitary and we denote it by A(h). 

Now fix F to be local. From Theorem 2.22 it follows that 

for h c H and ~ ~ S-L2(F) the operator A(h) commutes with 

rq(~). In fact it seems plausible that rq and A generate 

each others commuting algebras. Suppose for the moment that this 

is so. Then the primary constituents of r correspond i-I to q 

pr~ary constituents of A. In particular, the commuting diagram 

L2 (V) 

SL 2 H 

leads to a correspondence between irreducible representations of 

H which occur in A and irreducible representations of SL 2 

which occur in rq. Following R. Howe, we call this correspondence 

D for "duality". Globally, D should pair together automorphic 

forms on H which occur in A with automorphic forms on SL 2 

which occur in rq. This is the correspondence alluded to above. 

Since the existence of this correspondence D seems to 

rest on the hypothesis that r and A generate each others q 

commuting algebras, some further remarks are in order. The precise 
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formulation of this hypothesis, in the greater generality of "dual 

reductive pairs", was communicated to me by Howe; as such, it is 

but one facet of his inspiring theory of "oscillator representations" 

for the metaplectic group (manuscript in preparation). In the 

context of SL 2, at least over the reals, this fact had also been 

suspected by S. Rallis and G. Schiffmann (cf. [52]). On the other 

hand, important special examples of D had already appeared in the 

literature. In [36] Shalika and Tanaka discovered that the Well 

representation attached to the norm form of a quadratic extension of 

F yielded a correspondence between forms on SL(2) and S0(2). This 

seems to have been the first published example of D. (Actually the 

correspondence of Shalika-Tanaka was not i-i since they dealt with 

S0(2) instead of 0(2).) For quadratic forms given by the norm forms 

of quaternion algebras over F the resulting corresponding between 

automorphic forms on the quaternion algebra and GL(2) was developed 

by Jacquet-Langlands ([18],Chapter III) following earlier work of 

Shimizu. In both cases, the fact that r and A generate each others q 

commuting algebras was not established apriori; rather it appeared as 

a consequence of the complete decomposition of rq. 

One purpose of these Notes is to describe the duality correspon- 

dences belonging to two forms in an odd number of variables, namely 
2 2--T 

gl(x) = x 2, and q3(xl, x2,x3) =Xl-Xl-X 3. The inspiration for our 

discussion derives directly from general ideas of Howe's, an initial 

suggestion of Langland's, and earlier works of Kubota [ ], Shintani 

[ ], and Niwa [ ]. Our results, specifally Cor.4.18, Cor.~.20, and 

T~eorem 6.3, lend further evidence to the general principle asserted 

above. However, as in earlier works, the fact that r and A generate q 
each others commuting algebras, appears as a consequence ofthe existence 
of D. 



discussed in [18]. 

2.5 Extending Well's representation to GL 2 

Well's construction of the metaplectic group produces a multiplier 

representation rq of SL 2 . There are several reasons now why 

it is advantageous to extend this construction to GL 2 . One is 

that Well's representation for SL 2 often depends not only on q 

but also on the choice of additive character ~ . By contrast, the 

natural analogue of rq for GL 2 depends only on q . 

In this Subsection I want to explain how Weil's original 

representation depends on T More precisely, i want to define 

an analogue of rq for GL 2 which is independent of ~ The case 

when q is the norm form of a quadratic or quaternionic space is 

I shall treat the cases 

and 

ql(x) : x 2 

2 x~- x~ q3.xl, x2,x3)( : x I - 

following a suggestion of Carrier's. 

Throughout this paragraph the following conventions will be in 

force: 

l) 

2) 

F will be a local field of characteristic zero; 

n=l or 3 according as q =ql or q3 ; 

r n will denote rql or rq3 ; 

a b 
4) [[a b],l] will be abbreviated by [c d ] " 

Note that the formulas for r n given in Theorem 2.22 depend on Tt " 

Therefore, for emphasis, I shall denote r n by rn(~ t) ; the 

notation r will be reserved for the representation eventually 
n 

introduced for GL 2 . 

Proposition 2.27. (Cf. [18] Lemma 1.%.). If a ~F x, and 

a 
= [s,(] ~ST2(F), define ~a to be is ,~ v(a,s)] (cf. Proposition 

2.6). Then 
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rn(Ta~(Y) = rn(T)(Fa) 

for all a cF x and ~ SL2(F ) . 

Proof. We may assume without loss of generality that n =I 

-- Ol i and ~ is a generator of SL2(F). Suppose first that s=w=[[ 0],I]. 

