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Abstract

We examine the number of controlled experiments required to discover a causal
graph. Hauser and Buhlmann [1] showed that the number of experiments required
is logarithmic in the cardinality of maximum undirected clique in the essential
graph. Their lower bounds, however, assume that the experiment designer cannot
use randomization in selecting the experiments. We show that significant improve-
ments are possible with the aid of randomization – in an adversarial (worst-case)
setting, the designer can then recover the causal graph using at most O(log log n)
experiments in expectation. This bound cannot be improved; we show it is tight
for some causal graphs.
We then show that in a non-adversarial (average-case) setting, even larger im-
provements are possible: if the causal graph is chosen uniformly at random under
a Erdös-Rényi model then the expected number of experiments to discover the
causal graph is constant. Finally, we present computer simulations to complement
our theoretic results.
Our work exploits a structural characterization of essential graphs by Andersson
et al. [2]. Their characterization is based upon a set of orientation forcing opera-
tions. Our results show a distinction between which forcing operations are most
important in worst-case and average-case settings.

1 Introduction

We are given n random variables V = {V1, V2, . . . , Vn} and would like to learn the causal relations
between these variables. Assume the dependencies between the variables can be represented as a
directed acyclic graph G = (V,A), known as the causal graph. In seminal work, Sprites, Glymour,
and Scheines [3] present methods to obtain structural information on G from passive observational
data. In general, however, observational data can be used to discover only a part of the causal graph
G; specifically, observation data will recover the essential graph E(G). To recover the entire causal
graphGwe may undertake experiments. Here, an experiment is a controlled intervention on a subset
S of the variables. A controlled intervention allows us to deduce information about which variables
S influences.

The focus of this paper is to understand how many experiments are required to discover G. This line
of research was initiated in a series of works by Eberhardt, Glymour, and Scheines (see [4, 5, 6]).
First, they showed [4] that n − 1 experiments suffice when interventions can only be made upon
singleton variables. For general experiments, they proved [5] that dlog ne experiments are sufficient
and, in the worst case necessary, to discover G. Eberhardt [7] then conjectured that dlog(ω(G))e
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experiments are sufficient and, in the worst case, necessary; here ω(G) is the size of a maximum
clique in G.1 Hauser and Buhlmann [1] recently proved (a slight strengthening of) this conjecture.
The essential mathematical concepts underlying this result can be traced back to work of Cai [8] on
“separating systems” [9]; see also Hyttinen et al. [10].

Eberhardt [11] proposed the use of randomization (mixed strategies) in causal graph discovery. He
proved that, if the designer is restricted to single-variable interventions, the worst case expected
number of experiments required is Θ(n). Eberhardt [11] considered multi-variable interventions to
be “far more complicated” to analyze, but hypothesized thatO(log n) experiments may be sufficient,
in that setting, in the worst-case.

1.1 Our Results

The purpose of this paper is to show that the lower bounds of [5] and [1] are not insurmountable.
In essence, those lower bounds are based upon the causal graph being constructed by a powerful
adversary. This adversary must pre-commit to the causal graph in advance but, before doing so,
it has access to the entire list of experiments S = {S1, S2, . . . } that the experiment designer will
use; here Si ⊆ V for all i. (This adversary also describes the “separating system” model of causal
discovery. In Section 2.4 we will explain how this adversary can also be viewed as adaptive. The
adversary may be given the list of experiments in order over time, but at time i it needs only commit
to the arcs in δ(Si), the set of edges with exactly one end-vertex in Si.)

Our first result is that we show this powerful adversary can be tricked if the experiment designer
uses randomization in selecting the experiments. Specifically, suppose the designer selects the ex-
periments {S1, S2, . . . } from a collection of probability distributions P = {P1,P2, . . . }, respec-
tively, where distribution Pi+1 may depend upon the results of experiments 1, 2 . . . , i. Then, even
if the adversary has access to the list of probability distributions P before it commits to the causal
graph G, the expected number of experiments required to recover G falls significantly. Specifically,
if the designer uses randomization then, in the worst case, only at most O(log log n) experiments
in expectation are required. This result is given in Section 3, after we have presented the necessary
background on causal graphs and experiments in Section 2. We also prove our lower bound is tight.
This worst case result immediately extends to the case where the adversary is also allowed to use
randomization in selecting the causal graph. Thus, theO(log log n) bound applies to mixed-strategy
equilibria in the game framework [11] where multi-variable interventions are allowed.

