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Abstract

Many genome-wide datasets are routinely generated to study different aspects of biological systems, but integrating them
to obtain a coherent view of the underlying biology remains a challenge. We propose simultaneous clustering of multiple
networks as a framework to integrate large-scale datasets on the interactions among and activities of cellular components.
Specifically, we develop an algorithm JointCluster that finds sets of genes that cluster well in multiple networks of interest,
such as coexpression networks summarizing correlations among the expression profiles of genes and physical networks
describing protein-protein and protein-DNA interactions among genes or gene-products. Our algorithm provides an
efficient solution to a well-defined problem of jointly clustering networks, using techniques that permit certain theoretical
guarantees on the quality of the detected clustering relative to the optimal clustering. These guarantees coupled with an
effective scaling heuristic and the flexibility to handle multiple heterogeneous networks make our method JointCluster an
advance over earlier approaches. Simulation results showed JointCluster to be more robust than alternate methods in
recovering clusters implanted in networks with high false positive rates. In systematic evaluation of JointCluster and some
earlier approaches for combined analysis of the yeast physical network and two gene expression datasets under glucose
and ethanol growth conditions, JointCluster discovers clusters that are more consistently enriched for various reference
classes capturing different aspects of yeast biology or yield better coverage of the analysed genes. These robust clusters,
which are supported across multiple genomic datasets and diverse reference classes, agree with known biology of yeast
under these growth conditions, elucidate the genetic control of coordinated transcription, and enable functional
predictions for a number of uncharacterized genes.
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Introduction

Heterogeneous genome-wide datasets provide different views of

the biology of a cell, and their rapid accumulation demands

integrative approaches that exploit the diversity of views. For

instance, data on physical interactions such as interactions between

two proteins (protein-protein), or regulatory interactions between a

protein and a gene via binding to upstream regions of the gene

(protein-DNA) inform how various molecules within a cell interact

with each other to maintain and regulate the processes of a living cell.

On the other hand, data on the abundances or expression of

molecules such as proteins or transcripts of genes provide a snapshot

of the state of a cell under a particular condition. These two data

sources on physical interaction and molecular abundance provide

complementary views, as the former captures the wiring diagram or

static logic of the cell, and the latter the state of the cell at a timepoint

in a condition-dependent, dynamic execution of this logic [1].

Researchers have fruitfully exploited this complementarity by

studying the topological patterns of physical interaction among

genes with expression profiles that are condition-specific [2],

periodic [3], or correlated [4]; and similarity of the expression

profiles of genes with regulatory, physical, or metabolic interac-

tions among them [5]. Another line of research focuses on

integrating the physical and expression datasets to chart out

clusters or modules of genes involved in a specific cellular pathway.

Methods were developed to search for physically interacting genes

that have condition-specific expression (i.e., differential expression

when comparing two or more conditions, as in ‘‘active subnet-

works’’ [6]), or correlated expression (eg. subnetworks in the

network of physical interactions that are coherently expressed in a

given expression dataset [7–9]).

A challenge in expanding the scope of this research is to enable

a flexible integration of any number of heterogeneous networks.

The heterogeneity in the connectivity structures or edge density of

networks could arise from the different data sources used to

construct the networks. For instance, a network of coexpression

relations between gene pairs is typically built using expression data

of a population of samples (extracted from genetically varying
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individuals, or individuals subject to varying conditions/treat-

ments). Whereas a network of physical interactions between

protein or gene pairs is typically built by testing each interaction in

a specific individual or in-vitro condition.

Towards addressing this challenge, we propose an efficient

solution to a well-defined computational framework for combined

analysis of multiple networks, each describing pairwise interactions

or coexpression relationships among genes. The problem is to find

common clusters of genes supported by all of the networks of

interest, using quality measures that are normalized and

comparable across heterogeneous networks. Our algorithm solves

this problem using techniques that permit certain theoretical

guarantees (approximation guarantees) on the quality of the output

clustering relative to the optimal clustering. That is, we prove these

guarantees to show that the clustering found by the algorithm on

any set of networks reasonably approximates the optimal

clustering, finding which is computationally intractable for large

networks. Our approach is hence an advance over earlier

approaches that either overlap clusters arising from separate

clustering of each graph, or use the clustering structure of one

arbitrarily chosen reference graph to explore the preserved clusters

in other graphs (see references in survey [10]). JointCluster, an

implementation of our algorithm, is more robust than the earlier

approaches in recovering clusters implanted in simulated networks

with high false positive rates. JointCluster enables integration of

multiple expression datasets with one or more physical networks,

and hence more flexible than other approaches that integrate a

single coexpression or similarity network with a physical network

[7–9], or multiple, possibly cross-species, expression datasets

without a physical network [11–13].

JointCluster seeks clusters preserved in multiple networks so that

the genes in such a cluster are more likely to participate in the

same biological process. We find such coherent clusters by

simultaneously clustering the expression data of several yeast

segregants in two growth conditions [14] with a physical network

of protein-protein and protein-DNA interactions. In systematic

evaluation of clusters detected by different methods, JointCluster

shows more consistent enrichment across reference classes

reflecting various aspects of yeast biology, or yields clusters with

better coverage of the analysed genes. The enriched clusters

enable function predictions for uncharacterized genes, and

highlight the genetic factors and physical interactions coordinating

their transcription across growth conditions.

Results

JointCluster: A simultaneous clustering algorithm
To integrate the information in multiple physical interaction

and gene expression datasets, we first represent each dataset as a

network or graph whose nodes are the genes of interest and edges

indicate relations between gene pairs such as physical interaction

between genes or gene products in physical networks, or

transcriptional correlation between genes in coexpression net-

works. Given multiple graphs defined over the same set of nodes, a

simultaneous clustering is a clustering or partition of the nodes such

that nodes within each set or cluster in the partition are well

connected in each graph, and the total cost of inter-cluster edges

(edges with endpoints in different clusters) is low. We use a

normalized measure to define the connectedness of a cluster in a

graph, and take the cost of a set of edges to be the ratio of their

weight to the total edge weight in the graph. These normalized

measures on clustering quality, described in detail in Methods,

enable integration of heterogeneous graphs such as graphs with

varying edge densities, and are beneficial over simpler formula-

tions as described in detail in a previous study on clustering a

single graph [15]. Our work extends the framework used in the

single graph clustering study to jointly cluster multiple graphs,

such that the information in all graphs is used throughout the

algorithm.

