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Abstract. The second welfare theorem tells us that social welfare in an economy
can be maximized at an equilibrium given a suitable redistribution of the endow-
ments. We examine welfare maximization without redistribution. Specifically, we
examine whether the clustering of traders into k submarkets can improve welfare
in a linear exchange economy. Such an economy always has a market clearing ε-
approximate equilibrium. As ε → 0, the limit of these approximate equilibria need
not be an equilibrium but we show, using a more general price mechanism than the
reals, that it is a “generalized equilibrium”. Exploiting this fact, we give a polyno-
mial time algorithm that clusters the market to produce ε-approximate equilibria
in these markets of near optimal social welfare, provided the number of goods and
markets are constants. On the other hand, we show that it is NP-hard to find an
optimal clustering in a linear exchange economy with a bounded number of goods
and markets. The restriction to a bounded number of goods is necessary to obtain
any reasonable approximation guarantee; with an unbounded number of goods, the
problem is as hard as approximating the maximum independent set problem, even
for the case of just two markets.

1 Introduction

The fundamental theorems of welfare economics are considered “the most remarkable
achievements of modern microeconomic theory” [9] and are the “central set of propositions
that economists have to offer the outside world - propositions that are in a real sense, the
foundations of Western capitalism” [5]. Informally, they state (under certain conditions
that we will discuss later)

First Fundamental Welfare Theorem. A competitive equilibrium is Pareto
efficient.

Second Fundamental Welfare Theorem. Any Pareto efficient solution can be
supported as a competitive equilibrium.

The First Welfare Theorem is widely viewed as “a mathematical statement of Adam
Smith’s notion of the invisible hand leading to an efficient allocation” [12]. The Second
Welfare Theorem implies that we can separate out issues of economic efficiency from issues
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of equity. Specifically, by redistributing the initial endowments (by lump-sum payments), a
set of prices exists that can sustain any Pareto solution. This second theorem has “funda-
mental implications for how we think about economic organization” [13] and is “arguably
the theoretical result that has had the most dramatic effect on economic thinking” [4].
Despite this, “much of public economics takes as its starting point the rejection of the
practical value of the second theorem” [11]. Why this discrepancy? To understand this,
note that lump-sum transfers are theoretically considered a very desirable form of taxation
as they do not distort incentives within the pricing mechanism. However, this is essentially
accomplished by a massive distortion of the initial market! Moreover, these are personal-
ized liabilities which in turn can be viewed as an extremely unfair form of taxation in that
they don’t depend upon the actions or behaviors of the agents, and are impractical for a
myriad of implementational and political reasons (see, for example, [2], [3], [11] and [10]).

This observation motivates our work. Can the market mechanism be used to sustain
Pareto allocations without redistribution? In particular, suppose that without redistribu-
tion a single market leads to low social welfare (or even has no competitive equilibrium
at all). In these circumstances, can the market mechanism still be used to produce an
allocation of high social welfare? We address this question under the classical model of
exchange economy, and show that indeed this can often be achieved provided the single
market can be clustered into submarkets.

1.1 The Exchange Economy.

We consider the classical model of an exchange economy – an economy without production.
We have n traders i ∈ {1, 2, . . . , n} and m goods j ∈ {1, 2, . . . ,m}. (To avoid any ambiguity
between traders and goods we will often refer to good j as good gj). Each trader i has
an initial endowment ei ∈ Rm+ , where eij is the quantity of good gj that she owns, and a
utility function ui : Rm+ → R. The traders have no market power and so are price-takers.
Given a set of prices p ∈ Rm+ , where pj is the price of good gj , trader i will demand the
best bundle she can afford, that is, argmaxxi

ui(xi) s.t. p · xi ≤ p · ei. These prices and
demand bundles form a Walrasian (competitive) equilibrium if all markets clear: demand
does not exceed supply for any good gj . That is,

∑
i xij ≤

∑
i eij . In this paper, we focus

on the basic case of linear utility functions – the linear exchange model. Here the function
ui(.) can be written as ui(xi) =

∑m
j=1 uij xij where uij ≥ 0 is the utility per unit that

trader i has for good gj . (We denote by ui the vector of utility coefficients for trader i.)

1.2 The Fundamental Welfare Theorems.

An allocation is Pareto efficient if there is no feasible allocation in which some trader is
strictly better off but no trader is worse off. The first welfare theorem states that any
Walrasian equilibrium is Pareto efficient. It holds under very mild conditions, such as
monotonic utilities or non-satiation. Clearly for this result to be of interest, though, we
need this economy to possess Walrasian equilibria. In groundbreaking work, Arrow and
Debreu [1] showed that this is indeed the case, under certain conditions such as concave
utility functions and positive endowments.4 Interestingly, equilibria need not exist even in a

4 As well as the possibility of non-concave utility function, numerous other factors may affect the
practicality of the welfare theorems: market power and the presence of price-makers; incomplete
or asymmetric information; externalities; convergence issues for equilibria; the existence of
multiple equilibria; economies of scale when production is added to the exchange economy, etc.
Such issues are not our focus here.



linear exchange economy. However, there is a combinatorial characterization for existence
due to Gale [6], and we discuss this characterization and other properties of the linear
exchange economy in detail in Section 2.

