
The Inapproximability of Maximum Single-Sink
Unsplittable, Priority and Confluent Flow Problems

F. Bruce Shepherd Adrian Vetta

May 15, 2015

Abstract

We consider the single-sink network flow problem. An instance consists of a capacitated
graph (directed or undirected), a sink node t and a set of demands that we want to send to
the sink. Here demand i is located at a node si and requests an amount di of flow capacity
in order to route successfully. Two standard objectives are to maximise (i) the number of
demands (cardinality) and (ii) the total demand (throughput) that can be routed subject
to the capacity constraints. Furthermore, we examine these maximisation problems for
three specialised types of network flow: unsplittable, confluent and priority flows.

In the unsplittable flow problem, we have edge capacities, and the demand for si must
be routed on a single path. In the confluent flow problem, we have node capacities, and
the final flow must induce a tree. Both of these problems have been studied extensively,
primarily in the single-sink setting. However, most of this work imposed the no-bottleneck
assumption (that the maximum demand dmax is at most the minimum capacity umin).
Given the no-bottleneck assumption, there is a factor 4.43-approximation algorithm due
to Dinitz et al. [16] for the unsplittable flow problem. Under the even stronger assump-
tion of uniform capacities, there is a factor 3-approximation algorithm due to Chen et
al. [10] for the confluent flow problem. However, unlike the unsplittable flow problem, a
constant factor approximation algorithm cannot be obtained for the single-sink confluent
flow problem even with the no-bottleneck assumption. Specifically, we prove that it is
hard in that setting to approximate single-sink confluent flow to within O(log1−ε(n)), for
any ε > 0. This result applies for both cardinality and throughput objectives even in
undirected graphs.

The remainder of our results focus upon the setting without the no-bottleneck as-
sumption. There, the only result we are aware of is an Ω(m1−ε) inapproximability result
of Azar and Regev [3] for cardinality single-sink unsplittable flow in directed graphs. We
prove this lower bound applies to undirected graphs, including planar networks. This is
the first super-constant hardness known for undirected single-sink unsplittable flow, and
apparently the first polynomial hardness for undirected unsplittable flow even for general

1

(non-single sink) multiflows. We show the lower bound also applies to the cardinality
single-sink confluent flow problem.

Furthermore, the proof of Azar and Regev requires exponentially large demands. We
show that polynomial hardness continues to hold without this restriction, even if all de-
mands and capacities lie within an arbitrarily small range [1, 1 + ∆], for ∆ > 0. This
lower bound applies also to the throughput objective. This result is very sharp since if
∆ = 0, then we have an instance of the single-sink maximum edge-disjoint paths problem
which can be solved exactly via a maximum flow algorithm. This motivates us to study
an intermediary problem, priority flows, that models the transition as ∆ → 0. Here we
have unit-demands, each with a priority level. In addition, each edge has a priority level
and a routing path for a demand is then restricted to use edges with at least the same
priority level. Our results imply a polynomial lower bound for the maximum priority flow
problem, even for the case of uniform capacities.

Finally, we present greedy algorithms that provide upper bounds which (nearly) match
the lower bounds for unsplittable and priority flows. These upper bounds also apply for
general multiflows.

1 Introduction

In this paper we improve known lower bounds (and upper bounds) on the approximability
of the maximization versions of the single-sink unsplittable flow, single-sink priority flow and
single-sink confluent flow problems. In the single-sink network flow problem, we are given a
directed or undirected graph G = (V,E) with n nodes and m edges that has edge capacities
u(e) or node capacities u(v). There are a collection of demands that have to be routed to a
unique destination sink node t. Each demand i is located at a source node si (multiple demands
could share the same source) and requests an amount di of flow capacity in order to route. We
will primarily focus on the following two well-known versions of the single-sink network flow
problem:

• Unsplittable Flow: Each demand i must be sent along a unique path Pi from si to ti.

• Confluent Flow: Any two demands that meet at a node must then traverse identical
paths to the sink. In particular, at most one edge out of each node v is allowed to carry
flow. Consequently, the support of the flow is a tree in the undirected graphs, and an
arborescence rooted at t in directed graphs.

Confluent flows were introduced to study the effects of next-hop routing [11]. In that applica-
tion, routers are capacitated and, consequently, nodes in the confluent flow problem are assumed
to have capacities but not edges. In contrast, in the unsplittable flow problem it is the edges
that are assumed to be capacitated. We follow these conventions in this paper. In addition, we
will also examine a third network flow problem called Priority Flow (defined in Section 1.2).
In the literature, subject to network capacities, there are two standard maximization objectives:

2

• Cardinality: Maximize the total number of demands routed.

• Throughput: Maximize satisfied demand, that is, the total flow carried by the routed
demands.

These objectives can be viewed as special cases of the profit-maximisation flow problem. There
each demand i has a profit πi in addition to its demand di. The goal is to route a subset of the
demands of maximum total profit. The cardinality model then corresponds to the unit-profit
case, wi = 1 for every demand i; the throughput model is the case πi = di. Clearly the lower
bounds we will present also apply to the more general profit-maximisation problem.

1.1 Previous Work

The unsplittable flow problem has been extensively studied since its introduction by Cosares
and Saniee [15] and Kleinberg [21]. However, most positive results have relied upon the no-
bottleneck assumption (nba) where the maximum demand is at most the minimum capacity,
that is, dmax ≤ umin. Given the no-bottleneck assumption, the best known result is a factor 4.43-
approximation algorithm due to Dinitz, Garg and Goemans [16] for the maximum throughput
objective.

The confluent flow problem was first examined by Chen, Rajaraman and Sundaram [11].
There, and in variants of the problem [10, 17, 26], the focus was on uncapacitated graphs.1

The current best result for maximum confluent flow is a factor 3-approximation algorithm for
maximum throughput in uncapacitated networks [10].

Observe that uncapacitated networks (i.e. graphs with uniform capacities) trivially also sat-
isfy the no-bottleneck assumption. Much less is known about networks where the no-bottleneck
assumption does not hold. This is reflected by the dearth of progress for the case of multiflows
(that is, multiple sink) without the nba. It is known that a constant factor approximation al-
gorithm exists for the case in which G is a path [5], and that a poly-logarithmic approximation
algorithm exists for the case in which G is a tree [7]. The extreme difficulty of the unsplittable
flow problem is suggested by the following result of Azar and Regev [3].

Theorem 1.1 ([3]) If P 6= NP then, for any ε > 0, there is no O(m1−ε)-approximation
algorithm for the cardinality objective of the single-sink unsplittable flow problem in directed
graphs.

This is the first (and only) super-constant lower bound for the maximum single-sink unsplittable
flow problem.

1An exception concerns the analysis of graphs with constant treewidth [18].

3

1.2 Our Results

The main focus of this paper is on single-sink flow problems where the no-bottleneck assumption
does not hold. It turns out that the hardness of approximation bounds are quite severe even
in the (often more tractable) single-sink setting. In some cases they match the worst case
bounds for PIPs (general packing integer programs). In particular, we strengthen Theorem 1.1
in four ways. First, as noted by Azar and Regev, the proof of their result relies critically on
having directed graphs. We prove it holds for undirected graphs, even planar undirected graphs.
Second, we show the result also applies to the confluent flow problem.

