
Bounds on the Cleaning Times of Robot Vacuums

Zhentao Li∗ and Adrian Vetta†

Abstract. We show a robot vacuum using a protocol that next cleans the “dirtiest”
incident edge may take exponential time to clean a network. This disproves a
conjecture of Messinger and Nowakowski [2]. We also present two simple variants
of this protocol that are polynomial time.

1 Introduction

Messinger and Nowakowski [2] examine the behaviour of the following deterministic walk
W in an undirected graph G = (V,E): When the walk reaches vertex v, the next edge
traversed is the edge incident to v that was last traversed the furthest back in time. The
motivation behind their work is a cleaning process where a robot has to clean the edges
and/or vertices of a network. For example, the robot may clean a set of rooms, a set of
algae infested pipelines, etc. A simple protocol for the robot would be to clean the most
contaminated (that is, dirtiest) incident edge. Thus, we may view each edge as having a
weight or timestamp we recording the time it was last cleaned (in either direction). The
robot begins at a starting vertex s at time T0 = 1 + maxe∈E we. Then, at time T , the
robot traverses the incident edge of minimum weight and then sets the weight of that
edge to T .

The cover time, c(G), of a connected graph G is the maximum number of steps,
over all initial edge weightings w and all possible starting vertices s, until each edge has
been visited. We define, Cm to be the worst-case cover time over all graphs containing
exactly m edges.

In [2], it is shown that the cover time Cm is at most exponential in m, and the
authors conjecture that it is, in fact, polynomial in m. Our main result, given in Section
2.1, is an example network whose cover time is exponential. Specifically, we present a
graph on which the walk mimics a ternary counter. The counter is slightly strange and is
not the standard ternary counter, but it still has the property that it takes exponential
time before the walk activates the nth bit - this will give our result.

Finally, in Section 3, we present two simple modifications to this walk protocol that
both lead to polynomial time cover times. The first is to make the protocol asymmetric:
the walk choses the incident edge that was last traversed in the same direction the
furthest back in time. The second modification is to incorporate a simple counter: the
walk takes the incident edge that has been cleaned the fewest number of times.

∗School of Computer Science, McGill University. Email: zhentao.li@mail.mcgill.ca
†Department of Mathematics and Statistics, and School of Computer Science, McGill University.

Email: vetta@math.mcgill.ca

1

2 Exponential Bounds on the Cover Time

Here we present exponential bounds on the cover-time.

2.1 An Exponential Lower Bound

Theorem 1. There exists a constant α > 0 such that, for all m,

Cm ≥ dα(3/2)m/5 − 1/2e

Proof. Consider the graph G shown in Figure 1. We begin the walk at vertex s.

s..................
t

Figure 1: Graph G used to prove the exponential lower bound

There is a initial set of weights w that forces the deterministic walk to take an
exponential amount of time to reach vertex t. Thus G consists of a sequence of copies
of the subgraph H, shown in Figure 2. Clearly, each gadget shares one edge with the
neighbouring gadget to its left and one edge with the neighbouring gadget to its right.
These shared edges are dubbed (left/right) exit edges as when we traverse them we will
exit the gadget and enter another gadget. Observe that the gadgets are ordered from
right to left - each gadget will correspond to a bit in a counter, so as we move leftwards
the gadgets correspond to more and more significant bits.

For each gadget, the weights on edges in the gadget are ordered relatively as in
Figure 2. More specifically, the edge labelled 0 in the ith gadget to the right will have
initial weight 5(i − 1) + 0, the edge labelled 1 will have initial weight 5(i − 1) + 1, etc.

0

2

1

4
35

..............