Observe that Pareto efficiency is not a particularly restrictive notion: an allocation is
efficient unless there is an alternative that is universally agreed to be better (or at least as
good). This requirement of unanimity has important implications. Allocations that may
be viewed as societally better outcomes may be blocked by a single agent. For example,
Pareto allocations can be extremely inequitable. The second welfare theorem attempts to
address this concern: Any Pareto solution can be supported as a Walrasian equilibrium.
Specifically, by redistributing the initial endowments via lump-sum payments, a set of
prices exists that can sustain any Pareto solution. (The second theorem also requires
concave utility functions.) Thus, the second welfare theorem implies that we can separate
out issues of economic efficiency from issues of equity.

As stated, however, the second theorem is of limited practical value due to the infea-
sibility of direct transfer payments. Thus, our goal is to obtain non-redistributive second
welfare theorems. Specifically, maximizing the social welfare,

∑n
i=1 ui(xi), is a fundamen-

tal question in economics; so, can we support at equilibrium an allocation with high social
welfare? For example, in a linear exchange economy it is particularly easy to find an op-
timal social allocation. For each good gj , simply give all of it to the trader i for whom it
proffers the greatest utility per unit. However, even in this basic case, a Walrasian equilib-
rium may produce very low social welfare. Intuitively the reason is simple: a trader with a
large utility coefficient for a good may not be able to afford many units of it. This may be
because (a) the good is in high demand and thus has a high price and/or (b) the trader
has a small budget because the goods she initially possesses are abundant and, thus, have
a low price.

On the other hand, the second welfare theorem tells us that, with redistribution, it
is possible to find prices that support an allocation of optimal welfare. Can any more
practical, market-based mechanisms achieve this? To answer this, we consider a mechanism
that is allowed to cluster the traders into trading groups.

1.3 Market Clustering.

Suppose we partition the traders into k separate markets, for some integer k. In each
market t, trade then proceeds as normal with a distinct set of Walrasian prices pt and
corresponding allocation generated. This partition and the collection of Walrasian equilib-
ria (if they exist) form a k-equilibrium. The allocation induced by a k-equilibrium may be
very different than one produced from a single market. So, first, can market clustering be
used to improve social welfare? If so, second, can it be used to optimize social welfare?

The answer to the first question is yes. Trivially, the option to segment the market
cannot hurt because we could simply place all the traders in the same market anyway.
In fact, market clustering may dramatically improve social welfare; there is an example
where the ratio between the social welfare with two markets and the social welfare with
one market is unbounded.

The answer to the second question, however, is no. Not every Pareto solution can be
supported by market clustering. In particular, there are cases where the optimal social
solution cannot be obtained by clustering. Indeed, there is an example where the ratio
between the optimal social welfare and the optimal welfare that can be generated by
market clustering is also unbounded.

The main focus of this paper then becomes to efficiently obtain as large a welfare as
possible under market clustering.



We remark that the basic idea underlying market clustering, i.e., the grouping and
separation of traders, is a classical one in both economic theory and practice. In particular,
it lies at the heart of the theory of trade. On the one hand, countries should trade together
(grouping) to exploit the laws of comparative advantage; on the other hand, trade between
countries may be restricted (separation) to protect the interests of certain subsections (e.g.
specific industries or classes of worker). Interestingly, of course, whilst separation has a net
negative effect on welfare in international trade models, our results show that it can have a
large net positive effect in general equilibrium models. Other examples that can be viewed
as market clustering arise in the regulation of oligopolies and in the issue of trading permits.
A less obvious example concerns bandwidth auctions where participants are grouped into
“large” (incumbent) and “small” (new-entrants). Trade, with the mechanism in the form
of feasible bidding strategies, is then restricted depending upon the group.

1.4 Our Results.

Our main result, in Section 6, is a polynomial time algorithm that finds an ε-approximate
k-equilibrium, of almost optimal social welfare, provided the number of goods and markets
are constants. The key to this result is a limit theorem in Section 5 showing that, in a
single market, ε-approximate equilibria converge to what we call a generalized equilibrium.

On the other hand, in Section 4 we show that it is NP-hard to find an optimal k-
equilibrium in a linear exchange economy with a bounded number of goods and markets.
The restriction to a bounded number of goods is necessary to obtain any reasonable approx-
imation guarantees; for linear exchange economies with an unbounded number of goods,
the problem is as hard as approximating the maximum independent set problem, even for
the case of just 2 markets.

Due to space constraints many proofs of theorems and lemmas are omitted but can be
found in the full paper.

2 Walrasian Equilibria in the Linear Exchange Model

Take an equilibrium with prices p and allocations xi for the Walrasian model with linear
utilities. Recall, we may assume that the followings hold:

Budget Constraints: Trader i cannot spend more than she receives: p · xi ≤ p · ei (1)

Optimality:Each trader i optimizes the bundle of goods she buys:
ui · xi is maximized subject to (1)

(2)

Market Clearing: Demand does not exceed supply, for any gj :
∑
i

xij ≤
∑
i

eij (3)

2.1 Properties of Equilibria

The following claims are well-known facts (see e.g. [8]).