The algorithm we designed, JointCluster, simultaneously clusters

multiple graphs using techniques that permit theoretical guaran-

tees on the quality of the output clustering relative to the optimal

clustering. Since finding the optimal clustering is a computation-

ally hard problem, we prove certain approximation guarantees

that show how the cluster connectedness and inter-cluster edge

cost measures of the clustering output by our algorithm are

reasonably close to that of the optimal clustering (as formalized in

Methods, Theorem 2). The basic algorithm, to which these

guarantees apply, works with sparse cuts in graphs. A cut refers to

a partition of nodes in a graph into two sets, and is called sparse-

enough in a graph if the ratio of edges crossing the cut in the graph

to the edges incident at the smaller side of the cut is smaller than a

threshold specific to the graph. Graph-specific thresholds enable

search for clusters that have varying connectedness in different

graphs. The main steps in the basic JointCluster algorithm are:

approximate the sparsest cut in each input graph using a spectral

method, choose among them any cut that is sparse-enough in the

corresponding graph yielding the cut, and recurse on the two node

sets of the chosen cut, until well connected node sets with no

sparse-enough cuts are obtained.

JointCluster implementation employs a novel scaling heuristic to

reduce the inter-cluster edge cost even further in practice. Instead

of finding sparsest cuts in input graphs separately as in the basic

algorithm, the heuristic finds sparsest cuts in mixture graphs that

are obtained from adding each input graph to a downscaled sum

of the other input graphs. The mixture graph with unit

downscaling is the sum graph whose edge weights are the sum

of weights of the corresponding edges in all input graphs, and the

mixture graphs with very large downscaling approaches the

original input graphs. The heuristic starts with mixture graphs

with small downscaling to help control inter-cluster edges lost in all

graphs. But the resulting clusters are coarse (eg. clusters well

Author Summary

The generation of high-dimensional datasets in the
biological sciences has become routine (protein interac-
tion, gene expression, and DNA/RNA sequence data, to
name a few), stretching our ability to derive novel
biological insights from them, with even less effort focused
on integrating these disparate datasets available in the
public domain. Hence a most pressing problem in the life
sciences today is the development of algorithms to
combine large-scale data on different biological dimen-
sions to maximize our understanding of living systems. We
present an algorithm for simultaneously clustering multi-
ple biological networks to identify coherent sets of genes
(clusters) underlying cellular processes. The algorithm
allows theoretical guarantees on the quality of the
detected clusters relative to the optimal clusters that are
computationally infeasible to find, and could be applied to
coexpression, protein interaction, protein-DNA networks,
and other network types. When combining multiple
physical and gene expression based networks in yeast,
the clusters we identify are consistently enriched for
reference classes capturing diverse aspects of biology,
yield good coverage of the analysed genes, and highlight
novel members in well-studied cellular processes.

Simultaneous Clustering
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connected in some graphs but split into smaller clusters in the rest

are not resolved further). The heuristic then refines such coarse

clusters at the expense of more inter-cluster edges by increasing the

downscaling factor (see Figure 1). The scaling heuristic works best

when combined with a cut selection heuristic: if for a particular

downscaling, more than one mixture graph yields a sparse-enough

cut, choose among them the cut that is sparse-enough in the most

number of input graphs (breaking ties toward the cut with the least

cost of edges crossing the cut in all graphs). A rigorous description

of the algorithm with heuristics for advancing the downscaling

factor and selection of cuts is provided in Methods.

Our method runs in an unsupervised fashion since algorithm

parameters such as graph-specific thresholds are learnt automat-

ically. The recursive cuts made by our algorithm naturally lead to

a hierarchical clustering tree, which is then parsed objectively to

produce the final clusters [16] using a modularity score function

used in other biological contexts [17,18]. The modularity score of

a cluster in a graph is the fraction of edges contained within the

cluster minus the fraction expected by chance in a randomized

graph obtained from degree-preserved shuffling of the edges in the

original graph, as described in detail in Supplementary Methods in

Text S1. To aggregate the scores of a cluster across multiple

graphs, we take their minimum and use this min-modularity score as

the cluster score. The (min-modularity) score of a clustering is then

the sum of the (min-modularity) scores of the constituent clusters.

Benchmarking JointCluster on simulated data
We used simulated datasets to benchmark JointCluster against

other alternatives: (a) Gi Tree: Choose one of the input graphs Gi as

a reference, cluster this single graph using an efficient spectral

clustering method M [16] to obtain a clustering tree, and parse

this tree into clusters using the min-modularity score computed

from all graphs; (b) Coassociation: Cluster each graph separately

using the spectral method M, combine the resulting clusters from

different graphs into a coassociation graph [19], and cluster this

graph using the same method M. Gi Tree method resembles the

marginal cluster analysis in [20] as it analyses multiple networks

using the clustering tree of a single network.

The simulated test data was generated as in an earlier study

[18], under the assumption that the true classification of genes

into clusters is known. Specifically, one random instance involved

generating two test graphs G1,G2 over 128 nodes each, and

implanting in each graph the same ‘‘true’’ clustering of 4 equal-

sized clusters. A parameter kout controlled the noise level in the

simulated graphs by controlling the average number of inter-

cluster edges incident at a node. The average number of total

Figure 1. Schematic of JointCluster algorithm with scaling heuristic. Clustering tree produced from a simultaneous clustering of two
networks A and B. JointCluster can handle any number of networks, and the scaling heuristic transitions from a sum graph AzB to the smallest of
the sparse cuts in the individual graphs A,B in increments of a scale parameter. At scale k, the graphs being analysed are AzB

�
2k and A

�
2kzB.

Only some steps of the scaling heuristic are shown here for simplicity, and complete description is provided in Methods. Graph-specific clusters are
shown as different shaded regions within a larger set of nodes.
doi:10.1371/journal.pcbi.1000742.g001
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edges incident at a node was set at 16, so kout=16 measures

the false positive rate in a simulated graph. We used the stan-

dard Jaccard index, which ranges from 0 to 1, to measure the

degree of overlap between the true clustering and the clustering

detected by the methods. Please see Supplementary Text S1 for

more details.

