Approximating Column-Restricted Covering IPs

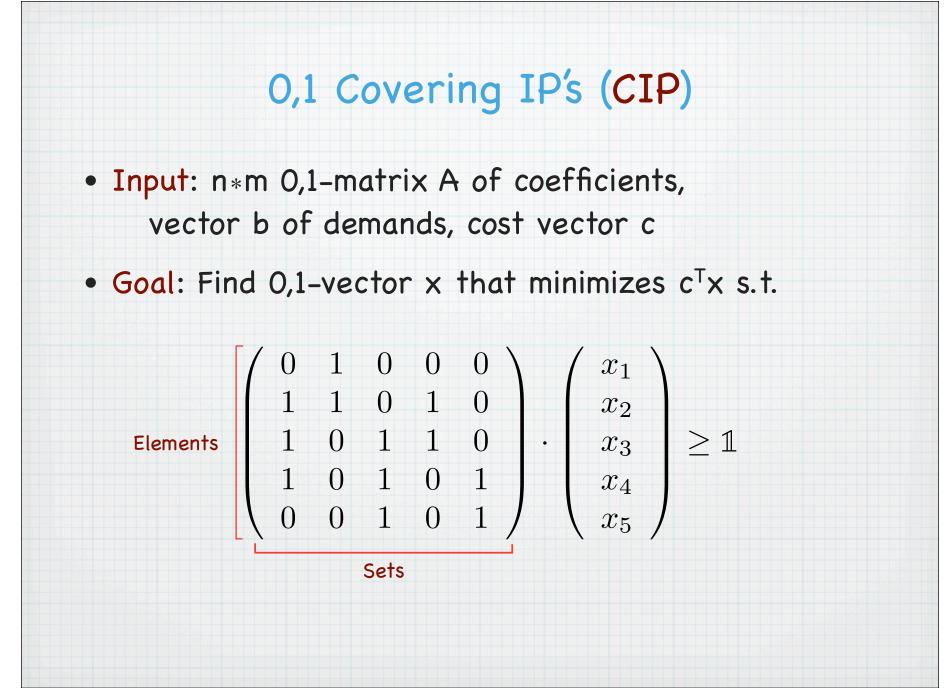
Jochen Könemann

with D. Chakrabarty & E. Grant C&O, University of Waterloo

0,1 Covering Problems

Given: Elements {e₁,...,e_m} and sets {S₁,...,S_n} where set S_i has cost c(S_i)

Goal: Find a minimum-cost subset of all sets that covers all elements.

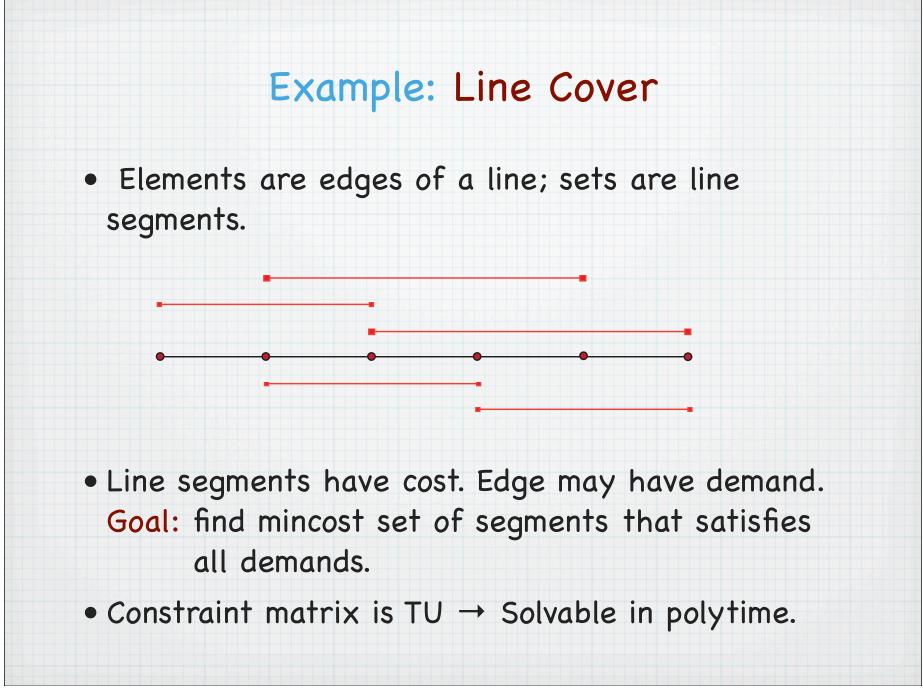


Approximating 0,1-CIPs

Problem is rather well understood in terms of approximability ...

[Chvatal '79] O(log n) Greedy Apx [Feige '98] (1-o(1)) In(n) Hardness

But: Can often do better, exploiting problemspecific structure.



Some more Examples...

[Column-sparse matrices] (<= α non-zeros per column) → O(1+log α)-apx [Srinivasan '99], [Kollipoulos & Young '05]

[Row-sparse matrices] (<= β non-zeros per row) → β-apx [Pritchard & Chakrabarty '09], ...

