
Galaxy Cutsets in Graphs

Nicolas Sonnerat∗ and Adrian Vetta†

Abstract. Given a network G = (V,E), we say that a subset of vertices
S ⊆ V has radius r if it is spanned by a tree of depth at most r. We
are interested in determining whether G has a cutset that can be written
as the union of k sets of radius r. This generalizes the notion of k-vertex
connectivity, since in the special case r = 0, a set spanned by a tree of depth
at most r is a single vertex.

Our motivation for considering this problem is that it constitutes a simple
model for virus-like malicious attacks on G: An attack occurs at a subset
of k vertices and begins to spread through the network. Any vertex within
distance r of one of the initially attacked vertices may become infected. Thus
an attack corresponds to a subset of vertices that is spanned by k trees of
depth at most r. The question we focus on is whether a given network has
a cutset of this particular form.

The main results of this paper are the following. If r = 1, an attack
corresponds to a subset of vertices which is the union of at most k stars. We
call such a set a galaxy of order k. We show that it is NP-hard to determine
whether a given network contains a cutset which is a galaxy of order k, if
k is part of the input. This is in stark contrast to the case r = 0, since
testing whether a graph is k-vertex connected can be done in polynomial
time, using standard maxflow-mincut type results.

On the positive side, testing whether a graph can be disconnected by a
single attack (i.e. k = 1) can be done efficiently for any r. Such an attack
corresponds to a single set of vertices spanned by a tree of depth at most
r. We present an O(rnm) algorithm that determines if a given network
contains such a set as a cutset.

Keywords: graph connectivity, star-cutsets, complexity

1. Introduction

Graph connectivity is a fundamental concept in network design and has
been extremely well studied from a complexity viewpoint. The motivation
for desiring highly connected networks is to provide resilience against net-
work failures at vertices and/or edges. These failures may arise due to
equipment malfunctions or due to malicious attacks on the network. Here
we generalize the form in which network failures may occur: Instead of just

∗Department of Mathematics and Statistics, McGill University. Email:
sonnerat@math.mcgill.ca

†Department of Mathematics and Statistics, and School of Computer Science, McGill
University. Email: vetta@math.mcgill.ca

1

2

affecting isolated vertices/edges, we allow them to spread through the net-
work. This models a variety of scenarios, e.g. the spread of a virus through
a social network; subversion in a spy network, where subverting some agents
compromises the reliability of the spies with whom the subverted agents had
been communicating; the spread of a fire through a neighbourhood, where
the fire can jump from a building to other buildings within a certain dis-
tance; Denial of Service (DoS) attacks, where a (malicious) server attempts
to disrupt servers it is connected to by sending a high volume of requests.

In addition to being useful for designing highly connected networks that
are resilient to attacks, the notions of galaxy cutsets and cutsets spanned
by trees of depth r are natural extensions of the usual vertex- and edge-
connectivity of graphs and of star-cutsets, and therefore interesting from a
purely graph theoretic point of view. Moreover, star-cutsets play an impor-
tant role in the theory of perfect graphs and as such have received a great
deal of attention in the literature.

Throughout this paper, G = (V,E) will always denote a simple, undi-
rected graph. A subset X ⊆ V of vertices is called a cutset if the graph
induced on V −X is disconnected. We will abuse notation slightly and say
that G−X is disconnected. We are interested in cutsets that have a partic-
ular form, namely cutsets X that can be written as X = ∪k

i=1Si, where each
Si is a set spanned by a tree of depth at most r. Recalling our motivating
examples, the roots of the trees spanning the sets Si can be thought of as
being infected by a virus, which can then spread to the other vertices of the
sets Si. The question we focus on in this paper is whether we can deter-
mine efficiently if a given graph is vulnerable to such a virus attack. This
corresponds to deciding whether or not a given graph has a cutset which is
spanned by k trees of depth at most r.

Note that our model does not require that every vertex within distance
at most r of an initially infected vertex v become infected. However, for
a vertex u to become infected, there must be a path of length at most r
from v to u consisting entirely of infected vertices. Specifying the model like
this allows for greater generality. In terms of the motivating examples, it
is conceivable that a malicious attacker has control over the direction into
which the virus spreads, or that there is an element of chance involved, e.g.
some vertices could be less vulnerable to infection than others.

In Section 2 we show that if k is part of the input, it is NP-hard to
determine whether a graph G contains a cutset X which is the union of k
sets spanned by trees of depth at most r = 1. This is in stark contrast to the
case r = 0, since testing whether a given graph is k-vertex connected can be
achieved in polynomial time if k is part of the input, using standard results
on network flows. The hardness proof proceeds by reducing the Vertex Cover
problem to our problem.

3

In Section 3, we give a positive result, showing that we can determine
efficiently whether G contains a cutset X spanned by a single tree of depth
r. Our algorithm has run-time O(rnm), which is a significant improvement
over a straightforward O(n3m) algorithm.

In Section 4 we place our work into context by discussing related results,
and also present some open problems.

