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Abstract. We examine the Fisher market model when buyers, as well as
sellers, have an intrinsic value for money. We show that when the buyers
have oligopsonistic power they are highly incentivized to act strategically
with their monetary reports, as their potential gains are unbounded. This
is in contrast to the bounded gains that have been shown when agents
strategically report utilities [5]. Our main focus is upon the consequences
for social welfare when the buyers act strategically. To this end, we define
the Price of Imperfect Competition (PoIC) as the worst case ratio of the
welfare at a Nash equilibrium in the induced game compared to the
welfare at a Walrasian equilibrium. We prove that the PoIC is at least 1

2

in markets with CES utilities with parameter 0 ≤ ρ ≤ 1 – this includes
the classes of Cobb-Douglas and linear utility functions. Furthermore, for
linear utility functions, we prove that the PoIC increases as the level of
competition in the market increases. Additionally, we prove that a Nash
equilibrium exists in the case of Cobb-Douglas utilities. In contrast, we
show that Nash equilibria need not exist for linear utilities. However,
in that case, good welfare guarantees are still obtained for the Nash
dynamics of the game.

1 Introduction

General equilibrium is a fundamental concept in economics, tracing back to
1872 with the seminal work of Walras [26]. Traditionally, the focus has been
upon perfect competition, where the number of buyers and sellers in the market
are so huge that the contribution of any individual is infinitesimal. In particular,
the participants are price-takers.

In practice, however, this assumption is unrealistic. This observation has mo-
tivated researchers to study markets where the players have an incentive to act
strategically. A prominent example is the seminal work of Shapely and Shu-
bik [22]. They defined trading post games for exchange markets and examined
whether Nash equilibria there could implement competitive equilibrium prices
and allocations. Another example, and a prime motivator of our research, is
the Cournot-Walras market model introduced by Codognato and Gabszewicz [6]
and Gabszewicz and Michel [15], which extends oligopolistic competition into
the Arrow-Debreu setting. The importance of this model was demonstrated by



Bonniseau and Florig [2] via a connection, in the limit, to traditional general equi-
libria models under the standard economic technique of agent replication. More
recently, in the computer science community, Babaioff et al [3] extended Hur-
wicz’s framework [17] to study the welfare of Walrasian markets acting through
an auction mechanism.

Our interest is in how robust a pricing mechanism is against strategic manip-
ulation. Specifically, our primary goal is to quantify the loss in social welfare due
price-making rather than price-taking behaviour. To do this, we define the Price
of Imperfect Competition (PoIC) as the ratio of the social welfare at the worst
Nash equilibrium to the social welfare at the perfectly-competitive Walrasian
equilibrium.

Two remarks are pertinent here. First, we are interested in changes in the wel-
fare produced by the market mechanism under the two settings of price-takes and
price-makers. We are not interested in comparisons with the optimum social wel-
fare, which requires the mechanism to possess the unrealistic power to perform
total welfare redistribution. In particular, we are not concerned here with the
Price of Anarchy or Price of Stability. Interestingly, though, the groundbreaking
Price of Anarchy results of Johari and Tzitsiklis [20] on the proportional allo-
cation mechanism for allocating one good (bandwidth) can be seen as the first
Price of Imperfect Competition results. This is because in their setting the pro-
portional allocation mechanism will produce optimal allocations in non-stategic
settings; in contrast, for our markets, Walrasian equilibrium can be arbitrarily
poor in comparison to optimal allocations.

Second, in some markets the Price of Imperfect Competition may actually
be larger than one. Thus, strategic manipulations by the agents can lead to
improvements in social welfare! Indeed, we will exhibit examples where the social
welfare increases by an arbitrarily large factor when the agents act strategically.

In this paper, we analyze the Price of Imperfect Competition in Fisher mar-
kets with strategic buyers, a special case of the Cournot-Walras model. This
scenario models the case of an oligopsonistic market, where the price-making
power lies with the buyers rather than the sellers (as in an oligopoly).5 Adsul
et al. [1] study Fisher markets where buyers can lie about their preferences.
They gave a complete characterization of its symmetric Nash equilibria (SNE)
and showed that market equilibrium prices can be implemented at one of the
SNE. Later Chen et. al. [5] studied incentive ratios in such markets to show
that a buyer can gain no more than twice by strategizing in markets with linear,
Leontief and Cobb-Douglas utility functions. In upcoming work, Branzei et al
[4] study the Price of Anarchy in the game of Adsul et al. and prove polynomial
lower and upper bounds for it. Furthermore, they show Nash equilibria always
exist.

In the above games (and the Fisher model itself), only the sellers have an
intrinsic utility for money. In contrast, we postulate that buyers (and not just
sellers) have utility for money. Thus, buyers may also benefit by saving money for

5 The importance of oligopsonies was recently highlighted by the price-fixing behaviour
of massive technology companies in San Francisco.



later use. This incentivizes buyers to withhold money from the market. This de-
fines our Fisher Market Game, where agents strategize on the amount of money
they wish to spend, and obtain utility one from each unit of saved money. Con-
trary to the bound of two on gains when strategizing on utility functions [5],
we observe that strategizing on money may facilitate unbounded gains (see Ap-
pendix A.1). These incentives can induce large variations between the allocations
produced at a Market equilibrium and at a Nash equilibrium. Despite this, we
prove the Price of Imperfect Competition is at least 1

2 for Fisher markets when
the buyers utility functions belong to the utililty class of Constant Elasticity of
Substitution (CES) with the weak gross substitutability property – this class
includes linear and Cobb-Douglas functions.

1.1 Overview of Paper

In Section 2, we define the Fisher Game, give an overview of CES utility func-
tions, and present our welfare metrics. In Section 3, we prove that Price of
Imperfect Competition is at least 1

2 , for CES utilities which satisfy the weak
gross substitutability property. In Section 4, we apply the economic technique
of replication to demonstrate that, for linear utilities, the PoIC bound improves
as the level of competition in the market increases. In Section 5, we turn our
attention to the question of existence of Nash equilibria. We establish that Nash
equilibria exist for the subclass of Cobb-Douglas utilities. However, they need
not exist for all CES utilities. In particular, Nash equilibria need not exist for
linear utilities. To address this possibility of non-existence, in Section 6, we ex-
amine the dynamics of the linear Fisher Game and provide logarithmic welfare
guarantees.

2 Preliminaries

We now define the Fisher market model and the corresponding game where
agents strategize on how much money to spend. We require the following no-
tation. Vectors are shown in bold-face letters, and are considered as column
vectors. To denote a row vector we use xT . The ith coordinate of x is denoted
by xi, and x−i denotes the vector x with the ith coordinate removed.

2.1 The Fisher Market

A Fisher marketM, introduced by Irving Fisher in his 1891 PhD thesis, consists
of a set B of buyers and and a set G of goods (owned by sellers). Let n = |B|
and g = |G|. Buyer i brings mi units of money to the market and wants to buy
a bundle of goods that maximizes her utility. Here, a non-decreasing, concave
function Ui : Rg+ → R+ measures the utility she obtains from a bundle of goods.
Without loss of generality, the aggregate quantity of each good is one.

