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Abstract

A flow of a commodity is said to be confluent if at any node all the flow of the commodity
leaves along a single edge. In this paper we study single-commodity confluent flow problems,
where we need to route given node demands to a single destination using a confluent flow.
Single- and multi-commodity confluent flows arise in a variety of application areas, most notably
in networking; in fact, most flows in the Internet are (multi-commodity) confluent flows since
Internet routing is destination based.

We present near-tight approximation algorithms, hardness results, and existence theorems
for minimizing congestion in single-commodity confluent flows. The maximum edge congestion
of a single-commodity confluent flow occurs at one of the incoming edges of the destination.
Therefore, finding a minimum-congestion confluent flow is equivalent to the following problem:
given a directed graph G with k sinks and non-negative demands on all the nodes of G, determine
a confluent flow that routes every node demand to some sink such that the maximum congestion
at a sink is minimized [2].

The main result of this paper is a polynomial-time algorithm for determining a confluent
flow with congestion at most 1 + ln(k) in G, if G admits a splittable flow with congestion at
most 1. We complement this result in two directions. First, we present a graph G that admits a
splittable flow with congestion at most 1, yet no confluent flow with congestion smaller than Hk,
the kth harmonic number, thus establishing tight upper and lower bounds to within an additive
constant less than 1. Second, we show that it is NP-hard to approximate the congestion of
an optimal confluent flow to within a factor of (log2 k)/2, thus resolving the polynomial-time
approximability to within a multiplicative constant. We also consider a demand maximization
version of the problem. We show that if G admits a splittable flow of congestion at most 1, then
a variant of the congestion minimization algorithm yields a confluent flow in G with congestion
at most 1 that satisfies 1/3 fraction of total demand.

We show that the gap between confluent flows and splittable flows is much smaller, if the
underlying graph is k-connected. In particular, we prove that k-connected graphs with k sinks
admit confluent flows of congestion less than C + dmax, where C is the congestion of the best
splittable flow, and dmax is the maximum demand of any node in G. The proof of this existence
theorem is non-constructive and relies on topological techniques introduced by Lovász [19].
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1 Introduction

In this paper, we present new approximation algorithms, lower bounds, and existence theorems for
a class of network flows called confluent flows. A flow of a given commodity in a directed graph
is said to be confluent if all the flow of the commodity departing a node does so along a single
outgoing edge.

Confluent flows arise in a number of scenarios including evacuation problems and various ap-
plications in networking. For instance, content delivery networks (CDNs) often organize their
deployment of servers in the form of a rooted tree with each node forwarding data from its children
to its parent (e.g., log data, transactional data or forms) and vice versa (e.g., html data or streaming
data from the content provider). In the preceding example, the flow resulting from the collection
of log and transactional data is confluent. The wireless domain provides another example where ad
hoc networks of Wi-Fi access points act as forwarding agents back to the wired access point that
connects to the Internet.

Perhaps the most common application of confluent flows is in Internet routing. Most flows on
the Internet today are confluent because Internet routing is primarily based on selecting a shortest
path tree to each destination and then routing along the selected shortest paths. The packet flow
for each destination is confluent since all packets departing a router for a particular destination
depart along the same edge. A major shortcoming of shortest-paths routing, however, is that it
ignores congestion at intermediate nodes and edges since the shortest paths are usually calculated
independently for each source-destination pair. This raises the following natural network flow
problem: Given a directed graph, a set of source and destination nodes, a capacity for each edge,
and a demand for each source-destination pair, determine a minimum-congestion flow that routes
all the demand and is confluent for each destination. Here, we define the congestion of an edge to
be the ratio of the flow on the edge to its capacity, and the congestion of a flow is the maximum
congestion, among all edges.

The above confluent flow problem was posed in recent work [2], where it was shown that
minimizing confluent flow congestion is MAXSNP-hard even for the single commodity (destination)
case with uniform node demands and uniform edge capacities, and that an Õ(

√
n) approximation is

achievable for an n-node graph for this special case. For the multi-commodity case, where we need
to obtain confluent flows for multiple destinations, it was shown that a logarithmic-approximation is
achievable if the capacity of every edge is at least as large as the total demand for any destination [2].

In this paper, we present near-tight bounds on the approximability of single-commodity conflu-
ent flows in networks with arbitrary non-uniform demands and uniform edge capacities. We also
study the gap between the congestion of an optimal confluent flow and that of an optimal splittable
flow (which need not obey the confluence constraint). The more realistic confluent flow problems
that incorporate multiple commodities (destinations) and arbitrary edge capacities appear to be
beyond the reach of our present algorithmic techniques. We leave these as open questions for further
research that can hopefully capitalize on the techniques we develop in this paper.

1.1 Our results

Consider the single-commodity confluent flow problem with uniform edge capacities. In this case,
the congestion of an edge is simply the flow going through the edge. Therefore, the maximum
edge congestion of any confluent flow is identical to the maximum flow among the nodes that have
an edge into the destination [2]. Hence, we consider an equivalent problem where the graph is
transformed by removing the destination and designating its incoming neighbors as sinks.

Formally, consider a directed graph G with k distinguished nodes, referred to as sinks, and non-
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negative demands on all the nodes of G. In the single-commodity multi-sink confluent flow problem,
we seek a confluent flow that routes every node demand to some sink such that the maximum
flow arriving at any sink, referred to as the congestion of the sink, is minimized. In addition to
being a useful reformulation of the original single-commodity confluent flow problem, the multi-sink
version generalizes a classic graph partitioning question studied more than three decades ago, as
we discuss below, and is thus of independent interest. The remainder of this paper will focus on
the single-commodity multi-sink confluent flow problem.

• Our main result is a polynomial-time algorithm for determining a confluent flow with conges-
tion at most 1+ln(k) in G, if G admits a splittable flow with congestion at most 1 (Section 4).
We complement this result by presenting a graph G that admits a splittable flow with con-
gestion at most 1, yet no confluent flow with congestion smaller than Hk, the kth harmonic
number (Section 3.1). Since Hk = ln k+γ−o(1), where γ is Euler’s constant, we have resolved
the gap between confluence and splittability to within an additive constant less than 1.

Our algorithm is based on a novel deterministic rounding of an optimal splittable flow, that repeat-
edly refines the flow by removing carefully selected edges and aggregating nodes into sinks, leading
to the desired confluent flow. It is interesting to contrast the near-optimal bound achieved by our
rounding scheme with the Ω(n1/4) bound achieved by a natural randomized rounding scheme, that
selects for each node an outgoing edge with probability proportional to the flow on the edge in the
splittable solution [2].

Since the optimal splittable flow congestion is a lower bound on the optimal confluent flow
congestion, our algorithm achieves a (1 + ln k)-approximation for minimizing congestion. One may
ask whether an improved approximation can be achieved efficiently.

• We show that it is NP-hard to approximate the congestion of an optimal confluent flow to
within a factor of (lg k)/2,1 thus resolving the polynomial-time approximability to within a
multiplicative constant (Section 3.2). It is interesting to note that our lower bound is not
based upon a reduction from set cover [4] and relies on a weaker precondition than that used
in the set cover hardness result.

While the bound of 1+ln(k) on the ratio between the congestion of confluent and splittable flows is
existentially tight up to an additive constant, it is natural to wonder if there are interesting classes
of graphs for which the gap is smaller.