Claim 1. At equilibrium, the budget constraint (1) is tight for any trader.

Claim 2. At equilibrium, the market clearing condition (3) is tight for any gj with pj > 0.

Claim 3. At equilibrium, for any subset S of traders, there is a good gj such that∑
i∈S

xij >
∑
i∈S

eij ⇐⇒ there is a good gj′ with
∑
i/∈S

xij′ >
∑
i/∈S

eij′



Claim 4. At equilibrium, for any i with Pi := p ·ei > 0 and any good gj with price pj > 0

uij
pj
≤ ui · xi

Pi
(4)

Moreover, the inequality is tight for any i, j with xij > 0.

2.2 The Existence of Equilibria in a Single Market

Gale [6] gave a characterization for when linear exchange economies possess equilibria.
Observe that the price of every good will be strictly positive provided that each good is
owned by at least one trader, and at least one trader desires it. We may assume this is the
case as any good that does not satisfy this condition may be removed from the model; in
this case, supply will exactly equal demand for each good. Gale also assumes that every
trader is non-altruistic in that they each desire at least one good. (We say that a trader i
is an altruist if uij = 0 for every good gj .)

Theorem 5 ([6]). An altruist-free linear exchange economy has a Walrasian equilibrium
if and only if there is no super self-sufficient set of traders.

Here, a subset S of traders is called super self-sufficient if

1. Self-Sufficiency:
∑
i/∈S eij = 0 for every good gj such that

∑
i∈S uij > 0.

2. Superfluity:There is a good gj such that
∑
i∈S eij > 0 and

∑
i∈S uij = 0.

It will be useful to reinterpret Gale’s condition combinatorially using the market graph.
The market graph GM for a given market is a directed graph whose set of vertices is the
set of goods in that market. There is an arc j → j′ with label i if there is a trader i with
eij > 0 and uij′ > 0; thus, trader i has good gj and, depending upon the prices, is willing
to trade it for good gj′ . Let h(S) denote the goods that are the heads of arcs with labels
from traders in S, and let t(S̄) denote the goods that are the tails of arcs corresponding
to traders not in S. Then S is self-sufficient if h(S)∩ t(S̄) = ∅. In this case, h(S) induces a
directed in-cut in the market graph. (Thus, a sufficient – but not necessary – condition for
the existence of an equilibrium is the strong connectivity of the market graph. Moreover,
any directed cut will correspond to a self-sufficient set.) If, in addition, h(S) is a strict
subset of t(S), then S is super self-sufficient.

For example, the market graph shown in Figure 1 does not have an equilibrium. It

represents a market with 6 traders and 5 goods g1, . . . g5: each arc g
i→ h represents one

trader i with eig = 1 and uih = 1; all other values are 0. Then traders {4, 5, 6} form a
super self-sufficient set, so this market does not have an equilibrium.

We can use the market graph to test Gale’s condition efficiently. Furthermore, Jain [8]
gave a polynomial time algorithm to find an equilibrium when one exists.

2.3 The Existence of Equilibria in a Market Clustering.

Recall that a trader i is an altruist if uij = 0 for every good gj . An economy is altruistic
if it is allowed to contain altruistic traders. It is important for us to understand the
implications of altruism even for economies without altruists. This is because clustering
may create de facto altruists in the submarkets. Moreover, such altruists are one of the
factors that allow the equilibria to exist in a market clustering, even if the single market
has no equilibrium. We can easily extend Gale’s theorem to altruistic economies.
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Fig. 1. A market graph with a super self-sufficient set and, therefore, has no equilibrium.

Theorem 6. An altruistic, linear exchange economy has an equilibrium if and only if
every super self-sufficient set of traders contains at least one altruist.

So, altruistic economies need not have equilibria. However, they can always be clustered
into markets with equilibria provided that the number of markets k is at least the number
of goods m.

Theorem 7. An altruistic, linear exchange economy with m goods has an m-equilibrium.

Proof. We prove this by induction on the number of goods. An altruistic economy with
one good gj has a trivial equilibrium. Now take an altruistic economy with m goods. If
it has no super self-sufficient set of traders consisting entirely of non-altruists then, by
Theorem 6, it has an equilibrium. Otherwise, let S be a minimal super self-sufficient set
of non-altruists. By minimality, the market induced by S contains an equilibrium as it has
no super self-sufficient subset.

As they are not altruistic, each trader in S desires at least one good. By definition,
however, traders in S desire no goods held by traders in S̄. So, there is at least one good
held by S that is not held by traders in S̄. Thus, the market induced by the traders in S̄
contains at most m− 1 goods. By induction it can be partitioned into m− 1 clusters that
each has an equilibrium. Together with the cluster S, we obtain an m-equilibrium. ut

For example, consider again the market in Figure 1. If we partition the traders into
two, with trader 3 alone in the first market and traders {1, 2, 4, 5, 6} in the second market,
then both resulting markets have equilibria (with x32 = 1 in the first market, and p3 = 0
in the second market).