Given prices p = (p1, . . . , pg), where pj is price of good j, each buyer demands
a utility maximizing (an optimal) bundle that she can afford. The prices p are



said to be a market equilibrium (ME) if agents can be assigned an optimal bundle
such that demand equals supply, i.e. the market clears. Formally, let xij be the
amount of good j assigned to buyer i. So xi = (xi1, . . . , xig) is her bundle. Then,

1. Supply = Demand: ∀j ∈ G,
∑
i xij = 1 whenever pj > 0.

2. Utility Maximization: xi is a solution of maxUi(z) s.t
∑
j pjzij ≤ mi.

We denote by yij the amount of money player i invests in item j after prices are
set. Thus yij = pjxij . Equivalently yij can be thought of as player i’s demand
for item j in monetary terms.

Utility Functions.
An important sub-class of Fisher markets occurs when we restrict utility func-
tions to what are known as Constant Elasticity of Substitution (CES) utilities
[24]. These functions have the form:

Ui(xi) = (
∑
j

uijx
ρ
ij)

1
ρ

for some fixed ρ ≤ 1 and some coefficients uij ≥ 0. The elasticity of substitution
for these markets are 1

1−ρ . Hence, for ρ = 1, i.e. linear utilities, the goods are
perfect substitutes; for ρ→ −∞, the goods are perfect complements. As ρ→ 0,
we obtain the well-known Cobb-Douglas utility function:

Ui(xi) =
∏
j

x
uij
ij

where each uij ≥ 0 and
∑
j uij = 1. In this paper, we will focus on the cases of

0 < ρ ≤ 1 and the case ρ→ 0. These particular markets satisfy the property of
weak gross substitutability, meaning that increasing the price of one good cannot
decrease demand for other goods. It is also known that for these particular
markets, one can determine the market prices and allocations by solving the
Eisenberg-Gale convex program (see [11], [12], [19]):

max
(∑

i

mi logUi(xi) :
∑
i

xij ≤ 1,∀j; xij ≥ 0,∀i, j.
)

(1)

2.2 The Fisher Game.

An implicit assumption within the Fisher market model is that money has an
intrinsic value to the sellers, stemming from its potential use outside of the
market or at a later date. Thus, money is not just a numéraire. We assume
this intrinsic value applies to all market participants including the buyers. This
assumption induces a strategic game in which the buyers may have an incentive
to save some of their money.

This Fisher Game is a special case of the general Cournot-Walras game in-
troduced by Codognato, Gabszewicz, and Michel ([6], [15]). Here the buyers can



choose some strategic amount of money si < mi to bring to the market, which
will affect their budget constraint. They gain utility both from the resulting mar-
ket equilibria (with si substituted for mi) and from the money they withhold
from the market. Observe, in the Fisher market model, the sellers have no value
for the goods in the market. Thus, in the corresponding game, they will place
all their goods on sale as their only interest is in money. (Equivalently, we may
assume the sellers are non-strategic.)

Thus, we are in an oligopsonistic situation where buyers have indirect price-
making power. The set of strategies available to buyer i is Mi = {s ≥ 0 | s ≤ mi}.
When each buyer decides to spend si ∈ Mi, then p(s) and x(s) are the prices
and allocations, respectively, produced by the Fisher market mechanism. These
can be determined from the Eisenberg-Gale program (1) by substituting si for
mi. Thus, total payoff to buyer i is

Ti(s) = Ui(xi(s)) + (mi − si) (2)

Our primary tool to analyze the Fisher Game is via the standard solution con-
cept of a Nash equilibrium. A strategy profile s is said to be a Nash equilib-
rium if no player gains by deviating unilaterally. Formally, ∀i ∈ B, Ti(s) ≥
Ti(s

′, s−i), ∀s′ ∈ Mi. For the market game defined on market M, let NE(M)
denote its set of NE strategy profiles.

The incentives in the Fisher Game can be high. In particular, in Appendix A.1,
we show that for any L ≥ 0, there is a market with linear utility functions where
an agent improve his payoff by a multiplicative factor of L by acting strategically.

The Price of Imperfect Competition.
The social welfare of a strategy is the aggregate payoff of both buyers and sellers.
At a state s, with prices p = p(s) and allocations x = x(s), the social welfare is:

W(s) =
∑
i∈B

(Ui(xi) +mi − si) +
∑
j∈G

pj =
∑
i∈B

Ui(xi) +
∑
i∈B

mi (3)

Note, here, that the cumulative payoff of sellers is
∑
j∈G pj =

∑
i∈B si.

The focus of this paper is how strategic manipulations of the market mecha-
nism affect the overall social welfare. Thus, we must compare the social welfare
of the strategic Nash equilibrium to that of the unstrategic market equilibrium
where all buyers simply put all of their money onto the market. This latter
equilibrium is the Walrasian equilibrium (WE). This comparison gives rise to
a welfare ratio, which we term the Price of Imperfect Competition (PoIC), the
ratio of the minimum welfare amongst strategic Nash equilibria in the market
game to the welfare of the unstrategic Walrasian equilibrium. Formally, for a
given market M,

PoIC(M) = min
s∈NE(M)

W(s)

W(m)

Thus the Price of Imperfect Competition is a measure of how robust, with re-
spect to social welfare, the market mechanism is against oligopsonist behaviour.



Observe that the Price of Imperfect Competition could be either greater or less
than 1. Indeed, the example in Appendix A.1 shows that a Nash Equilibrium may
produce arbitrarily higher welfare than a Walrasian Equilibrium. Of course, one
may expect that welfare falls when the mechanism is gamed and, in Appendix
A.2, we do present an example where the welfare at a Nash Equilibrium is slightly
lower than at the Walrasian Equilibrium. This leads to the question of whether
the welfare at a Nash can be much worse than at a market equilibrium. We will
show that the answer is no; a Nash always produces at least a constant factor
of the welfare of a market equilibrium.

3 Bounds on the Price of Imperfect Competition

In this section we establish bounds on the PoIC for the Fisher Game for CES
utilities with 0 < ρ ≤ 1 and for Cobb-Douglas utilities. The example in Ap-
pendix A.1 shows that there is no upper bound on PoIC for the Fisher Game.
Thus, counterintuitively, even for linear utilities, it may be extremely beneficial
to society if the players are strategic.

In the rest of this section, we demonstrate a lower bound of 1
2 on the PoIC.

This result distinguishes the Fisher Game from other strategic market mod-
els. For example, consider the case of the Proportional Allocation Mechanism
applied over a multi-good market (see Feldman et al. [13] for details on this
application). In Appendix B, we show that the PoIC may then approach zero in
the proportional allocation mechanism with savings. Thus the Fisher Game is,
in a sense, more resilient to strategic play than other mechanisms.

So consider a market with Cobb-Douglas or CES utility functions (where
0 < ρ ≤ 1). The key to proving the factor 1

2 lower bound on the PoIC is the
following lemma showing the monotonicity of prices.

Lemma 1. Given two strategic allocations of money s∗ ≤ s, then the corre-
sponding equilibrium prices satisfy p∗ ≤ p, where p∗ = p(s∗) and p = p(s).

