
Maximum Flows on Disjoint Paths

Guyslain Naves∗, Nicolas Sonnerat† and Adrian Vetta‡

September 8, 2010

Abstract. We consider the question: What is the maximum flow achievable
in a network if the flow must be decomposable into a collection of edge-
disjoint paths? Equivalently, we wish to find a maximum weighted packing
of disjoint paths, where the weight of a path is the minimum capacity of
an edge on the path. Our main result is an Ω(log n) lower bound on the
approximability of the problem. We also show this bound is tight to within
a constant factor. Surprisingly, the lower bound applies even for the simple
case of undirected, planar graphs.

Our results extend to the case in which the flow must decompose into at
most k disjoint paths. There we obtain Θ(log k) upper and lower approxima-
bility bounds.

1. Introduction

Network flows have played a fundamental role in the advancement of combinato-
rial optimization [14] and are ubiquitous in applications [2]. In the standard single-
commodity flow problem we have a capacitated graph G = (V,E) and terminal vertices
s and t.4 The goal is to find a maximum valued flow from s to t that satisfies the capac-
ity constraints on each edge. Equivalently, we are searching for a maximum packing
of weighted s − t paths; the packing constraints simply state that the total weight of
all paths passing through an edge must not exceed the capacity/weight, we, of that
edge. Viewed in this light, a special case is the classical problem of finding a maximum
collection of disjoint paths.

Thus, there has been a long-standing and close relationship between network flows
and the disjoint packing of unweighted paths. An immediate question arises: what
about the weighted case, namely, what if we desire that our network flow decomposes
into a disjoint collection of weighted paths? Surprisingly given the apparent simplicity
of the question, as far as we are aware, this question has not previously been considered
in the literature.

Consequently, this paper investigates how to find a maximum flow whose path de-
composition consists only of disjoint paths. Specifically, take a collection of pairwise
edge-disjoint s− t paths P . Then the maximum flow, w(P), we can send down a path
P ∈ P is simply the minimum capacity of an edge in P . The value of the flow is then
the sum of the flows along each path,

∑
P∈P w(P). Our goal is to obtain a flow P

consisting of edge-disjoint paths that has maximum value. We call this the Disjoint
Weighted Flow Problem.

∗Department of Mathematics and Statistics, McGill University. Email: naves@math.mcgill.ca
†Department of Mathematics and Statistics, McGill University. Email: sonnerat@math.mcgill.ca
‡Department of Mathematics and Statistics, and School of Computer Science, McGill University.

Email: vetta@math.mcgill.ca
4Of course, by incorporating a supersource and supersink, this framework also models the case of

multiple sources and sinks, provided any source can route to any sink.
1

2

Observe this problem does indeed correspond to a simple weighted path-packing
problem. Specifically, let the weight of an s − t path P be w(P) := min{w(e) | e ∈
E(P)}. Then we are looking for a collection P of disjoint paths of maximum to-
tal weight, that is

∑
P∈P w(P) as before. As well as being an elegant combinatorial

question, we remark that this requirement for disjoint paths is also a natural one in
applications where flow paths can interfere with one another or where technological
constraints at links and nodes compel disjointness.

In this paper, we examine approximation algorithms for the disjoint weighted flow
problem. We present Θ(log n) lower and upper approximation bounds for the weighted
disjoint paths problem, where n is the number of vertices. Standard reductions show
that these bounds also apply in directed graphs and/or if we insist the paths be vertex-
disjoint rather than edge-disjoint. Furthermore, our lower bound applies even for the
special case of planar graphs.

1.1. Related Work.
Given the applicability of network flows there is a vast literature optimizing flows given
additional constraints. These side-constraints may arise from the application itself, but
they can also arise due to restrictions induced by available technology or by the choice
of routing protocol; see [13] for a survey illustrating some of these issues. The work
most closely related to our own, though, concerns k-splittable flows introduced by
Baier, Köhler and Skutella [8]. A k-splittable flow is a flow that can be routed along
k paths - note that these paths are not required to be disjoint. Thus, Kleinberg’s
unsplittable flows [10] can be viewed as 1-splittable flows. Baier et al. present a
2-approximation algorithm for the k-splittable single-commodity flow problem.