2. A Hardness Result

Given a graph G = (V,E), a star is a vertex v together with a subset of
its neighbours. We emphasize that we do not require the star to contain all
the neighbours of v. Any subset, including the empty set (in which case the
star is just {v}), is permitted. We shall call a set X which can be written
as the union of at most k stars a galaxy of order k. Our main result is the
following theorem.

Theorem 2.1. Determining whether a graph G contains a cutset which is
a galaxy of order k is NP-hard if k is part of the input.

We prove this result by reducing the Vertex Cover problem to the problem
in the theorem. So suppose we are given an integer k and a graph H with
vertices {v1, . . . , vn} and edges {e1, . . . , em}. We will construct an auxiliary
graph G such that H has a vertex cover of size k if and only if G has a cutset
S which is a galaxy of order k. Note that we may assume that m > k, as
otherwise picking one endpoint of each edge yields a vertex cover of size at
most k. If k ≤ 2 or k ≥ n − 2, we can find a vertex cover of size at most k
in polynomial time, so we shall also assume that 2 < k < n− 2.

In order to understand the construction of the reduction graph G better,
it is helpful to observe two things about graphs without cutsets that are
galaxies of order k. Firstly, every vertex must have degree at least k +
1, for otherwise we can disconnect that vertex by taking S to consist of
all its neighbours. Secondly, if for some vertex v there are vertices whose
neighbourhoods have large intersections with the neighbourhood of v, then
it is intuitively more likely that there will be a galaxy cutset of order k
disconnecting v from the rest of the graph. Our reduction graph consists,
roughly speaking, of two trees whose leaves are connected in a specific way.
The reason why trees are helpful is that to disconnect two vertices s1 and
s2 of a tree, it doesn’t really make a difference whether we remove a star
intersecting the path from s1 to s2 or just a vertex on that path. The tree-
like structure and the way the leaves of the trees are joined by edges will
allow us to control how the neighbourhoods of different vertices intersect
and as a consequence to place restrictions on which sets of k vertices can
possibly form galaxy cutsets.

4

v∗

e∗

v1 vn

e1 em

depth 1

depth 2

depth 3

depth 3

depth 2

depth 1

Figure 1. The reduction graph G

Figure 1 shows the high-level structure of G. There are two vertices v∗

and e∗. These will be the roots of trees of depth 3. We will connect these
trees by adding edges from leaves of the first tree to leaves of the second tree
in a carefully chosen way. The vertex e∗ has m children {t1, . . . , tm} (corre-
sponding to the edges of H), and the vertex v∗ has n children {s1, . . . , sn}
(corresponding to the vertices of H). If n ≤ 2k, we add 2k − n + 1 dummy
vertices {sn+1, . . . , s2k+1} as additional children of v∗ and set n′ := 2k + 1
(otherwise n′ = n). We call these vertices of depth 1. Next, each vertex si

has ai children, and each vertex tj has bj children, where the ai and bj are
chosen as follows. Pick a prime p ≥ max(n′+1,m+1, 2k+4). Such a prime
can be found in polynomial time, since there is always a prime between
N := max(n′ + 1,m + 1, 2k + 4) and 2N , and PRIMES is in P ([1]). It will

5

become clear in the proof of Claim 2.5 why we choose p to be a prime num-
ber. Now let each ai equal either bp2

n′ c or dp2

n′ e and let each bj equal either
bp2

m c or dp2

m e, so that they satisfy
∑

i ai =
∑

j bj = p2. Note that we will
have ai ≥ k+1 for all i and bj ≥ k+1 for all j. We call the children of the si

grandchildren of v∗, and the children of the tj grandchildren of e∗. Finally,
for all i each child of si has k+1 children. These children are numbered and
said to have type 1, 2, . . . , k + 1 according to their number. Similarly, for all
j, each child of tj has k+1 children numbered 1 to k+1. The grandchildren
of v∗ and e∗ are said to have depth 2, and the great-grandchildren are said
to have depth 3.

To complete G, we add a few more edges. If vi is an endpoint of ej in
H, we add the edge sitj to G. (We do not add edges from the dummy
vertices to children of e∗.) The great-grandchildren of v∗ are connected to
the great-grandchildren of e∗ as follows. Consider the great-grandchildren
of v∗ of type 1. There are p2 of them, and we label them using the elements
of the Abelian group Zp × Zp in lexicographic order, i.e.

(0, 0), (0, 1), . . . , (0, p− 1), (1, 0), . . . , (p− 1, p− 1).

The great-grandchildren of e∗ of type 1 are labeled in the same way. For a
vertex (i, j), we add edges to the great-grandchildren of e∗ of type 1 which
are labeled (i + x, j + x2) for x = 0, . . . , p− 1, where the labels are all taken
modulo p. We do the same thing for the great-grandchildren that have type
2, 3, . . . , k + 1. This concludes our description of the graph G.

The hardness of our decision problem is established by the following the-
orem.

Theorem 2.2. The graph H has a vertex cover of size at most k if and only
if G has a cutset S which is a galaxy of order k.