Proof. We break the proof up into three classes of utility function.
(i) Cobb-Douglas Utilities

The case of Cobb-Douglas utility functions is simple. To see this, recall a result
of Eaves [10]. He showed that, when buyer i spends si, the prices and allocations
for the Fisher market are given by

pj =
∑
i

uijsi xij =
uijsi∑
k ukjsk

(4)

It follows that if strategic allocations of money increase, then so must prices.

(ii) CES Utilities with 0 < ρ < 1
Recall that market equilibria for CES Utilities can be calculated via the Eisenberg-
Gale convex program (1). From the KKT conditions of this program, where pj



is the dual variable of the budget constraint, we observe that:

∀j, pj > 0⇒
∑
i xij = 1

∀(i, j), siuij

Ui(xi)ρx1−ρ
ij

≤ pj and xij > 0⇒ siuij

Ui(xi)ρx1−ρ
ij

= pj
(5)

Claim. If players have CES utilities with 0 < ρ < 1 and s ≥ 0, then xij >
0, ∀(i, j) with uij > 0.

Proof. Consider the derivative of Ui with respect to xij as xij → 0:

lim
xij→0

∂Ui(xi)

∂xij
= lim

xij→0

uijUi(xi)
1−ρ

x1−ρij

= +∞ (6)

The claim follows since pj ≤
∑
i si and is, thus, finite. ut

We may now proceed by contradiction. Suppose ∃k s.t. pk < p∗k. Choose
a good j such that

pj
p∗j

is minimal and therefore less than 1, by assumption.

Take any player i such that uij > 0. By the above claim, we have xij , x
∗
ij > 0.

Consequently, by the KKT conditions (5), we have:

uij

pjx
1−ρ
ij

=
Ui(xi)

ρ

si
and

uij

p∗jx
∗1−ρ
ij

=
Ui(x

∗)ρ

s∗i
(7)

Taking a ratio gives:
pjx

1−ρ
ij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )
ρsi

Ui(xi)ρs∗i
(8)

Indeed, this equation also holds for every good t ∈ G with uit > 0. Next consider
the following two cases:
Case 1: xij ≤ x∗ij for some player i.
From (8) we must then have that Ui(xi) > Ui(x

∗
i ). However, by the minimality

of
pj
p∗j

, and since (8) holds for every t ∈ G with uit > 0, we obtain xit ≤ x∗it for

all such t. This implies Ui(xi) ≤ Ui(x∗i ), a contradiction.
Case 2: xij > x∗ij for every player i.
Since p∗j > pj , we must have p∗j > 0. By (5) it follows that

∑
i x
∗
ij = 1. But

now we obtain the contradiction that demand must exceed supply as
∑
i xij >∑

i x
∗
ij = 1.

(iii) Linear Utilities

We begin with some notation. Let Si = {j ∈ G : xij > 0} be the set of goods
purchased by buyer i at strategy s. Let βij =

uij
pj

be the rate-of-return of good

j for buyer i at prices p. Let βi = maxj∈G βij be the bang-for-buck buyer i can
obtain at prices p. It can be seen from the KKT conditions of the Eisenberg-Gale
program (1) that at {p,x}, every good j ∈ Si will have a rate-of-return equal to
the bang-for-buck (see, for example, [25]). Similarly, let S∗i , β

∗
i be correspondingly

defined for strategy s∗.



Note that, assuming for each good j, ∃i, uij > 0, we have that p,p∗ > 0.

Thus, we can partition the goods into groups based on the price ratios
p∗j
pj

.

Suppose there are k distinct price ratios over all the goods (thus k ≤ g), then
partition the goods into k groups, say G1, . . . ,Gk such that all the goods in a
group have the same ratio. Let the ratio in group j be λj and let λ1 < λ2 <
· · · < λk. Thus G1 are the goods whose prices have fallen the most (risen the
least) and Gk are the goods whose prices have fallen the least (risen the most).

Let Ik = {i : ∃j ∈ Gk, xij > 0} and I∗k = {i : ∃j ∈ Gk, x∗ij > 0}. Thus Ik
and I∗k are the collections of buyers that purchase goods in Gk in each of the
allocations. Take any buyer i ∈ I∗k ; so there is some good j ∈ S∗i ∩ Gk.

If Si ∩
⋃k−1
`=1 G` 6= ∅ then buyer i would not desire good j at prices p∗j . To see

this, take a good j′ ∈ Si ∩
⋃k−1
`=1 G`. Then βij′ = βi ≥ βij . Therefore

β∗i ≥
uij′

p∗j′
≥ uij′

λk−1 · pj′
>

uij′

λk · pj′

=
1

λk
· uij

′

pj′
≥ 1

λk
· uij
pj

=
uij
p∗j

= β∗i

This contradiction tells us that Si ⊆ Gk and I∗k ⊆ Ik. It follows that ∪i∈I∗kSi ⊆
Gk. Putting this together, we obtain that∑

i∈I∗k

si ≤
∑
i∈Ik

si ≤
∑
j∈Gk

pj (9)

Now recall that all goods must be sold by the market mechanism (as p,p∗ > 0).
Thus the buyers I∗k must be able to afford all of the goods in Gk. Thus∑

i∈I∗k

s∗i ≥
∑
j∈Gk

p∗j = λk ·
∑
j∈Gk

pj (10)

But s∗i ≤ si for all i. Consequently, Inequalities (9) and (10) imply that λk ≤ 1.
Thus no price in p∗ can be higher than in p. ut

First we use Lemma 1 to provide lower bounds on the individual payoffs.

Lemma 2. Let si be a best response for agent i against the strategies s−i. Then
Ti(s) ≥ max(Ûi,mi), where Ûi is her utility at the Walrasian equilibrium.

Proof. Clearly Ti(s) ≥ mi, otherwise player i could save all her money and
achieve a payoff of mi. For Ti(s) ≥ Ûi, let p = p(m) and x = x(m) be the
prices and allocation at Walrasian equilibrium. If buyer i decides to spend all
his money when the others play s−i, the resulting equilibrium prices will be less
than p, by Lemma 1. Therefore, she can afford to buy bundle xi. Thus, her best
response payoff must be at least Ûi.



It is now easy to show the lower bound on the Price of Imperfect Competition.

Theorem 1. In the Fisher Game, with Cobb-Douglas or CES utilities (0 < ρ ≤
1), we have PoIC ≥ 1

2 . That is, W(s∗) ≥ 1
2W(m), for any Nash equilibrium s∗.

Proof. Let p∗ = p(s∗) and x∗ = x(s∗). Let p and x be the Walrasian equilibrium
prices and allocations, respectively. At the Nash equilibrium s∗ we have Ti(s

∗) ≥
max(mi, Ui(xi)) for each player i, by Lemma 2. Thus, we obtain:

2
∑
i

Ti(s
∗) ≥

∑
i

Ui(xi) +
∑
i

mi (11)

Therefore W(s∗) ≥ 1
2W(m), as desired. ut

4 Social Welfare and the Degree of Competition

In this section, we examine how the welfare guarantee improves with the degree
of competition in the market. To model the degree of competition, we apply
a common technique in the economics literature, namely replication [22]. In a
replica economy, we take each buyer type in the market and make N duplicates
(the budgets of each duplicate is a factor N smaller than that of the original
buyer). The degree of competition in the resultant market is N . We now consider
the Fisher Game with linear utility functions and show how the lower bound on
Price of Imperfect Competition improves with N .