3 Single Markets, Market Clustering and Welfare Redistribution.

In this section, we examine the potential benefits of market clustering and the limits of
its power as a tool. First, we have seen that equilibria may not exist in the single market
case (i.e., when market clustering is prohibited). In such instances, by Theorem 7, market
clustering can always be applied to produce equilibria. Furthermore, even when equilibria
do exist in the single market case, market clustering may lead to huge improvements in
social welfare in comparison. On the other hand, market clustering is not as powerful as
welfare redistribution; specifically, market clustering does not always support every Pareto
allocation. To see this, we consider two measures regarding the social welfare function:

1. The Clustering Ratio: the ratio between the maximum social welfare under market
clustering and the social welfare obtained in a single market.



2. The Redistribution Ratio: the ratio between the maximum achievable social wel-
fare (with welfare redistribution) and the maximum welfare under market clustering.

Examples showing that both ratios can be unbounded can be found in the full paper.

4 The Hardness of Market Clustering

In this section, we consider the hardness of the k-market clustering problem. We show that
the problem is NP-hard even if we only have a fixed number of goods and a fixed number
of markets, that is, m and k are constant.

Theorem 8. Given an instance of the 2-market clustering problem with five goods and
linear utility functions, it is NP-hard to decide whether there is a clustering that yields a
social welfare of value at least Z, for any Z > 0.

The problem becomes much harder when the number of goods is unbounded.

Theorem 9. For any constant δ > 0 and maximum social welfare Z, unless NP = ZPP,
it is hard to distinguish between the following two cases:

– Yes-Instance: There is a clustering that yields a social welfare of value at least Z1−δ.
– No-Instance: There is no clustering that yields a social welfare of value at least Zδ.

5 Approximate Walrasian Equilibria.

We are interested in finding an ε-approximate market equilibrium; that is, for each market,
our algorithm outputs a price p and an allocation x satisfying the following conditions.

– Budget Constraints: Trader i cannot spend more than she receives: xi · p ≤ ei · p
– Approximate Optimality: Subject to the budget constraints, each trader i purchases

a bundle xi whose utility is similar to that of the optimal bundle x∗i : ui·xi ≥ (1−ε)ui·x∗i
– Market Clearing: Demand never exceeds supply: for any gj ,

∑
i xij ≤

∑
i eij

5.1 Existence of Approximate Walrasian Equilibria.

Compared to exact market equilibria, which do not always exist, there is always an ap-
proximate market equilibrium with arbitrary small approximation:

Theorem 10. For ε > 0, every market has a market-clearing ε-approximate equilibrium.

By market-clearing ε-approximate equilibrium, we mean an ε-approximate equilibrium
for which the approximate market clearing inequality is tight. This theorem can be inferred
from the algorithm of [7]. A direct proof of this fact can be found in the full paper.

5.2 Properties of Approximate Walrasian Equilibria.

We now discuss some properties of equilibria that will later be very useful to us in designing
efficient algorithms. Given a market, we use the following definitions:

– umax = maxi,j uij is the maximum coefficient of any utility function.
– umin = mini,j:uij>0 uij is the minimum non-zero coefficient of any utility function.



– pmax = maxj pj is the maximum price of any good in the market.
– pmin = minj:pj>0 pj is the minimum non-zero price of any good in the market.
– emin = mini,j:eij>0 eij is the minimum non-zero endowment for any good and trader.

Assume wlog that
∑
i eij = 1, for every good gj . We can connect the above values via the

market graph. Recall that n denotes the number of traders and m denotes the number of
goods; then we obtain

Lemma 1. If the market graph is strongly connected then, at a market equilibrium,

pmax

pmin
≤ enm

e

(
umax

eminumin

)nm
In particular, scaling so that pmin = 1 gives pmax ≤ e

nm
e

(
umax

eminumin

)nm
.

Proof. We may assume (solely for the duration of this proof) that each trader has a positive
endowment for exactly one good and no two traders have positive endowments for the same
good [8]. To do this, consider a trader i with endowment ei. For each good gj such that
ei,j > 0, we create a new trader ij with eijj = eij , uij = ui and eijj′ = 0, for all j′ 6= j.
So, each trader now has only one good. Furthermore, if two traders have the same good,
then we simply give the good two different names (and replicate the utility functions of
other traders accordingly). Now, each trader represents a unique good, i.e., a trader i has
a positive endowment for the unique good gi. So, we have at most nm traders/goods.

These transformations maintain the strong connectivity of the market graph. Moreover,
all the copies of the same original good will have the same price in an equilibrium. After
these transformations, the number of units of each good will in general be less than one.
Thus, we scale all the initial endowments so that each trader i has one unit of a good gi.
In addition, we must scale the coefficients of utility functions; otherwise, the scaling would
effect the social welfare. Specifically, for each good gi, we divide the initial endowments of
trader i by eii, and we multiply the utilities of every trader for this good by eii, so as to
keep the prices unchanged.