Figure 2 A shows the performance of different methods in

recovering common clusters in graphs G1,G2 with the same noise

level, averaged over 100 random instances of G1,G2 for each value

of the noise level parameter kout. When the noise level is low

(0ƒkoutƒ4 or false positive rate at most 25%), the clusters output

by all methods are close to the true set of clusters (a Jaccard index

close to 100%). But when the noise level is high (5ƒkoutƒ8 or

false positive rate 25%–50%), the cluster structure becomes

subtler, and JointCluster starts to outperform other methods and

achieves the best improvement in Jaccard index over other

methods at kout~6,7,8. Note that values koutw8 where false

positive rates are above 50% do not lead to a meaningful cluster

structure, and are only shown for context. Thus, within the setting

of this benchmark, JointCluster outperformed the alternatives in

recovering clusters, especially ones with a weak presence in

multiple graphs.

To simulate real-world scenarios where the integrated networks

could’ve different reliabilities, we benchmarked the methods on

clustering graphs with different noise levels. Instead of varying the

common kout value of the G1,G2 graphs as above, we fixed the

noise level kout of G1 at 6 and varied the kout of the other graph G2

from 0 to 16. The relative performance of G1 Tree and G2 Tree

methods (see Figure 2 B) showed that better clusters were obtained

when clustering tree of the graph with the lower noise level was

used. JointCluster integrated the information in the two graphs to

produce a joint clustering tree, which when parsed yielded better

clusters than Coassociation and single tree clusters for a larger

range of the parameter values (see Figure 2 B). The empirical

evaluation of JointCluster and competing methods was done using

large-scale yeast datasets, and described in detail next.

Systematic evaluation of the methods using diverse
reference classes in yeast

Expression of 4,482 transcripts were measured in 109
segregants derived from a cross between the BY and RM strains

of the yeast Saccharomyces cerevisiae (denoted here as the BxR cross),

grown under two conditions where glucose or ethanol was the

predominant carbon source, by an earlier study [14]. From these

expression data, we derived glucose and ethanol coexpression

networks using all 4,482 profiled genes as nodes, and taking the

weight of an undirected edge between two genes as the absolute

value of the Pearson’s correlation coefficient between their

expression profiles. The network of physical interactions (pro-

tein-protein indicating physical interaction between proteins and

protein-DNA indicating regulatory interaction between a protein

and the upstream region of a gene to which it binds) among the

same genes or their protein products, collected from various

interaction databases (eg. BioGRID [21]), was obtained from an

earlier study [9]. The physical network was treated as an

undirected graph after dropping interaction orientations, and

contained 41,660 non-redundant interactions.

We applied JointCluster and other clustering methods to

integrate the yeast physical and glucose/ethanol coexpression

networks, and assessed the biological significance of the detected

clusters using reference sets of genes collected from various

published sources. The reference sources fall into five diverse

classes:

N GO Process: Genes in each reference set in this class are

annotated to the same GO Biological Process term [22],

N TF (Transcription Factor) Perturbations: Genes in each set have

altered expression when a TF is deleted [23] or overexpressed

[24],

N Compendium of Perturbations: Genes in each set have altered

expression under deletions of specific genes, or chemical

perturbations [25],

Figure 2. Benchmarking different clustering methods on simulated data. JointCluster detected implanted clusters on instances of randomly
generated graphs G1,G2 better than Coassociation and single tree methods, especially when the cluster structure was not strong, in two cases: (A)
noise level in both G1,G2 were varied together, (B) noise level kout of G1 was fixed at 6 and of G2 was varied from 0 to 16. The quality of the clustering
detected by a method is measured as the standard Jaccard index measure between the detected and true clustering (y axis), averaged over all
random instances for each setting of the noise level parameter kout (x axis). The average number of edges incident at each node is 16, so kout~8
indicates a false positive rate of 50%.
doi:10.1371/journal.pcbi.1000742.g002
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N TF Binding Sites: Genes in a set have binding sites of the same

TF in their upstream genomic regions, with sites predicted

using ChIP binding data [26,27], and

N eQTL Hotspots: Certain genomic regions exhibit a significant

excess of linkages of expression traits to genotypic variations.

Genes with expression linkages to such an eQTL (expression

Quantitative Trait Loci) hotspot region are grouped into a

reference set [14].

We overlapped the detected clusters with the reference sets in

these classes to differentiate clusters arising from spurious

associations from those with genes coherently involved in a

specific biological process, or coregulated due to the effect of a

single gene, TF, or genetic factors. The results are summarized

using standard performance measures, sensitivity (fraction of

reference sets significantly enriched for genes of some cluster

output by a method) and specificity (fraction of clusters

significantly enriched for genes of some reference set), both

reported as percentages for each reference class. The significance

cutoff for the enrichment P-value (denoted P hereafter) is 0.005,

after Bonferroni correction for the number of sets tested. The

sensitivity measures the ‘‘coverage’’ of different biological

processes by the clusters, and the specificity the ‘‘accuracy’’ of

the clusters. We compared JointCluster with Coassociation [19],

single graph [16], and single tree (Gi Tree) methods, and when

applicable with competing methods, Matisse [9] and Co-clustering

[7], which integrate a single coexpression network with a physical

network. All reported results focus only on clusters with at least 10

genes.

To provide context, we present results from clustering each

network separately using the single graph method (Glucose/

Ethanol/Physical Only) in Figure 3 A. Physical Only performs

better than the other two methods wrt (with respect to) GO Process

and TF Binding Sites, and Glucose/Ethanol Only fare well wrt

eQTL Hotspots. This relative performance is not surprising due to

the varying levels of bias in the reference classes, and the different

data sources used to construct the networks. Though physical

interactions between genes or gene products are known to be

predictive of shared GO annotations, certain GO annotations

inferred from physical interactions introduce bias. The same ChIP

binding data [26] was used to predict TF binding sites and protein-

DNA interactions, so validation of clusters derived from the

physical network using TF Binding Sites is biased. Finally, the

same expression data underlying the coexpression networks was

used with the independent genotype data to define the eQTL

hotspots [14]. Hence the eQTL Hotspots class does not by itself

provide a convincing validation of the coexpression clusters;

however it can be used to understand the extent of genetic control

Figure 3. Sensitivity and specificity of clusters detected from the yeast networks. Performance of (A) single graph methods, and (B)
JointCluster, Coassociation and single tree methods are shown. To help interpret these performance measures properly, information such as
coverage of genes (# of genes in detected clusters) and average size of a cluster (average # of genes in a cluster with error bars indicating standard
deviation) are also shown. The number of reference sets in GO Process, TF Perturbations (TF Perturb.), Compendium of Perturbations (Comp. of
Perturb.), TF Binding Sites (TF Bind.) and eQTL Hotspots are 379, 315, 198, 103 and 41 respectively.
doi:10.1371/journal.pcbi.1000742.g003
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of coordinated transcription and to validate clusters derived from

networks comprising only physical interactions. The reference

classes offering truly independent validation of clusters are TF

Perturbations and Compendium of Perturbations, and the three

single graph methods perform similarly in these perturbation

classes.