Our second result is that even more dramatic improvements are possible if the causal graph is non-
adversarial. For a typical causal graph only a constant number of experiments are required in expec-
tation! Specifically, if the directed acyclic graph is random, based upon an underlying Erdös-Rényi
model, then O(1) experiments in expectation are required to discover G. We prove this result in
Section 4.

Our work exploits a structural characterization of essential graphs by Andersson et al. [2]. Their
characterization is based upon a set of four operations. One operation is based upon acyclicity, the
other three are based upon v-shapes. Our results show that the acyclicity operation is most important
in improving worst-case bounds, but the v-shape operations are more important for average-case
bounds. This conclusion is highlighted by our simulation results in Section 5. These simulations
confirm that, by exploiting the v-shape operations, causal graph discovery is extremely quick in the
non-adversarial setting. In fact, the constant in the O(1) average-case guarantee may be even better
than our theoretical results suggest. Typically, it takes one or two experiments to discover a causal
graph on 15000 vertices!

2 Background

Suppose we want to discover an (unknown) directed acyclic graph G = (V,A) and we are given
its observational data. Without experimentation, we may not be able to recover all of G from its
observation data. But we can deduce a subgraph of it known as the essential graph E(G). In this
section, we describe this process and explain how experiments (deterministic or randomized) can
then be used to recover the rest of the graph. Throughout this paper, we assume the causal graph

1A directed graph is a clique if its underlying undirected graph is a (undirected) clique.
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and data distribution obey the faithfulness assumption and causal sufficiency [3]. The faithfulness
assumption ensures that all independence relationships revealed by the data are results of the causal
structure and are not due to some coincidental combinations of parameters. Causal sufficiency means
there are no latent (that is, hidden) variables. These assumptions are important as they provide a one
to one mapping between data and causal structure.

2.1 Observational Equivalence

First we may discover the skeleton and all the v-structures ofG. To explain this, we begin with some
definitions. The skeleton of G is the undirected graph on V with an undirected edge (between the
same endpoints) for each arc of A. A v-shape in a graph (directed or undirected) is an ordered set
(a, b, c) of three distinct vertices with exactly two edges (arcs), both incident to b. The v-structures
are the set of v-shapes (a, b, c) where ab and cb are arcs.2 Two directed graphs with indistinguishable
by observational data are said to belong to the same Markov equivalence class. Specifically, Verma
and Pearl [12] and Frydenberg [13] showed the skeleton and the set of v-structures determine which
equivalence class G belongs to.

Theorem 2.1. (Observational Equivalence) G and H are in the same Markov equivalence class if
and only if they have the same skeletons and the same sets of v-structures.

Because of this equivalence, we will think of an observational Markov equivalence class as given by
the skeleton and the set of (all) v-structures. From the observational data it is straightforward [12] to
obtain the basic graph B(G), a mixed graph3 obtained from the skeleton ofG by orienting the edges
in each v-structure. For example, to test for an edge {i, j}, simply check there is no d-separator for
i and j; to test for a v-structure (i, k, j), simply check that there is no d-separator for i and j that
contains k.4

2.2 The Essential Graph

In fact, from the observational data we may orient more edges than simply those in the basic graph
B(G). Specifically we can obtain the essential graph E(G). The essential graph is a mixed graph that
also includes every edge orientation that is present in every directed acyclic graph that is compatible
with the data.5 For example, an edge {a, b} is forced to be oriented as the arc ab for the following
reasons.

(F1) The arc ab (and the arc cb) is forced if it belongs to a v-structure (a, b, c).

(F2) There is a v-shape (b, a, c) but it is not a v-structure. Then the arc ab is forced if ca is an
arc.

(F3) The arc ab is forced, by acyclicity, if there is already a directed path P from a to b.

(F4) There is a v-shape (c1, a, c2) but it is not a v-structure. Then the arc ab is forced if there
are directed paths Q1 and Q2 from c1 to b and from c2 to b, respectively.

Andersson et al. [2] showed that these are the only ways to force an edge to become oriented. In
fact, they characterize essential graphs and show only local versions of (F3) and (F4) are needed to
obtain the essential graph – that is, it suffices to assume the path P has two arcs and the paths Q1

and Q2 have only one arc each.