 $\operatorname{opt}_{A,b,c} := \min\{c^T x : Ax \ge b, \ 0 \le x \le 1, \ x \text{ integer}\}$

LP Relaxation

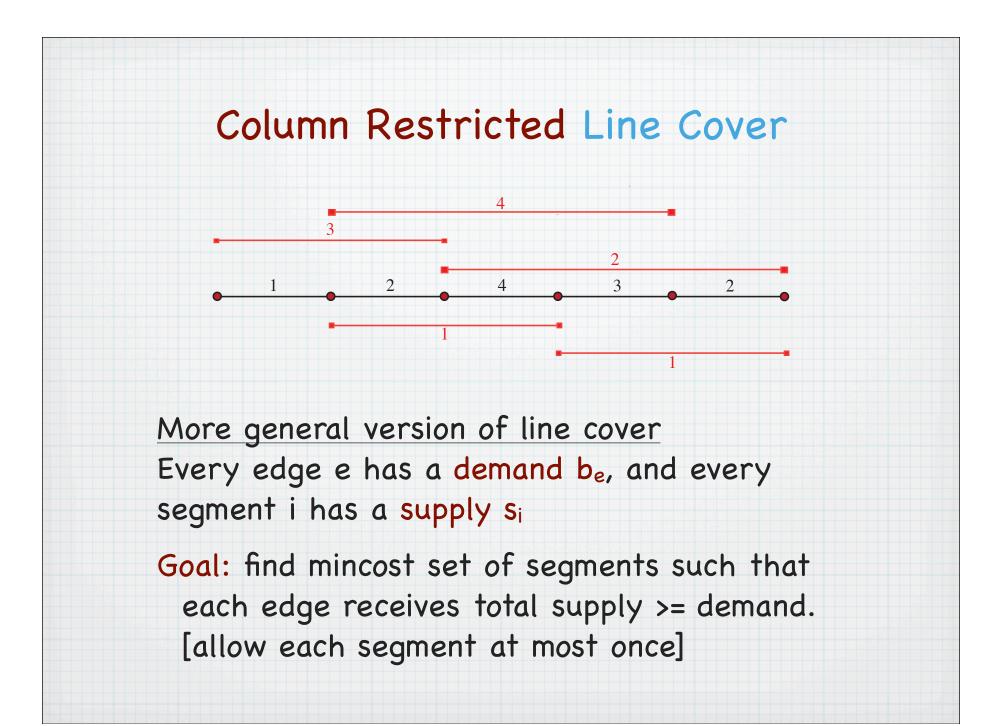
$$lp_{A,b,c} := \min\{c^T x : Ax \ge b, \ 0 \le x \le 1\}$$

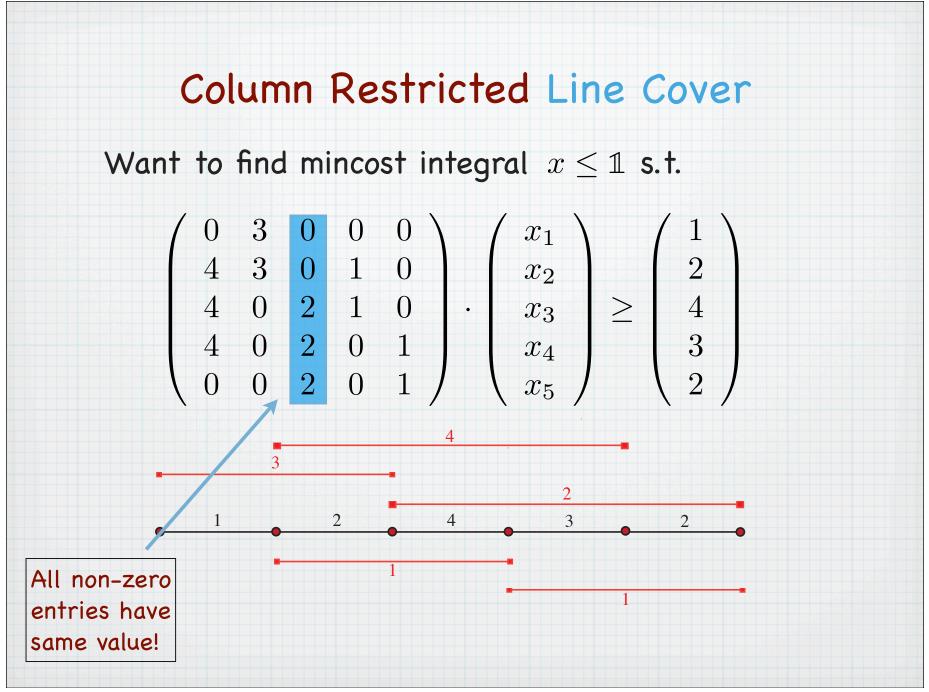
LP relaxation provides bound on optimum solution value. Quality depends on integrality gap:

$$\alpha(A) := \sup_{b,c} \frac{\operatorname{opt}_{A,b,c}}{\operatorname{lp}_{A,b,c}}$$

This Talk

- Significantly less is known for structured general CIPs than for structured 0,1-CIPs
- Present two generalizations of 0,1-CIPs
 - Column Restricted Covering Problems (CCIP) [natural model of capacitaties]
 - Priority Covering Problems (PCIP) [arise when modeling service requirements]
- Study how generality affects approximability, and integrality gap.