Proof. One direction is easy. Suppose H has a vertex cover C of size at
most k. Without loss of generality, assume C = {v1, v2, . . . , vl} with l ≤ k.
Let S be the set consisting of {s1, . . . , sl} together with their neighbours
among the children of e∗. Then S is the union of at most k stars. Since C
is a vertex cover, S contains all the children of e∗, and so e∗ and v∗ are in
different components of G− S.

For the other direction, we need two lemmas.

Lemma 2.3. Let S be a galaxy of order k in G. Then the following hold:

(1) If v∗ 6∈ S, then v∗ has a neighbour of depth 1 in G− S.
(2) Any vertex of depth 1 in G−S has a neighbour of depth 2 in G−S.
(3) If e∗ 6∈ S, then e∗ has a neighbour of depth 1 in G− S unless H has

a vertex cover of size at most k.
(4) Any vertex of depth 2 in G−S has a neighbour of depth 3 in G−S.

Lemma 2.4. Let S be a galaxy of order k in G. Then the following hold:

6

(1) There exists an i such that any vertex of depth 3 and type i in G−S
is connected to every other vertex of type i in G− S.

(2) Any vertex of depth 3 and type i in G − S is connected to a vertex
of depth 3 and type j for all j 6= i in G− S.

These two lemmas together imply the theorem. If H has no vertex cover of
size at most k, any vertex not in S is connected to some vertex of depth 3 by
Lemma 2.3. But then Lemma 2.4 implies that all the vertices of depth 3 not
in S are in the same component of G−S. So G−S must be connected. �

The remainder of this section is devoted to proving Lemmas 2.3 and 2.4.

Proof of Lemma 2.3.

(1) Suppose v∗ 6∈ S. A star centred at a grandchild of v∗ contains at
most one of the vertices si, namely its parent, and a star centred
at a vertex tj contains at most two vertices si, sl. A star centred at
a vertex si contains only one child of v∗, namely itself. If a star is
centred at a vertex that is neither v∗, a child of v∗, a grandchild of
v∗, nor a child of e∗, it cannot contain any of the vertices si. So S
contains at most 2k of the children of v∗. Since we added dummy
vertices {sn+1, . . . , s2k+1} in the case n ≤ 2k, it follows that v∗ will
have a neighbour of depth 1 in G− S.

(2) Now take a vertex w of depth 1 in G − S. By construction, any
star (except of course one centred at w) contains at most one of the
children of w. But w has at least k + 1 children, so there must be
one in G− S.

(3) A star centred at a grandchild of e∗ can contain at most one child of
e∗, namely its parent. A star centred at a vertex si can contain at
most d(vi) children of e∗, where d(vi) is the degree of vi in H. A star
centred at a vertex tj contains only one child of e∗, namely itself.
If a star is centred at a vertex which is neither e∗, a child of e∗, a
grandchild of e∗ nor a child of v∗, then it cannot contain any of the
vertices tj . So S contains at most M of the vertices tj , where M is
the maximum number of edges covered by a vertex cover of size at
most k in H. It follows that if M < m, i.e. if H has no vertex cover
of cardinality at most k, then e∗ will have a neighbour of depth 1 in
G− S.

(4) For the last case, take a vertex w ∈ G−S of depth 2, and suppose w
is a grandchild of v∗. By construction, w has k +1 children of depth
3. We claim that at most k of them can be contained in S. To see
this, observe that a star that contains any of the children of w has
to be centred at a vertex u of depth 3 (or at w, but we are assuming
that w 6∈ S). If u is a great-grandchild of v∗, it has to be a child
of w, and then the star contains no other children of w other than

7

u itself. If u is a great-grandchild of e∗, say of type i, then the star
can only contain a child of w that is also of type i, and there is only
one such child. Hence S contains at most k of the children of w, so
w will have a neighbour of depth 3. A similar argument shows that
a vertex of depth 2 which is a grandchild of e∗ will have a neighbour
of depth 3 in G− S.

�

The proof of Lemma 2.4 relies on the following claim.

Claim 2.5. For each l, let Fl be the bipartite subgraph of G induced by the
vertices of depth 3 and type l. Then Fl has the following properties:

(a) Fl is p-regular
(b) If u, w are in the same stable set of Fl, then |Γ(u) ∩ Γ(w)| ≤ 1 1.
(c) Fl is (k + 1)-vertex connected.

Proof. Fix l, and let X be the stable set of Fl whose vertices are the great-
grandchildren of v∗, and let Y be the stable set of Fl whose vertices are the
great-grandchildren of e∗.

(a) A vertex (i, j) in X has an edge to (i + x, j + x2) for x = 0, 1, . . . , p− 1,
and a vertex (i′, j′) in Y has an edge to (i′−x, j′−x2) for x = 0, 1 . . . , p−1.
So Fl is a p-regular bipartite graph. (Addition and subtraction are taken
mod p.)