Let U(G) be the subgraph induced by the undirected edges of the essential graph E(G).6 From the
characterization, it can be shown that U is a chordal graph.7 We remark that this chordality property
is extremely useful in quantitatively analyzing the performance of the experiments we design. In

2These are sometimes called immoralities [2].
3A mixed graph contains oriented edges and unoriented edges. To avoid confusion, we refer to oriented

edges as arcs.
4These tests are not polynomial time. However, this is not relevant for the question we address in this paper.
5That is, an edge is oriented if and only if it has the same orientation in every graph in the equivalence class.
6For simplicity, we will generally just use the notation B, E and U .
7A graph H is chordal if every induced cycle in H contains exactly three vertices. That is, every cycle C

on at least four vertices has a chord, an edge not in C that connects two vertices of the cycle.
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particular, the size of the maximum clique and the chromatic number can be computered in linear
time.

Corollary 2.2. [2] The subgraph U is chordal.

2.3 Experimental Design

So observation data (the null experiment) will give us the essential graph E . If we perform experi-
ments then we may recover the entire causal graph G and, in a series of works, Eberhardt, Glymour,
and Scheines [5, 4, 6] investigated the number of experiments required to achieve this. An experi-
ment is a controlled intervention that forces a distribution, chosen by the designer, on a set S ⊂ V .
A key fact is that, given the existence of an edge (a, b) in G, an experiment on S can perform a
directional test on (a, b) if (a, b) ∈ δ(S) (that is, if exactly one endpoint of the edge is in S); see [5]
for more details. Recall that we already know the skeleton of G from the observational data. Thus,
we can determine the existence of every edge in G. It then follows that to recover the entire causal
graph it suffices that (Ψ) Each edge undergoes one directional test. The separating systems method
is based on this sufficiency condition (Ψ). Using this condition, it is known that log n experiments
suffice [5]. In fact, this bound can be improved to logω(U), where ω(U) is the size of the maximum
clique in the undirected subgraph U of the essential graph E . For completeness we show this result
here; see also [8] and [1].

Theorem 2.3. We can recover G using logω(U) experiments.

Proof. First use the observational data to obtain the skeleton of G. To find the orientation of each
edge, take a vertex colouring c : V (U) → {0, 1, . . . , χ(U) − 1}, where χ(U) is the chromatic
number of U . We use this colouring to define our experiments. Specifically, for the ith experiment,
select all vertices whose colour is 1 in the ith bit. That is, select Si = {v : bini(c(v)) = 1},
where bini extracts the ith bit of a number. Now, if vertices u and v are adjacent in U , they receive
different colours and consequently their colours differ at some bit j. Thus, in the jth experiment,
one of {u, v} is selected in Sj and the other is not. This gives a directional test for the edge (u, v).
Therefore, from all the experiments we find the orientation of every edge. The result follows from
the fact that chordal graphs are perfect (see, for example, [14]).

But (Ψ) is just a sufficiency condition for recovering the entire causal graph G; it need not be
necessary to perform a directional test on every edge. Indeed, we may already know some edge
orientations from the essential graph E via the forcing operations (F1), (F2), (F3) and (F4). Fur-
thermore, the experiments we carry out will force some more edge orientations. But then we may
again apply the forcing operations (F1) − (F4) incorporating these new arcs to obtain even more
orientations.

Let S = {S1, S2, . . . Sk}, where Si ⊆ V for all 1 ≤ i ≤ k, be a collection of experiments,
Then the experimental graph is a mixed graph that includes every edge orientation that is present
in every directed acyclic graph that is compatible with the data and the experiments S. We denote
the experimental graph by E+S (G). Thus the question Eberhardt, Glymour, and Scheines pose is:
how many experiments are needed to ensure that E+S (G) = G? As before, we know how to find the
experimental graph.

Theorem 2.4. The experimental graph E+S (G) is obtained by repeatedly applying rules (F1)–(F4)
along with the rule:
(F0) There is an experiment Si ∈ S and an edge (a, b), with a ∈ Si and b /∈ Si. Then either the arc
ab or the arc ba is forced depending upon the outcome of the experiment.

We prove this theorem in the full version of this paper and note here that the proof uses the fact that
arcs forced by (F0) is the union of edges across a set of cuts; without this property, a fourth forcing
rules may be needed [15].