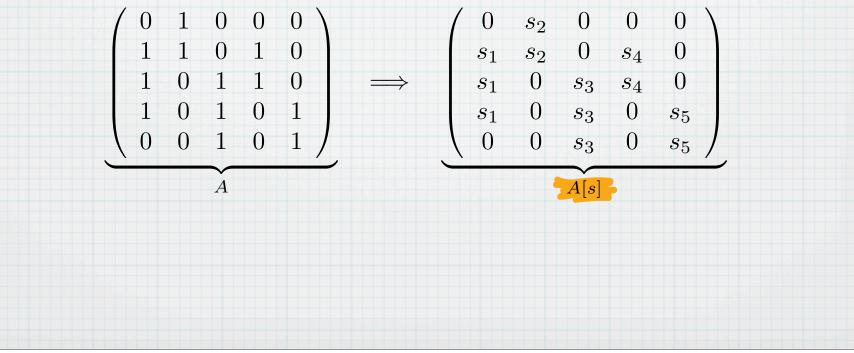


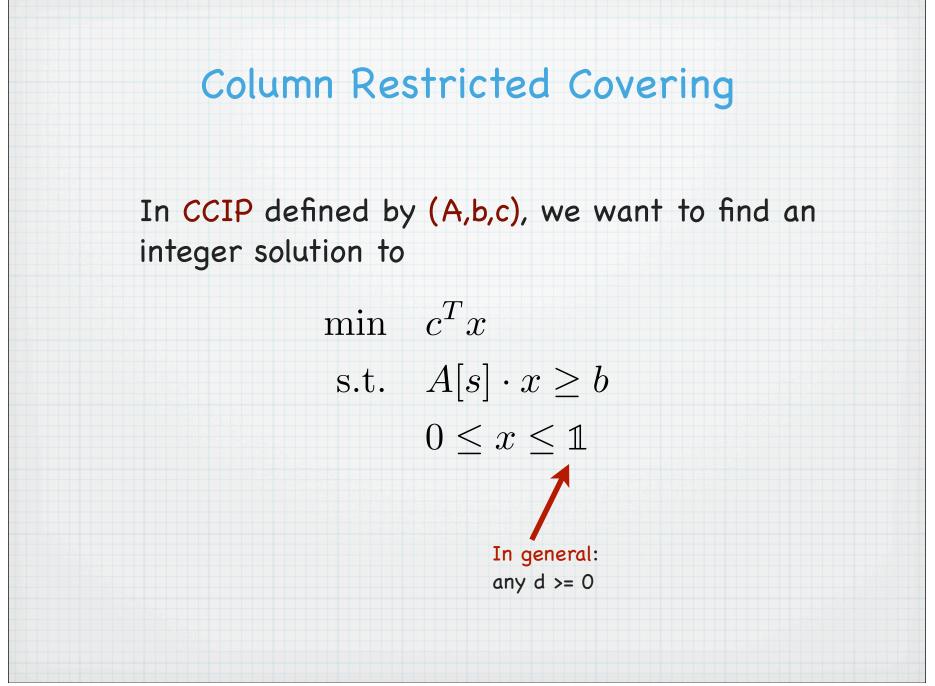
Column Restricted CIPs

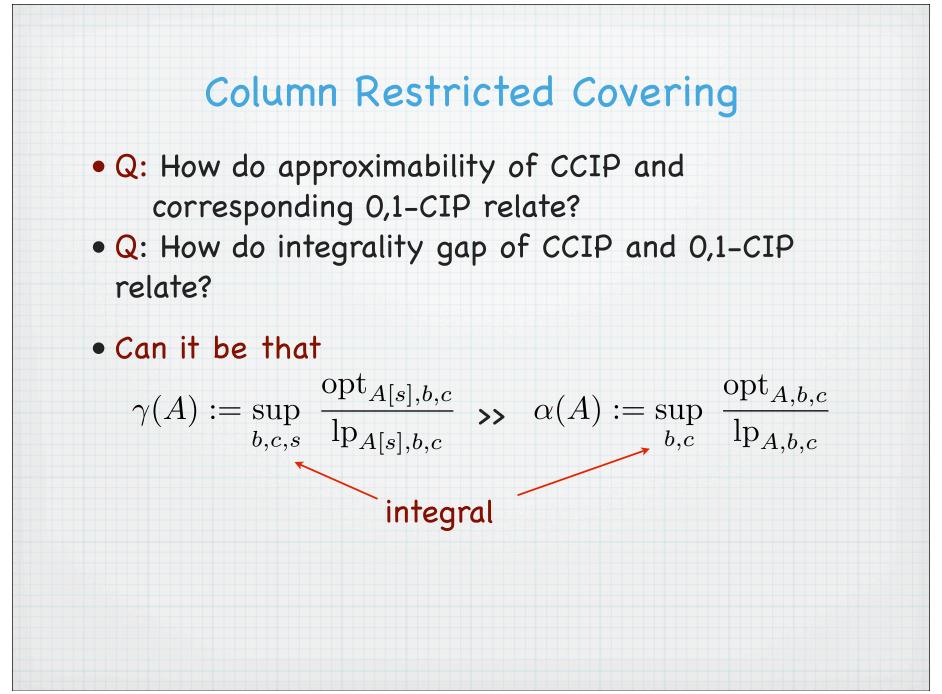
Arises from 0,1-CIP by

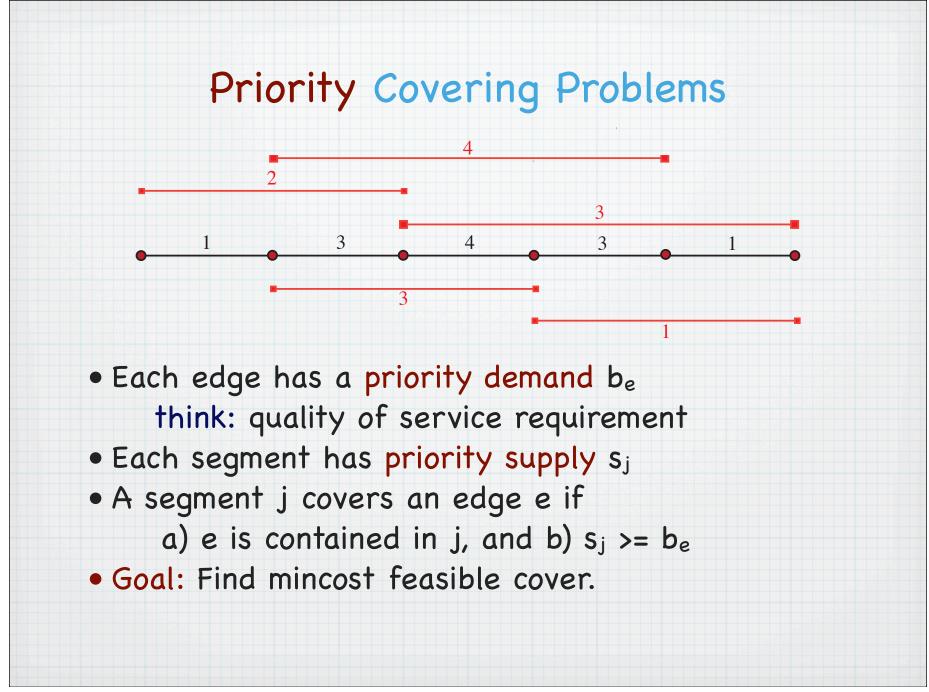
- Giving each set i a supply s_i , and
- Giving each element e a demand be