Our results also extend to the case in which feasible solutions must be decompos-
able into at most k disjoint paths, for some k. Disjoint weighted flows, however, are
harder to deal with and approximate than k-splittable flows. In particular, for single-
commodity flows, we obtain Θ(log k) lower and upper approximations bounds when
we are constrained to use at most k disjoint paths.

2. The Lower Bound

In this section we present our main result:

Theorem 1. For undirected planar networks, the hardness of approximation for the
maximum disjoint weighted flow problem is Ω(log n), unless P = NP .

Before proving Theorem 1 we outline the structure of the proof. First, we introduce
a graph GN that has a maximum disjoint weighted flow of value equal to the harmonic
number HN ≈ logN . But if we use a slightly modified weight function for the paths
then GN has a maximum disjoint weighted flow of value one.

We then build a new network G by replacing each node of GN by an instance of an
NP-hard routing problem. The routing problem will be chosen to have the following
properties. If it is a YES-instance then path weightings for the disjoint weighted flow
problem on G will correspond to the original weighting scheme on GN . In contrast, if
it is a NO-instance, then path weightings for the disjoint weighted flow problem on G
will correspond to the modified weighting scheme on GN .

3

It follows that an approximation algorithm with guarantee better than logarithmic
would allow us to distinguish between YES- and NO-instances of our routing problem,
giving a lower bound of Ω(logN). We will see that this bound is equal to Θ(log n).

Furthermore, at all stages we will show this reduction can be applied using only
undirected, planar graphs. Theorem 1 will follow.

2.1. A Half-Grid Graph.
Let’s begin by defining the graph GN . There are N rows (numbered from top to
bottom) and N columns (numbered from left to right). All the edges in the ith row
and all the edges in the ith column have weight 1

i
. The ith row extends as far as the

ith column and vice versa; thus, we obtain a “half-grid” that is a weighted version of
the network considered by Guruswami et al [9]. Finally we add a source s and a sink
t. There are edges of weight 1

i
from s to the first vertex in row i and from t to the last

vertex in column i. The complete construction is shown in Figure 1.

s

t

1

11
N

1
N

1
N

1
2

1
2

1
2

1
N−1

1
N−1

· · ·· · ·

· · ·

1
N−1

1
N−1

1 1
2

1
3

1
3

1
3

1

1
N

1

1
2

1
3

1

· · ·· · ·

1
3

· · ·

Figure 1. Grid Graph GN .

Note that there is a unique s− t path Pi consisting only of edges of weight 1
i
, that is,

the L-shaped path that goes from s along the ith row and then down the ith column
to t. Moreover, for i 6= j, the path Pi intersects Pj precisely once. Clearly each path Pi
has weight w(Pi) = 1

i
, so the collection of edge-disjoint paths P∗ = {P1, P2, . . . , PN}

gives a flow of total value HN = 1 + 1
2

+ . . . 1
N

. Since every edge incident to s is used in
P∗ with its maximum weight, this solution is optimal. Similarly, if we are constrained
to use flows that decompose into at most k disjoint paths then the optimal flow has
weight Hk.

4

Now consider what happens when we modify the weight function for the paths.
Given a collection P of paths, let the modified weight, ŵP(P), of a path P ∈ P be the
the minimum weight amongst its edges and those edges incident to a vertex at which
P crosses another path Q ∈ P . Formally,

ŵP(P) = min{wuv | v ∈ P, uv ∈ Q for some Q ∈ P}
where we will omit the subscript if P is clear.

The maximum value of a flow is significantly reduced if we use these modified weights.

Lemma 2. The maximum modified value of a weighted flow in GN is 1.

Proof. Define the rank of a path P to be the index j for which this path uses the
weight 1

j
edge incident to t. Suppose 1

i
is the maximum modified value of any path in

a flow P . Let j be the rank of some path Q ∈ P of modified weight 1
i
. Then set P+

to be the collection of paths in P with ranks greater than j, and P− to be the paths
with ranks less than j.