Figure 2: A single gadget H in the graph G

Observe then that the walk W on entering a gadget from right will traverse the edges
of that gadget in the following cyclic order (where the label of an edge corresponds to
the initial relative ordering of their weights):

0, 1, 2, 3, 4, 1, 0, 0, 2, 4, 5, 5, 3, 1, 2, 0, 0, 3, 4, 1, 2, 4, 5, 5, 3, 0

2

Note that for each subsequence {5, 5} the walk actually leaves the gadget on its
left exit edge 5, then traverses through some gadgets on its left, before re-entering the
gadget via the left exit edge 5. A similar observation applies to the subsequences {0, 0}.
Moreover, notice that in this cyclic order we exit the gadget three times via the right
exit edge 0 but only twice via the left exit edge 5. In particular, the walk W starting
at s exits each gadget in the cyclic order RLRLR · · ·, where R and L refer to right and
left, respectively. Thus, if the robot leaves H from the left, then the next time it returns
to H it exits the gadget from the right.

We will bound the cleaning time of the robot by number of times the robot visits the
starting vertex s before the leftmost vertex is visited. We call a subwalk of the robot
beginning at s and returning to s a run of the robot. Thus, any run has the property
that the robot traverse leftwards through a number of copies of H and then immediately
traverses rightwards and returns to the starting vertex.

Therefore, refering to the sequence RLRLR · · ·, whenever the robot is at the starting
vertex, all copies of H are in one of three states. Specifically, we say that a gadget is in
state imod3 if we have exited it from the right exactly i times. Consequently, we can
then describe all the states in the graph by a number in base 3.

The total effect of a run on all the states can be thought of as incrementing the
lowest digit of this number. However, instead of following the ordinary arithmetics of
ternary numbers, we also increase the next digit (i.e., carry) when the current digit is
increased from 1 to 2.

More formally, if x is a string of digits and S is the successor function then S(x0) =
x1, S(x1) = S(x)2 and S(x2) = S(x)0. We write S i to mean the function S composed
i times. For example, the first few numbers are: 0, 1, 12, 120, 121, 1202, 1210, 1211,
12022,

Let Bk be the subsequence of this sequence consisting only of numbers with k digits.
From the above example, we see that |B0| = 1, |B1| = 1, |B2| = 1, |B3| = 2, |B4| = 3
(here 0 is viewed as having 0 digits). We will show that |Bi| ≥

3
2 |Bi−1| −

1
2 . To do so,

we need the following lemma.

Lemma 2. For all i > 0, Si(0) = Sj(0)c for some j < i and c ∈ {0, 1, 2}.

Proof. We prove this by induction. Clearly this is true for i = 1 as S(0) = 1 = S 0(0)1.
Now suppose the lemma is true for i − 1. Then S i−1(0) = Sj(0)c for some c ∈ {0, 1, 2}
and some j < i − 1. We have three possibilities:
(i) If c = 0 then Si(0) = Sj(0)1.
(ii) If c = 1 then Si(0) = S(Sj(0))2 = Sj+1(0)2.
(iii) If c = 2 then Si(0) = S(Sj(0))0 = Sj+1(0)0.
Since j < i − 1, we have that j + 1 < i.

Observe that in the previous lemma, Sj(0) is Si(0) with the last digit truncated.
From the proof, we see that when we increase i by 1, j either increases by 0 or 1.
If Si(0) is the first element of the sequence with d digits, then S i(0) = Sj(0)c where

3

c ∈ {0, 2} and Sj(0) is the first element of the sequence to have d − 1 digits (otherwise
Si−1(0) has d digits).

Therefore, we can conclude that if b1, . . . , bk are the elements of Bi then the elements
of Bi+1 are either b10, b11, b22, b30, b31, . . . or b12, b20, b21, b32, . . .

Therefore, |Bi+1| ≥ b3
2 |Bi|c ≥ 3

2 |Bi| −
1
2 as required. The theorem follows immedi-

ately, by repeatedly applying this inequality.

2.2 An Exponential Upper Bound

For completeness, we present a simple proof of an exponential upper bound. We require
this variant of Theorem 1 from [2].

Lemma 3. In any connected graph G with at least i edges, any Ci consecutive steps of
the robot visit at least i edges.

Proof. Suppose not. Let H be the graph consisting of the edges visited during the the
first Ci − 1 of these steps plus the two edges obtained by subdividing the edge visited
in step Ci. Then c(H) > Ci and |E(H)| ≤ i, a contradiction.