Then 

a n d  

0 a a o ~ { 1 , ( a , ~ ) ]  
2a : ~ a  : [ - a - l o ]  : [o a - z ]  

a o ] ) ~ ) ( x )  rn(T)(~a)~(X) = (a,a) V(qn, T ) ( rn (T ) ( [O  a- l 

Some tedious computations with Hilbert symbols also show that 

-I -I a 0 i a i a 
-- 1 a 

[0 a -1] = W[o I ] ~ [0 1 ] ~ [0 I ][l,(a,a)] 

and 

Consequently 

(2.~3) rn(~)([a.  O1])%(X) = (a,a) lal n/2 ~(qn'Ta)~ 
0 a- Y~qn 'Tj 

~(aX) 

r n ( T ) ( ~ a ) ~ ( X  ) = [al n/2 y(qn, Ta)~(ax). 

B u t  

rn(Ta)(~), as was to be shown. The analogous identity for 

i b ,I] is completely straightforward. ~ [ [0 l ] 

laln/2y(qn, Ta)~(aX) : rn(Ta~)%(X). Therefore rn(T)(~a ) : 

[] 

Corollary 2.28. The representation rn(Ta) is independent 

of a eF x iff rn(T ) extends to a representation of G-L2(F). 

proof. Suppose rn(Ta) is equivalent to rn(T ) for all 

a cF x. Then for each a eF x there is a unitary operator R a 

in L2(F n) such that 

rn(T a)(~) =R a rn(T)Ral 

for all s e SL2(F). Equivalently, by Proposition 2.27, 
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rn(T)(~a) =R a rn(Ta)R[l 

i 0 But G-L2(F) is the semi-direct product of ST2(F) and FX=[[ 0 a] ]. 

Thus rn(T) can be extended to a representation of G-L2(F) by 

i 0 , i) to be R defining rn(T ) ( [0 a ] a 

I 0 
Conversely, if r n extends to G-T2(F), rn(T)([O a],l) will 

intertwine rn(T ) with rn(~a) [] 

Example 2.29. If a ~ (FX) 2, say a = 2, then Ra~(X)=I~Ii/2h(~x) 

intertwines rl(Ta) and rl(T); in particular, rl(~) extends 

to a representation of 

G-L22(F) : Jig,c] ~ G-L2(F) : det(g) ~ (FX) 2] 

In general, rq(Ta) will not be equivalent to rq(T). Indeed 

rq(T) will extend only to a representation of the subgroup 

[[g,~] ~ G-~2(F) : det(g) fixes rq(~)] 

To get around this problem we "fatten up" rq(~) before attempting to 

extend it. This way there is more room in the representation space 

for intertwining operators to act. 

Definition 2.30. Let dt denote the restriction of additive 

Haar measure on F to F x . Let r denote the direct integral q 

of the representations rq(T t) with respect to dt . 

Note that the space of r is isomorphic to L2(F n• FX). q 

Moreover, the methods of Corollary 2.28 imply that r extends to q 

a representation of G---L2(F) satisfying 

(2.44) rq([ol 0a])r = laI-i/2~ta_l(X) 

Proposition 2.31 �9 The action of r q 

by the formulas 

in L2(F m• F x) is given 

I b )~(X,t) rt(bq(X))~(X,t) (2.45) rq([ 0 1 ] = 
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A 

r (w)@(X,t )  = ~ ( q , t ) 9 ( X , t )  
( 2 . 4 6 )  q 

: ~ ( q , t ) ~  ~ ( Y , t ) T t ( q ( X , Y ) d t Y  
F n 

[a O 1 ] ) ~ ( X , t  ) = a , a ) l a l n / 2  ~(q 'Tat)  (2.87) rq( 0 a- ~ ~(aX, t) 

and 

1 0 ) ~ ( X , t )  la -1 /2%(y~, ta - l )  (2. ~8) r q ( [  o a] = 

Proof. Apply the definition of direct integral. 

Proposition 2.31 implies we could have defined r q 

[] 

directly 

for GL 2 using formulas (2.45), (2.46), and (2.48). In fact thi{ 

construction of r was communicated to me by Cartier awhile ago 
q 

and my Definition 2.30 simply reformulates his ideas. 

Note that 

( 2 . 4 9 )  
a o ~ ( q ~ , t a )  -1 /2~  ( 2) 

r l ( [  o a ] ) r  = y ( q l ,  t ) ral aX, ta -  . 

a 0 Thus one e a s i l y  checks t h a t  r l ( [ 0  a ] )  commutes w i t h  r l ( g )  f o r  

all g ~ GL2(F ) iff det(g) c (FX) 2 This is consistent with 

Corollary 2. 13(a). 