Integration of the yeast physical network with the glucose/

ethanol coexpression networks was done to find sets of genes that

clustered reasonably well in all three networks. JointCluster

performed a better integration of these networks than Coassociation

for all reference classes except eQTL Hotspots (Figure 3 B). The

enrichment results of single tree methods in Figure 3 B followed a

trend similar to the single graph methods in Figure 3 A, reflecting

the bias in the reference classes. In the two truly independent

perturbation classes, JointCluster showed better sensitivity than the

other methods at comparable or better specificity.

In summary, though different single graph and single tree

methods were best performers in different reference classes (from

Figures 3 A and 3 B), JointCluster was more robust and performed

well across all reference classes characterizing diverse cellular

processes in yeast (Figure 3 B, first bar). The clusters identified by

JointCluster that were consistently enriched for different reference

classes are explored in depth next.

Clusters preserved in the physical and coexpression
networks are consistent with known biology

The clusters in a clustering were ordered by their min-

modularity scores, and identified by their rank in this ordering.

We highlight the biology and multi-network connectivity of the

top-ranked clusters detected by JointCluster in an integrated

analysis of the yeast physical and glucose/ethanol coexpression

networks. The member genes and enrichment results of all

preserved clusters detected by JointCluster are provided as

Supplementary Data in Text S1 (see also Table 1 in Supplemen-

tary Text S1 for GO Process enrichment of many top-ranked

clusters).

The preserved cluster with the best min-modularity score,

Cluster #1, comprised 82 genes with a min-modularity score of

0:00030. The respective modularity scores in the physical, glucose,

and ethanol networks were 0:00030, 0:00044, and 0:00046, which

were significantly higher than the modularity of a random set of

genes of the same size in the respective networks (see Figure 1 in

Supplementary Text S1 for the cluster’s connectivity in the three

networks). This cluster was significantly enriched for genes

involved in the GO Processes, translation (P~1e-20; see Table

1 in Supplementary Text S1 ), mitochondrion organization

(P~1e-20), mitochondrial translation (P~1.8e-17) and cellular

respiration (P~3.1e-8).

The enrichments noted for Cluster #1 is consistent with and

even extend published results on this dataset. The shift in growth

conditions from glucose to ethanol triggers large changes in the

transcriptional and metabolic states of yeast [28], with the primary

state being fermentation in glucose and respiration in ethanol. The

transcription of functionally related genes, measured across

different timepoints during the shift, are highly coordinated [28].

The coregulation of related genes is also evident from the clusters

of coexpressed genes found under the glucose condition, using

expression profiles of genetically perturbed yeast segregants from

the BxR cross [29]. Our results take this evidence a step further,

because the coexpression of cluster genes are elucidated by genetic

perturbations in both growth conditions (regardless of the

expression level changes of cluster genes between the conditions).

We also note that the top-ranked cluster is significantly enriched

for genes linking to the eQTL hotspot region glu11 in

Chromosome 14 [14] (P~4.6e-25), which highlights the role of

genetic factors in the coregulation of genes involved in

(mitochondrial) translation and cellular respiration.

A different perspective on yeast biology in the glucose medium

is offered by Cluster #2 consisting of 76 genes (with a significant

min-modularity score 0.00021; see Figure 1 in Supplementary

Text S1 ). This cluster is significantly enriched for ribosome

biogenesis (P~2.4e-37; see Table 1 in Supplementary Text S1 ),

and related GO Process terms such as ribonucleoprotein complex

biogenesis and assembly (P~9.4e-37), ribosomal large subunit

biogenesis (P~8.8e-35), and rRNA processing (P~3.8e-33).

Genes in this cluster significantly overlap with the perturbation

signature of BUD21, a component of small ribosomal subunit

(SSU) processosome (P~4.1e-15), and with genes whose expres-

sion links to genetic variations in the eQTL hotspot region glu12

in Chromosome 15 [14] (P~7.9e-16). These results are consistent

with the literature on the regulation of yeast growth rate in the

glucose or ethanol medium, achieved by coregulation of genes

involved in ribosome biogenesis and subsequent protein synthetic

processes [28].

To further understand the biological significance of these

preserved clusters in physical and coexpression networks, we used

the reference yeast protein complexes in MIPS [30] (comprising

64 literature-based, small-scale complexes of at least five genes, at

level at most two in the MIPS hierarchy). The enrichment of the

joint clusters wrt this MIPS Complex class was 45:3% sensitivity

and 35:8% specificity. Of the clusters not enriched for any MIPS

complex, some were significantly enriched for other functionally

coherent pathways (eg. Cluster #13 was enriched for amino acid

biosynthetic process; see Table 1 in Supplementary Text S1 ). So

the clusters detected by JointCluster overlapped with several

known complexes or other functional pathways.

JointCluster identifies subtle clusters
One of the goals of jointly clustering multiple networks is to

identify subtle clusters: sets of genes that cluster reasonably well,

but not strongly, in all networks. We start with biologically

significant clusters i.e., clusters enriched for some reference set wrt

all five reference classes, and test if any such cluster has a weak

modularity score in some graph. We identified 5 biologically

significant clusters using JointCluster: Clusters #4, #13, #15,

#19, and #28. Table 2 in Supplementary Text S1 shows the

reference sets they were enriched for, and Figure 2 in

Supplementary Text S1 the modularity scores of Clusters #4

and #28.

Cluster #28, the biologically significant cluster with the lowest

min-modularity score, had 50 genes and was enriched for the GO

Processes, multi-organism process (P~2.5e-12) and conjugation

(P~2e-10). This cluster’s role in mating was further supported by

its significant enrichment for perturbation signatures of STE12

(P~5.7e-9) and FUS3/KSS1 (P~8.1e-21), because Ste12p is a

TF regulating the expression of mating genes and is activated by

the Fus3p/Kss1p kinases in the well-studied mitogen-activated

protein kinase (MAPK) cascade [31]. Such a cluster of well-studied

genes was recovered just by the single graph method Physical

Only, but not by Glucose/Ethanol Only. Here we considered a

cluster of genes to be recovered by a method if this cluster is

significantly enriched for some cluster found by the given method

(as in reference set enrichment). JointCluster was able to detect this

cluster due to its high modularity in the physical network

combined with its significant, albeit weak, modularity in the

coexpression networks (see Figure 2 in Supplementary Text S1 ).