Theorem 2. Let s∗ be a NE in a market with degree of competition N . Then

W(s∗) ≥ (1− 1

N + 1
) · W(m)

In order to prove Theorem 2, we need a better understanding of how prices
adjust to changes in strategy under different degrees of competition. Towards
this goal, we need the following two lemmas.

Lemma 3. Given an arbitrary strategic money allocation s. If player i increases
(resp. decreases) her spending from si to (1 + δ)si then the price of any good
increases (resp. decreases) by at most a factor of (1 + δ).

Proof. We focus on the case of increase; the argument for the decrease case
is analogous. Suppose all players increase their strategic allocation by a factor
of (1 + δ). Then the allocations to all players would remain the same by the
market mechanism and all prices would be scaled up by a factor of (1+ δ). Then
suppose each player k 6= i subsequently lowers its money allocation back down
to the original amount sk. By Lemma 1, no price can now increase. The result
follows. ut

Lemma 4. Given an arbitrary strategic money allocation s in a market with
degree of competition N . Let buyer i be the duplicate player of her type with the
smallest money allocation si. If she increases her spending to (1 +N · δ)si then
the price of any good increases by at most a factor (1 + δ).



Proof. We utilize the symmetry between the N identical players. Let players
i1 = i, i2, ..., iN be the replicas identical to player i. If each of these players
increased their spending by a factor of (1 + δ) then, by Lemma 3, prices would
go up by at most a factor (1 + δ). From the market mechanism’s perspective,
this is equivalent to player i increasing her strategic allocation to si + δ ·

∑
k sik .

But this is greater than (1 + N · δ)si. Thus, by Lemma 1, the new prices are
larger by a factor of at most (1 + δ). ut

Now let x = x(m) and x∗ = x(s∗). Since we have rational inputs, x and x∗ must
be rational [19]. Therefore, by appropriately duplicating the goods and scaling
the utility coefficients, we may assume that there is exactly one unit of each good
and that both x and x∗ are {0, 1}-allocations. Recall from the proof of Lemma 1
our definition of Si, S

∗
i and βi, β

∗
i . Under this assumption, Si = {j ∈ G : xij = 1}

and similarly for S∗i . We are now ready to prove the following welfare lemma.

Lemma 5. For any Nash equilibrium {s∗,p∗,x∗} and any Walrasian equilib-
rium {s = m,p,x}, we have

∑
i∈B

∑
j∈S∗i

uij ≥
(

1− 1

N

)
·
∑
i∈B

∑
j∈Si

uij (12)

Proof. To prove the lemma we show that total utility produced by goods at NE,
after scaling by a factor N

N−1 , is at least as much as the utility they produce at
the Walrasian equilibrium. We do this by partitioning goods into the sets Si. We
then notice that for each good, the player who receives it at NE must receive
utility from it in excess of the price he paid for it. In many cases, this price is
more than the utility of the player who receives it in Walrasian equilibrium and
we are done. Otherwise we will set up a transfer system where players in NE
who receive more utility for the good than the price paid for it transfer some of
this excess utility to players who need it. This will ultimately allow us to reach
the desired inequality.

For the rest of this proof wlog we will restrict our attention to Nash equilibria
where each identical copy of a certain type of player has the same strategy. We are
able to do this as the market could treat the sum of these copies as a single player
and thus we are able to manipulate the allocations between these players without
changing market prices or the total utility derived from market allocations. Thus
if our argument holds for Nash equilibria where identical players have the same
strategy, it will also hold for heterogeneous Nash equilibria. Now take any player
i. There are two cases:
Case 1: s∗i = mi.
By Lemma 1, we know that ∑

j∈S∗i ∩Si

p∗j ≤
∑

j∈S∗i ∩Si

pj (13)



Therefore, by the assumption that s∗i = mi, we have∑
j∈Si\S∗i

pj = mi −
∑

j∈S∗i ∩Si

pj = s∗i −
∑

j∈S∗i ∩Si

pj ≤ s∗i −
∑

j∈S∗i ∩Si

p∗j =
∑

j∈S∗i \Si

p∗j

(14)
Thus buyer i spends more on S∗i \Si than she did on Si \S∗i . But, by Lemma 1,
she also receives a better bang-for-buck on S∗i \ Si than on Si \ S∗i , as β∗i ≥ βi
(Lemma 1). Let β∗i = 1 + ε∗i . Thus, at the Nash equilibrium, her total utility on
S∗i \ Si is ∑

j∈S∗i \Si

uij =
∑

j∈S∗i \Si

β∗i · p∗j = (1 + ε∗i ) ·
∑

j∈S∗i \Si

p∗j

Of this utility, buyer i will allocate p∗j units of utility to each item j ∈ S∗i \ Si.
The remaining ε∗i · p∗j units of utility derived from good j is reallocated to goods
in Si \ S∗i .

Consider the goods in Si. Clearly goods in Si∩S∗i contribute the same utility
to both the Walrasian equilibrium and the Nash equilibrium. So take the items
in Si \ S∗i . The buyers of these items at NE have obtained at least

∑
j∈Si\S∗i

p∗j
units of utility from them (as β∗d ≥ 1, ∀d). In addition, buyer i has reallocated
ε∗i ·

∑
j∈S∗i \Si

p∗j to goods in Si \ S∗i . So the total utility allocated to goods in

Si \ S∗i is∑
j∈Si\S∗i

p∗j + ε∗i ·
∑

j∈S∗i \Si

p∗j ≥
∑

j∈Si\S∗i

p∗j + ε∗i ·
∑

j∈Si\S∗i

p∗j = (1 + ε∗i ) ·
∑

j∈Si\S∗i

p∗j

= β∗i ·
∑

j∈Si\S∗i

p∗j ≥
∑

j∈Si\S∗i

uij

Here the first inequality follows by (14) and the final inequality follows as β∗i ≥
uij
p∗j

, for any good j /∈ S∗i . Thus the reallocated utility on Si at NE is greater

than the utility it provides in the Walrasian equilibrium (even without scaling
by N

N−1 ).
Case 2: s∗i < mi.
Suppose buyer i increases her spending from s∗i to (1+N ·δ) ·s∗i . Then the prices
of the goods she buys increase by at most a factor (1 + δ) by Lemma 4. Thus
her utility changes by

(mi − (1 + δ ·N) · s∗i ) + s∗i · β∗i ·
1 +N · δ

1 + δ
− (mi − s∗i )− s∗i · β∗i ≤ 0

where the inequality follows as s∗ is a Nash equilibrium. This simplifies to

s∗i ·
(
−δ ·N + β∗i · (

1 +N · δ
1 + δ

− 1)

)
≤ 0

Now suppose (i) s∗i = 0. In this case we must have uij/p
∗
j ≤ 1 for every good

j. To see this, we argue by contradiction. Suppose uij/p
∗
j = 1 + ε for some good



j. Notice that if player i changes s∗i to γ the price of good j can go up by at
most γ as we know each price increases by Lemma 1 and the sum of all prices is
at most γ higher (by the market conditions). Thus, if player i puts γ < ε money
onto the market then good j will still have bang-for-buck greater than 1 and so
player i will gain more utility than the loss of savings. Thus, s∗i cannot be an
equilibrium, a contradiction.