Theorem 1.2 If P 6= NP then, for any ε > 0, there is no O(m1−ε)-approximation algorithm
for the cardinality objective of the single-sink unsplittable and confluent flow problems in undi-
rected graphs. Moreover for unsplittable flows, the lower bound holds even when we restrict to
planar inputs.

Third, Theorems 1.1 and 1.2 rely upon the use of exponentially large demands – we call this
the large demand regime. A second demand scenario that has received attention in the literature
is the polynomial demand regime – this regime is studied in [20], basically to the exclusion of the
large demand regime. We show that strong hardness results apply in the polynomial demand
regime; in fact, they apply to the small demand regime where the demand spread dmax

dmin
= 1 + ∆,

for some “small” ∆ > 0. (Note that dmin ≤ umin and so the demand spread of an instance is at
least the bottleneck value dmax

umin
.) Fourth, by considering the case where ∆ > 0 is arbitrarily small

we obtain similar hardness results for the throughput objective for the single-sink unsplittable
and confluent flow problems. Formally, we show the following m

1
2
−ε-inapproximability result.

We note however that the hard instances have a linear number of edges (so one may prefer to

call this an n
1
2
−ε-inapproximability result).

Theorem 1.3 Neither cardinality nor throughput can be approximated to within a factor of
O(m

1
2
−ε), for any ε > 0, in the single-sink unsplittable and confluent flow problems. This holds

for undirected and directed graphs even when instances are restricted to have demand spread
dmax
dmin

= 1 + ∆, where ∆ > 0 is arbitrarily small.

Again for the unsplittable flow problem this hardness result applies even in planar graphs.
Theorems 1.2 and 1.3 are the first super-constant hardness for any undirected version of the
single-sink unsplittable flow problem, and any directed version with small-demands. We also
remark that the extension to the small-demand regime is significant as suggested by the sharp-
ness of the result. Specifically, suppose ∆ = 0 and, thus, the demand spread is one. We may
then scale to assume that dmax = dmin = 1. Furthermore, we may then round down all capaci-
ties to the nearest integer as any fractional capacity cannot be used. But then the single-sink
unsplittable flow problem can be solved easily in polynomial time by a max-flow algorithm!

To clarify what is happening in the change from ∆ > 0 to ∆ = 0, we introduce and
examine an intermediary problem, the maximum priority flow problem. Here, we have a graph

4

G = (V,E) with a sink node t, and demands from nodes si to t. These demand are unit-
demands, and thus ∆ = 0. However, a demand may not traverse every edge. Specifically, we
have a partition of E into priority classes Ei. Each demand also has a priority, and a demand of
priority i may only use edges of priority i or better (i.e., edges in E1∪E2∪ . . . Ei). The goal is to
find a maximum routable subset of the demands. Observe that, for this unit-demand problem,
the throughput and cardinality objectives are identical. Whilst various priority network design
problems have been considered in the literature (cf. [6, 13]), we are not aware of existing results
on maximum priority flow. Our results immediately imply the following.

Corollary 1.4 The single-sink maximum priority flow problem cannot be approximated to
within a factor of m

1
2
−ε, for any ε > 0, in planar directed or undirected graphs.

The extension of the hardness results for single-sink unsplittable flow to undirected graphs
is also significant since it appears to have been left unnoticed even for general multiflow in-
stances. In [20]: “...the hardness of undirected edge-disjoint paths remains an interesting open
question. Indeed, even the hardness of edge-capacitated unsplittable flow remains open”2 Our
result resolves this question by showing polynomial hardness (even for single-sink instances).
We emphasize that this is not the first super-constant hardness for general multiflows how-
ever. A polylogarithmic lower bound appeared in [2] for the maximum edge-disjoint paths
(MEDP) problem (this was subsequently extended to the regime where edge congestion is
allowed [1]). Moreover, a polynomial lower bound for MEDP seems less likely given the re-
cent O(1)-congestion polylog-approximation algorithms [12, 14]. In this light, our hardness
results for single-sink unsplittable flow again highlight the sharp threshold involved with the
no-bottleneck assumption. That is, if we allow some slight variation in demands and capacities
within a tight range [1, 1 + ∆] we immediately jump from (likely) polylogarithmic approxima-
tions for MEDP to (known) polynomial hardness of the corresponding maximum unsplittable
flow instances.

We next note that Theorems 1.1 and 1.2 are stronger than Theorem 1.3 in the sense that
they have exponents of 1 − ε rather than 1

2
− ε. Again, this extra boost is due to their use

of exponential demand sizes. One can obtain a more refined picture as to how the hardness
of cardinality single-sink unsplittable/confluent flow varies with the demand sizes, or more
precisely how it varies on the bottleneck value dmax

umin
.3 Specifically, combining the approaches

used in Theorems 1.2 and 1.3 gives:

Theorem 1.5 Consider any fixed ε > 0 and dmax/umin > 1. It is NP-hard to approximate

cardinality single-sink unsplittable/confluent flow to within a factor of O(m
1
2
−ε ·

√
log(dmax

umin
)) in

undirected or directed graphs. For unsplittable flow, this remains true for planar graphs.

2In [20], they do however establish an inapproximability bound of n1/2−ε, for any ε > 0, on node-capacitated
USF in undirected graphs.

3This seems likely connected to a footnote in [3] that a lower bound of the form O(m
1
2−ε ·

√
log(dmax

umin
)) exists

for maximum unsplittable flow in directed graphs. Its proof was omitted however.

5

Once again we see the message that there is a sharp cutoff for dmax/umin > 1 even in
the large-demand regime. This is because if the bottleneck value is at most 1, then the no-
bottleneck assumption holds and, consequently, the single-sink unsplittable flow problem admits
a constant-factor approximation (not

√
m hardness). We mention that a similar hardness bound

cannot hold for the maximum throughput objective, since one can always reduce to the case
where dmax/umin is small with a polylogarithmic loss, and hence the lower bound becomes at

worst O(m
1
2
−ε · logm). We feel the preceding hardness bound is all the more interesting since

known greedy techniques yield almost-matching upper bounds, even for general multiflows.

Theorem 1.6 There is an O(
√
m log(dmax

umin
)) approximation algorithm for cardinality unsplit-

table flow and an O(
√
m log n) approximation algorithm for throughput unsplittable flow, in both

directed and undirected graphs.

We next present one hardness result for confluent flows assuming the no-bottleneck-assumption.
Again, recall that for the maximum single-sink unsplittable flow problem there is a constant
factor approximation algorithm given the no-bottleneck-assumption. We prove this is not the
case for the single-sink confluent flow problem by providing a super-constant lower bound. Its
proof is more complicated but builds on the techniques used for our previous results.

Theorem 1.7 Given the no-bottleneck assumption, the single-sink confluent flow problem can-
not be approximated to within a factor O(log1−ε n), for any ε > 0, unless P = NP . This
holds for both the maximum cardinality and maximum throughput objectives in undirected and
directed graphs.

Finally, we include a hardness result for the congestion minimization problem for confluent
flows. That is, the problem of finding the minimum value α ≥ 1 such that all demands can be
routed confluently if all node capacities are multiplied by α. This problem has two plausible
variants.