To explore more subtle clusters, we focused on the clusters

identified by JointCluster that were enriched for at least four

Simultaneous Clustering
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reference classes, instead of all five required above. Clusters #52

and #54 had the two lowest min-modularity scores among such

clusters, and were each recovered just by the Physical Only

method, but not by Glucose/Ethanol Only. Cluster #52

comprised of 38 genes had a significant min-modularity score

(see Figure 3 in Supplementary Text S1 ), and was enriched for the

GO Process, ubiquitin-dependent protein catabolic process

(P~4.4e-23). RPN4 is a TF involved in regulation of the protein

catabolic process [32], and this cluster was significantly enriched

for genes in the deletion signature of RPN4 (P~1.4e-9) and genes

with predicted binding sites of RPN4 (P~1.8e-23; see Supple-

mentary Data in Text S1 for other enrichments). These examples

reiterate how a combined analysis of multiple networks by

JointCluster detects meaningful clusters that would be missed by

separate clustering of the networks.

Preserved clusters inform on uncharacterized ORFs
Despite the intense focus on elucidating yeast biology by many

researchers, roughly 1,000 Open Reading Frames (ORFs) are still

uncharacterized [33]. Therefore, predicting the function of these

ORFs is important to guide future experiments towards strains

and perturbations that likely elucidate these ORFs [33]. While

there have been many network-based function prediction studies

(see survey [34]), our study provides a different perspective by

using clusters preserved across multiple coexpression and physical

networks. Our prediction strategy, based on a module-assisted

guilt-by-association concept [34], annotates the uncharacterized

ORFs in a cluster detected by JointCluster to the GO Process

reference set for which this cluster is most significantly enriched.

To test the utility of these predictions for a well-studied process in

yeast, we focused on clusters enriched for ribosome biogenesis

(Clusters #2 and #22; see Table 1 in Supplementary Text S1 ).

Two ORFs in Cluster #2, a top-ranked cluster discussed above,

were marked as uncharacterized by SGD [35] (April 2009 version):

YER067W and YLR455W. Our predictions for these ORFs have

different types of support: YER067W is significantly correlated with

67 and 33 of the 76 genes in this cluster in glucose/ethanol

expression datasets respectively (Pearson’s correlation test Pƒ0:05,

Bonferroni corrected for the cluster size), and YLR455W has known

protein-protein interactions with five other genes in the cluster,

NOC2, BRX1, PWP1, RRS1, EBP2, all of which were implicated

in ribosome biogenesis. Cluster #22 had 9 uncharacterized ORFs,

YIL096C, YOR021C, YIL091C, YBR269C, YCR087C-A,

YDL199C, YKL171W, YMR148W, and YOR006C. Two of them

(YIL096C and YOR021C) have predicted roles in ribosome

biogenesis based on function predictions collected from the

literature by SGD for some of the uncharacterized ORFs. This

lends support to the two predictions and leaves the other novel

predictions for further validation. All of the uncharacterized ORFs

in Cluster #22 except YBR269C were significantly correlated with

more than three-fourths of the 35 genes in the cluster in both

glucose/ethanol expression datasets (using the same criteria above

based on Pearson’s correlation test). The predictions here were

based on either support from the physical network (for YLR455W)

or from both coexpression networks (for the rest), and hence

illustrates the advantage of using multiple data sources.

Of the 990 ORFs classified as uncharacterized by SGD (April

2009 version), 524 overlapped with the genes used to build the yeast

networks. We could predict the function for 194 of them, by virtue

of their membership in preserved clusters significantly enriched for

some GO Process term. Using single graph (Glucose/Ethanol/

Physical Only) clusters in place of the preserved clusters detected by

JointCluster yielded predictions for 143, 148 and 247 uncharacter-

ized ORFs respectively, reflecting the relative GO Process specificity

of these methods (Figures 3 A and 3 B). The relative number of

predictions from different methods should be viewed in context of

the systematic evaluations above, which showed that whereas

Physical Only performed best wrt GO Process, JointCluster

produced clusters that were more coherent across all reference

classes. The predictions from JointCluster were also complementary

to those from Physical Only, with the functions of only 99
uncharacterized ORFs predicted by both methods. The functions

predicted using the preserved clusters are available as Supplemen-

tary Data in Text S1 , and point to well-studied biological processes

that have escaped complete characterization.

JointCluster yields better coverage of genes than a
competing method

To compare JointCluster against methods that integrate only a

single coexpression network with a physical network, such as

Matisse and Co-clustering, we considered joint clustering of a

combined vglucose+ethanolw coexpression network and the

physical network. The vglucose+ethanolw network refers to the

single coexpression network built from expression data that is

obtained by concatenating the normalized expression profiles of

genes under the glucose and ethanol conditions. The results of

different methods on this two-network clustering is in Figure 4 A.

Since our results focus on clusters with at least 10 genes, we set the

minimum cluster size parameter in Matisse to 10 (from its default

5). All other parameters of Matisse and other competing methods

were set at the default values. The default size limit of 100 genes

for Matisse clusters was used for JointCluster as well to enable a

fair comparison. Co-clustering didn’t have a parameter to directly

limit cluster size. Despite setting its parameter for the number of

clusters at 45 to get an expected cluster size of 100, Co-clustering

detected very few (26) clusters of size at least 10 genes, half of

which were large with more than 100 genes (including one coarse

cluster with more than 800 genes). So Co-clustering achieves

greater specificity than other methods (Figure 4 A) at the expense

of a coarser clustering comprising few large clusters.

JointCluster has sensitivity and specificity that is comparable or

slightly lower than Matisse across all reference classes except TF

Binding Sites. However, JointCluster produces clusters that cover

significantly more genes than Matisse (4382 vs 2964 genes

respectively; see also Figure 4 A). Matisse assumes that the physical

network is of better quality, and searches for coexpression clusters

that are each connected in the physical network. This connectivity

constraint excludes genes whose physical interactions are poorly

studied or untested. JointCluster does not use such a constraint when

parsing the clustering tree into clusters, and hence identifies clusters

supported to varying extents in the two networks, including ones with

weak support in the physical network. This could be a huge

advantage in organisms such as human and mouse where the

knowledge of physical interactions is far less complete than in yeast,

especially for interactions that are tissue-specific or condition-specific.