Now it is natural to ask what shape the philosophy of Subsection 

2.Z~ takes in the present context? Roughly speaking, the answer 

is that the orthogonal group of q is simply replaced by the group 

of similitudes of q . 

Suppose first that q :ql " The group of similitudes of ql 

is FX=GLI(F) and its action in L2(FxF x) is given by 

(A(y )~)  (x, t )  = l al -1 /29 (ax ,  ta -2) 

Note that A(y) clearly commutes with r I . 

Now suppose q =q3" If F 3 is realized as the space of 

symmetric matrices with coefficients in F then q(X) :det(X). 

2 x 2  
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The group of similitudes of q3 is essentially GL2(F ). More 

precisely, define 

go X = tg X g 

when g e GL2(F) and X cF 3. Then q(g~X) = (det g)2 

action of GL2(F ) in L2(F 3• F x) is given by 

q (x). The 

(A(g)~)(X,t) = I det gl 2~(g,X,t(det g)-2) 

and A once again commutes with r 3 . 

The result now is that r I (resp. r 3 ) should decompose 

into irreducible representations of ~ indexed by irreducible 

representations of GLI(F) (reap. irreducible representations of 

GL2(F) which occur in A ). Globally this means automorphic forms 

on the metaplectic group which occur In r I (resp. r 3 ) should 

be indexed by automorphic forms on GL I (reap. automorphic forms 

on GL 2 which occur in A ). The global results that can be 

obtained or expected are described in Subsections 6.1 and 6.2. 

The local analysis is carried out in Subsections 4.3, 4.4, and 

5.5. 



2.6, Theta-functions 

Classically, a.utomorphic forms are constructed from theta- 

series attached to quadratic forms. This is the procedure reformu- 

lated in representation theoretic terms by Well in [47]. For 

SL 2 the idea is this. 

Suppose F is a number field and q is an F-rational quad- 

ratic form in n variables. Define a distributuon ~ on F n by 

e ( ~ )  : s ~(r 

Piecing together local Well representations a representation rq 

of ST2(~ ) is defined with the property that 0(rq(~)~) is 

SL2(F)-invariant. In particular, ~(rq(S)~ = 0(~) for all s e SL2(F). 

This is the theta function attached to q. For GL2, the point of 

departure is Proposition 2.32 below. 

For v a non-archimedean place of F let 0 v denote the ring 

of integers of F v and U v its group of units. Let rv(q) denote 

the corresponding Weil representation of GL2(Fv) in L2(F n x Fx). 

N is the subgroup of GL2(0v) consisting As in Subsection 2.1, K v 

of matrices [~ b d] with a ~ I and c ~ 0 (mod N). Here N is 

a positive integer divisible by 4. Thus K~ = GL2(O v) if F v 

has odd residual characteristic. 

Proposition 2.32. Suppose q = ql or q3" Then for almost 

every v, rv(q ) is class I, i.e., the restriction of rv(q) to 

GL2(0v) has at least one fixed vector. More precisely, for each 

0 L2(F n F x) by place v, define ~v e x 

n 
(2.50) O .... Xn, t ) = ~ ) | U N ~v(Xi, ( 10 1 

i=l v 
v 

Here i 0 denotes the characteristic function of O F and IuN 
v v 

denotes the characteristic function of Ur~v = { y e  U v ' y  i 1 (mod N)] .  
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For all odd v, 

(2.51) rv(q)(k)~o = go 

for k e K N. 
V 

and 

Proof. The group GL2(0v) is generated by the matrices 

i b (b [o 1 ] e ~ 

W 

i 0 (a 
[o a ] ~ Uv). 

Thus it suffices to check (2.51) for these generators. 

Recall that our canonical additive character T has conductor 
V 

0 v. In particular, ~v(tbq(X)) = i if q(X) e O v, b e 0v, and 

t e U v. Therefore rv(q)(l b)~~ = ~v~176 Note also that 

the Fourier transform of i 0 is i 0 . Thus rv(q)(w)~~ ) = ~v~ 
V V 

1 o o =  oix ' The fact that rv(q)([ 0 a])~v(X,t) = lal-i/2~~ ta -I) t) is 

obvious since a e U v. 

To define r globally, and to introduce theta-functions on q 

G~, we need first to define an appropriate space of Schwartz-functions 

on ~ • ~. We shall say that ~ on ~ • ~ is "Sehwartz-Bruhat" 

if ~(X,t) = N ~v(Xv, tv) and: 
V 

(i) ~v(Xv, tv) is infinitely differentiable and rapidly de- 

x creasing on • F v for each archimedean v~ 

(ii) for each finite v, ~v is the restriction to ~v x ~v 

of a locally constant compactly supported function on F~v+l; 

(iii) for almost every finite v, ~v = ~o (the function defined 
V 

by (2.5O)). 