An α-congested routing is an unsplittable flow for the demands where the total load on any
node is at most α times its associated capacity. A strong congestion algorithm is one where the
resulting flow must route on a tree T such that for any demand v the nodes on its path in T must
have capacity at least d(v). A weak congestion algorithm does not require this extra constraint
on the tree capacities. Both variants are of possible interest. If the motive for congestion is to
route all demands in some limited number α of rounds of admission, then each round should
be feasible on T - hence strong congestion is necessary. On the other hand, if the objective
is to simply augment network capacity so that all demands can be routed, weak congestion is
the right notion. In Section 3.1.3 we show that it is hard to approximate strong congestion to
within polynomial factors.

Theorem 1.8 It is NP-hard to approximate the minimum (strong) congestion problem for
single-sink confluent flow instances (with polynomial-size demands) to factors of at most m.5−ε

for any ε > 0.

6

1.3 Overview of Paper

At the heart of our reductions are gadgets based upon the capacitated 2-disjoint paths problem.
We discuss this problem in Section 2. In Section 3, we prove the

√
m hardness of maximum

single-sink unsplittable/confluent flow in the small demand regime (Theorem 1.3); we give a
similar hardness for single-sink priority flow (Corollary 1.4). Using a similar basic construction,
we prove, in Section 4, the logarithmic hardness of maximum single-sink confluent flow even
given the no-bottleneck assumption (Theorem 1.7). In Section 5, we give lower bounds on the
approximability of the cardinality objective for general demand regimes (Theorems 1.2 and
1.5). Finally, in Section 6, we present an almost matching upper bound for unsplittable flow
(Theorem 1.6). and priority flow.

2 The Two-Disjoint Paths Problem

Our hardness reductions require gadgets based upon the capacitated 2-disjoint paths problem.
Before describing this problem, recall the classical 2-disjoint paths problem:

2-Disjoint Paths (Uncapacitated): Given a graph G and node pairs {x1, y1} and {x2, y2}.
Does G contain paths P1 from x1 to y1 and P2 from x2 to y2 such that P1 and P2 are disjoint?

Observe that this formulation incorporates four distinct problems because the graph G may
be directed or undirected and the desired paths may be edge-disjoint or node-disjoint. In
undirected graphs the 2-disjoint paths problem, for both edge-disjoint and node disjoint paths,
can be solved in polynomial time – see Robertson and Seymour [25]. In directed graphs, perhaps
surprisingly, the problem is NP-hard. This is the case for both edge-disjoint and node disjoint
paths, as shown by Fortune, Hopcroft and Wyllie [19].

In general, the unsplittable and confluent flow problems concern capacitated graphs. There-
fore, our focus is on the capacitated version of the 2-disjoint paths problem.

2-Disjoint Paths (Capacitated): Let G be a graph whose edges have capacity either α or
β, where β ≥ α. Given node pairs {x1, y1} and {x2, y2}, does G contain paths P1 from x1 to y1
and P2 from x2 to y2 such that:
(i) P1 and P2 are disjoint.
(ii) P2 may only use edges of capacity β. (P1 may use both capacity α and capacity β edges.)

For directed graphs, the result of Fortune et al. [19] immediately implies that the capacitated
version is hard – simply assume every edge has capacity β. In undirected graphs, the case of
node-disjoint paths was proven to be hard by Guruswami et al. [20]. The case of edge-disjoint
paths was recently proven to be hard by Naves, Sonnerat and Vetta [23], even in planar graphs

7

where terminals lie on the outside face (in an interleaved order, which will be important for
us). These results are summarised in Table 1.

Directed Undirected
Node-Disjoint NP-hard [19] NP-hard [20]
Edge-Disjoint NP-hard [19] NP-hard [23]

Table 1: Hardness of the Capacitated 2-Disjoint Paths Problem

Recall that the unsplittable flow problem has capacities on edges, whereas the confluent
flow problem has capacities on nodes. Consequently, our hardness reductions for unsplittable
flows require gadgets based upon the hardness for edge-disjoint paths [23]; for confluent flows
we require gadgets based upon the hardness for node-disjoint paths [20].

3 Polynomial Hardness of Single-Sink Unsplittable,

Confluent and Priority Flow

In this section, we establish that the single-sink maximum unsplittable and confluent flow prob-
lems are hard to approximate within polynomial factors for both the cardinality and throughput
objectives. We will then show how these hardness results extend to the single-sink maximum
priority flow problem. We begin with the small demand regime by proving Theorem 1.3. Its
proof introduces some core ideas that are used in later sections in the proofs of Theorems 1.5
and 1.7.

3.1
√
n-Hardness in the Small Demand Regime

Our approach uses a grid routing structure much as in the hardness proofs of Guruswami et
al. [20]. Specifically:

(1) We introduce a graph GN that has the following properties. There is a set of pairwise
crossing paths that can route demands of total value,

∑N
i=1(1 + iδ) = N + δ 1

2
N(N + 1). On

the other hand, any collection of pairwise non-crossing paths can route at most dmax = 1 +Nδ
units of the total demand. For a given ∆ ∈ (0, 1) we choose δ to be small enough so that
dmax ≤ 1 + ∆ < 2.

(2) We then build a new network G by replacing each node of GN by an instance of the
capacitated 2-disjoint paths problem. This routing problem is chosen because it induces the
following properties. If it is a YES-instance, then a maximum unsplittable (or confluent) flow
on G corresponds to routing demands in GN using pairwise-crossing paths. In contrast, if it
is a NO-instance, then a maximum unsplittable or confluent flow on G corresponds to routing
demands in GN using pairwise non-crossing paths.

8

Since GN contains n = O(N2) nodes, it follows that an approximation algorithm with
guarantee better than Θ(

√
n) allows us to distinguish between YES- and NO-instances of our

routing problem, giving an inapproximability lower bound of Ω(
√
n). Furthermore, at all stages

we show how this reduction can be applied using only undirected graphs. This will prove
Theorem 1.3.

3.1.1 A Half-Grid Graph GN

t 

s1 

1+2δ 

1+3δ 

1+Nδ 1+Nδ  1+Nδ  1+Nδ 

1+Nδ 

1+2δ 

1+2δ 

1+2δ 

1+2δ 

1+3δ  1+3δ 

1+3δ 

1+3δ 

1+3δ 

1+(N‐1)δ  1+(N‐1)δ 

1+(N‐1)δ 

1+δ 

1+(N‐1)δ 

1+(N‐1)δ 

1+δ 

1+δ 

1+δ 

1+δ 

1+δ  1+2δ 

1+(N‐1)δ 

1+Nδ 

s2 

s3 

sN‐1 

sN 

t2  t3  tN t1  tN‐1 

Figure 1: A Half-Grid GN .

Let’s begin by defining the graph GN . There are N rows (numbered from top to bottom)
and N columns (numbered from left to right). We call the leftmost node in the ith row si, and
the bottom node in the jth column tj. There is a demand of size ci := 1 + iδ located at si.
Recall, that δ is chosen so that all demands and capacities lie within a tight range [1, 1 + ∆]

9

for fixed ∆ small. All the edges in the ith row and all the edges in the ith column have capacity
ci. The ith row extends as far as the ith column and vice versa; thus, we obtain a “half-grid”
that is a weighted version of the network considered by Guruswami et al. [20]. Finally we add
a sink t. There is an edge of capacity cj between tj to t. The complete construction is shown
in Figure 1.

For the unsplittable flow problem we have edge capacities. We explain later how the node
capacities are incorporated for the confluent flow problem. We also argue about the undirected
and directed reductions together. For directed instances we always enforce edge directions to
be downwards and to the right.