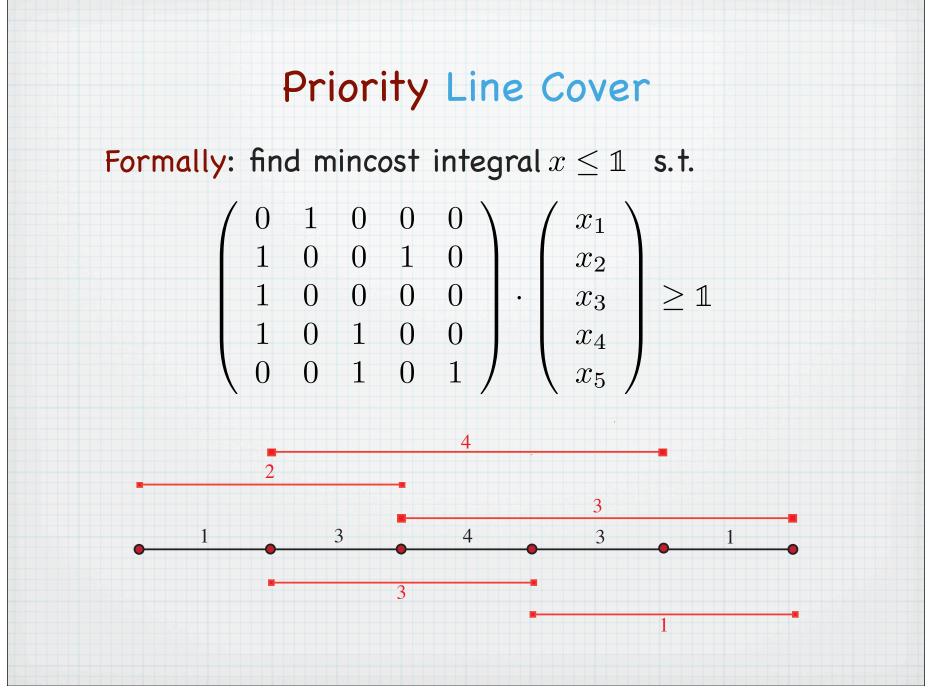
New coefficient matrix:











Priority Covering Problems

 Given 0,1-CIP with constraint matrix A, demands b_i for every row and supplies s_j for every column, one defines the matrix A[b,s] as

$$A[b,s]_{ij} = \begin{cases} A_{ij} & : & \text{if } s_j \ge b_i \\ 0 & : & \text{otherwise} \end{cases}$$

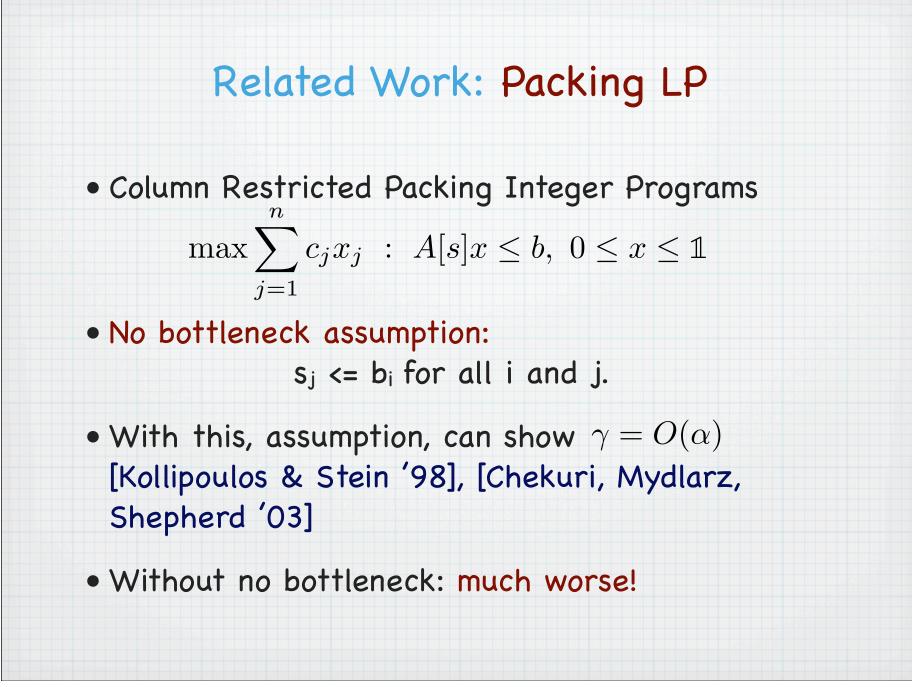
PCIP is then given by

$$\min \sum_{j=1}^{n} c_j x_j : A[b,s] \cdot x \ge 1, \ x_j \in \{0,1\}, \ \forall j$$

Priority Covering Problems

- How is the approximability of a PCIP related to that of the original 0,1-CIP?
- How is the integrality gap of the canonical relaxation of a PCIP related to that of the original (0,1)-CIP?

$$\beta(A) := \sup_{b,c,s} \frac{\operatorname{opt}_{A[b,s],c}}{\operatorname{lp}_{A[b,s],c}} \xrightarrow{?} \alpha(A) := \sup_{b,c} \frac{\operatorname{opt}_{A,b,c}}{\operatorname{lp}_{A,b,c}}$$



The CCIP maybe harder than underlying 0,1-CIP. Example: Column-restricted Line Cover is NP-hard.