We may assume that no good has a price of zero. By Equation (4), we have:

u′ij
pj
≤
∑
` u
′
i` · xi`
pi

For a pair i, j with u′ij > 0, we get

pi
pj
≤
∑
` u
′
i` · xi`
u′ij

≤ u′max

u′min

∑
`

xi`

Assume p′min = p′i0 and p′max = p′is , where s ≤ nm. Because the market is strongly
connected, there is a sequence of traders with indices i0, i1 . . . , is, s ≤ nm, such that
u′ij−1ij

> 0 for all i ∈ {1, . . . , s}. Multiplying the previous inequalities for all consecutive
terms of this sequence, we get

pmax

pmin
=

s−1∏
j=0

pij+1

pij
≤
(
u′max

u′min

)s
·
s∏
j=0

(∑
`

xj`

)
≤
(nm
s

)s(u′max

u′min

)nm
≤ enm

e

(
u′max

u′min

)nm
Here the second inequality follows from the Arithmetic-Geometric Mean Inequality and

the fact that
∑s
j=0

∑
` xj` ≤

∑s
j=0

∑
` ej` ≤ nm by the market clearing constraint (3).

Now, observe that there is a pair i, j such that u′min = ejjuij ≥ eminumin, and there is a
(different) pair i, j such that u′max = ejjuij ≤ umax. ut



The same reasoning applied to approximate equilibria gives:

Lemma 2. If the market graph is strongly connected, at an ε-approximate market equi-

librium, we have pmax

pmin
≤ enm

e

(
umax

(1−ε)uminemin

)nm
.

It is possible for a market that is not strongly connected to have an equilibrium: the owners
of the goods reachable from a strongly connected set induce a self-sufficient set but not
necessarily a super self-sufficient set. However, in this case, we cannot bound the ratio
pmax/pmin as seen from the following lemma.

Lemma 3. Consider a market with equilibrium p,x. Let W be a proper subset of goods
such that for any trader i, if there is some good gj ∈W with eij > 0, then uik = 0 for all
k /∈ W (i.e., W is the shore of a directed cut in the market graph). Then, for any B > 1,
p′,x is also an equilibrium where p′j = pj if gj /∈W and p′j = Bpj if gj ∈W .

Proof. The lemma follows from the following two facts. First, xij = 0 for any good gj /∈W
and any trader i with

∑
k∈W eik > 0 since then uij = 0 by the definition of W . Second,

xij = 0 for any trader i with
∑
k∈W eik = 0 and gj ∈W . Consequently, scaling the prices

of goods in W does not effect the equilibrium. ut

An implication of this lemma is that the strongly connected components have price
allocations that are essentially independent of each other: for example one could decompose
the problem, find local equilibria in each component, and then scale the prices accordingly
to get a global equilibrium. Also, again by scaling the prices of W , we can assume that
the minimum price in W is no more than umax/umin times the maximum price outside
W , as it does not change the optimality of the allocations (it would be a problem if
there was a trader with

∑
j /∈W uij = 0 and

∑
j /∈W eij = 0, but then taking this trader

plus {i :
∑
j∈W eij > 0} would give a super self-sufficient set). This gives the following

strengthening:

Lemma 4. Any market having an equilibrium has one such that pmax

pmin
≤ enm

e

(
umax

eminumin

)nm
.

5.3 Limits of Equilibria

By Theorem 10, for any ε > 0 there is a market-clearing ε-approximate equilibrium. When
ε tends to 0, the prices of these approximate equilibria may diverge (if no exact equilibrium
exists), but the allocations of goods to traders, as they are chosen from a compact set,
admit at least one limit point, an allocation x̊. We call such an allocation a limit allocation.
In particular, if the market admits an exact equilibrium, then x̊ is the allocation of an exact
equilibrium (if x̊ could not be obtained as a limit of approximate equilibria with converging
prices, one could exhibit a super self-sufficient set and this would be a contradiction). In
any case, x̊ satisfies the market clearing constraints with equality.

The allocation x̊ may not be supported by a set of real prices. For example, there is
obviously no set of prices supporting x̊ when the market does not have an exact equilibrium.
We show that x̊ can be supported by taking prices from a set more general than the real
numbers. Consider the set Q = N×R+, our new set of “prices”. We denote by π1 and π2
the first and second projection, i.e., π1(x, y) = π2(y, x) = x. We extend these projections
to vectors (and abuse notation) by: πi ((vj)j) = (πi(vj))j . We then redefine the notion of

equilibrium in terms of Q. For p ∈ Qm and x̊ ∈ Rm×n+ , let the rank ri of i be the maximum
a such that

∑
j : π1(pj)=a

eij > 0, for all i. The pair p,x is a generalized equilibrium if



– Budget Constraints: For all i ∈ {1, . . . , n}, for all a ≥ ri,∑
j : π1(pj)=a

π2(pj) · xij ≤
∑

j : π1(pj)=a

π2(pj) · eij

– Optimality: For each trader, xi maximizes the utility ui · xi over all allocations
satisfying the budget constraint.