Note that there is a unique si − t path P ∗i consisting only of edges of capacity ci, that is,
the hooked path that goes from si along the ith row and then down the ith column to t. We
call this the canonical path for demand i.

Claim 3.1 Take two feasible paths Qi and Qj for demands i and j. If i < j, then the paths
must cross on row j, between columns i and j − 1.

Proof. Consider demand i originating at si. This demand cannot use any edge in columns
1 to i − 1 as it is too large. Consequently, any feasible path Qi for demand i must include
all of row i. Similarly, Qj must contain all of row j. Row j cuts off si from the sink t, so Qi

must meet Qj on row j. Demand i cannot use an edge in row j as demand j is already using
up all the capacity along that row. Thus Qi crosses Qj at the point they meet. As above,
this meeting cannot occur in columns 1 to i− 1. Thus the crossing point must occur on some
column between i and j − 1 (by construction of the half-grid, column j only goes as high as
row j so the crossing cannot be there). 2

By Claim 3.1, if we are forced to route using pairwise non-crossing paths, then only one
demand can route. Thus we can route at most a total of cN = 1 + δN < 2 units of demand.

3.1.2 The Instance G

We build a new instance G by replacing each degree 4 node in GN with an instance of the 2 -
disjoint paths problem. For the unsplittable flow problem in undirected graphs we use gadgets
H corresponding to the capacitated edge-disjoint paths problem. Observe that a node at the
intersection of column i and row j (with j > i) in GN is incident to two edges of capacity ci
and to two edges of weight cj. We construct G by replacing each such node of degree four with
the routing graph H. We do this in such a way that the capacity ci edges of GN are incident
to x1 and y1, and the cj edges are incident to x2 and y2. We also let α = ci and β = cj.

For the confluent flow problem in undirected graphs we now have node capacities. Hence we
use gadgets H corresponding to the node-capacitated 2-paths problem discussed above. Again
x1 and y1 are given capacity ci whilst x2 and y2 have capacity cj.

For directed graphs, the mechanism is simpler as the gadgets may now come from the
uncapacitated disjoint paths problem. Thus the hardness comes from the directedness and

10

not from the capacities. Specifically, we may set the edge capacities to be C = max{ci, cj}.
Moreover, for unsplittable flow we may perform the standard operation of splitting each node
in H into two, with the new induced arc having capacity of C. It follows that if there are two
flow paths through H, each carrying at least ci ≥ cj flow, then they must be from x1 to y1 and
x2 to y2. These provide a solution to the node-disjoint directed paths problem in H.

The hardness result will follow once we see how this construction relates to crossing and
non-crossing collections of paths.

Lemma 3.1 If H is a YES-instance, then the maximum unsplittable/confluent flow in G has
value at least N . For a NO-instance the maximum unsplittable/confluent flow has value at most
1 + ∆ < 2.

Proof. If H is a YES-instance, then we can use its paths to produce paths in G, whose images
in GN , are free to cross at any node. Hence we can produce paths in G whose images are the
canonical paths P ∗i , 1 ≤ i ≤ N in GN . This results in a flow of value greater than N . Note
that in the confluent case, these paths yield a confluent flow as they only meet at the root t.

Now suppose H is a NO-instance. Take any flow and consider two paths Q̂i and Q̂j in G
for demands i and j, where i < j. These paths also induce two feasible paths Qi and Qj in the
half-grid GN . By Claim 3.1, these paths cross on row j of the half-grid (between columns i and
j − 1). In the directed case (for unsplittable or confluent flow) if they cross at a grid-node v,
then the paths they induce in the copy of H at v must be node-disjoint. This is not possible in
the directed case since such paths do not exist for (x1, y1) and (x2, y2).

In the undirected confluent case, we must also have node-disjoint paths through this copy
of H. As we are in row j and a column between column i and j − 1, we have β = cj and
ci ≤ α ≤ cj−1. Thus, demand j can only use the β-edges of H. This contradicts the fact that
H is a NO-instance. For the undirected case of unsplittable flow the two paths through H
need to be edge-disjoint, but now we obtain a contradiction as our gadget was derived from the
capacitated edge-disjoint paths problem.

It follows that no such pair Q̂i and Q̂j can exist and, therefore, the confluent/unsplittable
flow routes at most one demand and, hence, routes a total demand of at most 1 + ∆. 2

We then obtain our hardness result.

Theorem 1.3. Neither cardinality nor throughput can be approximated to within a factor of
O(m

1
2
−ε), for any ε > 0, in the single-sink unsplittable and confluent flow problems. This holds

for undirected and directed graphs even when instances are restricted to have bottleneck value
dmax
umin

= 1 + ∆ where ∆ > 0 is arbitrarily small.

Proof. It follows that if we could approximate the maximum (unsplittable) confluent flow
problem in G to a factor better than N , we could determine whether the optimal solution is at
least N or at most 1 + ∆. This in turn would allow us to determine whether H is a YES- or a
NO-instance.

11

Note that G has n = Θ(pN2) edges, where p = |V (H)|. If we take N = Θ(p
1
2
(1
ε
−1)), where

ε > 0 is an (arbitrarily) small constant, then n = p
1
ε and so N = Θ(n

1
2
(1−ε)). A precise lower

bound of n.5−ε
′

is obtained for ε′ > ε sufficiently small, when n is sufficiently large. 2

3.1.3 Priority Flows and Congestion

We now show the hardness of priority flows. To do this, we use the same half-grid construction,
except we must replace the capacities by priorities. This is achieved in a straight-forward
manner: priorities are defined by the magnitude of the original demands/capacities. The larger
the demand or capacity in the original instance, the higher its priority in the new instance.
(Given the priority ordering we may then assume all demands and capacities are set to 1.) In
this setting, observe that Claim 3.1 also applies for priority flows.

Claim 3.2 Consider two feasible paths Qi and Qj for demands i and j in the priority flow
problem. If i < j, then the paths must cross on row j, between columns i and j − 1.

Proof. Consider demand i originating at si. This demand cannot use any edge in columns 1 to
i− 1 as they do not have high enough priority. Consequently, any feasible path Qi for demand
i must include all unit capacity edges of row i. Similarly, Qj must contain all of row j. Row j
cuts off si from the sink t, so Qi must meet Qj on row j. Demand i cannot use an edge in row
j as demand j is already using up all the capacity along that row. Thus Qi crosses Qj at the
point they meet. As above, this meeting cannot occur in columns 1 to i− 1. Thus the crossing
point must occur on some column between i and j − 1. 2

Repeating our previous arguments, we obtain the following hardness result for priority flows.
(Again, it applies to both throughput and cardinality objectives as they coincide for priority
flows.)
Corollary 1.4. The maximum single-sink priority flow problem cannot be approximated to
within a factor of m

1
2
−ε, for any ε > 0, in planar directed or undirected graphs. 2

We close the section by establishing Theorem 1.8. Consider grid instance built from a YES
instance of the 2 disjoint path problem. As before we may find a routing of all demands with
congestion at most 1. Otherwise, suppose that the grid graph is built from a NO instance and
consider a tree T returned by a strong congestion algorithm. As it is a strong algorithm, the
demand in row i must follow its canonical path horizontally to the right as far as it can. As it
is a confluent flow, all demands from rows > i must accumulate at this rightmost node in row
i. Inductively this implies that the total load at the rightmost node in row 1 has load > N .
As before, for any ε > 0 we may choose N sufficiently large so that N ≥ n.5−ε. Hence we have
a YES instance of 2 disjoint paths if and only if the output from a n.5−ε-approximate strong
congestion algorithm returns a solution with congestion ≤ N .