Observe that Q must contain as a sub-path all the edges in column j that lie below
row i. Otherwise, Q would contain an edge in a row of lower weight than 1

i
, contradict-

ing the fact that Q has modified weight 1
i
. Similarly, no other other path in P crosses

Q on this sub-path, as this would reduce Q’s modified weight. This implies that any
path in P+ must use one edge of the columns j to i+ 1 between row i and row i+ 1.
Consequenty, |P+| ≤ i−j. Obviously |P−| ≤ j−1 and so |P| ≤ 1+(i−j)+(j−1) = i.
Since each path has modified weight at most 1

i
, this gives an upper bound of 1 on the

modified value of the flow.

For P∗ = {P1, P2, . . . , PN}, we see that ŵ(Pi) = 1
N

, for all i. Thus, this collection of
paths obtains the maximum modified value of one. �

2.2. The 2-Edge-Disjoint Weighted Paths Problem.
Recall the next step is to replace, in GN , each vertex at the crossing of two paths
Pi and Pj with an instance of an NP-hard routing problem. To define this routing
problem, let H be an undirected graph whose edges have weight either a or b, where
b > a. Given two pairs of vertices (s1, t1) and (s2, t2), we wish to find a path P1 from
s1 to t1 and a path P2 from s2 to t2 with the properties that
(i) P1 and P2 are edge-disjoint.
(ii) P2 may only use edges of weight b (P1 may use either weight a or weight b edges).
We call this the Two Edge-Disjoint Weighted Paths Problem, or 2-EDWP.

Evidently, we will be most interested in the case where the graph H is planar. Then
we have:

Theorem 3. Planar-2-EDWP is NP-hard, even if the pairs of terminals lie on the
outer face of H in the order s1, s2, t1, t2.

We remark that in graphs which are directed and not planar, the hardness of 2-
EDWP follows directly from the hardness of the 2-arc-disjoint paths problem ([7]).

Before embarking on the proof, observe that Theorem 3 immediately tells us that
the maximum disjoint weighted flow problem is hard in planar graphs. Simply take
an instance of Planar-2-EDWP and add a super-source s and a super-sink t. Then

5

connect s to s1 and s2 with edges of weights a and b, respectively. Similarly, connect
t to t1 and t2 with edges of weights a and b, respectively. Then there is a disjoint
weighted s − t flow of value a + b if and only if there are paths P1 and P2 satisfying
properties (i) and (ii). Of course, we desire a much stronger hardness result than this,
but this observation will be useful in motivating the subsequent construction.

In order to prove Theorem 3, we will need a geometric result. An edge uv ∈ E(G)
is a separating edge if G − {u, v} is disconnected. A triangle uv, vw,wu ∈ E(G) is a
separating triangle if G−{u, v, w} is disconnected. We will need the following theorem:

Theorem 4 (Whitney [15], 1931). Every maximal planar graph with no separating
triangle is Hamiltonian.

It was shown in [3] that such a Hamiltonian cycle can be computed in linear-time.

Lemma 5. Let G = (V,E) be an embedded planar graph, such that G has girth 4 and
has no separating edge. Let φe ⊆ R2 be the open curve corresponding to the embedding
of e, for each edge e ∈ E. Then there is a simple closed curve in R = R2 \ ⋃

e∈E φe
that intersects the image of every vertex.

Proof. We define the graph G′ obtained form G by adding a new vertex in each face.
Each of these new vertices is adjacent to every vertex on the boundary of its face. G′

is then obviously a maximal planar graph. In order to apply Theorem 4 to G′, we
must prove that G′ does not contain a separating triangle. First assume it. Then we
get a Hamiltonian cycle on G′. By slightly shifting this Hamiltonian cycle, we get a
curve intersecting G′ exactly once on each vertex, and only there. Then, the lemma is
proved by simply ignoring the new vertices.