– Market Clearing: No good is in deficit:
∑
i xij ≤

∑
i eij for all goods j with π2(pj) > 0.

This is indeed a generalization. If we force the prices to be in {0}×R+ then a generalized
equilibrium would give a Walrasian equilibrium. An ε-approximate generalized equilibrium
is defined by replacing the optimality condition by: ui · xi is at least (1 − ε) times the
utility of a best response of trader i, for all i.

Theorem 11. For any market, each limit allocation x̊ gives a generalized equilibrium.

A generalized equilibrium can be approximated by an approximate Walrasian equilib-
rium with almost as high welfare. The converse is not true. An approximate equilibrium
may achieve a welfare arbitrarily high compared to a generalized equilibrium; consider the
market with two traders and two goods where e11 = e22 = 1, u12 = L, u22 = 1 and all
the other values are zero. In this market, the only generalized equilibrium has welfare 1,
but there is an approximate equilibrium with welfare ε ·L+ (1− ε), and this tends to +∞
when L tends to +∞.

Lemma 5. Let x̊, p̊ be a generalized equilibrium. For any ε > 0, there is an approximate
equilibrium with total welfare at least 1− ε times the welfare of x̊, p̊.

6 A Fully Polynomial Time Approximation Scheme

In this section, we exploit the structure we have now developed to obtain a polynomial
time algorithm to find an ε-approximate equilibrium for the k-market clustering problem
where the number of goods m and the number of markets k are constant. Moreover, this
equilibrium has a very strong welfare guarantee: it gives social welfare of at least 1 − ε
times the welfare of the optimal k-cluster generalized equilibrium.

Theorem 12. For any ε > 0 and for fixed k, n ∈ N, there is an algorithm that, given a
market M with m goods, computes within time polynomial in 1

ε and the size of the M ,
an ε-approximate generalized k-equilibrium for M with welfare at least 1 − ε the optimal
welfare of a generalized k-equilibrium.

6.1 The Dynamic Program

Our dynamic program takes as an input a set of generalized prices for every good in each
market. This follows as we may try all possible prices selected from a finite set of prices
in {1, . . . ,m} × P where P = {1, 1 + 1/b, (1 + 1/b)2, . . . , (1 + 1/b)σ−2}. Here b ∈ N+ is

a parameter to be set later, and σ is such that (1 + 1/b)σ−3 ≤ enm/e
(

m·umax

eminumin

)nm
≤

(1 + 1/b)σ−2. A generalized price (a, p) encodes a real price ν(a, p) given by La · p, where
L is an arbitrarily large constant. So, we have m · σ possible prices for each good in each
market. Thus, the number of combinations of prices is (mσ)km, where k is the number of
markets and m is the number of goods.



Given the estimated prices, the dynamic program runs over each market to compute an
approximate equilibrium that maximizes the total social welfare. We denote the estimated
prices in market t by pt ∈ ({1, . . . ,m} × P )

m
, i.e., ptj is the price of a good gj in a market

t. We denote an initial endowment and a final allocation in a clustered market by eti and

xti. (Thus,
∑k
t=1 eti = ei.)

The algorithm considers each trader iteratively. At each iteration, it assigns the trader
to a market and gives a near-optimal bundle to this trader, according to her utility func-
tion and the prices in that market. Once the ith trader is assigned, the algorithm only
remembers the deficit (or surplus) of each good in every market – this will be a key in
obtaining an efficient algorithm. Once every trader is assigned, it selects the best possible
solution that satisfies the approximate market clearing constraint, i.e., the deficits must
be small. Thus, we encode the state of each market t by a vector yt, where ytj denotes
the surplus (or deficit) of the good gj . Let It denote the set of traders already in the
market t, and xi, i ∈ It the bundles given to these traders. Ideally, we would like to have
ytj =

∑
i∈It eij −

∑
i∈It xij . Hence, the value of ytj could be any real value between −1 and

1. However, as we cannot afford to store all possible values for yt, we round these values
into a set W̃ of cardinality α · 4n, where α will be set later. To define W̃ , we first define a
coarser set W .

W =

{(
b

b+ 1

)α
,

(
b

b+ 1

)α−1
, . . . ,

b

b+ 1
, 1

}
.

We then choose α to be minimal such that(
b

b+ 1

)α
≤ emin

2n(b+ 1)
and

(
b

b+ 1

)α
<

umin · emin

m · umax · pmax
· 1

(b+ 1)2

Observe that W induces a set of intervals
[
(b/(b+ 1))`, (b/(b+ 1))`−1

]
, for ` = 1, . . . α.