12

4 Logarithmic Hardness of Single-Sink Confluent Flow

with the No-Bottleneck Assumption

We now prove the logarithmic hardness of the confluent flow problem given the no-bottleneck
assumption. A similar two-step plan is used as for Theorem 1.3 but the analysis is more
involved.

(1) We introduce a planar graph GN which has the same structure as our previous half-grid,
except that its edge weights are changed. As before we have demands associated with the si’s,
but we assume these demands are tiny – this guarantees that the no-bottleneck assumption
holds. We thus refer to the demands located at an si as the packets from si. We define GN

to ensure that there is a collection of pairwise crossing “trees” (to be defined) that can route
packets of total value equal to the harmonic number HN ≈ logN . On the other hand, any
collection of pairwise non-crossing trees can route at most one unit of packet demand.

(2) We then build a new network G by replacing each node of GN by an instance of the
2-disjoint paths problem. Again, this routing problem is chosen because it induces the following
properties. If it is a YES-instance, then we can find a routing that corresponds to pairwise
crossing trees. Hence we are able to route HN demand. In contrast, if it is a NO-instance, then
a maximum confluent flow on G is forced to route using a non-crossing structure and this forces
the total flow to be at most 1.

It follows that an approximation algorithm with guarantee better than logarithmic would
allow us to distinguish between YES- and NO-instances of our routing problem, giving a lower
bound of Ω(logN). We will see that this bound is equal to Θ(log1−ε n).

4.1 An Updated Half-Grid Graph.

Again we take the graph GN with N rows (now numbered from bottom to top) and N columns
(now numbered from right to left). All the edges in the ith row and all the edges in the ith

column have capacity 1
i
. The ith row extends as far as the ith column and vice versa; thus, we

obtain a half-grid similar to our earlier construction but with updated weights. Then we add a
sink t. There is an edge of capacity 1

i
to t from the bottom node (called ti) in column i. Finally,

at the leftmost node (called si) in row i there is a collection of packets (“sub-demands”) whose
total weight is 1

i
. These packets are very small. In particular, they are much smaller than 1

n
,

so they satisfy the no-bottleneck assumption. The complete construction is shown in Figure 2.
In the directed setting, edges are oriented to the right and downwards.

Again, there is a unique s-t path P ∗i consisting only of edges of weight 1
i
, that is, the

hooked path that goes from si along the ith row and then down the ith column to t. Moreover,
for i 6= j, the path P ∗i intersects P ∗j precisely once. If we route packets along the paths
P∗ = {P ∗1 , P ∗2 , . . . , P ∗N}, then we obtain a flow of total value HN = 1 + 1

2
+ . . . 1

N
. Since every

13

t 

1 

1/2 

1/N 

1/N 

1 

1 

1/(N‐1) 

1/2 

1/(N‐1) 

1/(N‐1) 

1/(N‐2) 

1/(N‐1) 

1/(N‐2) 

1/(N‐2) 

1/(N‐2) 

1/(N‐2) 

1/(N‐2) 1/N 

1/2 

1/N 

1/N 

1 

1/N 

1/(N‐1) 

1/2 1/2 

1/(N‐1) 

1/2 

1 s1 

sN‐2 

sN 

sN‐1 

s2 

tN  tN‐1  tN‐2  t2  t1 

Figure 2: An Updated nba Half-Grid GN .

edge incident to t is used in P∗ with its maximum capacity, this solution is a maximum single-
sink flow. Clearly, each P ∗i is a tree, so this routing corresponds to our notion of routing on
“crossing trees”.

We then build G as before by replacing the degree four nodes in the grid by our disjoint-
paths gadgets. Our first objective is to analyze the maximum flow possible in the case where our
derived instance G is made from NO-instances. Consider a confluent flow in G. If we contract
the pseudo-nodes, this results in some leaf-to-root paths in the subgraph GN . We define Ti
as the union of all such leaf-to-root paths terminating at ti. If we have a NO-instance, then
the resulting collection T = {T1, T2, . . . , TN} forms non-crossing subgraphs. That is, if i 6= j,
then there do not exist leaf-to-root paths Pi ∈ Ti and Pj ∈ Tj which cross in the standard
embedding of GN . Since we started with a confluent flow in G, the flow paths within each Ti
are edge-confluent. That is, when two flow paths share an edge, they must thereafter follow the
same path to ti. Note that they could meet and diverge at a node if they use different incoming
and outgoing edges. In the following, we identify the subgraph Ti with its edge-confluent flow.

The capacity of a Ti is the maximum flow from its leaves to ti. The capacity of a collection
T is then the sum of these capacities. We first prove that the maximum value of a flow (i.e.,

14

capacity) is significantly reduced if we require a non-crossing collection of edge-confluent flows.
One should note that as our demands are tiny, we may essentially route any partial amount
x ≤ 1

i
from a node si; we cannot argue as though we route the whole 1

i
. On the other hand,

any packets from si must route on the same path, and in particular si lies in a unique Tj (or
none at all). Another subtlety in the proof is to handle the fact that we cannot apriori assume
that there is at most one leaf sj in a Ti. Hence such a flow does not just correspond to a
maximum uncrossed unsplittable flow. In fact, because the packets are tiny, it is easy to verify
that all the packets may be routed unsplittably (not confluently) even if they are required to
use non-crossing paths.

Lemma 4.1 The maximum capacity of a non-crossing edge-confluent flow in GN is at most 2.

Proof. Let ti1 , ti2 , ..., tik be the roots of the subgraphs Ti which support the edge-confluent
flow, where wlog i1 > i2 > · · · > ik. We argue inductively about the topology of where these
supports live in GN . For i ≤ j we define a subgrid G(i, j) of GN induced by columns and rows
whose indices lie in the range [i, j]. For instance, the rightmost column of G(i, j) has capacity
1
i

and the leftmost column 1
j
; similarly, the lowest row of G(i, j) has capacity 1

i
and the highest

row 1
j
.

Obviously all the Ti’s route in G(1, N) = G(r1, `1) where we define r1 = 1, `1 = N . Consider
the topologically highest path Pi1 in Ti1 , and let r′1 be the highest row number where this path
intersects column n1 = ti1 . We define r2 = r′1 + 1 and `2 = n1 − 1 and consider the subgrid
G(r2, `2). Observe that in the undirected case it is possible that Pi1 routes through the subgrid
G(r2, `2); see Figure 3(b). In the directed case this cannot happen; see Figure 3(a).

ri 

ri+1 

r’i 

li  li+1 
ni  ri 

li 

li+1 

ri+1 

(a)

ri 

ri+1 
r’i 

li  li+1 
ni  ri 

li 

li+1 

ri+1 

(b)

Figure 3

15

In addition, it is possible that Ti2 completely avoids routing through the subgrid G(r2, `2).
But, for this to happen, it must have a cut-edge (containing all its flow) in column ti1 ; conse-
quently, its total flow is then at most 1

i1
. It is also possible that it has some flow which avoids

G(r1, `1) and some that does not. Since Ti1 also has maximum flow at most 1
i1

, it follows that

in every case the total flow is at most 2
i1

plus the maximum size of a confluent flow in the
subproblem G(r2, `2). Note that in this subproblem, its “first” rooted subgraph may be at ti2
or ti3 depending on which of the two cases above occurred for Ti2 .