To conclude the proof, we show that G′ has no separating triangle. We denote by
E ′ the set of new edges. First, every triangle T has exactly two edges in E ′, because
G has girth 4 (so |T ∩E ′| 6= 0), the graph induced by E ′ is bipartite (so |T ∩E ′| 6= 3),
and there is no edge in E ′ with both extremities on V (G) (so |T ∩ E ′| 6= 1). Suppose
that T were a separating triangle, and let e be its edge in G. Then each component of
G′ − T would contain a vertex of G, since each new vertex is still adjacent to a vertex
of G. So e would be a separating edge of G, contradicting the assumption. �

In the following, we identify vertices, edges and graphs with their respective images
on the plane. For γ ∈ {a, b}, we call an edge of weight γ a γ-edge.

Proof of Theorem 3. We give a reduction from Planar-3-Sat to Planar-2-
EDWP. Let C be a set of clauses over the variables X , such that the bipartite graph
G = (X ∪ C, {xC : x ∈ X , C ∈ C, x ∈ C ∨ x ∈ C}) is planar. First, we may assume
that G has no separating edges. Because if e is a separating edge, let W1 and W2 be two
components of G−e sharing a common face. Each of W1 and W2 has a variable vertex
on the boundary of that common face (as every cycle alternates between variables and
clauses), denote them x1 and x2 respectively. Then, add a new variable z, and two
new clauses with value x1 ∨ x2 ∨ z. This can clearly be done without violating the
planarity, nor modifying the satisfiablity of the formula. By repeating this argument,
we will finally get a graph without a separating edge.

Without loss of generality, we can also suppose that each variable appears at most
three times. To see this, observe that if x appears in k ≥ 4 clauses we may introduce k

6

new variables, x1, . . . , xk, and new clauses x1∨x2, x2∨x3, . . . , xk∨x1, and replace each
occurrence of x by an occurrence of one of the xi. We can also assume that each variable
appears exactly once negatively. These transformations can clearly be implemented
whilst preserving the planarity of G and without creating separating edges. Thus, we
obtain a formula whose corresponding bipartite graph G has maximum degree 3 and
has no separating edge.

Now take a planar embedding for G. By Lemma 5, we may find a closed curve D
intersecting the embedding of G exactly on its vertices.

We will transform (G,D) into an instance of Planar-2-EDWP in polynomial-time.
To do this, we need to build an auxiliary edge-weighted planar graph G′ for the routing
problem. Towards this goal, we first take G and use D to induce an additional set of
embedded a-edges whose endpoints are in V (G).

Then we replace each edge e = uv ∈ E(G) by a 4-cycle consisting of b-edges use,
ute, vse, vte, where se and te are new vertices.

Next we replace each variable vertex x ∈ X by a variable gadget and each clause
vertex by a clause gadget. Each variable vertex x of degree three is replaced by one of
four possible variable gadgets; the actual choice is dependent upon the relative position
of D with respect to the edges incident to x and upon the sign of x in the adjacent
clauses. These four gadgets are illustrated in Figure 2, where the edges corresponding
to D and the other a-edges are dashed, the edges corresponding to E(G) and the other
b-edges are bold (recall there must be two edges out of the gadget for each edge in G
as we initially replaced such edges by a 4-cycle). The + and − signs indicate whether
the variable appears positively or negatively in the adjacent clause.

+ +

−

++

−

− +

+

+−

+

−
+

+
+

+

−
+

−
+

+

−

+

Figure 2. Variable gadgets.

Each clause vertex C of degree three is replaced by one of two possible clause gadgets;
again, the actual choice is dependent upon the relative position of D with respect to the
edges incident to C. These two gadgets are shown in Figure 3. The gadgets for clauses
with two literals and for variables occuring only twice are similar to those presented,
but simpler.

To complete the construction we need to specify the sources and the sinks. To do
so, we first specify a multicommodity flow formulation with many source-sink pairs.
Later we will show how to implement it as a flow with just two source-sink pairs.

7

x y

z

x y

z

x

y

z x

y

z

Figure 3. Clause gadgets, with the same convention as in Figure 2.

Towards the former goal, we will have a source-sink pair (se, te) for each edge e ∈ G.
Furthermore, we will have one additional source-sink pair (sa, ta). To define this pair,
arbitrarily choose one of the edges uv of D. Then replace uv by two edges usa and vta
each with weight a. Observe that sa and ta are on the boundary of a common face of
the resultant planar graph G′.