• A positive answer to this question is provided in Section 6, in which we prove that k-connected
graphs with k sinks admit confluent flows of congestion less than C + dmax, where C is
the congestion of the best splittable flow and dmax is the maximum demand of any node.
In particular, this means that the ratio between confluent and splittable congestion in k-
connected graphs is at most 2. Interestingly, the proof of this existence theorem is non-
constructive and relies on topological techniques introduced in [19].

Finally, we also consider a demand maximization problem, in which we seek a confluent flow with
congestion at most 1 that maximizes the total demand of all the nodes whose demand is satisfied.

• We show that if G admits a splittable flow of congestion at most 1, then a variant of the
congestion minimization algorithm yields a confluent flow in G with congestion at most 1
that satisfies 1/3 fraction of total demand (Section 5). We also show that the demand-
maximization problem is NP-hard to approximate to a factor less than 4/3 (Section 3.2).

1Throughout this paper, we use lg to refer to log2.
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Our 3-approximation result for demand maximization assumes the existence of a splittable flow
that satisfies all demands with congestion at most 1. We can eliminate this assumption at the
expense of increasing the approximation ratio by a constant factor by first determining a splittable
flow of congestion at most 1 that satisfies a constant fraction of the maximum satisfiable demand;
any of the algorithms of [3, 15] for single-source unsplittable flow would suffice for this purpose.

1.2 Related work

The bulk of our results in this paper compare confluent flows with a natural relaxation, namely
splittable flows, which are well-characterized by the celebrated max-flow min-cut theorem of Ford
and Fulkerson [5, 6]; there is a vast literature on efficient algorithms for obtaining the maximum
flow. Another relaxation of confluent flow is unsplittable flow, which requires that the demand
for every source be routed along a single path. Both the congestion minimization and demand
maximization versions of unsplittable flow may be approximated to within a constant factor using
the algorithms of [3, 15]. The relationship between the edge congestion of confluent and unsplittable
flows is addressed in [18], in which an Ω(n) separation is established, where n is the number of
nodes.

In the special case where G is an undirected graph and all vertices have unit demand, finding a
confluent flow of congestion ≤ C is equivalent to partitioning G into k distinct connected subgraphs
of size ≤ C, each containing one of the sinks. (Given such a partition, a confluent flow is obtained
by routing all flow along the edges of a spanning tree in each subgraph.) When G is k-vertex-
connected, Frank [8] conjectured in 1975 that such partitions always exist, provided that kC ≥ n.
In fact, he made the much stronger conjecture that given sinks s1, . . . , sk and positive integers
n1, . . . , nk summing to n, one could partition G into k connected subgraphs, such that the i-th
subgraph contains si and has exactly ni vertices. This conjecture was proved independently by
Lovász [19] and Győry [12]. Lovász’s proof applies also to directed graphs. Our result on the
existence of confluent flows in k-connected graphs can be viewed as a weighted generalization of
this theorem, in which the vertices are given non-negative real weights (demands) and one seeks to
partition G into connected subgraphs whose total weights approximate a specified k-tuple of target
weights.

In this paper, we have entirely focused on single commodity confluent flows. Multicommodity
and fractional variants of confluent flows are studied in [2]. Multicommodity confluent flows are
considered by [10, 16] in a model where the demands are not associated with individual source-sink
pairs; instead with sources or sinks, as a whole. Also related is the work of [14], which raises the
problem of finding a subtree of a given network that can route a given set of multicommodity flow
pairs with minimum congestion. The impact of confluence on IP routing is studied in [18] and [21].

2 Confluent flow problem definitions

Let G = (V,E) denote a directed graph and d : V → � + denote a function specifying the demand,
d(v), at each vertex, v. For a set X ⊆ V we define d(X) =

∑
v∈X d(V ). We denote the total

demand, d(V ), by D and the maximum demand, maxv∈V d(v), by dmax. Let S = {s1, . . . , sk} ⊆ V
denote a set of k sinks. Any flow f : E → � + routing the demands to the sinks satisfies the flow
conservation equation ∑

e=(v,w)∈E

f(e)−
∑

e=(u,v)∈E

f(e) = d(v)
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at every vertex v ∈ V −S. For any node v, define the in-flow of v, in(v), to be the sum of the flows
on the edges into v. The congestion of f at a node v is now defined as d(v)+ in(v). The congestion
of f is defined as the maximum, over all nodes v, of the congestion of f at v.

Without loss of generality, we assume that each sink has only incoming edges. (Supposing si

has outgoing edges, then we can add a sink vertex s′i and an edge (si, s
′
i) to G and remove si from

S.)
We say that a flow f is confluent if for every node u, there exists at most one edge (u, v) that

has positive flow (i.e., f(u, v) > 0). Thus, a confluent flow yields a subgraph of G consisting of
disjoint components {T1, . . . , Tk}, such that each Ti is an arborescence directed towards the root
si. In any arborescence Ti, the maximum node congestion occurs at the sink si and equals the
total demand in Ti, given by d(Ti). We refer to the maximum node congestion maxi d(Ti) as the
congestion of the confluent flow.

In this paper, we consider two optimization problems concerning confluent flows. In the conges-
tion minimization problem, we seek a confluent flow with minimum congestion among all confluent
flows that satisfy all demands. In the demand maximization problem, we seek a confluent flow with
congestion at most 1 that maximizes the total demand of all the nodes whose demand is satisfied.

Our confluent flow algorithms are based on a deterministic rounding of a splittable flow with
minimum congestion. In the following, we review polynomial-time algorithms for computing such
a flow.

Review of algorithms for computing a congestion-minimizing splittable flow. A splittable
flow that minimizes congestion can be obtained in polynomial time by a binary search procedure,
that searches for the minimum congestion by repeatedly invoking a standard maximum flow al-
gorithm to determine whether it is feasible to route all demands given a congestion value. The
preceding procedure, however, is not strongly polynomial since the number of iterations of the
binary search may depend on the demand values. A splittable flow with minimum congestion can,
in fact, be found in strongly polynomial time by reducing to the perfect sharing problem, which can
be solved using standard parametric maximum flow techniques [9]. For the sake of completeness
we provide a brief description in the following.

We consider a one-parameter family of capacitated networks with a common underlying graph
structure, whose edge capacities are functions of a real-valued parameter t. Assuming that edge
capacity is a non-decreasing linear function of t for edges leaving the source, a non-increasing linear
function of t for edges entering the sink, and constant for all other edges, it can be shown that
the min-cut capacity is a piecewise linear concave function of t with at most n − 2 breakpoints,
and can be found in O(nm log(n2/m)) time, where n is the number of nodes and m is the number
of edges in the network [9]. The preceding result yields a strongly polynomial time solution to
the perfect sharing problem [9], which we now describe and show how our problem (of finding an
optimal splittable flow with minimum congestion) can be reduced to it.

In the perfect sharing problem, we are given a directed graph with source s and sink t. Let
S = {σ1, · · · , σk} denote the neighbors of s, with edges (s, σi) having infinite capacity for each
i = 1, · · · , k. Each σi is assigned a positive weight wi. Let ui denote the flow through edge (s, σi).
The goal of the perfect sharing problem is to find a flow with maximum value, among all flows in
which ui/wi is identical for all i = 1, · · · , k. The reduction of our problem to the perfect sharing
problem is as follows. Given a directed graph G = (V,E), node demand function d and set S of
sinks, construct a directed graph G′ which has a pair of nodes v′, v′′ and an edge (v′, v′′) for each
node v ∈ V , an edge (u′′, v′) for each edge (u, v) ∈ E, a new source s and a new sink t, an edge
(s, v′) for each v ∈ V with d(v) > 0, an edge (v ′′, t) for each v ∈ S. Set the capacity of each edge
(s, v′) to be infinity and that of every other edge to be 1. Set the weight of each neighbor v of s to
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be d(v). It is easy to see that our minimum node congestion problem instance is equivalent to the
perfect sharing problem instance on G′. In particular, if λ∗ equals the ratio of flow to weight for
any neighbor of the source s in the optimal perfect sharing flow, then the congestion of the optimal
splittable flow of G is 1/λ∗. Furthermore, the desired flow through any edge (u, v) in G is simply
1/λ∗ times the flow in the corresponding edge (u′′, v′) in G′. We thus have a strongly polynomial
time algorithm for finding a splittable flow with minimum congestion.