If we iterate this process, at a general step i we have a edge-confluent flow in the subgrid
G(ri, `i) whose lower-left corner is in row ri and column `i (hence ri ≤ `i). Note that these
triangular grids are in fact nested. Let Tni be its subgraph rooted at a tni with ni maximized
(that is, furthest to the left on bottom row). As before, the total flow in this sub-instance is at
most 2

ni
plus a maximum edge-confluent flow in some G(ri+1, `i+1). Since each new sub-instance

has at least one less rooted flow, this process ends after at most k∗ ≤ k steps. Note that for
i < k∗ we have 2

ni
≤ 2

`i+1
and for i = k∗ we have 2

nk∗
≤ 1

rk∗
. The latter inequality follows since

for each i we have ri ≤ ni ≤ `i.
Now by construction we have the grids are nested and so `1 > `2 > . . . `k∗ ≥ rk∗ > . . . r2 >

r1(recall that columns are ordered increasingly from right to left). Since r1 = 1, we may
inductively deduce that ri ≥ i for all i. Thus `i ≥ k∗ for all i. The total flow in our instance is
then at most

2 ·
∑

1≤i≤k∗

1

ni
≤ 2 · (

∑
2≤i≤k∗

1

`i
+

1

rk∗
)

≤ 2 ·
∑

1≤i≤k∗

1

k∗

= 2

The lemma follows. 2

We can now complete the proof of the approximation hardness. Observe that any node of
degree four in GN is incident to two edges of weight 1

i
and to two edges of weight 1

j
, for some

j < i. Again, we construct a graph G by replacing each node of degree four with an instance H
of the 2 node-disjoint paths problem, where the weight 1

i
edges of GN are incident to x1 and y1,

and the weight 1
j

edges are incident to x2 and y2. In the undirected case we require capacitated

node-disjoint paths and set α = 1
i

and β = 1
j
. More precisely, since we are dealing with node

capacities in confluent flows, we actually subdivide each edge of H and the new node inherits
the edge’s capacity. The nodes x1 and y1 also have capacity 1

i
whilst the nodes x2 and y2 have

capacity 1
j

in order to simulate the edge capacities of GN .

Lemma 4.2 If H is a YES-instance, then the maximum single-sink confluent flow in G has
value HN . If H is a NO-instance, then the maximum confluent flow in G has value at most 2.

16

Proof. It is clear that if H is a YES-instance, then the two feasible paths in H can be used
to allow paths in GN to cross at any node without restrictions on their values. This means we
obtain a confluent flow of value HN by using the canonical paths P ∗i , 1 ≤ i ≤ N .

Now suppose that H is a NO-instance and consider how a confluent flow T = {T1, . . . , Tn}
routes packets through the gadgets. As it is a NO-instance, the image of the trees (after
contracting the H’s to single nodes) in GN yields a non-crossing edge-confluent flow. The
capacity of this collection in GN is at least that in G. By Lemma 4.1, their capacity is at most
2, completing the proof. 2

Theorem 1.7. Given the no-bottleneck assumption, the single-sink confluent flow problem
cannot be approximated to within a factor O(log1−ε n), for any ε > 0, unless P = NP . This
holds for both the maximum cardinality and maximum throughput objectives in undirected and
directed graphs.

Proof. It follows that if we could approximate the maximum confluent flow problem in G to a
factor better than HN/2, we could determine whether the optimal solution is 2 or HN . This in
turn would allow us to determine whether H is a YES- or a NO-instance.

Note that G has n = Θ(pN2) edges, where p = |V (H)|. If we take N = Θ(p
1
2
(1
ε
−1)),

where ε > 0 is a small constant, then HN = Θ(1
2
(1
ε
− 1) log p). For p sufficiently large, this is

Ω((log n)1−ε) = (1
ε

log p)1−ε. This gives a lower bound of Ω((log n)1−ε). 2

Similarly, if we are restricted to consider only flows that decompose into k disjoint trees
then it is not hard to see that:

Theorem 4.3 Given the no-bottleneck assumption, there is a Ω(log k) hardness of approxima-
tion, unless P = NP , for the problem of finding a maximum confluent flow that decomposes
into at most k disjoint trees. 2

5 Stronger Lower Bounds for Cardinality Single-Sink

Unsplittable Flow with Arbitrary Demands

In the large demand regime even stronger lower bounds can be achieved for the cardinality
objective. To see this, we explain the technique of Azar and Regev [3] (used to prove Theo-
rem 1.1) in Section 5.1 and show how to extend it to undirected graphs and to confluent flows.
Then in Section 5.2, we combine their construction with the half-grid graph to obtain lower
bounds in terms of the bottleneck value (Theorem 1.5).

17

5.1 m1−ε Hardness in the Large-Demand Regime

Theorem 1.2. If P 6= NP then, for any ε > 0, there is no O(m1−ε)-approximation algorithm
for the cardinality objective of the single-sink unsplittable/confluent flow problem in undirected
graphs.

Proof. We begin by describing the construction of Azar and Regev for directed graphs. They
embed instances of the uncapacitated 2-disjoint paths problem into a directed path. Formally,
we start with a directed path z1, z2, . . . , z` where t = z` forms our sink destination for all
demands. In addition, for each i < `, there are two parallel edges from zi−1 to zi. One of
these has capacity 2i and the other has a smaller capacity of 2i − 1. There is a demand si
from each zi, i < ` to z` of size 2i+1. Note that this unsplittable flow instance is feasible as
follows. For each demand sj, we may follow the high capacity edge from zj to zj+1 (using up
all of its capacity) and then use low capacity edges on the path zj+1, zj+2, . . . , z`. Call these
the canonical paths for the demands. The total demand on the low capacity edge from zj is
then

∑
i≤j 2i = 2j+1 − 1, as desired.

Now replace each node zj, 1 ≤ j < `, by an instance Hj of the uncapacitated directed
2-disjoint paths problem. Each edge in Hj is given capacity 2j+1. Furthermore:
(i) The tail of the high capacity edge out of zj is identified with the node y2.
(ii) The tail of the low capacity edge out of zj is identified with y1.
(iii) The heads of both edges into zj (if they exist) are identified with x1.
(iv) The node x2 becomes the starting point of the demand sj from zj.
This construction is shown in Figure 4.

t	

s0	

s2	
 s3	
 sq-­‐1	
 sq	

x1	
 y1	

x2	

y2	

x1	
 y1	

x2	

y2	

x1	
 y1	

x2	

y2	

x1	
 y1	

x2	

y2	

x1	
 y1	

x2	

y2	

s1	

21	

21-­‐1	

23	
 22	

22-­‐1	
 23-­‐1	
 2q-­‐1-­‐1	

2q	
 2q-­‐1	

2q-­‐1	
 2q-­‐2-­‐1	

2q-­‐2	

Figure 4: An Azar-Regev Path

Now if we have a YES-instance of the 2-disjoint paths problem, we may then simulate the
canonical paths in the standard way. The demand in Hj uses the directed path from x2 to y2
in Hj; it then follows the high capacity edge from y2 to the x1-node in the next instance Hj+1.