Theorem 4. Cm ≤ 1 + maxj≤m j(Cm−j + 1)

Proof. Let G, w and s be chosen to attain the maximum cover time on connected graphs
with m edges. Then, let Fm−1 be the set of visited edges of G, starting at s, after Cm−1

steps. By Lemma 3, |Fm−1| ≥ m − 1.
If E(G) = Fm−1 then we visited every edge of G in Cm−1 ≤ 1+maxj≤m j(Cm−j +1)

steps. So E(G) − Fm−1 must consist of a single edge e = (u, v). First, assume that
s 6= u and s 6= v. Let Ee consist of all edges (including e itself) that share at least one
endpoint with e. Let i = |Ee|. Note that whenever the robot exits {u, v}, it does so
using a previously unvisited edge of Ee. We think of traversing an edge parallel to e as
exiting {u, v} and re-entering {u, v} in the same step.

Observe, by Lemma 3, that every Cm−i+1 steps, the robot is guaranteed to visit an
edge of Ee. In particular, since s ∈ V − {u, v}, the first time the robot enters {u, v},
it does so via an unvisited edge of Ee, as all edges of Ee are unvisited at that point.
This step is immediately followed by traversing another unvisited edge in Ee. Thus,
in the first Cm−i+1 + 1 steps, two edges of Ee are visited. Subsequently, all successive
next visits to {u, v} may occur via a visited edge, but they are certainly followed by
traversing an unvisited edge. Hence edge e is traversed after at most (i−1)(Cm−i+1 +1)
steps. Letting j = i − 1, we bound Cm by the worst case Cm ≤ maxj≤m j(Cm−j + 1).

Finally, if s = u or s = v then we simply take one step and apply the previous
argument. This gives the additional constant 1 in the bound.

We now use the above theorem to show

Theorem 5. Cm ≤ 3m/3+1 − 3.

4

Proof. We prove this by induction. The theorem is true for m < 3 since C0 = 0, C1 = 1
and C2 = 3. So, consider m ≥ 3. By Theorem 4, either Cm ≤ 1 + Cm−1 + 1 or
Cm ≤ 1 + j(Cm−j + 1) for j ≥ 2. In the first case,

Cm ≤ 1 + Cm−1 + 1

≤ 3(m−1)/3+1 − 3 + 2

≤ 3m/3+1 − 3

Here, the last inequality follows from the fact that (1−3−1/3)3m/3+1 ≥ 9(1−3−1/3) > 2,
for m ≥ 3. In the second case, as j ≥ 2, we have

Cm ≤ 1 + j(Cm−j + 1)

= jCm−j + 1 + j

≤ j(3(m−j)/3+1 − 3) + 1 + j

= j3(m−j)/3+1 + 1 − 2j

≤ 3j/33(m−j)/3+1 + 1 − 2j

≤ 3m/3 − 3

2.3 What if we buy Two Robots, or Three...?

Interactions between multiple cleaning robots cannot be exploited to overcome the in-
herent exponentiality in our bad example. To construct bad examples with multiple
robots, we simply adapt the example of Section 2.1. (Here, we make the assumption
that two robots cannot clean an edge simultaneously; this can be achieved, for exam-
ple, by perturbing each robots clocks very slightly so that moves are not simultaneous.)
With two robots, we can just take two copies of each edge in the example with appro-
priate weightings; more generally, replace each edge with as many copies as there are
robots and give copies of the same edge consecutive weightings. Specifically, if there are
k robots, we replace each edge e with weight we by k parallel edges e1, . . . , ek where ei

has weight we + εi where ε is chosen to be smaller than the smallest difference between
two edge weights in the original graph divided by k. Thus, we obtain

Corollary 6. With k robots, the worst-case cover time is at least α
(

3
2

)
m

5k − 1
2 for some

constant α.

3 Polynomial Time Protocols

In this section we present two simple deterministic walks that do lead to polynomial
cover times.