3 Lower bounds

In this section, we present three lower bound results. We first present an instance where the
congestion of the optimal confluent flow is at least Hk times that of the optimal splittable flow.
We then show that it is NP-hard to approximate the minimum congestion confluent flow to within
a factor of 1

2 lg k and the demand maximization problem to a factor less than 2.

3.1 Confluent to splittable: Hk gap

Figure 1 shows an instance of a graph G which admits a splittable flow with congestion 1, but does
not admit a confluent flow with congestion less than Hk. The vertex set of G consists of (k +1)k/2
sources (round nodes) represented by all ordered pairs of integers (i, j) with 1 ≤ i ≤ j ≤ k, and
k sinks (square nodes). There are edges from round node (i, j) to round nodes (i, j + 1) and
(i + 1, j + 1). In addition there are edges from each of the k round nodes (i, k) to a corresponding
square node. The demand at (i, j) is equal to 1/j.

The congestion of any confluent flow in G is at least Hk, since the demand which originates at
(1, 1) must flow along a path of length k, through vertices whose demands are 1, 1/2, 1/3, . . . , 1/k,
respectively. All of the demand originating at the vertices of this path must drain into the sink at
the end of the path, which will therefore have congestion at least Hk. On the other hand, congestion
1 is achieved by the splittable flow which sends j+1−i

j+1 units of flow from (i, j) to (i, j + 1) and i
j+1

units of flow from (i, j) to (i + 1, j + 1). We now verify that this is a valid flow with congestion 1.
The in-flow at a node (i, j), where i + j > 1, equals j−i

j + i−1
j , which equals j−1

j . The demand at

any node (i, j) is 1/j. The out-flow at a node (i, j), where j < k, equals j+1−i
j+1 + i

j+1 , which is 1.
Therefore, flow conservation holds at each node other than the sinks, and the congestion at each
node is exactly 1.

3.2 Hardness of approximation

In [2] it was shown that the minimum congestion problem is NP-hard to approximate better than
4
3 and hence MAXSNP-hard. Here, we refine the approach of [2] to improve the lower bound and
show that it is NP-hard to approximate better than (lg k)/2.

We present a hardness result for directed graphs with non-uniform demands. It is easy to modify
this result to the case of uniform demands, where for each vertex v we wish to route exactly one
unit of flow to a sink. Take a directed graph G with special vertices s1, s2, t1, t2. It is known [7] that
it is NP-hard to determine whether or not there are vertex-disjoint directed paths, or dipaths, in G
from s1 to t1 and from s2 to t2. We show that any approximation algorithm for the confluent flow
problem with performance guarantee better than 1

2 lg k can be used to determine in polynomial
time whether or not such disjoint dipaths exist in G. This will give our result. We remark that the
gadgets we use were first applied in [11] for the edge-disjoint path problem.
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Figure 1: Instance demonstrating an Hk gap between confluent and splittable flows. The round
nodes are sources with j nodes at level j each with demand 1

j . The square nodes are sinks. The
flows on the outgoing edges of the ith node on level j are specified.

Theorem 1 It is NP-hard to approximate the optimal confluent flow congestion to a factor less
than 1

2 lg k, where k is the number of sinks.

Proof. Given G we build an auxiliary network N as follows. Take a complete binary tree T on
2dlg ke−1 nodes, with root node r. We make T directed by replacing each edge with an arc directed
away from the root. Then we replace each node v in the tree by a copy of G. We use the notation
sv
1, for example, to refer to the copy of s1 in the copy of G associated to the node v ∈ T .

For a non-leaf node v in the tree, let cl(v) and cr(v) be its two children. Then the arc (v, cl(v))

in T is replaced by the arc (tv2, s
cl(v)
1 ) in the auxiliary network; similarly, the arc (v, cr(v)) in T is

replaced by the arc (tv1, s
cr(v)
1 ) in the auxiliary network. For each leaf node u in the tree, we add

the two arcs (tu1 , t∗u1 ) and (tu2 , t∗u2 ), where t∗u1 and t∗u2 are sinks. Our construction is illustrated in
Figure 2.
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Figure 2: Instance used in the NP-hardness proof. The black vertices have demand one, except for
the large black vertex sr

1 which has demand two, and the white vertices have demand zero.
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In addition, we give each vertex in the auxiliary network a demand. Every copy of s2 and t2
has demand one. Every copy of s1 and t1 has demand zero, except for sr

1 which has demand two.
Every other vertex has demand zero.

Now, suppose G contains vertex-disjoint dipaths P1 and P2 from s1 to t1 and from s2 to t2,
respectively. Utilizing these dipaths in each copy of G we obtain a collection of disjoint dipaths that
end at the set of sinks t∗ and that cover every copy of s1, s2, t1 and t2. This is shown in Figure 2.
Each dipath from a copy of s2 to a sink contains exactly two nodes with non-zero demand: a copy
of s2 and a copy of t2. Furthermore, the dipath from sr

1 to a sink contains only one node with
non-zero demand, sr

1. Therefore, the congestion of the resulting confluent flow is exactly two. This
is optimal since there is a vertex with demand two.

Now suppose that G does not contain vertex-disjoint dipaths P1 and P2 from s1 to t1 and from
s2 to t2. Take any confluent flow in our network and consider the dipath P it induces from sr

1 to t∗.
We now show that this dipath must have congestion at least dlg ke+ 1. Towards this end, assume
that P passes through copies of G corresponding to the nodes r = v1, v2, . . . , vdlg ke of T . Thus, by
construction, P must pass through svi

1 , for 1 ≤ i ≤ dlg ke. We claim that vertex svi

1 has congestion
at least i+1. This is true for sv1

1 . Assume then that s
vj

1 has congestion at least j +1, and consider
the copy of G corresponding to vj . We know that any flow at s

vj

1 and at s
vj

2 must be routed via
t
vj

1 or t
vj

2 . However, because there are no disjoint dipaths P1 and P2, we must have one of the
situations shown in Figure 3. Either the flow at s

vj

1 is routed via t
vj

2 and the flow at s
vj

2 is routed
via t

vj

1 , or the flows at s
vj

1 and at s
vj

2 are both routed via the same vertex (either t
vj

1 or t
vj

2 ). In
each case, the congestion at either t

vj

1 or t
vj

2 is at least (j + 1) + 1. This congestion is passed down
to vertex s

vj+1

1 . Thus, by induction, it follows that the congestion of the vertex s
vdlg ke

1 is dlg ke+ 1.
Observe that the number of sinks in the auxiliary network is 2dlg ke = k, if k is a power of 2.

s 1
v j

t

iii)ii)i)

2

t 2
v j

t 1
v j t 1

v j

s 2
v j s 2

v j

j
v j t 1

v j

s 2
v j s 1

v j s 1
v j

t 2
v 

Figure 3: Routing in Networks without Disjoint Dipaths.