This multicommodity flow problem relates to the planar 3-SAT instance in the
following manner.

Claim 6. The formula is satisfiable if and only if there are edge-disjoint paths {Pe}e∈E(G)

and Q in G′, with the following properties.

(i) Pe has endpoints se and te and uses only b-edges.
(ii) Q has endpoints sa and ta.

Proof. First, note the 4-cycles of b-edges that initially replaced each edge have become
larger under the construction but are still b-cycles. Moreover, these b-cycles (call them
He, for each e ∈ G) are edge disjoint and their union covers all of the b-edges in G′.

Now suppose that all the paths exist. There are only two possible routes in He

between se and te that Pe can take; if e = xC then one route passes through the
variable gadget x and the other passes through the clause gadget C. Since se and te
have degree two, it follows immediately that Q cannot use any of the edges incident
to them. Consequently, Q must follow the curve D. We will show how to obtain from
Q a satisfying truth-assignment.

For any edge e = xC, we say that the cycle He is positive if x appears positively in
C, negative otherwise. Then, for a variable gadget x, it is easy to see that if Q does not
intersect the unique negative cycle going through the gadget then it must use at least
one edge of each of the positive cycles He going through that gadget. If it intersects
the negative cycle, set variable x to true, otherwise set it to false.

To see that this does produce a satisfying assignment, take any clause C, say over
the variables x, y and z. Since Q follows D it must pass through each clause gadget.
Consequently, Q intersects at least one of HxC , HyC , and HzC . Without loss of gener-
ality, let it intersect HxC . This means that PxC cannot go through the clause gadget
C and, hence, must go through the variable gadget x. But, again, as Q follows D it
must pass through the variable gadget x too. Therefore, Q cannot intersect HxC in
the variable gadget x. This precisely means that x is true if x appears positively in C,
and x is false if it appears negatively. So C is satisfied by x.

8

On the other hand, given a satisfying assignment, it is easy to find a collection
of feasible paths. This is because, for each variable gadget, there is a sub-path that
intersects only the positive cycles in that gadget and there is a sub-path that intersects
only the negative cycle. Therefore, Q can always follow the appropriate sub-path. �

To complete the proof of Theorem 3 we need to reduce the number of commodities
in the flow to two. For this, we will keep the source-sink pair (sa, ta) but group into
one all of the pairs (se, te) via the use of a new source sink pair (sb, tb). To accomplish
this, we first need to position the new vertices sb and tb in G′. Let B be a closed curve
that intersects G′ on sa and ta only. Then add sb arbitrarily on the “upper” path
between sa and ta induced by B. Similarly add tb on the “lower” path between sa and
ta induced by B.

Our goal now is to force any path of b-edges between sb and tb to follow b-paths
between se and te for every e ∈ G. To do this, let e1, e2, . . . , em be any ordering of
the edges of G. For a cycle He, we define its inside as the connected component of
R2 \ He that does not contain any vertex of G′. Then set R to be the union of the
inside of every cycle He plus V (G′) and the inside of B. Observe that R is a union
of disjoint balls, so its complement is connected. Let P be a path between sb and se1
in this complement. Build a path of b-edges along P and add them to G′, inserting
new vertices whenever P crosses an a-edge (note that these are the only edges P can
cross). Next add P to R; this does not change the connectedness of its complementary
set. In this manner, we may iteratively add paths of b-edges between ti and si+1, for
1 ≤ i ≤ m − 1, and finally between between tm and tb. By construction, these paths
are disjoint and cross only a-edges. We thus obtain a new planar graph G′′ with four
terminals on the same face, as desired.