Theorem 2.4 suggests that it may be possible to improve upon the logω(U) upper bound. Unfortu-
nately, Hauser and Buhlmann [1] show using an adversarial argument that in the worst case there is
a matching lower bound, settling a conjecture of Eberhardt [6].
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2.4 Randomized Experimental Design

As discussed in the introduction, the lower bounds of [5] and [1] are generated via a powerful
adversary. The adversary must pre-commit to the causal graph in advance but, before doing so, it
has access to the entire list of experiments S = {S1, S2, . . . } that the experiment designer will use.
For example, assume that the adversary choses a clique for G and the experiment designer selects
a collection of experiments S = {S1, S2, . . . }. Given the knowledge of S then, for a worst case
performance, the adversary will direct every edge in δ(S1) from S1 to V \ S1. The adversary will
then direct every edge in δ(S2) (that has yet to be assigned an orientation) from S2 to V \S2, etc. It
is not difficult to show that the designer will need to implement at least log n of the experiments.

We remark that there is an alternative way to view the adversary. It need commit only to the essential
graph in advance but otherwise may adaptively commit the rest of the graph over time. In particular,
at time i, after experiment Si is conducted it must commit only to the arcs in δ(Si) and to any
induced forcings. This second adversary is clearly weaker than the first, but the lower bounds of [5]
and [1] still apply here. Again, though, even this form of adversary appears unnaturally strong in the
context of causal graphs. In particular, given the random variables V the causal relations between
them are pre-determined. They are already naturally present before the experimentation begins, and
thus it seems appropriate to insist that the adversary pre commit to the graph rather than construct it
adaptively.

Regardless, both of these adversaries can be countered if the designer uses randomization in select-
ing the experiments. In particular, in randomized experimental design we allow the designer to select
the experiments {S1, S2, . . . } from a collection of probability distributions P = {P1,P2, . . . }, re-
spectively, where distribution Pi+1 may depend upon the results of experiments 1, 2 . . . , i. As an
example, consider again the case in which the adversary selects a clique. Suppose now that the
designer selects the first experiment S1 uniformly at random from the collection of subsets of cardi-
nality 1

2n. Even given this knowledge, it is less obvious how the adversary should act against such a
design. Indeed, in this article we show the usefulness of the randomized approach. It will allow the
designer to require only O(log log n) experiments in expectation. This is the case even if the adver-
sary has access to the entire list of probability distributions P before it commits to the causal graph
G. We prove this in Section 3. Thus, by Theorem 2.3, we have that min[O(log log n), logω(U)]
experiments are sufficient. We also prove that this bound is tight; there are graphs for which
min[O(log log n), logω(U)] experiments are necessary.

Still our new lower bound only applies to causal graphs selected adversarially. For a typical causal
graph we can do even better. Specifically, we prove, in Section 4, that for a random causal graph
it is sufficient to conduct a constant number of experiments in expectation. Consequently, for a
random causal graph the number of experiments required is independent of the number of vertices
in the graph! This surprising result is confirmed by our simulations. For various values n of number
of vertices, we construct numerous random causal graphs and compute the average and maximum
number of experiments needed to discover them. Simulations confirm this number does not increase
with n.

Our results can be viewed in the game theoretic framework of Eberhardt [11], where the adversary
selects a probability distribution (mixed strategy) over causal graphs and the experiment designer
choses a distribution over which experiments to run. In this zero-sum game, the payoff to the
designer is the negative of the number of experiments needed. The worst case setting corresponds
to the situation where the adversary can choose any distribution over causal graphs. Thus, our result
implies a worst case −Θ(log log n) bound on the value of a game with multi-variable interventions
and no latent variables. Therefore, the ability to randomize turns out to be much more helpful to the
designer than the adversary. Our average case O(1) bound corresponds to the situation where the
adversary in the game is restricted to choose the uniform distribution over causal graphs.

3 Randomized Experimental Design

3.1 Improving the Upper Bound by Exploiting Acyclicity

We now show randomization significantly reduces the number of experiments required to find the
causal graph. To improve upon the logχ(U) bound, recall that (Ψ) is a sufficient but not necessary
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condition. In fact, we will not need to apply directional tests to every edge. Given some edge orien-
tations we may obtain other orientations for free by acyclicity or by exploiting the characterization
of [2]. Here we show that the acyclicity forcing operation (F3) on its own provides for significant
speed-ups when we allow randomisation.

Theorem 3.1. To orient a clique on t vertices, O(log log t) experiments suffice in expectation.