(b) Suppose u = (i, j) and w = (i′, j′) 6= (i, j) are in X, and that they have
two (distinct) common neighbours. So there exist x, y, x̃, and ỹ such that

i + x = i′ + x̃(1)
j + x2 = j′ + x̃2(2)
i + y = i′ + ỹ(3)

j + y2 = j′ + ỹ2(4)

Subtracting (3) from (1) and (4) from (2), we see that

x− y = x̃− ỹ(5)
x2 − y2 = x̃2 − ỹ2(6)

If x− y = x̃− ỹ = 0, we obtain a contradiction because the two neighbours
of (i, j) and (i′, j′) are not distinct. If x − y = x̃ − ỹ 6= 0, we may divide
(6) by x − y to obtain x + y = x̃ + ỹ, which together with (5) now implies
that x = x̃ and y = ỹ. It follows that i = i′ and j = j′, which is also a
contradiction. (Note that this argument relied on the fact that if p is prime,
every non-zero element in Zp has a multiplicative inverse.) An analogous
proof shows that (b) holds for two vertices u, w in Y .

1Γ(u) denotes the set of neighbours of u.

8

(c) The (k + 1)-vertex connectivity follows from the first two properties.
Again, suppose first that u, w are two vertices in X. Let

U :=

 ⋃
u′∈Γ(u)

Γ(u′)

− {u}, W :=

 ⋃
w′∈Γ(w)

Γ(w′)

− {w},

i.e. U ⊂ X is the set of neighbours of neighbours of u (excluding u itself),
and W ⊂ X is the set of neighbours of neighbours of w (excluding w itself).
Let Z1 := U ∩ W . Since the neighbourhoods of two neighbours of u only
have u in their intersection by (b), we have that |U | = (p−1)p. By the same
argument, |W | = (p−1)p. But |X| = p2, so we must have |Z1| ≥ p2−2p ≥ 0.
Now we claim that we can find k + 1 internally vertex disjoint paths of
length 4 between u and w. Pick a vertex u1 in Z1. So u1 is adjacent to
a neighbour z1 of u and to a neighbour z′1 of w, by definition of U and
W . This gives the first path P1 = {u, z1, u1, z

′
1, w} of length 4 between u

and w. (The degenerate case where z = z′ can only happen once because
|Γ(u)∩Γ(w)| ≤ 1; in that case we get a path of length 2.) Now remove z1, z

′
1

and all their neighbours except u and w from the graph. So we remove at
most 2(p − 1) vertices from Z1. Call the resulting set Z2. Pick a vertex
u2 ∈ Z2 ⊂ U ∩ W . Then u2 is adjacent to a neighbour z2 of u and a
neighbour z′2 of w. This gives a path P2 of length 4 between u and w, and
P2 is internally vertex disjoint from P1. Doing this k + 1 times yields k + 1
vertex disjoint paths P1, . . . , Pk+1. Since |U∩W | ≥ p(p−2) ≥ 2(p−1)(k+1)
because p ≥ 2k+4, all of the sets Z1, Z2, . . . , Zk will be non-empty. A similar
argument shows that we can find k + 1 vertex disjoint paths between u and
w if they both lie in Y . Finally, any vertex u has p > k + 1 neighbours in
Y , so no cutset of size k in Fl can contain all of the neighbours of u. Hence
Fl is (k + 1)-vertex connected. �

Proof of Lemma 2.4. We now proceed to prove part (1) of Lemma 2.4. The
proof is based on two simple observations. Firstly, if a star T is centred at
a vertex u of depth 3, then T can contain at most p + 1 vertices of depth 3,
namely u itself and all its neighbours. But the crucial point is that T will
only contain depth 3 vertices of one type, the same type as the centre u.
Secondly, if a star T is centred at a vertex w of depth 2, it can contain at
most k + 1 vertices of depth 3, namely the children of w. The crucial point
here is that among the children of w, for each i = 1, . . . , k + 1 there will
be at most one vertex of type i. A star centred at a vertex which is not of
depth 2 or 3 cannot contain any vertices of depth 3.

So now let S be a galaxy of order k, say S =
⋃k

j=1 Tj , where each Tj is a
star centred at wj . We need to show that there exists an i0 such that all the
vertices of type i0 which are not in S are in the same component of G− S.
Now if a centre wj is of depth 3 and type i, ignore all vertices of that type
completely. Since there are k+1 types, there is an i0 such that no centre wj

is of type i0. By Claim 2.5, the subgraph Fio spanned by the vertices of type

9

i0 is (k+1)-connected. Since there are no stars with a centre of type i0, each
star contains at most one vertex of type i0 by the second observation above.
So S contains at most k vertices of type i0, and thus Fi0 − S is connected,
so all vertices of type i0 are in the same component of G− S, as claimed.

For the proof of (2), let u ∈ G−S be a vertex of type i and depth 3, and
assume u is a great-grandchild of v∗. u has p neighbours among the great-
grandchildren of e∗. Any two of these only have u as a common neighbour,
so u is joined to p(p − 1) great-grandchildren of v∗ through vertex disjoint
paths of length 2. It follows that u is joined to p(p − 1) grandchildren of
v∗ through vertex disjoint paths of length 3. We think of the grandchildren
of v∗ as hubs that let us reach vertices of type j 6= i. We claim that G − S
contains at least one hub and all its children.