Thus uij ≤ p∗j ≤ ui∗j where i∗ is the player who receives good j at NE.
Therefore this player obtains more utility from good j than player i did in the
Walrasian equilibrium, even without scaling or a utility transfer.

On the other hand, suppose (ii) s∗i > 0. This can only occur if we have both
β∗i ≥ 1 and

β∗i ·
(N − 1) · δ

1 + δ
≤ δ ·N (15)

Therefore 1 ≤ β∗i ≤ (1 + δ) · (1 + 1
N−1 ). Since this holds for all δ, as we take

δ → 0 we must have β∗i ≤ N
N−1 . Thus

uij
p∗j
≤ N

N−1 for every good j. Thus if we

multiply the utility of the player receiving good j in the Nash equilibrium by
N
N−1 he will be getting more utility from it than player i did in the Walrasian
equilibrium. ut

Proof of Theorem 2. Given the other buyers strategies s∗−i suppose buyer i
sets si = mi. Then, by Lemma 1, prices cannot be higher for (mi, s

∗
−i) than at

the Walrasian equilibrium p(m). Therefore, by selecting si = mi, buyer i could
afford to buy the entire bundle Si at the resultant prices. Consequently, her best
response strategy s∗i must offer at least that much utility. This is true for each
buyer, so we have

∑
i∈B

(mi − s∗i ) +
∑
j∈G

uij · x∗ij

 ≥∑
i∈B

∑
j∈G

uij · xij (16)

Thus

W(s∗) =
∑
i∈B

∑
j∈G

uij · x∗ij +
∑
i∈B

mi =
∑
i∈B

(mi − s∗i ) +
∑
j∈G

uij · x∗ij

+
∑
i∈B

s∗i

≥
∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

s∗i (17)

On the other hand, Lemma 5 implies that

W(s∗) =
∑
i∈B

∑
j∈G

uij ·x∗ij +
∑
i∈B

mi ≥
(

1− 1

N

)
·
∑
i∈B

∑
j∈G

uij ·xij +
∑
i∈B

mi (18)

Taking a convex combination of Inequalities (17) and (18) gives

W(s∗) ≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi + (1− α) ·
∑
i∈B

s∗i



≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi

=
(

1− α

N

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi (19)

Thus plugging α = N
N+1 in (19) gives

W(s∗) ≥
(

1− 1

N + 1

)
·

∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

mi

 =

(
1− 1

N + 1

)
·W(m)

(20)
This completes the proof. ut

5 Existence of Nash Equilibria

We have demonstrated bounds for the Price of Imperfect Competition in the
Fisher Game under both CES and Cobb-Douglas utilities. However, these welfare
results only apply to strategies that are Nash equilibria. In this section, we prove
that Nash equilibria exist for the Cobb-Douglas case, but need not exist for linear
utilities. For games without Nash equilibria, we may still recover some welfare
guarantees; we show this in Section 6, by examining the dynamics of the Fisher
Game with linear utilities.

5.1 Cobb-Douglas Utility Functions

We prove in Appendix C.1 that a Nash equilibrium always exists for Fisher
Games with Cobb-Douglas utilities as long as each good provides utility for at
least two players.6

5.2 Linear Utility Functions

Nash equilibria need not exist in the Fisher Game with linear utilities. We pro-
vide an example of this in Appendix C.2.

6 Social Welfare under Best Response Dynamics

Whilst Nash equilibria need not exist in the Fisher Game with linear utilities,
we can still obtain a good welfare guarantee in the dynamic setting. Specifically,
in the dynamic setting we assume that in every round (time period), each player
simultaneously plays a best response to what they observed in the previous

6 In the absence of this assumption, it is possible for a player who is a monopsonist of
a single good to continually decrease their strategic allocation, trivially precluding
the possibility of an equilibrium.



round. Dynamics are a natural way to view how a game is played and a well-
studied question is whether or not the game dynamics converge to an equilibrium.
Regardless of the answer, it is possible to quantify the average social welfare over
time of the dynamic process. This method was introduced by Goemans et al in
[16] and we show how it can be applied here to bound the Dynamic Price of
Imperfect Competition - the worst case ratio of the average welfare of states in
the dynamic process to the welfare of the Walrasian equilibrium.

For best responses to be well defined in the dynamic Fisher Game, we need
the concept of a minimum monetary allocation si. Thus we discretize the game
by allowing players to submit strategies which are rational numbers of precision
up to Φ. This has the added benefit of making the game finite. In Appendix D,
we prove the following bound on the Dynamic Price of Imperfect Competition.

Theorem 3. In the dynamic Fisher Game with linear utilities, the Dynamic
Price of Imperfect Competition is lower bounded by Ω(1/ log(Mφ )) where M =
maximi.
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A Examples of Fisher Games

A.1 A Fisher Game with Unbounded PoIC

In this section we demonstrate a Fisher Game with one good where potential
gain in welfare at its only NE is unbounded compared to its WE. Since CES
function on one good is essentially a linear function, we show the result for
Fisher Game under CES utility function.

Theorem 4. For any ∆ > 1, there exists a Fisher Game under linear utility
functions with exactly one NE s∗, and W(s∗) ≥ ∆W(m).

Proof. Consider the following market with one good a and three buyers 1, 2
and 3. Buyers 1 has m1 = 1 and u1a = H. Buyer 2 is identical: m2 = 1 and
u2a = H. On the other hand the third buyer has m3 = 2L − 2 and u3a = 1.
Assuming there is one unit of good j then the market equilibrium is pa = 2L
and {x1a, x2a, x3a} = { 1

2L ,
1
2L ,

2L−2
2L }. This has a total welfare of

W(m) =

(
1

2L
·H +

1

2L
·H +

2L− 2

2L
· 1
)

+ 2L <
H

L
+ 2L+ 1



There is a Nash equilibrium {s∗1, s∗2, s∗3} = {1, 1, 0} with p∗j = 2 and {x∗1j , x∗2j , x∗3j} =

{ 12 ,
1
2 , 0}. For high enough values for H and L, this game has no other equilib-

rium. The total welfare at this equilibrium is

W(s∗) =

(
(
1

2
·H + 0) + (

1

2
·H + 0) + (0 · 1 + 2L− 2)

)
+ 2 = H + 2L

Thus, for any ∆ > 1, we can choose H high enough relative to L so that the
welfare ratio between the Nash equilibrium and the market equilibrium is greater
than ∆.

A.2 A Fisher Game with PoIC < 1

In this section we will demonstrate an example of the Linear Fisher Game where
the PoIC is < 1.