Clearly this new instance of Planar-2-EDWP is equivalent to the previous multi-
commodity flow problem. To see this, simply note that the new b-edges are isthmi in
the subgraph consisting of the b-edges. Consequently, the (sb, tb)-path must use each
of these new b-edges and then, as before, in each He route through either the variable
gadget or through the clause gadget. This completes the reduction. �

2.3. The Hardness Result.
We can now complete the proof of the approximation hardness. Observe that any
vertex of degree four in GN is incident to two edges of weight 1

i
and to two edges of

weight 1
j
, for some i 6= j. We construct a graph G by replacing each vertex of degree

four with the routing graph H. We do this in such a way that the weight 1
i

edges of GN

are incident to s1 and t1, and the weight 1
j

edges are incident to s2 and t2. Moreover,

for that copy of H placed at the intersection of Pi and Pj, we then let a = 1
i

and b = 1
j
,

where we may assume that j < i.

The hardness result will follow once we see how this construction relates to the
original and modified weight functions.

Lemma 7. If H is a YES-instance then the optimal disjoint weighted flow in G has
value HN . If H is a NO-instance then the optimal disjoint weighted flow in G has value
at most 1.

9

Proof. It is clear that if H is a YES-instance, then paths in G induce paths in GN

which are free to cross at any vertex without restrictions on their values. This means
we obtain a flow of value HN by using the canonical paths Pi, 1 ≤ i ≤ N .

However, if H is a NO-instance, then it contains only an s1 − t1 path, or only an
s2 − t2 path, or the s2 − t2 path is forced to use a lower weight a-edge. This implies
that the induced paths P in GN either do not cross at all, or if they cross then the
weight of the path using the 1

j
-edge is forced down to a weight of 1

i
(recall j < i). But

this means that the weight of a path is upper bounded by the modified weight function
ŵ. This allows us to apply Lemma 2, and hence the value of an optimal flow in this
case is at most 1. �

Proof of Theorem 1. It follows that if we could approximate the maximum disjoint
weighted flow problem in G to a factor better than HN , we could determine whether
the optimal solution is 1 or HN . This in turn would allow us to determine whether H
is a YES- or a NO-instance.

Note that G has n = Θ(pN2) edges, where p = |V (H)|. If we take N = Θ(p
1
2
(1

ε
−1)),

where ε > 0 is a small constant, then log n = Θ(HN) = Θ(log p). This gives our lower
bound of Ω(log n). �

Similarly, if we are restricted to consider only flows that decompose into k disjoint
paths then it is not hard to see that:

Theorem 8. For undirected, planar networks, there is a Ω(log k) hardness of approx-
imation, unless P = NP , for the problem of finding a maximum flow that decomposes
into at most k edge-disjoint paths. �

3. An Approximation Algorithm

Our lower bound is tight to within a constant factor - there is a simple approximation
algorithm that gives an almost matching upper bound.

Theorem 9. For any network, there is an O(log n) approximation algorithm for the
maximum disjoint weighted flow problem.

Proof. To begin, round each edge weight down to the nearest power of 2. This can
only cost us a factor 2 in our approximation guarantee. Next, we claim that we may
assume that every edge weight lies between 1 = 20 and 2t where t = 1 + dlog ne. To
see this, first note that there can be at most n edge-disjoint s − t paths in any flow.
Therefore, for any j, the total contribution from all paths that contain an edge of
weight 2j or less is upper bounded by n2j. Now, let 2j0 be the highest edge weight
such that there exists a path of weight 2j0 . Deleting the edges of weight 2j for all
indices j where 2j < 1

n
2j0−1 loses us at most 2j0−1 in weight, that is, half of the optimal

flow value. The lowest remaining edge weight, 2j1 , then satisfies j1 ≥ j0 − 1− dlog ne.
Scaling down the edge weights by a factor 2j1 gives the claim.

The approximation algorithm now proceeds as follows. For each i such that 0 ≤ i ≤
t = 1+dlog ne, let Ei be the edges of weight at least 2i, and let Gi = (V,Ei). Let φi be
the maximum number of edge-disjoint s − t paths in Gi. Clearly, these paths induce
a weighted disjoint flow of value at least 2iφi in G. Furthermore the optimal weighted
disjoint flow must have value at most

∑t
i=0 2iφi. To see this, note that the paths of

10

weight 2i in the optimal solution together form a feasible solution for the disjoint paths
problem in Gi. Then, since t = 1 + dlog ne, one of the Gi produces a weighted disjoint
flow whose value is at least a logarithmic fraction of the optimal flow value. As we can
easily solve the maximum disjoint paths problem in Gi in polynomial time, this gives
the claimed O(log n) approximation algorithm. �

Corollary 10. There is an O(log k) approximation algorithm for the problem of finding
a maximum flow that decomposes into at most k edge-disjoint paths.