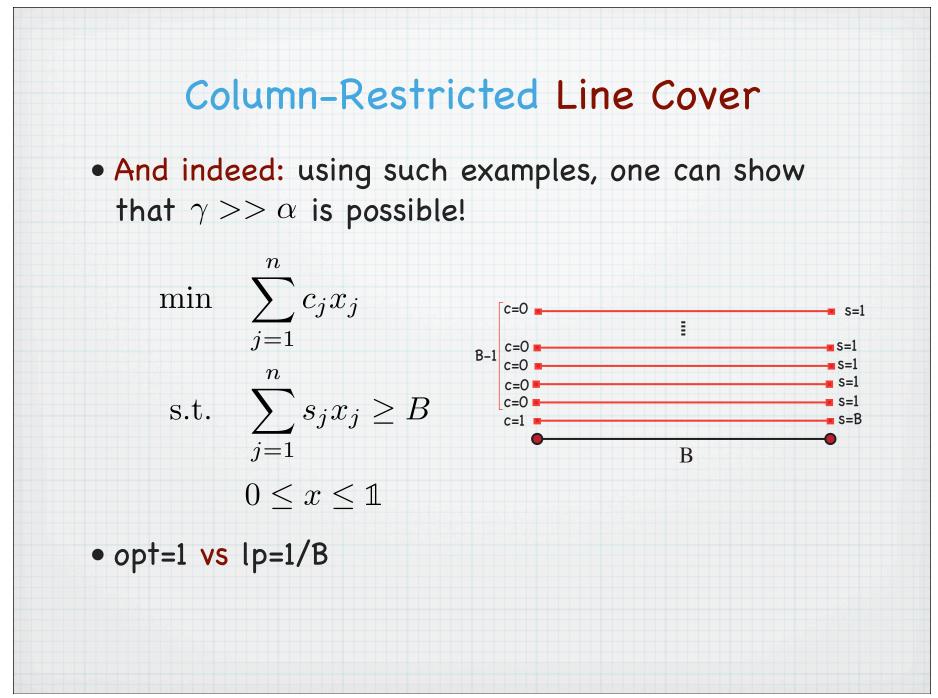
Sn I

S5

1

B

- n elements with weights
 s_i and cost c_i
- Knapsack of capacity B
- Find minimum cost selection of elements of weight >= B.



- X be any subset of segments (items)
- s(X) be the sum of supplies of segments in X
- The following must be satisfied by any integral solution.

$$\sum_{j \notin X} s_j x_j \ge B - s(X)$$

• Using integrality, we can strengthen this:

$$\sum_{j \notin X} s_j^X x_j \ge B - s(X)$$

$$s_j^X = \min(s_j, B - s(X))$$

• Knapsack-Cover (KC) Inequality:

$$\sum_{\substack{j \notin X \\ s_j^X = \min(s_j, B - s(X))}} s_j^X x_j \ge B - s(X)$$

• Let's consider example again. c=0 s=1 -X = all O - cost segmentss=1 C=0**B**-1 c=0s=1 - old LP solution does't S=1 c=0 C=0s=1 satisfy KC-inequality s=B c=1 for X: B $B - s(X) = 1, s^{X_1} = 1$ $\rightarrow x_1 = 1/B \geq 1$

Stronger LP for Minimum Knapsack

$$\min \sum_{\substack{j=1 \\ j \neq X}}^{n} c_j x_j$$
$$\forall X \subseteq [n] : \sum_{\substack{j \notin X \\ j \notin X}} s_j^X x_j \ge B - s(X)$$
$$1 \ge x_j \ge 0$$

where $s_j^X = \min(s_j, B - s(X))$ and $s(X) = \sum_{j \in X} s_j$

Strengthening the LP Applicable to any CIP giving the following stronger LP, min $\sum_{j=1}^{n} c(S_j) x_j$ i=1s.t. $\sum A_{ij}^X x_j \ge b_i - s_i(X) \quad \forall i \in [m], X \subseteq [n]$ $i \notin X$ 0 < x < 1LP'(A[s],b,c)where $s_i(X) := \sum A_{ij}$ $j \in X$ and $A_{ij}^{X} = \min(A_{ij}, b_i - s_i(X))$

• Integrality Gap of the stronger relaxation

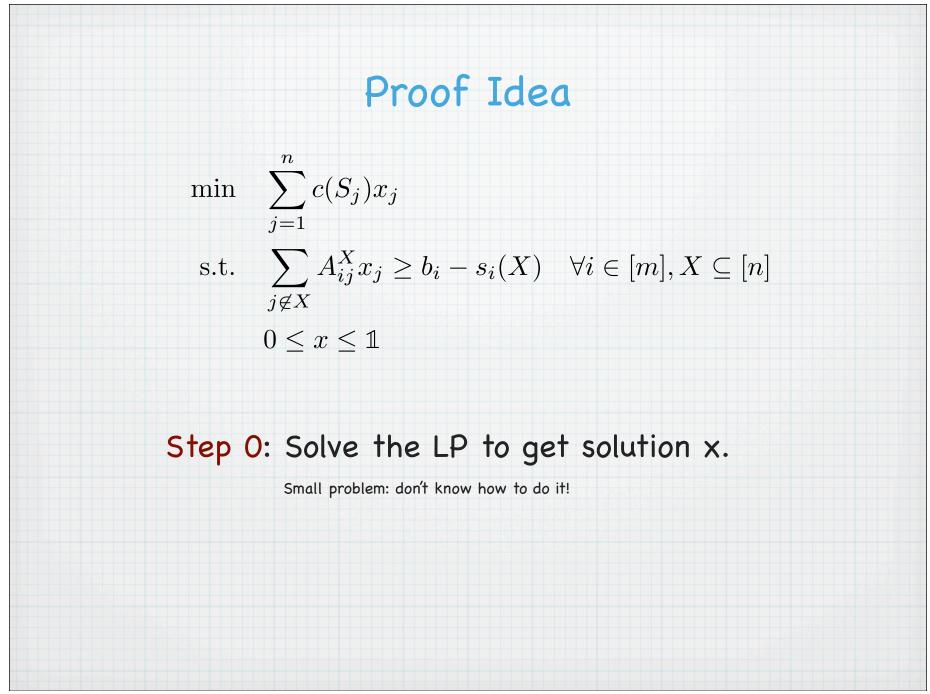
$$\gamma(A) := \sup_{b,c,s} \frac{\operatorname{opt}_{A[s],b,c}}{\operatorname{lp'}_{A[s],b,c}}$$

• What is the relation between $\gamma(A)$ and $\alpha(A)$?