Call a hub z useless if z or one of its children is contained in S, or if a
vertex on one of the u− z paths described above is contained in S. We shall
bound the maximum number of useless hubs. To this end, let x1 be the
number of stars in S centred at vertices of depth 1, let x2 be the number of
stars centred at vertices of depth 2, let x3 be the number of stars centred at
vertices of depth 3 and type i, and let x′3 be the number of vertices centred
at vertices of depth 3 and type j 6= i.

Now note that a star centred at a vertex of depth 1 can render at most
dp2

n′ e hubs useless. A vertex of depth 2 can render at most one hub useless.
A vertex of depth 3 and type i can render at most p hubs useless, and a
vertex of type 3 and type j 6= i can render at most p hubs useless. Thus the
total number of useless hubs is bounded above by

x1d
p2

n′
e+ x2 + x3p + x′3p.

Note that x1 +x2 +x3 +x′3 ≤ k. Clearly the worst case occurs when x1 = k,
and then there are kdp2

n′ e useless hubs. Since n′ − k > 2, we have that
n′−k

n′ > 2
n′ ≥ 1

p + k
p2 , and so p2(1− k

n′) > p + k and thus

p(p− 1) > kdp
2

n′
e.

So u will be connected to a vertex of depth 2 and all of its children in G−S,
as required.

A analogous argument works when u is a great-grandchild of e∗, and we
have thus proved Lemma 2.4 �

3. The recognition algorithm

In this section, we restrict our attention to cutsets that are spanned by
one tree only. However, we relax the restriction that this tree be a star, and
instead consider trees of depth r. Instead of saying that a set S is spanned

10

by a tree of depth at most r, we shall often say S has radius r. Since this
definition does not yield a unique radius for a given set (if S has radius
r, it also has radius r + 1, r + 2, . . .), it should not be viewed as a strict
definition, but rather as a useful shorthand for the cumbersome expression
“S is spanned by a tree of depth at most r”.

We begin by observing that testing whether a graph G has a cutset of
radius r can easily be done in time O(n3m) as follows. Suppose that v and w
are vertices of G, and that there exists a set S of radius r such that v and w
are in different components of G−S. Let u be the root of a tree T of depth at
most r that spans S. Then letting T ′ be a BFS-tree of depth r in G−{v, w}
rooted at u, it is clear that T ′ also separates v and w in G. Thus, for every
triple {u, v, w} we grow a BFS-tree of depth r rooted at u in G−{v, w} and
check whether v and w are in the same component of G − T . As there are
O(n3) triples and both BFS and checking for connectivity requires O(m)
time, the total run-time of this algorithm is O(n3m).

We will now show that we can significantly improve on this trivial algo-
rithm in the special case where k = 1. In other words, we are now concerned
with finding a single cutset of radius r. The idea of the algorithm is to de-
cide, for each vertex v, whether v centres a cutset of radius r. We will be
able to achieve this in time O(rm) using a modified BFS-algorithm, thus
obtaining a total run-time of O(rnm).

So, let the graph G and the integer r ≥ 1 be given. For a vertex v ∈ G,
let Di(v) denote the vertices at distance i from v, and D̃(v) the vertices at
distance at least r + 1. We will just write Di and D̃ if the vertex v is fixed
and there is no risk of confusion. Note that

⋃r
i=0 Di is spanned by a tree of

depth r rooted at v, e.g. a BFS-tree.

The algorithm relies on the following structural results: If G itself is a
set of radius r, then G has no cutset of radius r if and only if it is a cycle
or a clique. On the other hand, if the set of vertices D̃(v) is non-empty
for all vertices v, we will show that G has a cutset of radius r centred at v
unless the set D̃(v) is a connected subgraph and every vertex w in Di(v) can
“escape” to D̃(v) via a safe path consisting of vertices that are at distance
strictly greater than r from v in G− {w}.

We begin with the case where G itself is spanned by a tree of depth at
most r.

Lemma 3.1. Let G be a graph such that D̃(v) is empty for some v ∈ G,
and let r ≥ 1 be an integer. Then G has no cutset of radius r if and only if
G is a cycle or a clique.

Proof. Suppose G has no cutset of radius r, and let v be such that D̃(v) = ∅.
Let t ≤ r be the largest integer such that Dt 6= ∅. The case t = 0 is trivial,
since then G = {v} is obviously a clique. If t = 1, G must be a clique

11

as well, because if D1 contained two non-adjacent vertices x and y, then
V (G) − {x, y} would be a cutset of radius 1. So suppose t ≥ 2. It is easy
to see that for 1 ≤ i ≤ t− 1 every vertex w ∈ Di must have a neighbour in
Di+1, otherwise we get a cutset of radius i. It is also easy to see that no Di

for 1 ≤ i ≤ t − 1 can be a clique, since otherwise Di would be a cutset of
radius 1 separating v from the vertices in Dt. On the other hand, Dt must
be a clique, because G− {x, y} is a set of radius t for any x, y ∈ Dt.