18

All the total demand arriving from upstream H i’s entered Hj at its node x1 and follows the
directed path from x1 to y1. This total demand is at most

∑
i≤j 2i and thus fits into the low

capacity edge from Hj into Hj+1. Observe that this routing is also confluent in our modified
instance because the paths in the Hj’s are node-disjoint. Hence, if we have a YES-instance of
the 2-disjoint paths problem, both the unsplittable and confluent flow problems have a solution
routing all of the demands.

Now suppose that we have a NO-instance, and consider a solution to the unsplittable (or
confluent) flow problem. Take the highest value i such that the demand from H i is routed.
By construction, this demand must use a path P2 from x2 to y2. But this saturates the high
capacity edge from y2. Hence any demand from Hj, j < i must pass from y1 to x1 while
avoiding the edges of P2. This is impossible, and so we route at most one demand.

This gives a gap of ` for the cardinality objective. Azar-Regev then choose ` = |V (H)|d 1ε e
to obtain a hardness of Ω(n1−ε′).

Now consider undirected graphs. Here we use an undirected instance of the capacitated
2-disjoint paths problem. We plug this instance into each Hj, and use the two capacity values
of β = 2j+1 and α = 2j+1 − 1. A similar routing argument then gives the lower bound. 2

We remark that it is easy to see why this approach does not succeed for the throughput
objective. The use of exponentially growing demands implies that high throughput is achieved
simply by routing the largest demand.

5.2 Lower Bounds for Arbitrary Demands

By combining paths and half-grids we are able to refine the lower bounds in terms of the bot-
tleneck value (or demand spread).

Theorem 1.5. Consider any fixed ε > 0 and dmax/umin > 1. It is NP-hard to approximate

cardinality single-sink unsplittable/confluent flow to within a factor of O(
√

log(dmax
umin

) ·m 1
2
−ε) in

undirected or directed graphs. For unsplittable flow, this remains true for planar graphs.

Proof. We start with two parameters p and q. We create p copies of the Azar-Regev path and
attach them to a p× p half-grid, as shown in Figure 5.

Now take the ith Azar-Regev path, for each i = 1, 2 . . . p. The path contains q supply nodes
with demands of sizes 2(i−1)q, 2(i−1)q+1, . . . , 2iq−1. (Supply node sj has demand 2j−1.) Therefore
the total demand on path i is τi := 2(i−1)q(2q− 1) < 2iq. The key point is that the total demand
of path i is less than the smallest demand in path i + 1. Note that we have pq demands, and
thus demand sizes from 20 up to 2pq−1. Consequently the demand spread is 2pq−1. We set
umin = dmin and thus

pq − 1 = log

(
dmax
dmin

)
= log

(
dmax
umin

)

19

t 

t2  t3  tp t1  tp‐1 

sq‐1 s1 
s2 

spq‐1 

sq 

spq 

s3 

s(p‐1)q+1 
s(p‐1)q+2 

Figure 5

It remains to prescribe capacities to the edges of the half-grid. To do this every edge in ith
canonical hooked path has capacity τi (not ci). These capacity assignments, in turn, induce
corresponding capacities in each of the disjoint paths gadgets. It follows that if the each gadget
on the paths and half-grid correspond to a YES-instance gadget then we may route all pq
demands.

Now suppose the gadgets correspond to a NO-instance. It follows that we may route at most
one demand along each Azar-Regev path. But, by our choice of demand values, any demand
on the ith path is too large to fit into any column j < i in the half-grid. Hence we have the
same conditions required in Theorem 1.3 to show that at most one demand in total can feasibly
route. It follows that we cannot approximate the cardinality objective to better than a factor
pq.

Note that the construction contains at most m = O((qp+p2) · |E(H)|) edges, where H is the

size of the 2-disjoint paths instance. Now we select p and q such that q ≥ p and pq ≥ |E(H)| 1ε .
Then, for some constant C, we have

C ·m. 1
2
−ε ·

√
log(

dmax
dmin

) = m
1
2
−ε ·

√
log(

dmax
dmin

)

≤ √
pq · √pq

= pq

20

Therefore, since we cannot approximate to within pq, we cannot approximate the cardinality

objective to better than a factor O(
√

log(dmax
umin

) ·m 1
2
−ε). 2

6 Upper Bounds for Flows with Arbitrary Demands

In this section we present upper bounds for maximum flow problems with arbitrary demands.

6.1 Unsplittable Flow with Arbitrary Demands

One natural approach for the cardinality unsplittable flow problem is used repeatedly in the lit-
erature (even for general multiflows). Group the demands into at most O(log dmax

dmin
) ≥ log(dmax

umin
)

bins, and then consider each bin separately. This approach can also be applied to the through-
put objective (and to the more general profit-maximisation model). This immediately incurs
a lost factor relating to the number of bins, and this feels slightly artificial. In fact, given the
no-bottleneck assumption regime, there is no need to lose this extra factor: Baveja et al [4]
gave an O(

√
m) approximation for profit-maximisation when dmax ≤ umin. On the other hand,

our lower bound in Theorem 1.5 shows that if dmax > umin we do need to lose some factor
dependent on dmax. But how large does this need to be? The current best upper bound
is O(log(dmax

umin
) ·
√
m logm) by Guruswami et al. [20], and this works for the general profit-

maximisation model.4 For the cardinality and throughput objectives, however, we can obtain
a better upper bound. The proof combines analyses from [4] and [22] (which focus on the no-
bottleneck assumption case). We emphasize that the following theorem applies to all multiflow
problems not just the single-sink case.

Theorem 1.6. There is an O(
√
m log(dmax

umin
)) approximation algorithm for cardinality unsplit-

table flow and an O(
√
m log n) approximation algorithm for throughput unsplittable flow, in both

directed and undirected graphs.

Proof. We apply a result from [20] which shows that for cardinality unsplittable flow, with
dmax ≤ ∆dmin, the greedy algorithm yields a O(∆

√
m) approximation. Their proof is a technical

extension of the greedy analysis of Kolliopoulos and Stein [22]. We first find an approximation
for the sub-instance consisting of the demands at most umin. This satisfies the no-bottleneck
assumption and an O(

√
m)-approximation is known for general profits [4]. Now, either this

sub-instance gives half the optimal profits, or we focus on demands of at least umin. In the
remaining demands, by losing a log(dmax

umin
) factor, we may assume dmax ≤ ∆dmin, for some

∆ = O(1). The greedy algorithm above then gives the desired guarantee for the cardinality

4Actually, they state the bound as log3/2m because exponential size demands are not considered in that
paper.

21

problem. The same approach applies for the throughput objective, since all demands within
the same bin have values within a constant factor of each other. Moreover, we require only
log n bins as demands of at most dmax

n
may be discarded as they are not necessary for obtaining

high throughput. 2

As alluded to earlier, this upper bound is not completely satisfactory as pointed out in [8].
Namely, all of the lower bound instances have a linear number of edges m = O(n). Therefore,
it is possible that there exist upper bounds dependent on

√
n. Indeed, for the special case

of MEDP in undirected graphs and directed acyclic graphs O(
√
n)-approximations have been

developed [9, 24]. Such an upper bound is not known for general directed MEDP however; the
current best approximation is min{

√
m,n2/3}.

6.2 Priority Flow with Arbitrary Demands

Next we show that the lower bound for the maximum priority flow problem is tight.