Connection

Theorem: Given a (0,1)-CIP with incidence matrix A α, β, γ : integrality gaps of the canonical LP relax of the (0,1)-CIP, PCIP and the strengthened LP relaxation CCIP

Remark: α , β are integrality gaps over all integer costs, demands and supplies.

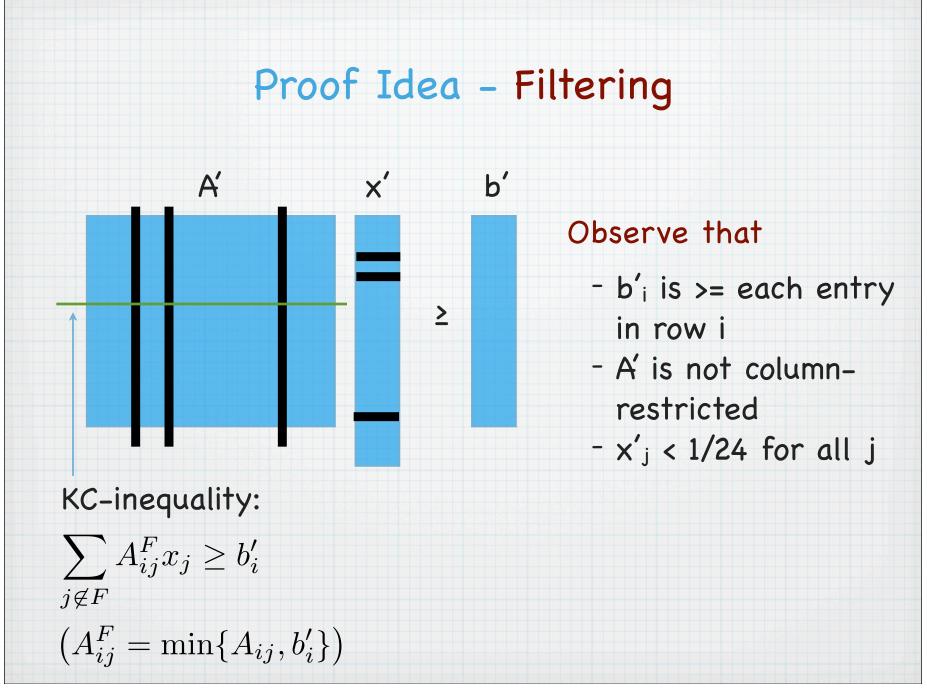


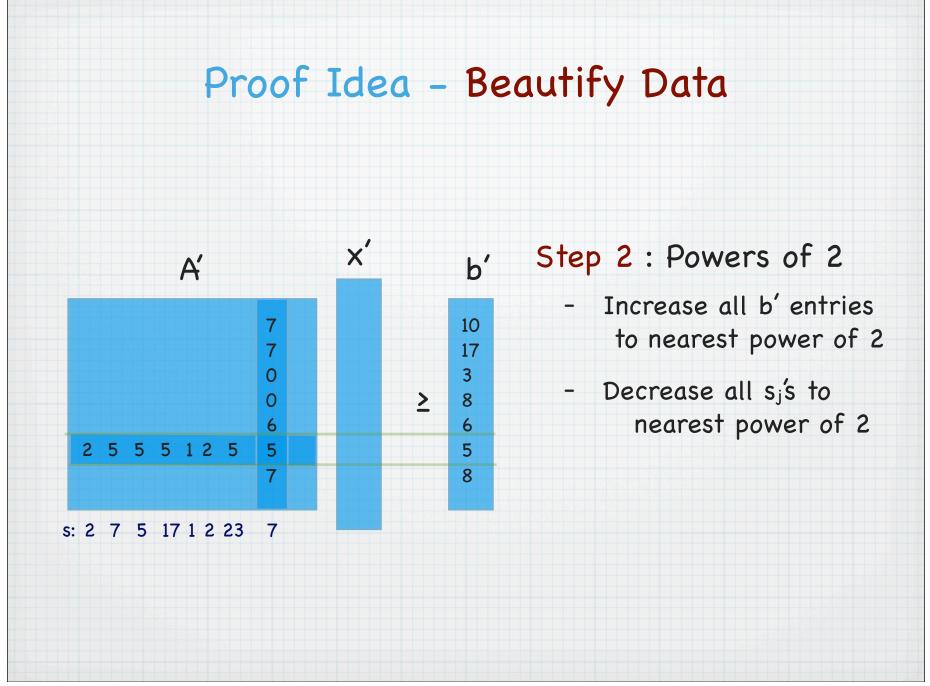
Proof Idea

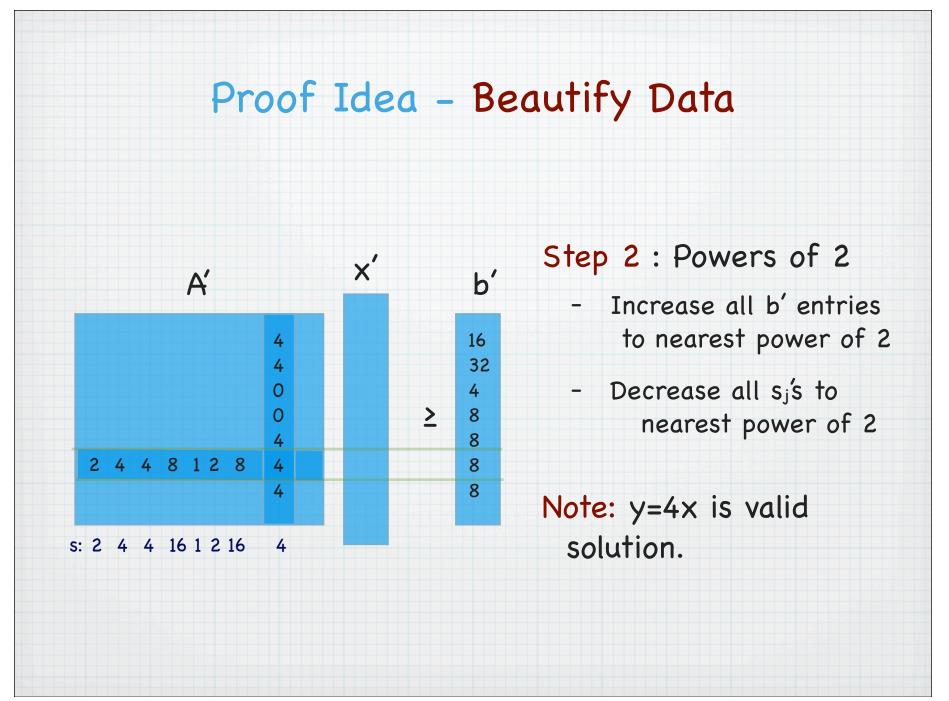
Step 1: Filtering

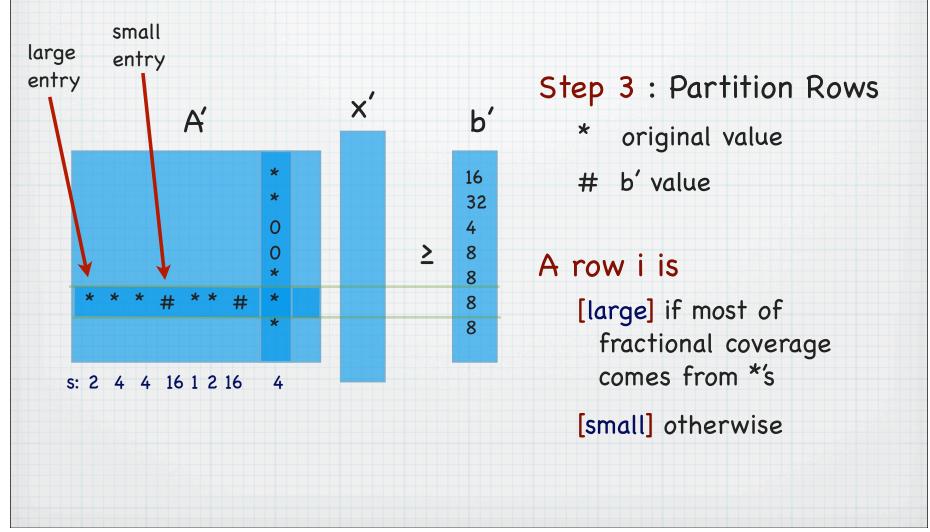
- Pick set F of columns with large fractional value. [round up immediately]
- b'_i: residual demand of row i.
 Done if b'_i = 0, for all i.
- Construct matrix A' by
 - taking all columns not in F
 - rows corresponding to
 Knapsack Cover inequalities
 for set F.