The extreme examples among the roughly 1500 genes excluded

by Matisse clusters were the 134 physically isolated genes (i.e., genes

that do not interact with any of the other 4482 profiled genes in the

physical network). JointCluster used connectivity in the coexpres-

sion network to include 129 physically isolated genes in its clusters,

and 84 of these genes were significantly correlated (Pearson’s

correlation test Pƒ0:05, Bonferroni corrected for the cluster size)

with more than half of the genes in their assigned cluster. Figure 4 in

Supplementary Text S1 shows example coexpression clusters

identified by JointCluster despite the poor physical connectivity

among the isolated/other genes within the clusters.

The earlier study on Matisse extended physical connectivity

within clusters by adding extra genes called ‘‘back’’ genes and their

Simultaneous Clustering

PLoS Computational Biology | www.ploscompbiol.org 7 April 2010 | Volume 6 | Issue 4 | e1000742



interactions to the physical network [9]. The physical interactions

of back genes serve to better connect the (expression) profiled

genes in the physical network, but the back genes’ expression data

is not used (or not available) for analysis. The results of integrating

this extended yeast physical network, with 1774 extra back genes

and 22,330 extra interactions, with the vglucose+ethanolw

coexpression network is in Figure 4 B. The clusters of JointCluster

covered a large fraction of genes, comprising 1502 back and 4131
profiled genes, but they showed poor specificity due to the

inclusion of several back genes with no expression information.

Matisse on the other hand was specially designed to exploit a few

of these back genes as needed to enhance physical connectivity, so

it showed better sensitivity and specificity at a coverage of 182

back and 3327 profiled genes. Though back genes helped increase

Matisse’s coverage of profiled genes, Matisse clusters still missed

several of the 4482 profiled genes. Considering the results before

and after extension of the physical network, we see that the

inclusive criteria used in JointCluster is preferable when the

integrated physical network is not comprehensive.

Contribution of individual and decomposed networks
Contribution of the physical network. Addition of a

physical network to the clustering of just the two coexpression

networks (please compare Figures 3 B and 5 A) improved

JointCluster’s sensitivity, specificity or both for all reference

classes but eQTL Hotspots. This improvement is most

pronounced for GO Process and TF Binding Sites as expected.

For the two independent perturbation classes, sensitivity improved

with the addition of the physical network. These results are

concordant with JointCluster’s detection of subtle clusters that had

better support in the physical network than the coexpression

networks (eg. subtle clusters #28, #52, #54 discussed above). The

different methods on jointly clustering the two coexpression

networks showed similar performance, and also performed

comparably to the single graph method, vGlucose+Ethanolw

Only (Figure 5 A).

Performance on decomposing combined networks. The

flexible framework of JointCluster in handling multiple networks

allows easy experimentation with decomposing a combined

network into its constituent networks before clustering them. For

instance, in the joint clustering of vglucose+ethanolw network

and the physical network, the former can be decomposed into

glucose and ethanol coexpression networks built from the

corresponding expression data, and the physical network can be

separated based on interaction type into protein-protein and

protein-DNA networks. Figure 5 B shows results obtained using

the decomposed constituent networks in place of a combined

network, along with results for the combined networks. The

clustering tree was produced and parsed as before, except for the

use of a slightly adapted min-modularity score whenever protein-

Figure 4. Comparison of JointCluster against Matisse, Co-clustering and other alternatives. The results on clustering the
vglucose+ethanolw network with the (A) physical and (B) extended physical network are shown. The extended physical network contains
several extra ‘‘back’’ genes (and associated interactions) that are not themselves expression profiled but increase physical connectivity among the
profiled genes. The figure format is same as in Figure 3 , and coverage in (B) includes both back and profiled genes.
doi:10.1371/journal.pcbi.1000742.g004
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protein and protein-DNA networks were involved as described in

Supplementary Methods in Text S1 .

Using glucose/ethanol networks in place of the single

vglucose+ethanolw coexpression network when clustering them

together with the physical network leads to comparable or slightly

decreased performance for JointCluster (Figure 5 B, first and third

bar). The expression data underlying the glucose/ethanol coex-

pression networks were obtained from the same lab using

experiments repeated alongside on the same 109 segregants grown

in as similar conditions as possible, except for the carbon source

difference (glucose or ethanol) [14]. So it is not surprising to see

comparable enrichment results before/after decomposing the

combined coexpression network. The separation of the physical

network into protein-protein and the protein-DNA networks leads

to a much larger drop in specificity though (Figure 5 B, first two

bars). This analysis revealed that JointCluster’s three-network

clusters supported by the physical, glucose and ethanol networks

are similarly or more consistently enriched than alternative ways of

decomposing the input networks.

Discussion

Heterogeneous large-scale datasets capturing diverse aspects of

the biology of a cell are accumulating at a rapid pace, and efforts

to integrate them into a coherent view of cell regulation are

intensifying. This integration could greatly facilitate a genome-

wide model of the cell that could predict cellular response to

various environmental and genetic perturbations (eg. [36]). The

simultaneous clustering algorithm proposed here provides a

versatile approach to integrating any number of heterogeneous

datasets that could be represented as networks among genes, and

summarizes the result as a collection of clusters supported by

multiple networks.

Since its early applications to classifying cancer subtypes [37],

clustering has rapidly become a standard analysis of expression

datasets. We believe that simultaneous clustering is a natural

progression in the application of clustering from single to multiple

expression and interaction datasets. We demonstrated the utility of

a combined analysis by applying our JointCluster algorithm on

simulated and empirical datasets. We found the clusters produced

by JointCluster on yeast physical and glucose/ethanol coexpres-

sion networks to be comparably or more consistently enriched for

reference classes that reflect various aspects of yeast biology, in

comparison to other methods of integrating the networks. Further,

JointCluster can handle multiple heterogeneous networks, and

hence more flexible than two-network clustering methods such as

Matisse that search for coexpression clusters that are each

connected in the physical network. This flexibility enables

JointCluster to yield better coverage of genes, and to be broadly

applicable in human or other organisms where the knowledge of

Figure 5. Contribution of individual and decomposed networks. (A) Contribution of the physical network can be assessed by comparing
performance of JointCluster in this figure with that in Figure 3 B, and (B) Effect of decomposing the combined vglucose+ethanolw network into
separate glucose and ethanol coexpression networks, or the physical network into protein-protein and protein-DNA networks, or both on the clusters
detected by JointCluster on the physical and coexpression networks. The figure format is same as in Figure 3, and ‘‘prot.’’ refers to protein.
doi:10.1371/journal.pcbi.1000742.g005
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physical interactions is less complete than in yeast. In the future,

the framework could be extended to scale networks of different

interaction types by different factors before integration.