It follows that any approximation algorithm for the confluent flow problem with approximability
guarantee better than 1

2 lg k can be used to determine in polynomial time whether a directed graph
contains vertex disjoint dipaths from s1 to t1 and from s2 to t2.

Finally, we show that the demand maximization problem is NP-hard to approximate better
than 2.

Theorem 2 It is NP-hard to approximate the confluent flow demand maximization problem to a
factor less than 2.

Proof: We’ll use the same graph G as in the proof of Theorem 1, with demands of 1 at s1, 1− ε
at s2, 0 at t1, ε at t2, and 0 at every other node. If G contains vertex-disjoint dipaths from s1 to
t1 and from s2 to t2, we can route all the flow along these paths to achieve congestion 1. If not,
then there is no way to achieve congestion 1 without excluding at least one of s1 and s2. Thus it is
NP-hard to distinguish whether the maximum satisfiable demand is equal to 2 or is at most 1 + ε.
As ε→ 0, this gives the bound of 2 stated in the theorem.
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4 Congestion minimization

In this section, we present a polynomial-time algorithm to determine a confluent flow that satisfies
all demands and has congestion at most 1 + ln(k). We present our algorithm and its analysis in
two stages. We first describe in Section 4.1 an algorithm that achieves a congestion of 1 + lg k. In
Section 4.2, we refine the algorithm of Section 4.1 and its analysis to obtain the desired 1 + ln k
congestion bound.

4.1 A (1 + lg k)-congestion algorithm

We begin by giving a brief overview of the algorithm. Our starting point is a (splittable) flow f
in G that routes all demands to the sinks and has minimum congestion. We will assume, without
loss of generality, that the congestion of this optimal splittable flow is 1, since this property can
always be ensured by scaling all demands and flows by the congestion value. We may also assume,
without loss of generality, that the given directed graph G is, in fact, the directed acyclic graph
(dag) induced by the splittable flow.

As the algorithm proceeds, it transforms the graph G and the flow f by repeatedly performing
one of three operations: (i) aggregate a node into a sink if all of the outgoing edges of that node are
to the same sink; (ii) remove an edge (often by breaking certain undirected cycles2) and redirect
flow; and (iii) deactivate a sink by removing all edges incident into the sink and redirecting flow.
These operations are illustrated in Figure 4. While these operations repeatedly make changes to
the graph G (edges and nodes are removed), the set S of sinks (sinks are deactivated), the flow f ,
and the demands d (nodes are removed), we always maintain the following invariants:

1. f always satisfies d and the flow conservation constraints.

2. The congestion at any node v ∈ V (G) − S never increases.

3. There are only incoming edges at each sink.

At termination, the transformed graph consists of k nodes. Each node represents a set of nodes
in the original graph that have been aggregated into a sink (including the sink). Any spanning
forest of the edges contracted during the aggregation process yields the disjoint trees {T1, . . . , Tk}
forming the desired confluent flow. In the algorithm specified below, the edges of such a forest are
marked during the node aggregation steps.

We are now ready to define our algorithm Conflt. At any stage of Conflt, for any sink si,
let bi denote the congestion of si (note that this is simply d(si) + in(si)). A node v is referred to
as a frontier node if v has an edge incident into one of the sinks.

Conflt(G,S, d, f).

While V (G) 6= S, execute the following main loop:

1. If a frontier node v has all of its outgoing edges going into one sink si, then

(a) Node aggregation: Mark any one of these edges, contract v into si, and add d(v) to
d(si).

2. Else, let Ĝ denote the graph obtained from G by adding an edge erev = (s, v) for each edge
e = (v, s) from a frontier node to a sink.

2We note that cycle-breaking is also an important component of the approximation algorithms for unsplittable
flow [15, 3].
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(a) If Ĝ contains a directed simple cycle C of length greater than 2, then

i. Breaking sawtooth cycles: Update f as follows. Let fmin denote the minimum
flow value on any edge of C ∩ E(G). For each edge e of G, if e ∈ C decrease f(e)
by fmin and if erev ∈ C increase f(e) by fmin. Remove all edges with zero flow.

(b) Else

i. Sink deactivation: Let sj be a sink node with only one adjacent frontier node v,
and let s` be another sink node adjacent to v. If bj + f(v, s`) < b`− f(v, s`), remove
edge (v, s`) and send all its flow along edge (v, sj); otherwise, remove edge (v, sj),
send all its flow along edge (v, s`), and deactivate sj. (Recall that bi denotes the
congestion of sink si.)

EndWhile
Output: Output the marked edges.

���
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�����
�����

Breaking sawtooth cycles

Breaking sawtooth cycles Node aggregation Sink deactivation
frontier node

inactive sink

active sink

u

s2s2s2 s1s1s1s1

vvvv u

s2

Figure 4: Illustrating steps 2(a)i, 1a, and 2(b)i of Conflt. In the top figure, the bold edges form a sawtooth
cycle.

Each node aggregation and sink deactivation step can be executed by a scan through the
adjacency lists of the nodes. The step of breaking sawtooth cycles can be executed by constructing
Ĝ and then performing a depth-first traversal of Ĝ, both of which take time linear in the size of G.
In each iteration, the size of the graph decreases, thus yielding a polynomial bound on the running
time of Conflt (a naive analysis yields an O(m2 + mn log(n2/m)) bound).

Theorem 3 Given a splittable flow with node congestion 1 on a graph with k sinks, Conflt finds
a confluent flow that satisfies all demands and has congestion at most 1 + lg k.

Our proof is by a potential function argument. We define the potential of sink si as φ(si) = 2bi , and
the potential of the flow as the sum of the potentials of the active sinks. In the following sequence
of lemmas, we show that the potential of the flow never increases.

Lemma 4 (Node aggregation) If a frontier node has all of its outgoing edges going into one
sink, then the operation in step 1a does not increase the congestion of any node, and removes at
least one node.
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Proof: Aggregating the frontier node v into a sink si increases d(si) by d(v) but does not change
bi. The node v is removed, and the flow along all the other edges remains unchanged.

Lemma 5 (Breaking sawtooth cycles) If there is a directed simple cycle C of length > 2 in Ĝ,
then the operation in step 2(a)i does not increase the congestion of any node, and removes at least
one edge.

Proof: At least one edge of C ∩ E(G) has fmin units of flow prior to performing the operation,
and this edge is removed. To prove that the operation doesn’t increase the congestion of any node,
let v be any node of G. If v does not belong to C, then the flow on edges incident to v is unchanged.
If v belongs to C, then C has two edges incident to v, and these are either two edges of G, or an
edge of G and the reverse of another edge. In the first case, the congestion of v decreases by fmin;
in the second case, it is unchanged.

Lemma 6 (Sink deactivation) If none of the preconditions of Lemmas 4 and 5 hold, then the
sink deactivation step can be performed, and it either removes an edge or deactivates a sink without
increasing the potential of the resulting flow. Furthermore, the potential of the deactivated sink, if
any, is no more than the potential of the flow before performing the sink deactivation.

Proof: If the preconditions of Lemmas 4 and 5 do not hold, then there is a sink node sj which is
adjacent to only one frontier node v. Indeed, we may find such a sink node by walking along edges
of Ĝ, always obeying the rules

1. when possible, an edge (u, v) is not followed by the reverse edge (v, u)

2. when possible subject to (1), we avoid visiting sink nodes.