Theorem 6.1 Consider an instance of the maximum priority flow problem with k priority
classes. There is a polytime algorithm that approximates the maximum flow to within a factor
of O(min{k,

√
m}).

Proof: First suppose that k ≤
√
m. Then for each class i, we may find the optimal priority flow

by solving a maximum flow problem in the subgraph induced by all edges of priority i or better.
This yields a k-approximation. Next consider the case where

√
m < k. Then we may apply

Lemma 6.2, below, which implies that the greedy algorithm yields a O(
√
m)-approximation.

The theorem follows. 2

The following proof for uncapacitated networks follows ideas from the greedy analysis of
Kleinberg [21], and Kolliopoulos and Stein [22]. One may also design an O(

√
m)-approximation

for general edge capacities using more intricate ideas from [20]; we omit the details.

Lemma 6.2 A greedy algorithm yields a O(
√
m)-approximation to the maximum priority flow

problem.

Proof: We now run the greedy algorithm as follows. On each iteration, we find the demand
si which has a shortest feasible path in the residual graph. Let Pi be the associated path, and
delete its edges. Let the greedy solution have cardinality t. Let O be the optimal maximum
priority flow and let Q be those demands which are satisfied in some optimal solution but not
by the greedy algorithm. We aim to upper bound the size of Q.

Let Q be a path used in the optimal solution satisfying some demand in Q. Consider any
edge e and the greedy path using it. We say that Pi blocks an optimal path Q if i is the least
index such that Pi and Q share a common edge e. Clearly such an i exists or else we could still
route on Q.

22

Let li denote the length of Pi. Let ki denote the number of optimal paths (corresponding
to demands in Q) that are blocked by Pi. It follows that ki ≤ li. But, by the definition of the
greedy algorithm, we have that each such blocked path must have length at least li at the time
when Pi was packed. Hence it used up at least li ≥ ki units of capacity in the optimal solution.
Therefore the total capacity used by the unsatisfied demands from the optimal solution is at
least

∑t
i=1 k

2
i . As the total capacity is at most m we obtain

(
∑t
i=1 ki)

2

t
≤

t∑
i=1

k2i ≤ m (1)

where the first inequality is by the Chebyshev Sum Inequality. Since
∑
i ki = |Q| = |O| − t, we

obtain (|O|−t)2
t
≤ m. One may verify that if t < |O|√

m
then this inequality implies |O| = O(

√
m)

and, so, routing a single demand yields the desired approximation. 2

7 Conclusion

It would be interesting to improve the upper bound in Theorem 1.6 to be in terms of
√
n rather

than
√
m. Resolving the discrepancy with Theorem 1.5 between

√
log(dmax

umin
) and log(dmax

umin
)

would also clarify the complete picture.

Acknowledgments. The authors thank Guyslain Naves for his careful reading and precise
and helpful comments. The authors gratefully acknowledge support from the NSERC Discovery
Grant Program.

References

[1] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Talwar, and L. Zhang. Inap-
proximability of edge-disjoint paths and low congestion routing on undirected graphs.
Combinatorica, 30(5):485–520, 2010.

[2] M. Andrews and L. Zhang. Logarithmic hardness of the undirected edge-disjoint paths
problem. Journal of the ACM, 53(5):745–761, 2006.

[3] Y. Azar and O. Regev. Strongly polynomial algorithms for the unsplittable flow prob-
lem. In Proceedings of the Eighth Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 15–29. Springer, 2001.

[4] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths and related
routing and packing problems. Mathematics of Operations Research, 25(2):255–280, 2000.

23

[5] P. Bonsma, J. Schulz, and A. Wiese. A constant factor approximation algorithm for
unsplittable flow on paths. In Proceedings of the Fifty-Second Symposium on Foundations
of Computer Science (FOCS), pages 47–56. IEEE, 2011.

[6] M. Charikar, J.S. Naor, and B. Schieber. Resource optimization in QoS multicast routing
of real-time multimedia. IEEE/ACM Transactions on Networking, 12(2):340–348, 2004.

[7] C. Chekuri, A. Ene, and N. Korula. Unsplittable flow in paths and trees and column-
restricted packing integer programs. In Proceedings of the Twelveth Workshop on Approx-
imation Algorithms for Combinatorial Optimization (APPROX), pages 42–55. Springer,
2009.

[8] C. Chekuri and S. Khanna. Edge disjoint paths revisited. In Proceedings of the Fourteenth
Symposium on Discrete Algorithms (SODA), pages 628–637. SIAM, 2003.

[9] C. Chekuri, S. Khanna, and F.B. Shepherd. An O(
√
n)-approximation and integrality gap

for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137–146, 2006.

[10] J. Chen, R. Kleinberg, L. Lovász, R. Rajaraman, R. Sundaram, and A. Vetta. (Almost)
tight bounds and existence theorems for single-commodity confluent flows. Journal of the
ACM, 54(4):16, 2007.

[11] J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: Approximation algorithms
for confluent flows. Journal of Computer and System Sciences, 72(3):468–489, 2005.

[12] J. Chuzhoy. Routing in undirected graphs with constant congestion. In Proceedings of the
Forty-Fourth Symposium on Theory of Computing (STOC), pages 855–874. IEEE, 2012.

[13] J. Chuzhoy, A. Gupta, J.S. Naor, and A. Sinha. On the approximability of some network
design problems. ACM Transactions on Algorithms, 4(2):23, 2008.

[14] J. Chuzhoy and S. Li. A polylogarithimic approximation algorithm for edge-disjoint paths
with congestion 2. pages 233–242, 2012.

[15] S. Cosares and I. Saniee. An optimization problem related to balancing loads on SONET
rings. Telecommunication Systems, 3(2):165–181, 1994.

[16] Y. Dinitz, N. Garg, and M. Goemans. On the single-source unsplittable flow problem.
Combinatorica, 19(1):17–41, 1999.

[17] P. Donovan, F.B. Shepherd, A. Vetta, and G. Wilfong. Degree-constrained network flows.
In Proceedings of the Thirty-Ninth Symposium on Theory of Computing (STOC), pages
681–688. ACM, 2007.

24

[18] D. Dressler and M. Strehler. Capacitated confluent flows: complexity and algorithms.
In Proceedings of the Seventh International Conference on Algorithms and Complexity
(CAIC), pages 347–358. Springer, 2010.

[19] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.
Theoretical Computer Science, 10:111–121, 1980.

[20] V. Guruswami, S. Khanna, R. Rajaraman, F.B. Shepherd, and M. Yannakakis. Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and related
problems. Journal of Computer and System Sciences, 67(3):473–496, 2003.

[21] J. Kleinberg. Single-source unsplittable flow. In Proceedings of the Thirty-Seventh Sympo-
sium on Foundations of Computer Science (FOCS), pages 68–77, 1996.

[22] S.G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using packing in-
teger programs. Mathematical Programming, 99(1):63–87, 2004.

[23] G. Naves, N. Sonnerat, and A. Vetta. Maximum flows on disjoint paths. In Proceedings
of the Thirteenth Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX), pages 326–337. Springer, 2010.

[24] T. Nguyen. On the disjoint paths problem. Operations Research Letters, 35(1):10–16, 2007.

[25] N. Robertson and P. Seymour. Graph minors XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63:65–110, 1995.

[26] F.B. Shepherd. Single-sink multicommodity flow with side constraints. In Research Trends
in Combinatorial Optimization, pages 429–450. Springer, 2009.

25