Simultaneous clustering offers an unsupervised and exploratory

approach to data integration, and hence complementary to

supervised approaches that train machine-learning models on

multiple data types to make directed predictions. Such supervised

approaches could integrate different data types to predict

functional linkages between gene pairs (see [38,39] and references

therein), or protein complexes using a training set of known

complexes [40]. Though our method is not directed to predict

complexes, the joint physical and coexpression clusters we found

were enriched for reference protein complexes in MIPS. More

importantly, the unsupervised fashion in which we parsed the joint

clustering tree recovered functionally coherent pathways other

than complexes. Simultaneous clustering is also complementary to

unsupervised approaches that identify spectral patterns (not

modules) shared between similarity graphs based on gene

expression or TF binding data [41], or identify modules from

paired datasets such as gene expression and drug responses

profiled in the same cell lines [42].

The clusters detected by JointCluster from the yeast physical

and expression datasets are consistent with known biology, and

importantly extend our knowledge by highlighting biological

processes, such as ribosome biogenesis, that may not have been

completely characterized despite intense efforts to dissect them.

The tangible value of a combined analysis is evident from the

systematic evaluation of the clusters, and the case studies presented

in this work. The intangible benefit of seeking support in the

multiple networks considered in this study is the ready interpre-

tation provided by the protein-protein and protein-DNA interac-

tions within a cluster, in explaining the coordinate transcription of

the cluster.

Methods

The contribution of our work is an extension of a clustering

framework for a single graph to jointly cluster multiple graphs.

This section describes our simultaneous clustering framework in

detail. Please refer Supplementary Methods in Text S1 for the

algorithm analysis and more details on the overall JointCluster

method and evaluation procedures.

Single graph clustering review [15]
Consider a graph G~ V ,að Þ, where V is the set of nodes and a

is a non-negative edge weight function. The weight a u,vð Þ§0 for

any node pair u,vð Þ [ V|V could for instance quantify the

connection strength or similarity between the two nodes; note that

a sparse graph would’ve many zero weight edges. For conve-

nience, let us denote the total weight of any edge set Y by

a Yð Þ~
P

u,vð Þ[Y a u,vð Þ. Similarly for any node sets S,T(V , let

a S,Tð Þ~a S|Tð Þ~
P

u[S,v[T a u,vð Þ, and a Sð Þ~a S,Vð Þ. Using

these notations, the total edge weight in the graph is

a V|Vð Þ=2~a V ,Vð Þ=2~a Vð Þ=2. Also for singletons,

a uf gð Þ ¼: a uð Þ sums up the weights of edges incident at node u.

The conductance of a cut S,T~C\Sð Þ in a node set C, measured

using the function a, is defined as
a S,Tð Þ

min a Sð Þ,a Tð Þð Þ (with the

convention that this ratio is zero if its denominator is zero, since

the numerator is also zero then). By normalizing the sum of edge

weights a S,Tð Þ crossing the cut, the definition captures an

intuitive notion of connectivity that is robust and invariant to

scaling the edge weight function a by any constant. To illustrate

the intuitive notion, consider a cut separating a single node u from

other nodes in a cluster C. If the conductance of this cut is high,

then a large fraction of all edges incident at node u ends at another

node in the cluster. Extending this notion, if the conductance of all

cuts in C are high, the nodes in C are robustly connected together.

So the conductance of a cluster C is defined as the minimum

conductance of any cut in the cluster, and the conductance of a

clustering or partition of V is the minimum conductance of any

cluster in the partition.

When maximizing the conductance of the partition, it is

desirable to control the cost of the inter-cluster edges as well. Let

X denote the inter-cluster edges, i.e., unordered node pairs u,vð Þ
where u and v belong to different clusters in the partition. An a,eð Þ
clustering of G is a partition of its nodes into clusters such that

N the conductance of the clustering is at least a, and

N the total weight of the inter-cluster edges X is at most an e
fraction of the total edge weight in the graph; i.e.,

a Xð Þƒ e

2
a Vð Þ.

We outline the approximate-cluster algorithm and its guaran-

tees presented in [15]. The algorithm finds a cut approximating

the sparsest cut (cut of minimum conductance) in the graph and

recurses on both the pieces induced by this cut. Since finding the

sparsest cut in a graph is a NP-hard problem, an approximation

algorithm for the problem is used. Note that clustering a graph by

minimizing e for a given a is also NP-hard by a reduction from the

sparsest cut problem. The repeated removal of sparsest cuts is

done until the pieces or clusters become well connected with no

sparse cuts left in them. Making repeated cuts to partition a graph

is strategically similar to a method on clustering an expression

dataset [43], but that method works with minimum cuts rather

than sparsest cuts. Sparsest cut is preferable in our context of

heterogeneous datasets, since it minimizes the normalized measure

of conductance.

To formalize the guarantees on the approximate-cluster

algorithm, let n~DV D denote the number of nodes in the graph,

and let the sparsest cut of conductance x be approximated by a cut

of conductance at most Kxn (where K is independent of x, and n is

a constant between 0 and 1). For instance, there are algorithms to

find a cut of conductance at most O
ffiffiffiffiffiffiffiffiffiffi
log n

p
log log n

� �
x using

metric embedding techniques [44] (all logarithms in this paper are

to base two), or
ffiffiffiffiffiffi
2x
p

using efficient spectral techniques [15,45]

(our implementation uses spectral techniques).
Theorem 1. If G has an a,eð Þ clustering, then the approximate-

cluster algorithm will find a clustering of quality

a

6K logn
e

 !1=n

, (12Kz2)en log
n

e

0
@

1
A.

Simultaneous clustering problem
Consider p graphs Gi~ V ,aið Þf gp

i~1 over the same nodes V and

different non-negative edge weight functions aif g. An aif g,eð Þ
simultaneous clustering of the graphs is a partition of the nodes V
such that

N the conductance of the clustering is at least ai in graph Gi for

all i, and

N the total weight of the inter-cluster edges X is at most an e
fraction of the total edge weight in all graphs; i.e.,X

i
ai Xð Þƒ e

2

X
i
ai Vð Þ.