A b X > $F = \{j: x_j \ge 1/24\}$

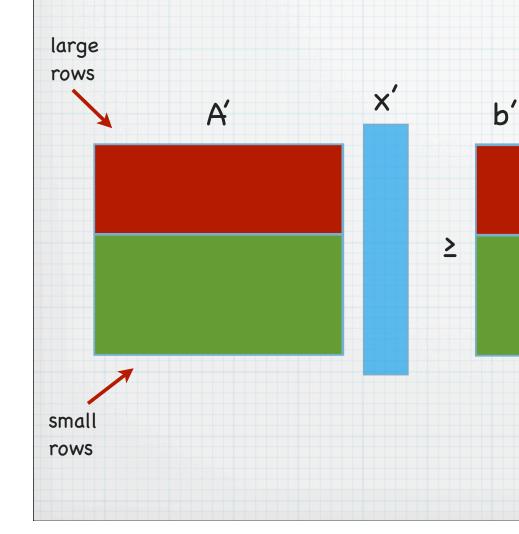








Proof Idea – Row Partition

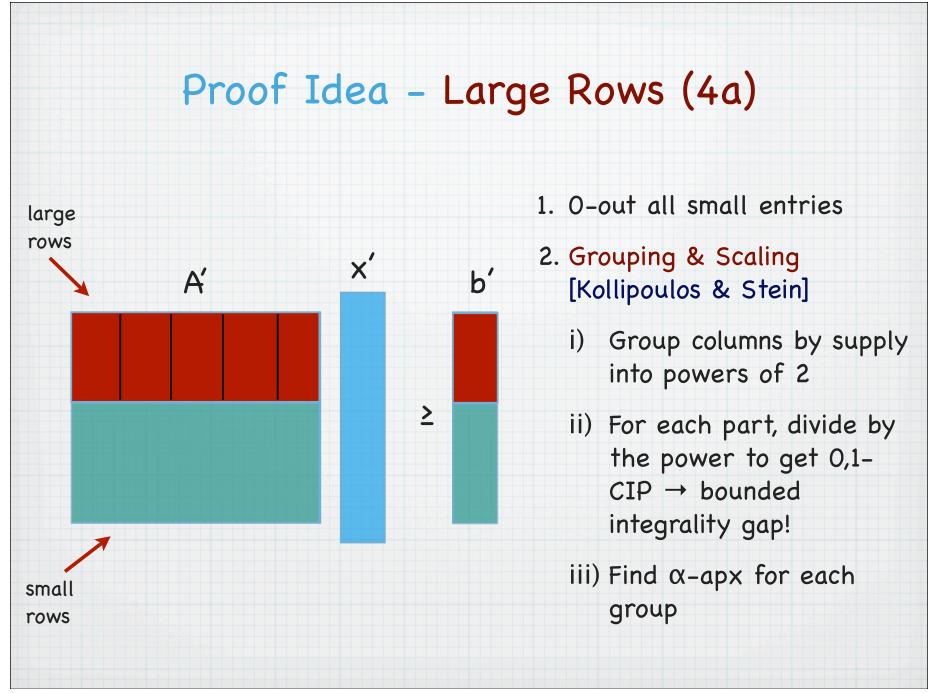


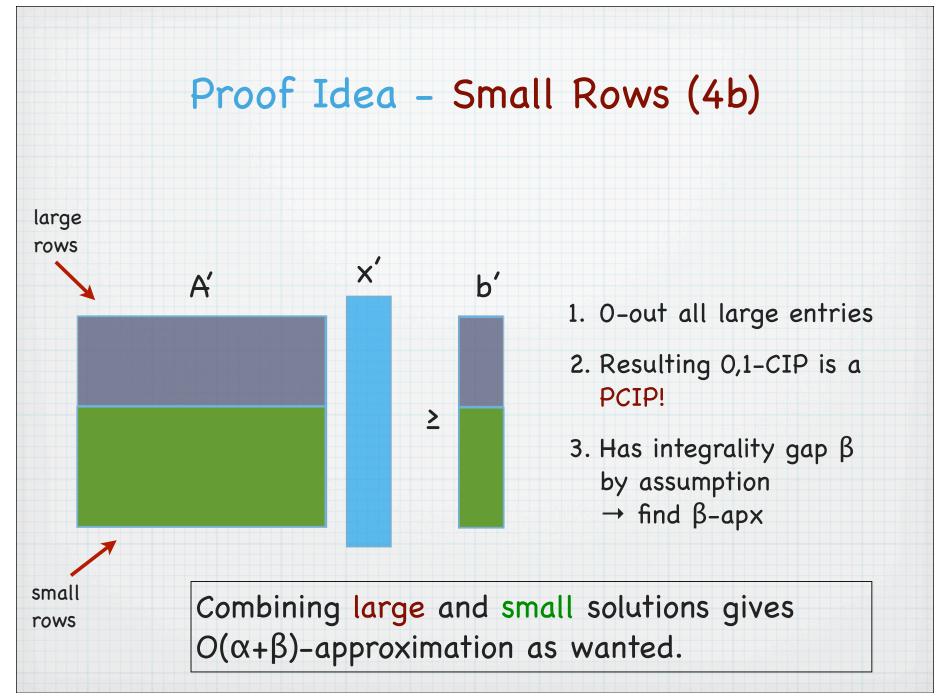
Step 3 : Partition Rows

Now look at large and small rows separately.

Compute two solutions, one that is feasible for large rows, and one for small!

Combine in the end.





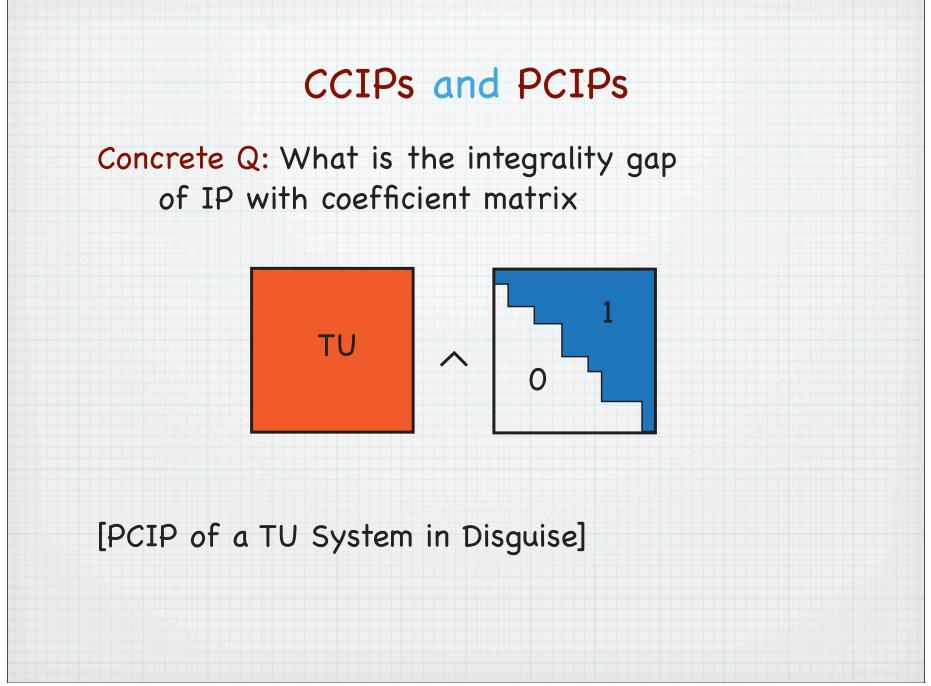
CCIPs and PCIPs

```
Have seen: O(\alpha + \beta)-apx
```

<u>Conjecture:</u> There is a O(α)-apx for CCIP. [e.g., column-restrictedness does not add much]

One way to show this:

Show that PCIPs have $O(\alpha)$ -apx.; i.e., adding priorities does not hurt.



3

3

4

3

3

Line Cover Problem

- 0,1-CIP matrix is TU
- PCIP has integrality gap >= 3/2
- PCIP has integrality gap <= 2
- CCIP for Line Cover has O(1) integrality gap.

Priority Line Cover is solvable in polynomial time. Is there an exact LP relaxation?

Specific Priority CIPs

Rooted Tree Cover problem

- Edges are edges of a rooted tree
- Segments are rooted paths in tree
- Coefficient matrix is TU

Our Results:

- PCIP has integrality gap at least e/(e-1)
- Unweighted PCIP has gap at most 6
- Unweighted CCIP has gap O(1)

Priority Tree Cover is APX-hard, and 2-approximable.

Conclusions

- Two generalizations of (0,1)-CIPs: CCIPs & PCIPs
- CCIP-approximability connected to integrality
 - gap of underlying PCIP and 0,1-CIP.
 - Unclear: PCIP ↔ 0,1-CIP Relationship
- PCIP: interesting to study in their own right
- Connections to geometric problems