Proof. Let {x1, x2, . . . , xt} be the true acyclic ordering of the clique G. Now take a random ex-
periment S, where each vertex is independently selected in S with probability 1

2 . The experiment
S partitions the ordering into runs (streaks) – contiguous segments of {x1, x2, . . . , xt} where either
every vertex of the segment is in S or every vertex of the segment is in S̄ = V \ S. Without loss of
generality the first run is in S and we denote it by R0. We denote the second run, which is in S̄, by
R̄0, the third run by R1, the fourth run by R̄1 etc. A well known fact (see, for example, [16]) is that,
with high probability, the longest run has length Θ(log t).

Take any pair of vertices u and v. We claim that edge {u, v} can be oriented provided the two
vertices are in different runs. To see this first observe that the experiment will orient any edge
between S and S̄. Thus if u ∈ Ri and v ∈ R̄j , or vice versa, then we may orient {u, v}. Assume
u ∈ Ri and v ∈ Rj , where i < j. We know {i, j} must be the arc ij, but how do we conclude this
from our experiment? Well, take any vertex w ∈ R̄i. Because G is a clique there are edges {u,w}
and {v, w}. But these edges have already been oriented as uw and wv by the experiment. Thus, by
acyclicity the arc uv is forced by (F3). A similar argument applies for u ∈ R̄i and v ∈ R̄j , where
i < j.

It follows that the only edges that cannot be oriented lie between vertices within the same run. Each
run induces an undirected clique after the experiment, but each such clique has cardinality O(log t)
with high probability. We can now independently and simultaneously apply the deterministic method
of Theorem 2.3 to orient the edges in each of these cliques using O(log log t) experiments. Hence
the entire graph is oriented using 1 +O(log log t) experiments.

Theorem 3.1 applies to cliques. The same guarantee, however, can be obtained for any graph.

Theorem 3.2. To construct G, O(log log n) experiments suffice in expectation.

Proof. Take any graphG with n vertices. Recall, we only need orient the edges of the chordal graph
U .

But a chordal graph contains at most n maximal cliques [14] (each of size t ≤ n). Suppose we
perform the randomized experiment where each vertex is independently selected in S with prob-
ability 1

2 , as in Theorem 3.1. Then any vertex of a maximal clique Q is in S with probability 1
2 .

Thus, this experiment breaks Q into runs all of cardinality at most O(log n) with high probability.8
Since there are only n maximal cliques, applying the union bound gives that every maximal clique
in U is broken up into runs of cardinality O(log n) with high probability. Therefore, since every
clique is a subgraph of a maximal clique, after a single randomized experiment, the chordal graph
U ′ formed by the remaining undirected edges has ω = O(log n). We can now independently apply
the deterministic method of Theorem 2.3 on U ′ to orient the remaining edges using O(log log n)
experiments.

We can also iteratively exploit the essential graph characterization [2] but in the worst case we will
have no v-structures and so the expected bound above will not be improved. Combining Theorem
2.3 and Theorem 3.2 we obtain

Corollary 3.3. To constructG, min[O(log log n), logω(U)] experiments suffice in expectation.

3.2 A Matching Lower Bound

The bound in Corollary 3.3 cannot be improved. In particular, the bound is tight for unions of
disjoint cliques.

8Specifically, every run will have cardinality at most k · logn with probability at least 1− 1
nk−1 .
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Lemma 3.4. If G is a union of disjoint cliques, Ω (min[log log n, logω(U)]) experiments are nec-
essary in expectation to construct G.

Proof. Imagine that G consists of n/ω disjoint cliques of cardinality ω. We may assume that each
clique has size ω = 2q , for some integer q. The adversary now randomly and independently selects
an acyclic ordering for each clique. Take any clique Q with vertex ordering {v1, v2, . . . , vω}, and
consider the first experiment S1 where, without loss of generality, |S1 ∩Q| ≥ 1

2ω. Observe that all
subsets of vertices of size k within the clique are indistinguishable. Therefore, the probability ρ that
S1 contains all of the vertices in the subset Q′ = {v1, . . . , v 1

4ω
} is at least

ρ ≥ min
k

( 3
4ω

1
4ω+k

)(
ω

1
2ω+k

) =

( 3
4ω
1
4ω

)(
ω
1
2ω

) =
1
2ω

ω
·

1
2ω − 1

ω − 1
· · · · ·

1
4ω + 1
3
4ω + 1

≥
(

1

3

) 1
4ω

Now consider a sequence of experiments S1, S2, . . . , St. Observe that the choice of second exper-
iment S2 may depend on the outcome of the first experiment. But if Q′ is in S1 then no additional
information can be obtained concerning the orientations within Q′. To see this, recall that forcings
(F1), (F2) and (F4) cannot apply to cliques; furthermore, (F2) cannot apply on Q′ as, by the order-
ing, all arcs are oriented out of Q′. It follows that the experimental designer is now in a symmetric
situation facing a random ordering of Q′ (plus some additional nodes).