Take a four buyer game with two items. There are three units of good 1
and one unit of good 2 (e1 = 3, e2 = 1). The buyers have (m1,m2,m3,m4) =
(1, 1, k + 1 − δ, δ) where k is large and δ < 6k

(6k+1)2 . The utility coefficients are

(u11, u12) = (3, 0), (u21, u22) = (3, 0), (u31, u32) = (6, 6k) and (u41, u42) = (0, 1).
Thus buyer 3 is the only buyer who values both goods.

The market equilibrium is (p1, p2) = (1, k) with (x11, x12) = (x21, x22) =
(1, 0), (x31, x32) = (1, k−δk ) and (x41, x42) = (0, δk ). Total welfare at the equilib-
rium is then∑

i∈B

∑
j∈G

uij · xij +
∑
i∈B

mi

=

(
3 · 1 + 3 · 1 + (6 · 1 + 6k · k − δ

k
) + 1 · δ

k

)
+ (1 + 1 + (k + 1− δ) + δ)

= 7k + 15 +
δ

k
· (1− 6k)

> 7k + 15− 6 · δ

On the other hand, we claim (m∗1,m
∗
2,m

∗
3,m

∗
4) = (1, 1,

√
6k · δ − δ, δ) is a

Nash equilibrium. This gives the allocation (x∗11, x
∗
12) = (x∗21, x

∗
22) = ( 3

2 , 0),

(x∗31, x
∗
32) = (0,

√
6k·δ−δ√
6k·δ ) and (x∗41, x

∗
42) = (0,

√
δ√

6k·δ ). The welfare of the equi-

librium is∑
i∈B

∑
j∈G

uij · x∗ij +
∑
i∈B

mi

=

(
3 · 3

2
+ 3 · 3

2
+ (6 · 0 + 6k ·

√
6k · δ − δ√

6k · δ
) + 1 · δ√

6k · δ

)
+ (1 + 1 + (k + 1− δ) + δ)

=

(
9 + 6k +

δ√
6k · δ

(1− 6k)

)
+ (3 + k)

= 7k + 12−
√

6k · δ +

√
δ

6k
< 7k + 12



As δ is small this is lower welfare than the Market equilibrium. Now we need
to confirm this is a Nash equilibrium. Since player 2 is spending 1 and is only
interested in good 1 we must have that p∗1 ≥ 1

3 . Now for buyer 3 to purchase
both goods we must have p∗2 = k · p∗1 and hence p∗2 ≥ 1

3 · k. But only buyers 3

and 4 want good 2 and m∗3 +m∗4 =
√

6k · δ < 1
3 ·k. Thus, for the market to clear,

buyer 3 will only purchase good 2.
It follows that we can separate the game in two submarkets. The first has

buyers 1 and 2 with good 1, and the second has buyers 3 and 4 with good 2.
Consider the first sub-market. Let’s show that buyer 1 is making a best

response. She is facing (m∗2,m
∗
3,m

∗
4) = (1,

√
6k · δ− δ, δ) and needs to select m∗1.

When buyer 2 spends y ≤ 1 dollars, the utility of buyer 1 is (1− x) + 3 · 3 · x
x+y

when she spends x ≤ 1 dollars. To see this, she wins a x
x+y fraction of the good;

there are three units of the good and she gets a utility of 3 per unit.
Taking the derivative we get

−1 +
9

x+ y
− 9x

(x+ y)2
= −1 +

9(x+ y)− 9x

(x+ y)2

= −1 +
9y

(x+ y)2

But this is positive because y = 1 and x ≤ 1. Thus buyer will spend as much
as possible, that is x = 1 is a best response. By symmetry, buyer 2 is also making
a best response.

Now consider the second sub-market. When buyer 4 spends y dollars, the
utility of buyer 3 is (k + 1 − δ − x) + 6k · x

x+y when she spends x dollars. To
optimise x we equate

−1 +
6k

x+ y
− 6kx

(x+ y)2
= 0

∴ 6ky = (x+ y)2

∴
√

6ky − y = x

Since buyer 4 is spending δ dollars, it is a best response for buyer 3 to spend√
6k · δ − δ dollars, as desired.

Now consider buyer 4. When buyer 3 spends x dollars, the utility of buyer 4
is (1− y) + 1 · y

x+y when she spends y ≤ δ dollars. Taking the derivative we have

−1 +
1

x+ y
− y

(x+ y)2
=
−(x+ y)2 + x

(x+ y)2

Since buyer 3 is spending x =
√

6k · δ− δ dollars and y ≤ δ, the numerator is at
least

x− (x+ δ)2 =
√

6k · δ − δ − (
√

6k · δ)2

=
√

6k · δ − (6k + 1) · δ



But this is positive provided

6k · δ > (6k + 1)2 · δ2

∴
6k

(6k + 1)2
> δ

Thus, buyer 4 will spend all his money and we have a Nash equilibrium.

B The Proportional Share Mechanism

In this section we analyze proportional share mechanisms [13] with and without
utility for saved money, and compare welfare at corresponding equilibrium. We
show that in proportional share mechanisms [13] adding utility for saved money
may lead to an unbounded loss in welfare. In other words, the Price of Imperfect
Competition may go to zero. This is unlike Fisher Game, where the Price of
Imperfect Competition is bounded below by 1

2 (Theorem 1). In proportional
share mechanisms [13] buyer i allocates in advance a specific amount mij of
money to each good j. The key point here is that when we allow unit utility for
each unit of saved money, then prices can rise for some goods.

For example. Take three players and two goods. Let the players have budgets
K,K, 1, respectively. Let (u11, u12) = (h−1, 0), (u21, u22) = (h2, h), (u31, u32) =
(0, h3), for some large h.

The optimality conditions at an equilibrium in these games are:

uij ·
pj −mij

(p∗j )
2

= 1 + ε∗i if mij > 0 (21)

and

uij ·
pj −mij

(p∗j )
2
≤ 1 + ε∗i if mij = 0 (22)

Without having any value for saved money, we have that buyer 1 allocates all
her money to good 1 and buyer 3 allocates all his money to good 2. Thus the
optimality conditions state if buyer 2 allocates money to both goods then

u21 ·
K

(K +m21)2
= u22 ·

1

(1 +m22)2

h2 · K

(K +m21)2
= h · 1

(1 +K −m21)2

h · (1 +K −m21)2 ·K = (K +m21)2

But for h >> K this cannot happen and buyer 2 will allocate all her money to
good 1. Thus buyer 3 will win all of good 3 fetching social welfare of at least h3.

On the other hand if each unit of saved money gives unit utility, then buyer
1 will not allocate any money to good 1 unless its price is at most h−1.

Thus player 2 cannot allocate more than h−1 to good 1. Thus he allocates at
least K − h−1 dollars to good 2. Thus the price of good 2 rises! In which case,
buyer 3 gets a 1

K fraction of good 2. This gives a social welfare of around 1
K ·h

3.