5

3.1 An Asymmetric Walk

The asymmetic variant of the above walk is the following: at any vertex the walk choses
the incident edge that was last traversed in the outgoing direction the furthest back in
time. We will see that this walk always does produce a polynomial cover time. First,
however, we remark that this protocol would correspond to using only one chip in the
rotor router model of Propp [1]. To see this, observe that the walk can be viewed as
taking the edge that has so far been cleaned the fewest number of times in the outgoing
direction. Consequently, it can be implemented using a pointer (at each vertex) that
rotates in a circular order through the incident edges at the vertex; at each step, the
walk follows the edge indicated by the pointer and then the pointer shifts one place.

Let Ĉ(G) be the worst case cover time on a graph using this walk. Then Ĉ(G) has
a polynomial upper bound.

Theorem 7. Ĉ(G) ≤ 2mn

Proof. Take the last edge e = (u, v) to be traversed, say, in the direction from u to v.
We build sets Si, for 1 ≤ i ≤ n where each edge leaving Si is traversed at most i times
from Si to V − Si. This is true for S1 = {u}. Now take Si. We leave on any arc out
of Si at most i times. Then, as |δ−(Si)| = |δ+(Si)| and the number of exits from Si is
at least the number of entries into Si, there is some arc f in δ−(Si) that is traversed
at most i times. Let f = (x, y). Then no arc out of x is used more that i + 1 times.
Hence we may set Si+1 = Si ∪ {x}. Consequently, no arc is used more than n times.
The theorem follows.

3.2 Counting Robots

For our second protocol modification, instead of traversing the least recently cleaned
edge incident to the current vertex, the robot will keep count of the number of times
an edge is cleaned and, at each step, it will traverse the adjacent edge which has been
cleaned the least number of times. Let C ′(G) be the worst case cover time on a graph
using this walk. Then C ′(G) also has a polynomial upper bound.

Theorem 8. C ′(G) ≤ 2mn

Lemma 9. Let W be the walk performed by the robot before the last edge is visited.
Then at that point, there is a spanning tree T of G with edges e0, . . . , en−1 such that ei

has weight at most 2i.

Proof. We recursively build this spanning tree. Let e0 be the only unvisited edge. Given
e0, . . . , ek, k < n − 1, we find ek+1 as follows.

Let Fk =
⋃k

i=0 ek and Vk be the union of the endpoints of edges in Fk. If there is no
edge in W which is traversed from Vk to V − Vk then we can let ek+1 be the only edge
in W traversed from V − Vk to Vk since ek+1 is traversed exactly once.

6

Otherwise, let e = (u, v) be the last edge in W traversed from u ∈ Vk to v ∈ V −Vk.
At that point, e has weight at most 2k + 1 (since it the robot did not traverse the edge
in Fk which has an endpoint u). After that point, by definition of e, the robot only
returns to Vk at most once and thus traverses e at most once more. Therefore e has
weight at most 2k + 2 and we can let ek+1 = e.

It is clear that in each case, Vk+1 − Vk contains a vertex.

Lemma 10. Let W be the walk performed by the robot before the last edge is visited.
Every edge e = (u, v) is traversed at most 2n times in W .

Proof. Suppose, without loss of generality, that the last time e is traversed in W , it is
traversed from u to v. Let T be the spanning tree in the previous lemma. Then u is
incident to an edge of weight at most 2n−2. Thus, just before we traverse e for the last
time it has weight at most 2n − 2, so it is used at most 2n − 1 times in total.

Now Theorem 8 follows as a corollary by simply taking the sum over all edges.

Acknowledgments. We thank the referee for many helpful suggestions and improve-
ments.

References

[1] J. Cooper and J. Spencer, “Simulating a Random Walk with Constant Error”,
Combinatorics, Probability and Computing, 15(6), pp815-822, 2006.

[2] M. Messinger and R. Nowakowski, “The Robot Cleans Up”, Proceedings of the 2nd
Annual International Conference on Combinatorial Optimization and Applications
(COCOA), LNCS 5161, pp309-318, 2008.

7