Proof. This previous argument applies. The approximation guarantee, however,
improves to O(log k) because now the paths of weight at most 2j can only contribute
a total value of at most k2j. �

4. Conclusion

We have given approximation guarantees for the maximum disjoint weighted flow
problem in single-commodity networks. Therefore, a natural question would be to look
at the multi-commodity case, where we wish to find weighted flows between si and ti,
for i = 1, . . . , k, that are disjoint and maximize total weight. By the techniques of
Section 3, we can easily obtain an upper bound of O(α log n), where α is the approx-
imation achievable in the unweighted case. Unfortunately, the unweighted version is
extremely hard to approximate since it is the edge-disjoint paths problem studied by
Guruswami et al. [9]. They show this problem is inapproximable to within α = m

1
2
−ε,

for any ε > 0, in directed graphs and give an approximation algorithm that essentially
matches this lower bound.

In addition, given that our lower bound is essentially tight, the search for bi-criteria
results is of interest. Here we would relax the condition that the paths in a weighted
flow be strictly disjoint; instead, one would allow a limited amount c ≥ 2 of congestion
on each edge. For multi-commodity flows, the unweighted version of the problem has
recently been studied extensively; for ground-breaking results in this area, see Chekuri
et al. [4] for upper bounds in planar graphs, and Andrews et al. [1] and Chuzhoy et
al. [5] for lower bounds in general graphs.

References

[1] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Talwar and L. Zhang, “Inapproximability
of edge-disjoint paths and low congestion routing on undirected graphs”, Electronic Colloquium
on Computational Complexity, 14:113, 2007.

[2] R. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms, and Applications,
Prentice-Hall, 1993.

[3] T. Asano, S. Kikuchi and N. Saito, “An efficient algorithm to find a Hamiltonian circuit in a
4-connected maximal planar graph”, Graph Theory and Algorithms, pp182-195, 1981.

[4] C. Chekuri, S. Khanna and B. Shepherd, “Edge-disjoint paths in planar graphs with constant
congestion”, SIAM J. Computing, 39(1), pp281-301, 2009.

[5] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar, “Hardness of routing with congestion in
directed graphs”, Proceedings of the 39th ACM Symposium on Theory of Computing (STOC),
pp, 2007.

[6] Y. Dinitz, N. Garg and M. Goemans, “On the single-source unsplittable flow problem”, Combi-
natorica, 19, pp17-41, 1999.

11

[7] S. Fortune, J. Hopcroft and J. Wyllie, “The directed subgraph homeomorphism problem”, The-
oretical Computer Science, 10, pp111-121, 1980.

[8] G. Baier, E. Kohler and M. Skutella, “The k-splittable flow problem”, Algorithmica, 42, pp231-
248, 2005.

[9] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd and M. Yannakakis, “Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems”,
Journal of Computer and System Sciences, 67(3), pp473-496, 2003.

[10] J. Kleinberg, “Single-source unsplittable flow”, Proceedings of the 37th on Foundations of Com-
puter Science (FOCS), pp68-77, 1996.

[11] R. Koch and I. Spenke, “Complexity and approximability of k-splittable flows”, Theoretical
Computer Science, 369, pp338-347, 2006.

[12] F. Salazar and M. Skutella, “Single-source k-splittable min-cost flows”, Operations Research
Letters, 37(2), pp71-74, 2009.

[13] B. Shepherd, “Single-sink multicommodity flow with side constraints”, Research Trends in Com-
binatorial Optimization, W. Cook, L. Lovasz, J. Vygen (Editors), Springer, pp429-450, 2009.

[14] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.
[15] H. Whitney, “A theorem on graphs”, Annals of Mathematics, 32(2), pp378-390, 1931.