We claim that Di must consist of two non-adjacent vertices for each 1 ≤
i ≤ t − 1. To see this, suppose that some Di, 1 ≤ i ≤ t − 1, contains three
vertices {x, y, z}. Since Di is not a clique, we may without loss of generality
assume that x and y are not adjacent. If i > t− i, let w be a vertex in Dt−i

that lies on a shortest path from v to z. If i < t − i, pick w ∈ Dt−i such
that z lies on a shortest path from v to w. Such a w must exist, since z has
a neighbour in Di+1, which in turn has a neighbour in Di+2, and so on up
to Dt−i. If i = t − i, i.e. if i = t

2 , pick w = z. Note that in all three cases,
we have w ∈ Dt−i.

In order to derive a contradiction, we will show that in G− {x, y}, every
vertex is at distance at most t from w. To see this, observe that since
(t− i)+ i = t, every vertex of {v}∪D1 ∪ · · · ∪Di lies within distance t of w,
via a path through v. Moreover, such a path can be chosen to go through z
if i < t−i and thus contains neither x nor y. Also, since Dt is a clique, every
vertex of Di+1 ∪ · · ·Dt lies within distance at most i + 1 + (t− (i + 1)) = t
from w, via a path through Dt. Again, such a path can be chosen to go
through z if i > t− i and thus contains neither x nor y. It follows that the
non-adjacent vertices x and y could be separated by removing G−{x, y}, a
cutset of radius t ≤ r centred at w.

Let u and w be the two vertices of Dt−1. To complete the proof, we
must show that either Dt = {x} for some x adjacent to both u and w, or
Dt = {x, y} for some x and y such that x is adjacent to u but not to w,
and y is adjacent to w but not to u (this completes the cycle). Observe that
if, for some vertex x ∈ Dt, each neighbour of x in Dt−1 is also adjacent to
some other vertex y ∈ Dt, then the set Dt −{x}∪Dt−1 is a cutset of radius
2 separating x from v. It follows immediately that |Dt| ≤ 2, since we know
that |Dt−1| = 2. If Dt = {x}, it is clear that x must be adjacent to both
vertices of Dt−1, and if Dt = {x, y}, then x and y cannot have common
neighbours in Dt−1, i.e. either x is adjacent to u and y to w, or vice-versa.
Recall that we argued earlier that Dt had to be a clique, so (x, y) must be
an edge, which completes the cycle.
For the converse, simply observe that cliques and cycles have no cutsets of
radius r, for any r. �

So now assume that for every v ∈ G, there is at least one vertex at
distance at least r + 1 from v, i.e. D̃(v) 6= ∅. Given v, denote by E(Di) the

12

set of edges between vertices in Di, by Wi the set of vertices Di ∪ . . . ∪Dr,
and by Gi the induced subgraph on Wi. Let G′

i be the graph obtained from
Gi by removing the edges E(Di). We say that w ∈ Di has an exclusive
neighbour u ∈ Di+1 if (w, u) ∈ E(G) and dG′

i
(u, w′) > r − i for all vertices

w′ ∈ Di, w′ 6= w. Another way of saying this is that u is at distance strictly
greater than r from v in G − {w}. The intuition behind this definition is
that these exclusive neighbours provide a safe path to the set D̃ of vertices
at distance greater than r from v, if they exist. We formalise this in the
following lemma:

Lemma 3.2. G has no cutset of radius r centred at v if and only if all of
the following hold:

(A) D̃ is connected,
(B) every vertex in Dr has a neighbour in D̃,
(C) for every t ≤ r− 1, every vertex in Dt has an exclusive neighbour in

Dt+1.

Proof. Suppose G has no cutset of radius r centred at v. It is clear that D̃
must be connected. If there were a vertex w ∈ Dr without a neighbour in
D̃, then v ∪

⋃
i Di − {w} would be a cutset of radius r, contradiction. If

some w ∈ Dt did not have an exclusive neighbour in Dt+1, we could find a
cutset of radius r as follows: The set of vertices

⋃t
i=1 Di − {w} is spanned

by a tree of depth t rooted at v. Since all of w’s neighbours in Dt+1 are at
distance at most r − t from some other vertex of Dt, there is a tree rooted
at v containing

⋃t+1
i=1 Di − {w}, and this tree spans a cutset of radius r.

To prove the converse, it suffices to show that if we remove a tree T of
depth at most r rooted at v, there exists a path from every w 6∈ T to D̃ using
only vertices of V (G) − T . Clearly this is true if w ∈ D̃. If w ∈ Dr, then
w has a neighbour in D̃ by assumption. If w ∈ Dt for some t ≤ r − 1, note
that its exclusive neighbour w′ cannot be contained in any tree of depth r
rooted at v that does not also contain w. But then w’s exclusive neighbour
has an exclusive neighbour w′′ in Dt+2 which cannot be reached by a tree
rooted at v not containing w′, and so on. This gives a path from w all the
way to D̃. �

Lemmas 3.1 and 3.2 lead to a fast algorithm for checking whether a graph
has a cutset of radius r. We proceed to show that the conditions on the graph
stated in the lemmas can be tested for in polynomial time.