Denote this space of functions by A(~ • F~). Since ~(~ • FI) 

is dense in L2(~ • F~), we can define a representation rq of 

in L2(~ • F~) through the formula 
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V 

By virtue of Proposition 2.32 this definition is meaningful for at 

least all % e ~(~ x F~). Indeed for almost all v, ~v e GL2(Ov) 

O 
and %v = @v" Thus rv(q)(~v)%v = %v and rq(~)% again belongs to 

~(~ X F~). By continuity, rq(~) operates (unitarily) in L 2. 

The role of ~v in the local theory is now played by a non-trivial 

character T of F~. 

The theta-functions on ~ corresponding to q (or rq) are 

defined as follows. For each ~ e ~(~ • F~) define 8(~,g) on 

a~ by 

8(~'g) : Z (rq(~))@({,D) . 

Proposition 2.33. For each y e GL2(F), 

(2 .52)  8(%,Yg) = @(~,~); 

i. e. , e (~,~) is GL2(F ) invariant. 

Proof. We may assume without loss of generality that ~ = [I,i] 

i b 
and y is a generator of GL2(F)o Suppose first that Y = [0 1 ] 

with b s F. Then 

rq(y)~(X,t) = T(btq(X)@(X,t) 

with T = H~ trivial on F. But q is F-rational. Thus 
V 

rq(~)%({,~) = ~({,9) for ({,~) c F n • F x and (2.52) is immediate. 

Now suppose y : wo From Well's theory (cf. Theorem 5 of [47]) 

it follows that y(q, Tt) -" 1. Moreover, I tl : i if t e F x. 

Therefore, 

r~ rq(W)~(g,n) = ~1~1 n'/2 y(q, Tn)$(~g,~ ) 

: ~ $(~,~) 
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= z ~(g,~). 

The last step above follows from Poisson's summation formula. 

i O] with a e F x. By formula (2oI$8) Finally suppose Y = [0 a 

rq(~)~(y,~) = lal - l / 2  ~(~,~a-1)o But lal -1 /2 = 1. Therefore 

r q ( y ) % ( { , 9 )  = Z 9 ( { , q )  as d e s i r e d .  

O b s e r v a t i o n  2 .34 .  The f u n c t i o n  8 ( 9 , g )  a lways  d e f i n e s  an 

automorphic form on ~, i.e., 8(~,g) is always G F invariant. 

Nevertheless, it may often be the case that 8(~) is identically 

zero. Suppose, for example, that ~(-X,t) = -@(X,t), i.e. ~ is an 

odd function in Xo Then rq(~)~ is also odd for all ~ e ~. 

For simplicity, suppose also that F = Q. From formula (2o~7) it 

-i ~])~(X,t) = -~(X,t), i e. follows that rq([ 0 - 

-1 o 
e(~, [ o ]7) : - e(~,~). 

But by the GF-invariance of 8, 

-i ~]~) 

T h e r e f o r e  8 (~ ,~ )  i 0~ 

We close this paragraph by demonstrating how 8(~,~) 

the basic theta function 

generalizes 

2~in2z 

n ~  

Proposition 2~176 Fix n = i, F = ~, and rq = r I. Suppose 

= n ~p where ~p = ~o for all finite p and ~ (x,t) = 
P 

I t l  - l / q  e - I t ! 2~x2  Then i f  g = [ [ y l / 2  x y - l / 2  -1/2 ] '  1 ], 
0 y 

8(%,g) = yl/As(x+iy)o 
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[yl/2 xy-1/2 I x [yl/2 o 
Proof. Since 0 y-I/2 ] = [0 1 ] 0 y -I/2]' 

Z rq(~)%({,~). - . - = 
({,~) 

lyll/4 e-2W7~ 2 e2~i~2x~. 

Here we choose T = ~ Tp with T (X) = e 2~ix and Tp trivial on 

0p for p < ~. Thus ({,~) contributes to the summation above 

only if { e ~ and 9 = i (recall ~2 = 102~176 l.e., 

as was to be shown~ 

e2~in ~ (x+ly) 

Note that for a c (0,~), and @ as above, 

a o -I/2 
r([ 0 a])~(~,~) = ai ~(ax, ta -2) 

= al-i/2 Ita-21-1/4 e-ltl2~x2 

= tl-i/~ e-ltI2~x2 

Thus 8(~,~) is actually defined on 

7 = z ~ 