Every vertex of Ĝ has at least one outgoing edge, so the walk will go on indefinitely. Let v be the
first vertex visited twice. By assumption Ĝ has no simple cycles of length > 2, so the last two hops
of the walk were (v, w) and (w, v) for some vertex w, and all outgoing edges of w lead to v. Either
v or w must be a sink (else (v, w) and (w, v) are both in E(G) contradicting the fact that G is a
dag), and v cannot be a sink (as then w would satisfy the precondition of Lemma 4). Hence w is a
sink sj, and v is the only adjacent frontier node. Moreover, v is adjacent to at least one other sink
s`; else v either satisfies the precondition of Lemma 4, or it has an edge to another non-sink node,
in which case the walk would have traversed this edge rather than (v, w) according to rule (2).

If bj + f(v, s`) < b` − f(v, s`), we remove (multi)edge (v, s`) and increase the flow on (v, sj) by
f(v, s`). It follows from the convexity of φ that the potential does not increase.

If bj + f(v, s`) ≥ b` − f(v, s`), we remove the (multi)edge (v, sj), increase the flow on (v, s`) by
f(v, sj), and deactivate sj. The increase in potential is at most

2b`+f(v,sj ) − 2b` − 2bj ≤ 2b`+f(v,sj) − 2b` − 2b`−2f(v,s`)

≤ 2b`+f(v,sj ) − 2b`−f(v,s`)+1 ≤ 0.

(The second step follows from the convexity of the potential function and the last step holds since
f(v, sj) + f(v, s`) is at most the congestion of v, which is at most 1.)

For the second part of the lemma, it suffices to note that the potential of the deactivated sink
is less than the potential of the flow before the deactivation step.
Proof of Theorem 3: We first observe that for any non-sink node Conflt marks exactly one
outgoing edge (during a node aggregation step). Thus, the set of marked edges form a confluent
flow. We now prove that the congestion of this flow is at most lg k +1. The potential of the flow at
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the start of the algorithm is at most 2k. Lemmas 4 through 6 show that the potential of the flow
is never increased. Furthermore, by Lemma 6, the potential of any deactivated sink is at most 2k.
Therefore, at termination, the potential of any sink is at most 2k. The congestion of any sink in
the final confluent flow is at most 1 + lg k.

4.2 An improved upper bound

In this section, we present a refinement Imp-Conflt of the algorithm Conflt and show that
Imp-Conflt achieves 1+ln k congestion. Imp-Conflt differs from Conflt in the sink deactivation
step only. The remaining steps, namely breaking sawtooth cycles and node aggregation, are all
identical to those in Conflt.

We now present the sink deactivation step for Imp-Conflt. As in the analysis of Conflt, we
maintain a potential for each sink. The potential of a sink with congestion x is given by φ(x) = ex.
The potential of the system is defined to be the sum of the potentials of the active sinks.

3. Parsimonious sink deactivation: Find an induced subgraph G1 ⊆ G such that every edge
in G1 joins a frontier node to a sink, G1 contains all the outgoing edges of its frontier nodes
and all the incoming edges of its sink nodes, and every frontier node in G1 is adjacent to at
least two sinks. Let S1 be the set of sinks in G1.

• Balancing: Redistribute the flow from frontier nodes in G1 to S1 so that
∑

si∈S1
φ(bi)

is minimized. Remove any edges with zero flow.

• If any edges are removed in the Balancing step, then go to the top of the main loop of
Imp-Conflt.

• Find a sink s ∈ S1 with minimum total in-flow. For any frontier node v adjacent to s,
redirect the flow along any edge (v, s) to an arbitrary sink adjacent to v. Remove all
edges adjacent to s, deactivate s, thus setting S1 ← S1 − {s}.

• Repeat Balancing and then repeat the main loop of Imp-Conflt.

To complete the description of the parsimonious sink deactivation step, we need to specify (i) how
the subgraph G1 is determined and (ii) how the step Balancing is implemented. For a directed
(multi)graph D, let the undirected graph underlying D denote the undirected graph with vertex set
V (D) and with an edge for each pair of vertices which are joined (in either order) by a directed
edge of D. The construction of G1 is given by the proof of the following lemma.

Lemma 7 If none of the preconditions of Lemmas 4 and 5 hold, then G contains a subgraph G1

meeting the preconditions of the parsimonious sink deactivation step. Moreover, the undirected
graph underlying G1 is a tree.

Proof: Recall the graph Ĝ defined in step 2a of Algorithm Conflt. We construct G1 from Ĝ by
the following linear-time algorithm, which is also illustrated in Figure 5.

1. Determine the graph H formed by the strongly connected components (SCCs) of Ĝ: each
vertex x of H corresponds to a strongly connected component Cx of Ĝ and there is an edge
from a vertex x to a vertex y in H iff there is an edge in Ĝ from a vertex in SCC Cx to a
vertex in SCC Cy.

2. By definition, H is acyclic. Find a node s of H with no outgoing edges. Set Ĝ1 to be the
subgraph of Ĝ induced by Cs, and set G1 = Ĝ1 ∩G.
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Before we prove the desired claim of the lemma, we establish some properties of the graph H
constructed in the first step of the above algorithm. Since the precondition of Lemma 5 does not
hold, Ĝ does not have any directed cycle of length greater than 2. Since all length-2 cycles in Ĝ
consist of a frontier node and a sink, H can be obtained from Ĝ by simply contracting all edges
from frontier nodes to sinks and vice-versa, eliminating self-loops and retaining all other edges.
Furthermore, for a given vertex x of H, if Cx contains more than one node then every node in Cx

is either a frontier node or a sink. This is because there is no cycle in Ĝ that traverses a vertex
that is neither a frontier node nor a sink.

We now show that G1 satisfies the conditions of the parsimonious sink deactivation step. First,
G1 is an induced subgraph of G, by construction. We next note that every node in G1 is either a
frontier node or a sink; otherwise, Cs is a singleton set consisting of a node in Ĝ that is neither a sink
nor a frontier node, but any such node has at least one outgoing edge, leading to a contradiction.

Next, we claim that every edge of G1 joins a frontier node to a sink. If not, G1 contains an edge
e = (v, w) between two frontier nodes because sink nodes have no outgoing edges. Since v and w
map to the same vertex of H, they must be joined in Ĝ by a directed path from w to v. This path
cannot be the edge (w, v) since every simple cycle of length 2 in Ĝ consists of a frontier node and
a sink. Since this directed path from w to v is of length greater than one, appending the edge e to
this path yields a directed simple cycle in Ĝ of length greater than 2, violating the hypothesis that
the precondition of Lemma 5 is not met.

Next, we claim that G1 contains all the outgoing edges of its frontier nodes; if it failed to contain
such an edge e, then e would be an outgoing edge from s in H, violating the construction. It is also
clear that G1 contains all the incoming edges of its sinks, because these edges are all contracted in
forming H. Finally, every frontier node in G1 is adjacent to at least two sinks because otherwise
the precondition of Lemma 4 would hold.

We complete the proof of the lemma by noting that the undirected graph underlying G1 con-
tains no cycles, because such cycles would correspond to cycles in Ĝ violating the precondition of
Lemma 5.

For Balancing, we note that the minimization problem in the step is to minimize a convex cost
function subject to certain linear constraints. We now show in Section 4.2.1 that the minimum of∑

si∈S1
ebi can be obtained by a polynomial time algorithm based on max flow. In Section 4.2.2, we

show that the parsimonious sink deactivation step does not increase the potential of the resulting
flow.