Let Ei be the event that {v1, v2, . . . , v4−i·ω} are on the same side of experiment Si. Then, for
i < 1

2q, we have

P (Ei) ≥
i−1∏
j=1

P (Ej+1| ∩ Ej) ≥
i−1∏
j=1

(
1

3

)4−j ·ω

≥
(

1

3

)ω·
∑i−1

j=1 4−j

≥
(

1

3

) 1
3 ·ω

In particular, the probability that the edge (v1, v2) is not oriented before q
2 experiments are completed

is at least 3−
1
3ω . Conversely, the probability that every edge in Q is oriented before the t = q

2 th
experiment is at most 1− 3−

1
3ω . Because each of the n/ω cliques were oriented independently, the

probability that every edge in the graph is oriented before the tth experiment is at most(
1− 3−

1
3ω
)n/ω

=
(

1− 3−
1
3ω
)3 1

3
ω· n

ω3
1
3
ω ≤ e

− n

ω3
1
3
ω

Now if log n ≥ 2ω then n ≥ 22ω and
√
n > 2ω > ω3

1
3 ·ω . So the probability that every edge in

the graph is oriented is at most e−
n√
n = e−

√
n. Thus, with probability at least 1 − e−

√
n, we will

require 1
2q experiments, where 1

2q = 1
2 logω = 1

2 log( 1
2 log n) = Ω(log log n).

On the other hand, if log n < 2ω the adversary can simply split each clique into smaller cliques of
size at most log( 1

3 log n) and commit to a random total order between these new smaller cliques.
Then q = logω = 1

2 log( 1
3 log n) and the above argument shows a lower bound of log( 1

3 log n)

experiments (with probability 1− e−
√
n).

Observe that Lemma 3.4 explains why attempting to recursively partition the runs (used in Theorem
3.1) in sub-runs will not improve worst-case performance. Specifically, a recursive procedure may
produce a large number of sub-runs and, with high probability, the trick will fail on one of them.

4 Random Causal Graphs

In this section, we go beyond worst-case analysis and consider the number of experiments needed
to recover a typical causal graph. To do this, however, we must provide a model for generating a
“typical” causal graph. For this task, we use the Erdös-Rényi (E-R) random graph model. Under this
model, we show that the expected number of experiments required to discover the causal graph is just
a constant. We remark that we chose the E-R model because it is the predominant graph sampling
model. We do not claim that the E-R model is the most appropriate random model for every causal
graph application. However, we believe the main conclusion we draw, that the expected number of
experiments to orient a typical graph is very small, applies much more generally. This is because the
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vast improvement we obtain for our average-case analysis (over worst-case analysis) is derived from
the fact that the E-R model produces many v-shapes. Since any other realistic random graph model
will also produce numerous v-shapes, the number of experiments required should also be small in
those models.

Now, recall that the standard Erdös-Rényi random graph model generates an undirected graph. The
model, though, extends naturally to directed, acyclic graphs as well. Specifically, our graphs Cn,p

with parameters n and p are chosen according to the following distribution:
(1) Pick a random permutation σ of n vertices.
(2) Pick an edge (i, j) (with 1 ≤ i < j ≤ n) independently with probability p.
(3) If (i, j) is picked, orient it from i to j if σ(i) < σ(j) and from j to i otherwise.

Note that since each edge was chosen randomly, we obtain the same distribution of causal graphs
if we simply fix σ to be the identity permutation. In other words, Cn,p is just a random undirected
graph Gn,p in which we’ve directed all edges from lower to higher indexed vertices. Clearly, this
graph is then acyclic. The main result in this section is that then the expected number of experiments
needed to recover the graph is constant. Due to space constraints, a proof of this result is given in
the full version of this paper.

Theorem 4.1. For p ≤ 4
5 we can recover Cn,p using at most log log 13 experiments in expectation.

We remark that the probability 4
5 in Theorem 4.1 can easily be replaced by 1− δ, for any δ > 0. The

resulting expected number of experiments is a constant depending upon δ. Note, also, that the result
holds even if δ is a function of n tending to zero. Furthermore, we did not attempt to optimize the
constant log log 13 in this bound.