C Existence of Nash Equilibria

C.1 Cobb-Douglas Utility Functions

We will prove that a strategic equilibrium exists if each player has Cobb-Douglas
utility functions and each good provides utility to at least two players. Recall
that Ti(s) is player i’s total utility at strategy profile s. The first step in this
proof is to show that Ti is a concave function with respect to si when s−i is
fixed.

Lemma 6. Ti is a concave function of si.

Proof. First, it is enough for us to consider the component of the utility from
the market, Ui (as the utility from saving money is always concave). Recall that
from (4), we have yij = xij · pj = si · uij . Thus, we can easily express Ui as a
function of si as:

Ui =
∏
j

x
uij
ij =

∏
j

(
si · uij

p̃j + siuij

)uij
(23)

Here p̃j =
∑
k 6=i ykj . We get the second equality simply by writing each xij as

yij
pj

. Now, note that
∏
j u

uij
ij is just a positive constant and so does not affect

concavity. Also,
∏
j s
uij
i = si by our assumption that

∑
j uij = 1. Thus it is

enough to show that the following is concave:

Ũi =
si∏

j(p̃j + siuij)uij
.

Taking derivatives give us:

Ũ ′i =

∏
j(p̃j + siuij)

uij − si
∑
k u

2
ik(p̃k + siuik)(uik−1)

∏
j 6=k(p̃j + siuij)

uij∏
j(p̃j + siuij)2uij

(24)
Notice that the numerator simplifies considerably, if we take advantage of the
the fact that

∑
j uij = 1 to rewrite it as:

∑
k

uik
∏
j

(p̃j + siuij)
uij − si

∑
k

u2ik(p̃k + siuik)(uik−1)
∏
j 6=k

(p̃j + siuij)
uij

=
∑
k

p̃k(p̃k + siuik)(uik−1)
∏
j 6=k

(p̃j + siuij)
uij

Thus, we can simplify to

Ũ ′i =
∑
k

p̃k
(p̃k + siuik)

∏
j(p̃j + siuij)uij

(25)

But this is clearly a decreasing function of si and so Ũi is concave. ut



We are now ready to prove the existence of an equilibrium.

Theorem 5. If for every good at least two players have positive utility for that
good, then a Nash equilibrium of the strategic game exists.

Proof. This proof is similar in structure to that of [13]. Let Γ = (U ,m) be the
original market game. For each ε > 0, we define the epsilon-market as Γε. This
market has all of the original players and goods, but will limit the strategy sets
of each player by forcing them to put at least ε of their money on the market.

It is easy to see that in the epsilon version of the game, utilities are continuous
with respect to the strategic variable. This follows from (23). Also, by Lemma 6,
we see that the function Ti with respect to si is concave. Applying Rosen’s
theorem [21] we get that a market equilibrium must exist for each epsilon market.
Let s∗ε be this equilibrium.

Notice that, since the strategy sets are compact, there must be a limit point
to s∗ε as ε→ 0. Call this point s∗. Clearly s∗ is a feasible strategy of the original
game. We will try to show that s∗ is a strategic Nash equilibrium for the original
game. Note also that we can take a subsequence of the s∗ε , say {ε1, ε2, ...} so that
each of the corresponding allocations and prices x∗εj and p∗εj also converge to a
limit point, say x∗ and p∗, respectively, as they also lie on a compact set. Next
we show a lower bound on p∗εj .

Claim. If at least two players have positive utility for good j, then there is some
constant c > 0 such that for every epsilon game, the strategic equilibrium price
p∗ε > c.

Proof. We argue by contradiction. Let us choose some ε and some good j for
which two players have positive utility and such that the equilibrium price is
p∗εj ≤ c. We will define c later. Since there are at least two users who have
positive utility from good j, there is at least one user, say user i, who has
uij > 0 but who is allocated at most half of good j (i.e. x∗ij ≤ 1/2 and could in
fact be 0). Consider two cases.
Case 1: s∗i ≥ mi

2 .
In this case, by (4), we must have p∗j ≥ yij = s∗i uij ≥

miuij
2 . Choosing c <

mminumin

2 gives a contradiction.
Case 2: s∗i <

mi
2 .

In this case, recall from (25) that:

∂Ui
∂si

=
∑
k

p̃k
(p̃k + siuik)

∏
j(p̃j + siuij)uij

∏
j

u
uij
ij (26)

Since we are assuming x∗ij < 1/2, we must have that p̃∗j > y∗ij = s∗i uij . Then, as
all of the terms of the above sum are positive, we can simply focus on the j-th
term to get the following inequality at the equilibrium point:

∂Ui
∂si

>
1

2(2p̃j)uij
∏
k 6=j(p̃k + siuik)uik

∏
k

uuikik (27)



Now we let U =
∏
k u

uik
ik and notice that each term of the product in the de-

nominator is bounded by the total money between all players (which we will call
M). Thus, at equilibrium we have:

∂Ui
∂si

>
U

2(2p̃j)uijMm
(28)

Thus, by choosing c < 1
2 ( U

2Mm )
1

umax , we can ensure that ∂Ui
∂si

> 1. This contra-
dicts the fact that we are at an internal equilibrium of the strategic game. ut

By the above claim it is clear that for each epsilon game the prices for each
good must be at least c and, thus, in the limit p∗ > c. From this we will establish
that x∗ and p∗ are in fact valid prices and allocations for the market equilibrium
if the players play strategy s∗. First, the demands and prices are feasible as, by
convergence, we have that

∑
i x
∗
ij = 1 for all j and

∑
j x
∗
ijp
∗
j = s∗i for all i. It

is also clear from the convergence that the allocation x∗ must maximize each
player’s utility amongst all allocations that they can afford. We need only check
that if a player has s∗i = 0 that they are allocated no goods which is the only
possible discontinuous condition on the game. This follows from the fact that we
have guaranteed that p∗ > c > 0. Thus, x∗ = x(s∗) and p∗ = p(s∗).

Since the allocations xεj of sεj converge to the allocation x∗ of s∗, it must
be that, for every δ > 0, there exists some J > 0 such that for all j > J :∣∣Ti(s∗)− Ti(sεj )∣∣ < δ. (29)

We are now ready to show that s∗ is a Nash equilibrium for the strategic
game. Suppose that it is not. Then there must be some player i who has a payoff
improving allocation. In fact, suppose that instead of playing s∗, player i devi-
ated to a new strategy ŝi with strictly greater payoff. Define ŝ = (s∗1, ..., ŝi, ..., s

∗
n)

and ŝε = (sε1, ..., ŝi, ..., sεn) for sufficiently small ε. Again, we partition into two
cases.
Case 1: ŝi = 0.
If ŝi = 0 then s∗i > 0. Now consider s∗ε1i, s

∗
ε2i
, . . . the set of strategies converging

to s∗i . Since these are at Nash equilibrium, each of these strategies has utility
more than mi − ε (which is the minimum utility obtained if player i only put
ε in the market in the epsilon game). Thus these must converge to a strategy
with utility ≥ mi. Thus, defecting with ŝi = 0 which gives utility mi cannot be
a utility increasing move.
Case 2: ŝi > 0.
Suppose Ti(ŝ) − Ti(s∗) = ε′ > 0. Then, for sufficiently small ε we must have
Ti(ŝε)− Ti(s∗ε ) > 0 by (29). This contradicts the fact that s∗ε is a Nash equilib-
rium. Thus s∗ must be a Nash equilibrium for the strategic game as required. ut