4.2.1 Convex minimization

In this section we consider the convex program that captures the balancing operation. We present a
strongly polynomial-time algorithm for computing this minimum. We first characterize the struc-
ture of the minimizing point and show that it is “balanced” in a sense to be made precise in
Definition 8 below. We then demonstrate that any balanced flow is a local optimum and hence
also a global optimum. We conclude by showing that a balanced flow can be found in polyno-
mial time using Megiddo’s lexicographically optimal maximum flow algorithm [20]. An interesting
consequence of our argument is that, in fact, the point of minimization is independent of the cost
function.

Consider the bipartite graph formed by the frontier nodes {ri} and the sinks {sj}. Let E′ denote
the set of pairs (i, j) such that there is an edge (ri, sj) in the bipartite graph. Let xij represent the
flow on the edge from frontier node ri to sink sj. Following previous notation, let bj represent the
congestion of sink sj and d(sj) denote the demand at sink sj. Let ci be the congestion at frontier
node ri. Let C be a nonnegative, increasing and strictly convex function; in particular, C could be
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the potential function φ defined earlier in Section 4.1 and 4.2. Consider the following program P≥

:

min
∑

j

C(bj)

s.t.

∀i,
∑

(i,j)∈E′

xij ≥ ci

∀j, bj ≥
∑

(i,j)∈E′

xij + d(sj)

∀(i, j) ∈ E ′, xij ≥ 0

The above is a (strictly) convex program since a sum of (strictly) convex functions is (strictly)
convex. It is well known that a strictly convex function over a convex set has a unique local
minimum which is also the global minimum (e.g., see [1, Appendix B]). We also refer to this convex
objective function as the potential function.

Note that without loss of generality we may replace the inequalities in the constraints above by
equalities, yielding the following equivalent program P=:

min
∑

j

C(bj)

s.t.

∀i,
∑

(i,j)∈E′

xij = ci

∀j, bj =
∑

(i,j)∈E′

xij + d(sj)

∀(i, j) ∈ E ′, xij ≥ 0

Definition 8 Consider a frontier node ri that has edges with nonzero flow to two sinks sj and sk

such that bj > bk; then we define the balance operation as the act of shifting flow from edge (i, j)
to edge (i, k), until xij = xik or feasibility along one of the edges is violated. We also refer to the
operation as balancing ri. We say that a flow is balanced if it cannot be balanced any further.

Observe that the act of balancing reduces the value of the potential function since C is convex
and increasing. The following “structure” lemma characterizes the form of balanced flows.

Lemma 9 In any balanced flow, for any frontier node ri, if xij > 0 and xik > 0, then bj = bk. That
is, all the sinks that receive flow from a given frontier node have the same congestion. Furthermore,
in any balanced flow, if xij > 0 then there does not exists any edge (i, k) such that bk < bj.

Proof: Consider a frontier node. It cannot send flow to two sinks with differing congestion values;
otherwise it could be balanced. Similarly, if ri is sending flow to sink sj then ri cannot have an
edge to a sink sk with bk < bj for otherwise it could be balanced.

The above structure lemma implies that we may define natural partitions of the frontier nodes
and of the sinks, as follows. For any congestion value `, let S` denote the set of sinks that have
congestion `, and let F` denote the set of frontier nodes that send flow to any sink in S`. By
Lemma 9, {F`} forms a partition of all the frontier nodes. We now use Lemma 9 to show that a
balanced flow cannot be improved by local perturbations.
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Lemma 10 A balanced flow is a local minimum.

Proof: Let {xij} be a balanced flow, and let {bj} denote the congestions at the sinks. We now
show that for any perturbation to {xij} (and correspondingly to {bj}) the potential function is not
reduced. Let µ be the number of frontier nodes, and choose ε > 0 small enough that the difference
between any two distinct elements of the set {0} ∪ {b : b = bj for some sink sj} is greater than
2µε. Let X denote the set of flows {x′

ij} that satisfy |x′
ij−xij| ≤ ε for all i and j. Let {x∗

ij} denote
the flow in X with minimum potential, and let {b∗j} denote the associated congestions at the sinks.

Consider two congestion values bj and bk such that bj < bk. It follows from our choice of ε that
b∗j < b∗k because b∗j ≤ bj + µε < bk − µε ≤ b∗k. By Lemma 9, there is no flow in {xij} along any
edge from a frontier node in Fbj

to any sink in Sbk
. We now argue by contradiction that {x∗

ij} also
does not carry any flow along any edge from a frontier node in Fbj

to a sink in Sbk
. Suppose there

is an edge from a frontier node ri in Fbj
to a sink node sk in Sbk

such that x∗
ik > 0. Then there

exists a sink node sj in Sbj
such that xij > x∗

ij . If we increment x∗
ij by min{ε, (b∗k − b∗j )/2, x

∗
ik} and

decrement x∗
ik by the same amount, then we obtain a new flow in X that has smaller potential than

{x∗
ij}, yielding a contradiction. We also obtain from Lemma 9 that the bipartite graph contains no

edge from a frontier node in Fbj
to any sink in S` for any ` < bj . Therefore,

∑
sj∈S`

bj =
∑

sj∈S`
b∗j .

Since bj is identical for every sink sj in S`, the convexity of C implies that the potential of {xij} is
at most that of {x∗

ij}, thus completing the proof.
It now follows that

Corollary 11 A balanced configuration is the unique global minimum.

Since the balanced property is independent of the specific convex function C, it also follows
that

Corollary 12 The point of minimization is independent of C.

We now present an alternative characterization of this unique balanced configuration that is
useful from an algorithmic standpoint.

Definition 13 Consider a flow f on a network with sinks s1, s2, ..., sk and corresponding con-
gestions b1, b2, ..., bk. Let σf denote the k-tuple of numbers obtained by arranging b1, b2, ..., bk in
increasing order. Then, f is said to be lexicographically optimal (or max-min fair) if σf is maximal
in the lexicographical order.

Megiddo [20] proved the following theorem (actually, a generalization with multiple sources and
sinks, but we state only the single-source multiple-sink version here, since that is adequate for our
needs):

Theorem 14 Given a capacitated network flow problem with multiple sinks, a flow can be found
in O(n5) time that is both lexicographically optimal and a maximum flow.

We now present a transformation of our convex program P= into a capacitated maximum flow
problem F : we create a super source which we connect to each frontier node ri with capacity ci

and to each sink node sj with capacity d(sj); we retain the edges, E ′, with infinite capacity; nodes
sj continue to be sink nodes.

Lemma 15 A lexicographically optimal maximum flow of F is a feasible balanced configuration of
P=.

14



Proof: It is easy to see that any maximum flow of F is a feasible solution to P=. Furthermore,
any lexicographically optimal flow corresponds to a balanced configuration since the balancing
operation corresponds to improving the flow in the lexicographic order.

Putting Megiddo’s theorem together with the above lemma it now follows that

Corollary 16 P≥ can be solved in (strongly) polynomial time.

We have thus shown that the parsimonious sink dectivation step can be implemented in strongly
polynomial time, implying that Imp-Conflt is a strongly polynomial-time algorithm.

4.2.2 Nonpositive net change in the potential

In the following, we prove that the net change in potential as a result of the parsimonious sink
deactivation step is nonpositive. Let G1 be as defined at the start of the parsimonious sink de-
activation step and let G′

1 be the subgraph of G1 consisting of all edges with positive flow after
applying the balancing step to G1. Let K denote any weakly connected component of G′

1. By
Lemma 7, the undirected graph underlying G1 is a tree. Since the balancing step can only remove
edges from G1, the undirected graph underlying K is also a tree. It also follows from the analysis
of the balancing step that every sink in K has the same congestion. Let b denote this congestion.
For any edge (v, s) in K from a frontier node v to a sink s, we define the subtree rooted at (v, s),
T(v,s), as the tree consisting of all nodes that can be reached from v via undirected paths passing
through the edge (v, s).