Theorem 4.1 illustrates an important distinction between worst-case and average-case analyses.
Specifically, the bad examples for the worst-case setting are based upon clique-like structures.
Cliques have no v-shapes, so to improve upon existing results we had to exploit the acyclicity oper-
ation (F3). In contrast, for the average-case, the proof of Theorem 4.1 exploits the v-structure oper-
ation (F1). The simulations in Section 5 reinforce this point: in practice, the operations (F1, F2, F4)
are extremely important as v-shapes are likely to arise in typical causal graphs.

5 Simulation Results

In this section, we describe the simulations we conducted in MATLAB. The results confirm the
theoretical upper bounds of Theorem 4.1; indeed the results suggest that the expected number of
experiments required may be even smaller than the constant produced in Theorem 4.1. For example,
even in graphs with 15000 vertices, the average cardinality of the maximum clique in the simulations
is only just over two! This suggests that the full power of the forcing rules (F1)-(F4) has not been
completely measured by the theoretical results we presented in Sections 3 and 4.

For the simulations, we first generate a random causal graph G in the E-R model. We then calculate
the essential graph E(G). To do this we apply the forcing rules (F1)-(F4) from the characterization
of [2]. At this point we examine properties of the U(G) the undirected subgraph of E(G). We
are particularly interested in the maximum clique size in U because this information is sufficient to
upper bound the number of experiments that any reasonable algorithm will require to discover the
G.

We remark that, to speed up the simulations we represent a random graph G by a symmetric adja-
cency matrix M . Here, if Mi,j = 1 then there is an arc ij if i < j and an arc ji if i > j. The matrix
formulation allows the forcing rules (F1)-(F4) to be implemented more quickly than standard ap-
proaches. For example, the natural way to apply the forcing rule (F1) is to search explicitly for each
v-structure of which there may be O(n3). Instead we can find every edge contained in a v-structure
using matrix multiplication, which is fast under MATLAB.9 The validity of such an approach can
be seen by the following theorem whose proof is left to the full version of this paper.

Theorem 5.1. Given the adjacency matrix M of a causal graph, we can find all edges contained in
a v-structure via matrix multiplication.

9In theory, matrix multiplication can be carried in time O(n2.38) [17].
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Figure 1: Experimental results

To speed up computation for smaller values of p and large n, we instead used sparse matrices to
apply (F1) storing only a list of non-zero entries ordered by row and column and vice versa. Then
matrix multiplication could be performed quickly by looking for common entries in two short lists.
We actually look at these lists to produce the final entries of edges not affected by (F1) directly.

We ran simulations for four choices of probability p, specifically p ∈ {0.8, 0.5, 0.1, 0.01}, and for
four choices of graph size n, specifically n ∈ {500, 1000, 5000, 15000}. For each combination
pair {n, p} we ran 1000 simulations. For each random graph G, once no more forcing rules can be
applied we have obtained the essential graph E(G). We then calculate |E(U)| and ω(U). Our results
are summarized in Figure 1.

Here average/largest refers to the average/largest over all 1000 simulations for that {n, p} combina-
tion. Observe that the lines for AVG-E(G) and AVG-E(F1) illustrate Theorem 4.1: there is a dramatic
fall in the expected number of undirected edges remaining by just applying the v-structure forcing
operation (F1). The AVG-E(U) and MAX-E(U) show that the number of edges fall even more when
we apply all the forcing operations to obtain U .

More remarkably the maximum clique size in U is tiny, AVG-ω(U) is just around two or three for
all our choices of p ∈ {0.8, 0.5, 0.1, 0.01}. The largest clique size we ever encountered was just
nine. Since the number of experiments required is at most logarithmic in the maximum clique size,
none of our simulations would ever require more than five experiments to recover the causal graph
and nearly always required just one or two. Thus, the expected clique size (and hence number of
experiments) required appears even smaller than the constant 13 produced in Theorem 4.1.

We emphasize that the simulations do not require the use of a specific algorithm, such as the algo-
rithms associated with the proofs of the worst-case bound (Theorem 3.2) and the average-case bound
(Theorem 4.1). In particular, the simulations show that the null experiment applied in conjunction
with the forcing operations (F1)-(F4) is typically sufficient to discover most of the causal graph.
Since the remaining unoriented edges U have small maximum clique size, any reasonable algorithm
will then be able to orient the rest of the graph using a constant number of experiments.
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