We can now create the set W̃ by dividing each interval of W and its negation into subin-
tervals. Specifically, for each interval

[
(b/(b+ 1))`, (b/(b+ 1))`−1

]
(resp., for each interval[

−(b/(b+ 1))`−1,−(b/(b+ 1))`
]
), we divide W equally into 2n(b+ 1) subintervals and put

the boundary points in W̃ . Thus,

W̃ =

α−1⋃
`=1

{(
b

b+ 1

)`(
1 +

q

2nb(b+ 1)

)
: q ∈ {0, 1, . . . , 2n(b+ 1)}

}
∪ {0}∪

α−1⋃
`=1

{(
− b

b+ 1

)`(
1 +

q

2nb(b+ 1)

)
: q ∈ {0, 1, . . . , 2n(b+ 1)}

}

We insist that the algorithm selects allocations of goods that take values from W , and
we then round down the surplus (or deficits) to values in W̃ . Formally, xt ⊆ Wn×m and

yt ⊆ W̃m for any market t. Towards this goal, let bac
W̃

denote the value of a rounded

down to the closest value in W̃ , i.e., a′ = bac
W̃

is the largest value in W̃ such that a′ ≤ a.
We now need to ensure that these allocations correspond to an approximate generalized

equilibrium (which in turn will correspond to an approximate equilibrium). To do this, for
a market t and a trader i, we say that an allocation xi of goods is compatible with i and t
if, for ri = maxj:eij>0 π1(pj):

– uij > 0 =⇒ π1(ptj) ≥ ri,
– xij > 0 =⇒ π1(ptj) ≤ ri,
–
∑
j:π1(ptj)≥ri

π2(ptj) · xij ≤
∑
j:π1(ptj)≥ri

π2(ptj) · eij (Budget constraint).



An allocation xi compatible with i and t is nearly-optimal if ui · xi ≥ (1 − ε) maxz ui · z
where z ranges over all the allocations compatible with i and t. By this definition, assuming
L is large enough, a nearly-optimal allocation is an approximate best response for trader
i in market t. The recurrence relation of our dynamic programming algorithm is then

f(0,y1,y2, . . . ,yk) =

{
0 if y1 = y2 = . . . = yk = 0
−∞ otherwise

f(i,y1,y2, . . . ,yk) = max
t∈{1,2,...,k},xi

f(i− 1,y1, . . . , byt − ei + xicW̃ , . . . ,y
k) + uixi

where xi ranges over the nearly-optimal allocations compatible with i and t.
Finally, an allocation is valid if 0 ≤ yt ≤ 1 − (b/(b + 1))3 for all t, i.e., there is no

market having a positive deficit, or a surplus greater than 1 − (b/(b + 1))3. Notice that
some of the surplus may have been lost in the rounding steps; we will show later that
these additional losses amount to a fraction at most 1/(b + 1) of each good. Hence, if
f(n,y1, . . . ,yt) is finite for some valid allocation, and provided that b is sufficiently large,
it gives an approximate generalized equilibrium: the budget constraints and approximate
optimality constraints are guaranteed by the restriction on the choice of xi at each step,
and market clearing is guaranteed by the validity of the allocation.

This completes the description of the dynamic program. It remains to compare the
total social welfare to that of the optimal clustering and to analyze the running time of
the algorithm.

6.2 Quality Analysis

Because of the rounding step, our dynamic programming algorithm loses some fraction of
each good gj . We have to bound the number of units of the good gj that we lose. By the

scaling on W̃ , each time we round ytj , we lose at most (2n(b+ 1))−1
∑
i∈It eij units when

ytj is rounded to a positive value, and we lose at most (b/(b + 1))α ≤ emin (2n(b+ 1))
−1

units when ytj is rounded to zero. By the definition of emin, we have emin ≤
∑
i∈It eij

for all goods gj . Furthermore, we round down ytj at most n times, once for each trader.
Thus, summing them up, we lose at most 1/(2(b+ 1)) ·

∑
i∈It eij < 1/(2b+ 2) units of each

good gj .
Now, we compare the social welfare of the approximate generalized equilibrium ob-

tained by our algorithm with that of some exact generalized equilibrium.

Lemma 6. For any market M = (n,m,u, e) and any ε > 0, there is an exact generalized
equilibrium such that

maxj π2(pj)

minj:π2(pj) 6=0 π2(pj)
≤ enm/e

(
pmax ·m
emin · pmin

)nm
Proof. Take an exact generalized equilibrium x,p that maximizes the total welfare. Let
Gr := {gj : π1(pj) = r}, Ir := {i : ri = r} and Ar := {i ∈ Ir : ∀j ∈ Gr, uij = 0}. For
each possible rank r, let Mr be the market obtained by restricting M to the set of goods
Gr. Define xrij = xij and prj = π2(pj) for any trader i and good gj in Mr. Fix some rank r.

Claim 13. We may assume that
∑
j∈Gr

prjxij =
∑
j∈Gr

prjeij for any i.