We write Dt and D̃ instead of Dt(v) and D̃(v) as there is no risk of
confusion, and begin by observing that we can check in time O(m) if G is
a clique or a cycle. If that is the case, we know that G is has no cutset of
radius r and we are done.

13

If G is neither a clique nor a cycle, we do the following for every vertex
v: First we grow a BFS-tree rooted at v. This gives us the sets D1, . . . , Dr

and D̃. If D̃ is empty, we know G has a cutset of radius r by Lemma 3.1,
and we are done. If D̃ 6= ∅, we proceed to check whether Case (A) holds,
i.e. whether D̃ is connected. This can be achieved in time O(m). Next, we
verify the condition given in Case (B), i.e. whether every vertex in Dr has
a neighbour in D̃. This can also be done in time O(m).

The final and most complex step is to check that, for each i such that
1 ≤ i ≤ r − 1, every vertex in Di has an exclusive neighbour in Di+1 (Case
(C)). Doing this requires r − 1 independent phases, each of which is a
modified BFS-algorithm. In phase i, we will process the level Di. Phase i
in turn will consist of r − i steps. Let i be such that 1 ≤ i ≤ r − 1, and
suppose that Di = {w1, . . . wp}.

For a vertex u, denote by Li(u) the set of labels of u in phase i. At the
start of phase i, all vertices in Wi+1 are unlabelled, i.e. Li(u) = ∅ for all
u ∈ Wi+1. We use the superscript i to emphasise that the labels in the r−1
phases are independent of one another.

We shall label all the vertices of Wi+1 = Di+1 ∪ . . .∪Dr using the indices
of the vertices in Di in such a way that at the end of the process, we can
simply read off the exclusive neighbours (in Di+1) of the vertices in Di from
the labels. Labelling all the vertices in Wi+1 will require r − i steps.

The first of those r − i steps is to scan the neighbours of the vertices
wj ∈ Di in Di+1, proceeding in a breadth-first-search fashion. When we
scan a vertex u ∈ Di+1 adjacent to wj ∈ Di, either u has at most one label,
or u already has two distinct labels. We update Li(u) according to the
following rules:

(1) If Li(u) = ∅ or Li(u) = {j′} with j′ 6= j, set Li(u) := Li(u) ∪ {j}.
(2) If Li = {j} or |Li(u)| ≥ 2, we do not modify Li(u).

We observe that after this first step, all the vertices in Di+1 will have one
label if they are adjacent to only one vertex of Di, and two distinct labels if
they are adjacent to at least two vertices of Di. Note that if i = r− 1, there
is only one step to be performed, so the algorithm terminates here.

In steps 2 to r − i, we only work in the graph Gi+1, the subgraph of
G induced on the vertex set Wi+1 =

⋃r
l=i+1 Dl. At each step, we scan

the neighbours of vertices in Wi+1 whose set of labels was modified in the
previous step. Suppose we scan a neighbour u of a vertex x. We add labels
to u according to the following rules:

(1) If Li(u) = ∅ we set Li(u) := Li(x).
(2) If Li(u) = {j} and Li(x) contains some j′ 6= j, set Li(u) := Li(u) ∪

{j′}.

14

(3) If Li(u) = Li(x) = {j} or |Li(u)| ≥ 2 we do not modify Li(u).

The following claim establishes the connection between our labelling scheme
and exclusive neighbours of the vertices wj ∈ Di.

Claim 3.3. After t steps, the unlabelled vertices are the vertices at distance
greater than t from Di, the vertices with one label, say j, are the vertices at
distance at most t from some wj ∈ Di, but at distance greater than t from all
the other vertices in Di, and the vertices with two labels j, l are the vertices
at distance at most t from at least two vertices in Di, namely wj and wl.

Proof. We use induction on t. We have already observed that the base case
is true just after the description of step 1 of the algorithm. So now suppose
we just completed step t, and let u be any vertex in Wi+1.

If u is unlabelled, it must be at distance greater than t from Di. Otherwise
it would be adjacent to a vertex x at distance at most t− 1 from Di, which
by induction hypothesis would have a least one label. But then u would
have been labelled in step t.

Suppose u has two labels, say j and j′. If u already had label j after step
t − 1, then it is at distance at most t − 1 < t from wj ∈ Di. If it did not
have label j, it inherited it from some vertex x that is at distance at most
t − 1 from wj , by the induction hypothesis. The same is true for label j′.
So after step t, u must be at distance at most t from wj and wj′ .

Suppose u only has label j. So it is at distance at most t from wj , either
because it already had label j the step before, or because it inherited it from
a vertex at distance at most t − 1 during step t. If u were at distance at
most t from a second vertex wj′ , then it would also have inherited the label
j′ by step t. �

For each i with 1 ≤ i ≤ r−1, we run the labelling process described above
for t := r − i steps. Claim 3.3 then implies that if u ∈ Di+1 is a neighbour
of wj ∈ Di, then u is an exclusive neighbour if and only if Li(u) = {j} after
r − i steps.