Lemma 17 Let v denote an arbitrary frontier node and let s denote an adjacent sink in K. Let
β denote the smallest in-flow3 in K and α ≤ β be a real number such that the flow on edge
(v, s) is at most 1 − α. Then, we can inject an additional flow of α on edge (v, s) and assign the
resulting additional demand to sinks in T(v,s) such that the additive increase in potential is at most
(α/δ)(φ(b + δ) − φ(b)), for any δ ∈ [1− β, α].

Proof: The proof is by induction on the number of sinks in K. The assumptions about K require
that there be at least two sinks in K. So, for the induction base, we consider the case when K has
exactly two sinks. Since the sum of the in-flows of the two sinks is at most 1, it follows that β ≤ 1/2.
Since α ≤ β, [1− β, α] is nonempty exactly when α = β = 1/2. We can inject an additional flow of
1/2 into either of the sinks and increase the potential by at most φ(b+1/2)−φ(b), which completes
the desired claim.

We now consider the induction step. If [1 − β, α] is empty, then there is nothing to prove.
Otherwise, let δ be any real in [1 − β, α]. We are given a frontier node v and an adjacent sink s
such that the flow along (v, s) is at most 1 − α. Let v1 through vj denote j frontier nodes other
than v that are adjacent to s. For 1 ≤ ` ≤ j, we select α` ≤ f(v`, s) such that

∑
` α` = α− δ. Such

a selection is well-defined since the sum of the flows along these edges is at least β− (1−α), which
is at least α− δ since δ ≥ 1− β.

We increase flow along edge (v, s) by α and decrement the flow along the edges (v`, s) by α`.
This increases the congestion of sink s by δ. The decrease in the flow along the edges (v`, s) implies
that an additional flow of α` needs to be redirected to other sinks. For each frontier node v`, we
select an arbitrary adjacent sink s` 6= s and inject an additional flow of α` along edge (v`, s`) into
the subtree rooted at edge (v`, s`) (i.e., subtree T(v`,s`)). Let β` denote the smallest in-flow in the
subtree rooted at edge (v`, s`). Since α` ≤ α and α ≤ β ≤ β`, it follows that α` ≤ β`. By the

3Recall that the in-flow of a node v is the sum of the flows on the edges into v.
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induction hypothesis, we know that the total increase in potential of the sinks in this subtree is at
most

α`

δ′
(
φ(b + δ′)− φ(b)

)
,

for any δ′ ∈ [1 − β`, α`]. Since β` ≥ β and δ ≥ 1 − β, we obtain that δ ≥ 1− β`. We consider two
cases. If δ ≤ α`, it follows from the induction hypothesis that the total increase in potential in the
subtree is at most

α`

δ
(φ(b + δ)− φ(b)) .

If δ > α`, then we can simply increase the in-flow into sink s` by α` and achieve a potential increase
of at most

φ(b + α`)− φ(b) ≤ α`

δ
(φ(b + δ)− φ(b)) ,

the last inequality following from Lemma 19 since δ > α`.
By adding over all `, we obtain that the total potential increase over all trees T(v`,s`) is at most

∑
` α`

δ
(φ(b + δ)− φ(b)) .

On adding the potential increase of sink s, which is φ(b + δ) − φ(b), we obtain a total increase of
at most

α

δ
(φ(b + δ) − φ(b)) ,

which completes the induction step.

Lemma 18 The parsimonious sink deactivation step does not increase the potential.

Proof: If any edges are removed after the first balancing operation of the parsimonious deacti-
vation step, then the step terminates without increasing the potential. For the remainder of the
proof, we assume that no edges are removed in the first balancing operation. Let s∗ denote a sink
in K with minimum in-flow. We now show that the net potential change following the deactivation
of s∗ and the redistribution of flow using the second balancing operation is nonpositive. Since the
balancing operation redistributes flow so as to minimize the potential of the sinks, it suffices to
show that there exists a flow redistribution following the deactivation of s∗ that has the desired
effect. Let α denote the in-flow of s∗ and let v1 through vj denote the frontier nodes adjacent to
s∗. Let α` denote the flow on edge (v`, s

∗), for 1 ≤ ` ≤ j. Let s` 6= s∗ denote an arbitrary sink
adjacent to v`. (Since every frontier node in K has at least two adjacent nodes and no edges are
removed in the first balancing operation, s` exists.) We redirect flow α` into the subtree T(v`,s`).
Since the congestion of v` is at most 1, it follows that the flow along edge (v`, s`) is at most 1−α`.
We consider two cases. If α` < 1 − α, then we assign α` to sink s`, thus increasing its congestion
to b + α`. Thus, the increase in potential of T(v`,s`) is at most

φ(b + α`)− φ(b) ≤ α`

1− α
(φ(b + 1− α)− φ(b)) ,

by Lemma 19.
We now consider the case α` ≥ 1 − α. Let β` denote the minimum in-flow of a sink node in

T(v`,s`). Since β` ≥ α, it follows that 1 − α ≥ 1 − β`. We invoke Lemma 17, with δ = (1 − α) to
obtain that the increase in potential of T(v`,s`) is at most

α`

1− α
(φ(b + 1− α)− φ(b)) .
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Adding over all `, and subtracting the potential of the deactivated sink s∗, we obtain the net change
in the total potential of the system to be at most

α

1− α
(φ(b + 1− α)− φ(b))− φ(b)

= eb

(
α

1− α
(e1−α − 1)− 1

)

= eb

(
α

1− α
(

1

eα−1
− 1)− 1

)

≤ 0.

(The last step uses the inequality eα−1 ≥ 1 + α− 1 = α.)

Lemma 19 For 0 ≤ x ≤ 1, the function ex−1
x is a monotonically increasing function of x.

Proof: Let g(x) equal ex−1
x . Then g′(x) is equal to

ex

x
− ex

x2
+

1

x2
=

ex(x− 1) + 1

x2
=

(x− 1)/e−x + 1

x2
,

which is nonnegative since e−x ≥ 1− x and x ≤ 1.

Theorem 20 Given a splittable flow with node congestion 1 on a graph with k sinks, there exists
a strongly polynomial time algorithm that finds a confluent flow satisfying the same demand and
with node congestion not exceeding 1 + ln k.

Proof: Lemmas 4, 5, and 18 show that the potential never increases. Since the initial total
potential is ek, it follows that potential of any sink at termination is at most ek, implying a
congestion of at most 1 + ln k.

5 Demand maximization

In the demand maximization problem, we seek a confluent flow which maximizes the total demand
of the satisfied nodes, among all confluent flows which satisfy a subset of the nodes and meet
some prescribed upper bound on the congestion. We assume without loss of generality that the
prescribed upper bound on congestion is 1; otherwise, we can scale all demands and flows by the
congestion bound. Suppose we are given a graph G that admits a splittable flow satisying all
demands, while incurring a congestion of at most 1. We present a polynomial time algorithm for
finding a confluent flow in G of congestion at most 1 that satisfies demands of a subset of nodes
whose demands add up to (1/3)-factor of the total demand. We note that the preceding result
assumes the existence of a splittable flow that satisfies all demands with congestion at most 1. As
mentioned in Section 1, we can eliminate this assumption by first determining a splittable flow of
congestion at most 1 that satisfies a constant fraction of the maximum satisfiable demand. For this
purpose, we can use any of the constant-factor approximations known for demand maximization in
single-source unsplittable flows [3, 15]; the best approximation ratio known is 4.43 [3]. This yields
a 13.29-approximation for unconditional demand maximization in confluent flows.