Proof. By market-clearing for x,p, we have
∑
i xij =

∑
i eij for any j ∈ Gr. By optimality,

we also have
∑
j∈Gr

prjeij =
∑
j∈Gr

prjxij for any i ∈ Ir−Ar. Subtracting the two equalities,



we get
∑
j∈Gr

(∑
i∈Ar

prjeij +
∑
i:ri>r

prjeij
)

=
∑
j∈Gr

(∑
i∈Ar

prjxij +
∑
i:ri>r

prjxij
)
. Be-

cause urij = 0 for any i with ri > r or any i ∈ Ar, we can redistribute the goods of Gr
allocated to these traders to fulfill the condition of the claim. ut

Then xr,pr is an equilibrium in Mr because of the previous claim (the optimality
constraints and market-clearing constraints follow from the definition of generalized equi-
librium). Let r be some rank and consider Mr. We want to compute an approximate
equilibrium for Mr such that we can bound the prices. If there is no altruist in Mr, then
we apply Lemma 4. Otherwise, for any altruist i, let ji be such that pjix

r
iji

is maximized.
Define the utility vector ur

urij =

uij if i is not an altruist in Mr,
1 if i is altruist in Mr and j = ji,
0 otherwise.

Then the market defined by e and ur, xr,pr is an approximate solution, where only the
altruists of Mr do not follow a best response, and the approximation ratio is at most
(m−1)/m by the choice of uri for altruist trader i (and because there are at most m goods

in Mr). Hence, by applying Lemma 2, we get pmax

pmin
≤ enm/e

(
mumax

uminemin

)nm
. ut

Fix any optimal clustering and consider any market t. Take a generalized equilibrium
p∗,x∗ as in Lemma 6. We show that the dynamic program outputs an approximate gen-
eralized equilibria with total welfare (1 − ε) times the welfare of p∗,x∗. This is done by
building from p∗,x∗ a set of generalized prices p′ and allocations x′ computable by the
dynamic program.

We assume wlog that p∗min := minj:p∗j>0 π2(p∗j ) = 1. Denote pmax := maxj:p∗j>0 π2(p∗j ).

p′ is obtained by rounding down the second components of prices to values in P ; hence,
b/(b+ 1) · π2(p∗) ≤ π2(p′) ≤ π2(p∗). Consequently, we have for each trader i and a ≥ ri:

b

b+ 1

∑
j:π1(p′j)=a

π2(p′j)x
∗
ij ≤

b

b+ 1

∑
j:π1(p′j)=a

π2(p∗j )eij ≤
∑

j:π1(p′j)=a

π2(p′j)eij

Hence, b/(b+ 1) · x∗ satisfies the budget constraint for the prices p′.
Next, we have to modify b/(b + 1) · x∗ further so that it satisfies the condition in our

dynamic programming algorithm. Namely, we round down the coefficients of b/(b+ 1) ·x∗
to W . This gives an allocation x′ with the properties:(

b

b+ 1

)2

x∗ij ≤ x′ij ≤ x∗ij if x∗ij ≥
(

b

b+ 1

)α
, and x′ij = 0 otherwise.

Clearly, x′ also satisfies the budget constraint inequalities. It remains to show that x′i is
an almost optimal choice for trader i. To see this, consider any good gj . We have(

b

b+ 1

)3

π2(p∗j ) · x∗ij ≤
b

b+ 1
π2(p∗j ) · x′ij ≤ π2(p′j) · x′ij ≤ π2(p∗j ) · x∗ij

when x∗ij ≥
(

b
b+1

)
or x∗ij = 0, otherwise uijx

′
ij = 0 and uijx

∗
ij ≤

(
b
b+1

)α
uij . We have

to handle the latter special case, when x′ij = 0 < x∗ij . For this purpose, notice first
that the welfare of a trader i with

∑
j:π1(p∗j )=ri

uij > 0 is lower bounded by emin·umin

pmax



as emin is the minimum possible budget for a trader (other traders have welfare 0). The
maximum ratio utility per unit of price achievable is umax

pmin
. Thus, any allocation x∗ij ≤

(b/(b+ 1))α contributes to the total welfare at most
(

b
b+1

)α
umax·pmax

umin·emin
, which is less than

(1/m)(1/(b + 1))2 ≤ (1/m)
(
1− (b/(b+ 1))3

)
by the choice of α. Hence, over all goods,

the fraction of welfare lost in rounding down x∗ is at most 1− 2(b/(b+ 1))3. This bounds

our approximation ratio to 1− ε ≤ 2
(

b
b+1

)3
, which is true for b = d3/εe.

With this choice, x′ and p′ satisfy the approximate market equilibrium constraints, thus
the dynamic algorithm will find a solution with welfare at least u · x′ ≥ (b/(b+ 1))2u · x∗.

6.3 Running Time Analysis.

Now, consider the complexity of the dynamic program. It can be seen that the running of
our algorithm for one set of prices isO(nkαm(αnb)km), and the running time for all possible
price allocation is (mσ)km. This implies the total running time ofO(nkm+1kα(k+1)m(mbσ)km).
Thus, we have a (1− ε)-approximation algorithm with a running time of

O

(
n(3k+1)m+1m(2k+1)mk

(
1 +

3

ε

)3km+m(
1

e
+ log

m · umax

eminumin

)(k+1)m(
log

m · umax

uminemin

)km)
The input of the k-market clustering problem in a standard binary representation has

a size of Ω(n(log(1/emin) + log(umax/umin)). Thus, the running time of our algorithm is
polynomial in the size of the input when m and k are constant.
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