The conductance thresholds aif gp
i~1 are graph-specific to

enable search for clusters of varying quality in heterogeneous

graphs. A natural approach to the inter-cluster edge cost is the sum

of graph-specific costs 2
P

i ai Xð Þ
�

ai Vð Þ, however it’s a special
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case of the above aggregated cost 2
P

i ai Xð Þ
�P

i ai Vð Þ when

each edge weight function ai is scaled by a constant c=ai Vð Þ. Note

how these scalings, which our implementation employs, set the

total edge weight of each graph to the same value c=2 without

changing the conductance value of cuts. This scale-invariance of

conductance comes from the normalization factor in its definition

as mentioned before.

JointCluster algorithm and guarantees
The problem of minimizing the inter-cluster edge cost e given a

set of conductance thresholds aif g is NP-hard by reduction from

the single graph case. We now present our basic algorithm,

JointCluster, to simultaneously cluster multiple graphs, along with

certain approximation guarantees on the quality of the clustering

produced.

The algorithm starts with V as the current node set. For each

graph, the algorithm finds an approximate sparsest cut in the

current node set, using the graph-specific edge weight function to

measure conductance. The algorithm chooses among them any

cut that is sparse enough as defined below, and recurses on the two

pieces (node sets) induced by this cut. If no cuts get chosen for the

current node set, the node set is output as a well connected cluster

in all graphs. The cut approximating the sparsest cut in the current

node set in Gi is sparse enough if the conductance of the cut,

measured using the edge weight function ai, is at most

a�i ~
e

2 log n
e

ai.

To provide formal guarantees on the clustering produced by

this algorithm, let as, am denote the respective edge weight

functions of a sum and a min graph obtained from the multiple

graphs. That is, for every edge u,vð Þ [ V|V , as u,vð Þ~
P

i ai u,vð Þ
and am u,vð Þ~ mini ai u,vð Þ. As before, let n~DV D be the number of

nodes, Kxn the approximation guarantee of the sparsest cut

algorithm, and X the inter-cluster edges of a given partition. We

analysed our JointCluster algorithm (see Supplementary Methods

in Text S1 ) to prove this theorem:

Theorem 2. Let the graphs Gif gp
i~1 admit an aif g,eð Þ simultaneous

clustering, i.e., a partition of the common node set V that has conductance at

least ai in Gi and inter-cluster edge cost as Xð Þƒ e

2
as Vð Þ. Then, the

JointCluster algorithm will find a partition of V that has conductance at least

eai

2K logn
e

 !1=n

in Gi and inter-cluster edge cost in the min graph

am Xð Þƒ 8Kz3ð Þen log
n

e
as Vð Þ.

JointCluster heuristics and implementation
The theoretical guarantees of JointCluster algorithm are further

augmented by effective heuristics and efficient implementation in

practice.

Scaling heuristic description. The basic algorithm

approximates the sparsest cut in each graph and chooses one of

these cuts to recurse further. Since the chosen cut is sparse in the

graph yielding the cut, we are able to bound the edges crossing

the cut in this graph, but not necessarily the other graphs. In order

to control the edges discarded in all graphs, we could appro-

ximate the sparsest cut in the sum graph, whose edge weight

function as u,vð Þ~
P

i ai u,vð Þ. Working with the sum graph alone

would yield coarse clusters though (eg. clusters well connected in

some graphs but split into smaller clusters in the rest are not

refined further). So we employ a heuristic that starts with the

sum graph to control edges lost in all graphs, and transitions

through a series of mixture graphs that approach the individual

graphs to refine the clusters. A mixture graph Hk
i for a given

scale k is a scaled sum graph with the edge weight function

bk
i u,vð Þ~ai u,vð Þz2{k

P
j=i aj u,vð Þ for every edge u,vð Þ [ V|V .

The scaling heuristic starts with k~0 to work with the sum graph

(H0
i for any i is the sum graph), and increments k until it reaches a

large value (H?
i is the individual graph Gi).

Figure 6. Pseudocode of JointCluster algorithm. The steps performed by JointCluster to find the clustering tree supported by multiple graphs
is described here, using concepts defined in Methods section. The cuts made by the call JointCluster V ,0ð Þ using graphs Gi (defined over the same set
of nodes V for all i) yield the simultaneous clustering tree.
doi:10.1371/journal.pcbi.1000742.g006
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The main step of the heuristic is finding the approximate

sparsest cuts in mixture graphs Hk
i for all i at the current scale k,

and choosing the best of these cuts that are sparse-enough to recurse

further. A cut found in a mixture graph Hk
i is sparse-enough (in Hk

i )

if the cut’s conductance in Hk
i is less than a�i . Similarly a cut is

sparse-enough in an input graph Gi if the cut’s conductance in Gi

is less than a�i . The best cut among many cuts is the one that is

sparse-enough in the most number of input graphs, breaking ties

toward the cut with the least fraction of cut edges in the input

graphs (i.e., breaking ties toward the cut S,Tð Þ that minimizes

2
P

i ai S,Tð Þ
�

ai S|Tð Þ). In these definitions, a input or mixture

graph refers actually to a subgraph of the graph induced over the

current nodeset W(V in the recursion call. So the approximate

sparsest cut and conductances of cuts are found in induced

subgraphs whose nodeset is W and edgeset includes only the edges

with both endpoints in W (this would imply for instance that ai wð Þ
is ai w,Wð Þ in the induced subgraph but ai w,Vð Þ in the entire

graph Gi). The pseudocode of our algorithm and heuristics is

provided in Figure 6 . Improving the chosen cut in the pseudocode

refers to improvement of its conductance using a flow-based

algorithm [46].

Overall framework and running time in practice. The

JointCluster algorithm and heuristics described above produces a

clustering tree from a combined analysis of multiple graphs. This

clustering tree is then parsed using a min-modularity score to

produce clusters preserved in multiple graphs. The algorithm

parameters such as the a�i thresholds used in practice are also

learnt automatically from the input graphs, so that we could jointly

cluster multiple graphs in an unsupervised fashion. Complete

information on the parsing of the clustering tree and learning of

the parameters is provided in Supplementary Methods in Text S1.

The overall framework of JointCluster including the learning of

parameters, producing the clustering tree and parsing it into

clusters was time-efficient in practice. For instance, the running

time for joint analyses of yeast networks defined over 4482 genes

(two/three/four-network clusterings done in this study) all took

about 30–70 minutes on a 2.53 GHz Linux machine. Please see

Supplementary Text S1 for the availability of the software

implementing the overall JointCluster framework.

Supporting Information

Text S1 Supplementary Text S1 containing Supplementary

Methods/Data/Figures/Tables.

Found at: doi:10.1371/journal.pcbi.1000742.s001 (0.24 MB PDF)
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