To summarise, each iteration of the labelling process identifies the exclu-
sive neighbours of all the vertices in Di for some i. Hence, we need r − 1
iterations of the labelling process to handle all the vertices in D1∪· · ·∪Dr−1.
It remains to determine the run-time of each iteration of the labelling algo-
rithm.

Claim 3.4. Each edge of Gi is considered at most four times during the
labelling process.

Proof. Let e = (u, ū) be an edge in Gi. We only consider e when either u’s
or ū’s label changes. The label of any vertex can change at most twice, so
we consider e at most four times. �

15

It follows that we can process each level Di in time O(m). Since there
are r levels, we can determine if all the vertices in W1 = D1 ∪D2 ∪ · · · ∪Dr

have an exclusive neighbour in time O(rm). Each vertex v ∈ V could be
the centre of a cutset of radius r, so the total running time is O(rnm).

4. Related Work and Open Questions

As mentioned in the introduction, star-cutsets have received a great deal
of attention because of their connection with the theory of perfect graphs.
Chvátal’s Star-cutset Lemma ([2]) asserts that no minimal imperfect graph
contains a star-cutset (see also Cornuéjol’s survey on the Strong Perfect
Graph Theorem [3]).

In [6], Gunther gives a characterization of minimal k-regular graphs con-
taining a k-clique which remain connected if k closed neighbourhoods are
removed from the graph. In our notation, a set of k closed neighbourhoods
is a galaxy of order k. Note however that we don’t require that all the
neighbours of the centres of the stars must be removed.

Another problem concerned with virus-like spreading behaviour through
a network is the Firefighter problem. This was proposed by Hartnell in [7].
Finbow, King, MacGillivray and Rizzi give results for the special case of
graphs of maximum degree 3 in [4].

In some situations, it may be desirable to maximize the spread of a virus
through a network, rather than minimizing it. This is the case in the context
of viral marketing, see e.g. the work by Kempe, Kleinberg and Tardos ([8]).

The present work focuses on recognizing whether a given network contains
a cutset of radius r or a galaxy cutset. Another set of problems arises from
trying to design networks without cutsets of radius r or galaxy cutsets.
In [12], the authors present an algorithm that finds a spanning subgraph
without star-cutsets in a graph with no cutsets of radius 3, and show that
for r ≥ 4, it is NP-hard to determine whether a given graph contains a
spanning subgraph with no cutset of radius r. The problem of designing
low cost graphs with high vertex- or edge-connectivity has been studied
extensively, see Khuller ([9]) or Kortsarz and Nutov ([11]) for surveys on the
literature.

It remains open whether the recognition algorithm presented in Section
3 can be improved. The authors conjecture that it should be possible to
remove the dependence on r and obtain an O(nm) algorithm. In view of
the hardness result in Section 2, bi-criteria problems such as the following
become interesting: Given a graph G and an integer k, determine in polyno-
mial time that either G has no galaxy cutset of order k, or exhibit a galaxy
cutset of order αk (for some constant α > 1).

16

5. Acknowledgments

The authors would like to thank Brighten Godfrey for helpful discussions
concerning the relevance of galaxy cutsets to practical problems such as
Denial of Service attacks on networks.

References

[1] M. Agrawal and N. Kayal and N. Saxena. “PRIMES is in P”. Ann. of Math., 160(2),
pp. 781-793, 2004.

[2] V. Chvátal. “Star-cutsets and perfect graphs”. Journal of Combinatorial Theory B,
39, pp. 189-199, 1985.

[3] G. Cornuéjols. “The Strong Perfect Graph Theorem”. Optima, 70, pp. 2-6, 2003.
[4] S. Finbow and A. King and G. MacGillivray and R. Rizzi. “The firefighter problem

for graphs of maximum degree three”. Discrete Mathematics, 307(16), pp. 2094-2105,
2007.

[5] M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[6] G. Gunther. “Neighbour-connectivity in regular graphs”. Discrete Appl. Math., 11(3),
pp. 233-243, 1985.

[7] B.L. Hartnell. “Firefighter! An application of domination”. Presentation. 24th Man-
itoba Conference on Combinatorial Mathematics and Computing, 1995.

[8] D. Kempe and J. Kleinberg and É. Tardos. “Maximizing the spread of influence
through a social network”. In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 137-146, 2003.

[9] S. Khuller. “Approximation algorithms for finding highly connected subgraphs”. In
D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems, pp. 236-265,
PWS Pub. Co., Boston, 1995.

[10] G. Kortsarz and R. Krauthgamer and J. Lee. “Hardness of approximation algo-
rithm for vertex-connectivity network design problems”. SIAM Journal on Comput-
ing, 33(3), pp. 704-720, 2004.

[11] G. Kortsarz and Z. Nutov. “Approximating minimum cost connectivity problems”.
In T. Gonzalez, editor, Handbook on Approximation Algorithms and Metaheuristics,
Chapter 58, Chapman & Hall / CRC, 2007.

[12] N. Sonnerat and A. Vetta. “Network Connectivity and Malicious Attacks”. Pre-print.