C.2 A Fisher Game with no Nash Equilibrium

A Nash equilibrium need not exist in a Fisher Game with linear utilities. We
show this using the following simple counterexample. Consider a market with



two buyers a and b and two goods 1 and 2. Let each player get utility 1 for each
good, except that ua2 = 2. Let the budgets of each player be ma = mb = 4.
Suppose now that each player chooses a strategy sa ≤ ma and sb ≤ mb. There
are four cases.
Case I: sa < sb.
The market equilibrium in this case is p1 = p2 = sa+sb

2 , a taking only good 2

with total utility Ua = 4sa
(sa+sb)

+ma − sa, and b taking the full good 1 and the

rest of good 2 with utility 2sb
sa+sb

+ma − sa. Now Ua is a concave function in sa,

its derivative is 4sb
(sa+sb)

2 − 1, and the sa value maximizing it must satisfy 4sb =

(sa + sb)
2, hence this must hold in NE. Similarly, for b, we get 2sa = (sa + sb)

2

in NE. This gives sa = 2sb, a contradiction to sa < sb.
Case II: sa = sb = s.
Now s = 0 cannot be NE, because a buyer putting a tiny amount of money on
the market could get the utility 3 or 2, resp. If s > 0 then the market equilibrium
prices are p1 = p2 = s, a buying the full unit of 2, b buying the full unit of 1.
This cannot be NE, since if b’s utility is 1+mb−sb then if he puts in a little less
money he will still get the full unit of good 1, giving utility 1 (see next case).
Case III: sb < sa ≤ 2sb.
At the market equilibrium, a only buys 2 and b only buys 1. Hence p1 = sb, p2 =
sa. This clearly cannot be a NE: a’s utility is 2 +ma− sa, b’s utility 1 +mb− sb,
i.e. they get the full utility of the corresponding good for infinitesimal money. In
particular, a could decrease sa.
Case IV: 2sb < sa.
At the market equilibrium, p1 = sa+sb

3 and p2 = 2(sa+sb)
3 . Buyer a takes the full

good 2, b spends all his money on 1. So

Ua =
3sa

sa + sb
− sa, Ub =

3sb
sa + sb

− sb

Then the same way as in Case I, if 0 < 2sb < sa < ma, then we must have that
if it’s a NE then 3sa = 3sb = (sa + sb)

2. This again contradicts 2sb < sa.
If sb = 0, then a gets all goods with utility 3 +ma − sa, and could get it for

less. If 0 < 2sb < sa = ma = 4, then again we must have 3sa = (sa + sb)
2 for b

to be optimal, giving sb = 2
√

3− 4 < 0.

D Social Welfare under Best Response Dynamics

We now prove the logarithmic lower bound in the Dynamic Price of Imperfect
Competition for Fisher games with linear utilities. To prove Theorem 3, we first
notice that if a player puts a certain fraction of his budget onto the market, he
is guaranteed at least that fraction of his utility in the Walrasian equilibrium.

Lemma 7. In strategy profile s suppose player i has played strategy si >
mi
K for

some K. Then Ui(xi(s)) ≥ Ûi
K where Ûi is that player’s utility in the Walrasian

equilibrium.



Proof. Let βi and βWi be the bang-for-buck of player i at the current strategy
and at Walrasian equilibrium, then using Lemma 1 we have Ui(xi(s)) = siβi ≥
mi
K βi ≥ mi

K βWi = Ûi
K . ut

Next, we will show that if a player is not receiving much utility in the current
strategy state, then in his next move he will either dramatically decrease or
dramatically increase his allocation of money to the market.

Lemma 8. Suppose at time t, the players have chosen strategies st. If for player

i, Ti(s
t) < Ûi

K then st+1
i ≥ Ksti.

Proof. Notice that if for his next move, player i were to put in st+1
i = mi then

he would get utility at least Ûi (Lemma 2). Thus his best response must lead
him to expect at least this amount. Since increasing si from sti will only worsen

his bang per buck and reduce the savings, the only way to get at least Ûi is to
put in at least K times what he previously did. ut

Lemma 9. Suppose at time t, the players have chosen strategies st. If for player

i, Ti(s
t) < mi

K , then st+1
i ≤ sti

K .

Proof. Since Ti(s
t) < mi

K , player i’s bang-for-buck at st is less than 1
K . Notice

that if for his next move, he were to put in st+1
i = 0 then he would get total

utility at least mi. Thus his best response must lead him to expect at least this
amount. By Lemma 3, the only way he can expect to increase his bang-for-buck
to 1 is by decreasing his allocation of money by a factor of at least 1

K . ut

We observe that it is not possible for the conditions of Lemmas 8 and 9 to be
satisfied simultaneously for K > 1. We are now ready to prove Theorem 3.
Proof of Theorem 3. Let us fix some constant K > 1. We will argue that

any player i will receive aggregate utility at least max(Ûi,mi)
K in any sequence of

C · log(M/φ) moves, for some constant C. Note that sum of these agregates is at
least O(

∑
imi), and therefore the utility of sellers is also taken care of with an

additional factor of 2.
Let βWi be the bang-for-buck that player i achieves in the Walrasian equi-

librium, and let βti be her bang-for-buck in round t. From Lemma 1 we have

βti ≥ βWi , ∀i, ∀t, and Ûi = miβ
W
i and Ti(s

t) = Ui(s
t)+mi−sti = stiβ

t
i +mi−sti.

We will consider 4 cases:
Case I: 1 ≤ βWi ≤ K. In this case, player i’s bang-for-buck will always be at

least 1 in each round. Thus ∀t, Ti(st) ≥ mi ⇒ Ti(s
t) ≥ Ûi

K using Ûi = miβ
W
i .

Case II: 1
K ≥ β

W
i ≥ 1. As βti ≥ βWi , ∀i, we have that she will receive at least

Ûi total payoff which is βWi mi ≥ mi
K .

Case III: βWi > K. Since βti ≥ βWi > K, we will have that Ti(s
t) ≥ mi, ∀t.

So we need only show that at least once in every C · log(M/φ) moves, player i
receives utility at least Ûi/K. We argue by applying Lemma 8. If player i is not
receiving the desired utility, then in the next time period she will increase her
allocation by a factor of K. Thus within O(log(M/φ)) time periods either she



receives Ûi
K payoff or she allocates at least mi/K. In the latter case too she will

receive Ûi/K payoff due to Lemma 7.

Case IV: βWi < 1
K . Since βWi < 1

K , we will have that Ti(s
t) ≥ Ûi, ∀t. So we

need only show that at least once in every O(log(M/φ)) moves, player i receives
utility at least mi/K. In this case, we argue by applying Lemma 9. If player i is
not receiving the desired utility, then in the next time period she will decrease
her allocation by a factor of 1/K. Thus, in the next time period she will receive
a utility of at least mi/K which is sufficient. ut