The demand maximization algorithm MaxDemand is the same as Conflt except the sink
deactivation step and a postprocessing step.

3. Sink deactivation: Let sj be a sink node with only one adjacent frontier node v, and let s`

be another sink node adjacent to v.
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(a) If bj − f(v, sj) ≤ 1
2 , remove edge (v, s`) and send its flow along edge (v, sj).

(b) If bj − f(v, sj) > 1
2 , remove edge (v, sj), send its flow along edge (v, s`) and deactivate

sink sj.

After obtaining a set of disjoint arborescences {Ti}ki=1, the algorithm MaxDemand selects a subset
of the nodes and satisfies their demands as follows. Let b̂i denote the total demand in Ti (alterna-
tively, the congestion of sink si) after the computation of the arborescences. For each Ti, if b̂i ≤ 1,
then satisfy all of the demand. If 1 < b̂i ≤ 3

2 , then greedily partition the nodes in Ti into groups

whose total demands sum to at most 2
3 b̂i; select the nodes in the group with the maximum total

demand and satisfy their demands using Ti. If b̂i > 3
2 , then search the nodes of Ti in any order and

determine a subset of the nodes whose total demand is at least 1/2 as follows.

1. ∆i ← 0.

2. While ∆i < 1/2 do

(a) Visit the next node v.

(b) If d(v) ≤ 1/2, then mark v and ∆i ← ∆i + d(v). Otherwise, unmark all marked nodes;
mark v and ∆i ← d(v).

3. Select the marked nodes and satisfy their demands using Ti.

Lemma 21 After the calculation of the arborescences, we have

∑

i:b̂i≤1

b̂i +
1

2

∑

i:1<b̂i≤
3
2

b̂i +
∑

i:b̂i>
3
2

1

2
≥ D

3
.

Proof: We first show:

2
∑

i: 1
2
<b̂i≤1

b̂i +
1

2

∑

i:1<b̂i≤
3
2

b̂i ≥
∑

i:b̂i>
3
2

(b̂i −
3

2
)

We plot the congestion of the sinks {bi}ki=1 as a histogram. These values may change during the
execution of the algorithm MaxDemand, specifically, in step 3. But the total area of the histogram
is always D. Divide the xy-plane of the histogram into two sections by the y = 3

2 line. Notice that
when the algorithm redirects flow from one sink to another, demand moves from one sink to the
other; in the histogram, this corresponds to a move of “area” either across the boundary or within
a section. Denote by A the total area of the upper section. The area A cannot increase in step 3a
since bj + f(v, s`) ≤ 1

2 + f(v, sj) + f(v, s`) ≤ 3
2 . Whenever A increases in step 3b, some sink sj is

deactivated and remains untouched thereafter, hence b̂j = bj − f(v, sj). There are now three cases
to consider.

1. If 1
2 < bj − f(v, sj) ≤ 1, then the increase in A is at most 1 ≤ 2b̂j .

2. If 1 < bj − f(v, sj) ≤ 3
2 , then the increase in A is at most f(v, sj)− (bj − 3

2) < 1
2 < 1

2 b̂j .

3. If bj − f(v, sj) > 3
2 , then A does not increase.

Putting these together we obtain

2
∑

i: 1
2
<b̂i≤1

b̂i +
1

2

∑

i:1<b̂i≤
3
2

b̂i ≥
∑

i:b̂i>
3
2

(b̂i −
3

2
)
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Note that ∑

i: 1
2
<b̂i≤1

b̂i +
∑

i:1<b̂i≤
3
2

b̂i +
∑

i:b̂i>
3
2

b̂i = D

Adding the two equations and dividing both sides by 3 yields the desired result.

Theorem 22 Given a splittable flow with node congestion 1 on a graph with total demand D,
MaxDemand finds a confluent flow with node congestion at most 1, satisfying demands of a subset
of nodes, with total demand at least D

3 .

Proof: Since the demands are routed with {Ti}ki=1, the flow is confluent. Since for each Ti, the
algorithm selects total demand at most 1, the node congestion is at most 1. For Ti with b̂i ≤ 1,
all b̂i demand is satisfied. For Ti with 1 < b̂i ≤ 3

2 , suppose the total demands of the groups are

d1 ≤ d2 ≤ · · · ≤ dr. Only d1 can be less than or equal to b̂i/3, otherwise d1 and d2 could have
been combined. Since d1 + dr > 2

3 b̂i, it follows that r = 2 (otherwise d1 + d2 + dr > b̂i). Therefore,

dr ≥ b̂i/2, i.e. at least b̂i/2 is satisfied; totally 1
2

∑
i:1<b̂i≤

3
2

b̂i is satisfied. For Ti with b̂i > 3
2 , at

least ∆i ≥ 1/2 demand is satisfied; totally at least
∑

i:b̂i>
3
2

1/2 is satisfied. From Lemma 21, the

algorithm satisfies at least D/3 demand in total.

6 Confluent flows in k-connected graphs

It turns out that if G is k-connected, then any splittable flow of congestion C may be replaced by
a confluent flow of congestion less than C + dmax. In fact we will prove a considerably stronger
theorem. Let us say that a directed graph G is k-connected to a set S ⊆ V (G), if each vertex v /∈ S
can be joined to S by k paths which are disjoint except for the common vertex v. Throughout this
section, we will use the notation Cf (v) to denote the congestion induced by a flow f at a vertex v;
the subscript f will be omitted when it is clear from context.

Theorem 23 Let G be a directed graph with sinks S = {s1, . . . , sk}, demands d : V → �
+ ,

maximum demand dmax, and total demand D. Suppose that G is k-connected to S. Given target
values t1, . . . , tk summing to D, there is a confluent flow in G such that C(si) < ti + dmax for all i.

In particular, taking t1 = . . . = tk = D/k ≤ C, we obtain a confluent flow of congestion less
than C + dmax as claimed. Theorem 23 can be seen as a weighted version of the following theorem.

Theorem 24 (Lovász, 1977 [19]) Let G be a digraph, S = {v1, . . . , vk} ⊆ V (G) a set of k
vertices, and assume that G is k-connected to S. Let, furthermore, k positive integers n1, . . . , nk be
given whose sum is |V (G)|. Then G contains k vertex-disjoint arborescences A1, . . . , Ak, such that
Ai is rooted at vi and |V (Ai)| = ni.

Before embarking on the proof of Theorem 23, which is somewhat elaborate and involves a non-
constructive step, we pause here to introduce the main ideas of the proof and to place them in the
context of the foregoing sections of this paper. Let G be a directed graph and let f be a splittable
flow in G with congestion C. Let us call a vertex v undecided if the flow f assigns a positive flow
value to more than one outgoing edge of v. Looking closely at the iterative rounding procedures
used in Sections 4.1 and 4.2, one sees that the problematic cases for those algorithms are cases in
which there is a long flow path P containing many undecided vertices, and each of them decides,
during the execution of the algorithm, to send all of its flow on the edges of P . In such cases, the
congestion of the final vertex of P increases with each such rounding decision, eventually becoming
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as large as Ω(C log k) in the worst case. Indeed, Section 3.1 presents an example in which this
logarithmic increase in congestion is unavoidable. However, in case the original flow f contains no
path P with many undecided nodes, we can hope to achieve better congestion when rounding f to
a confluent flow. Let us call a flow in G nearly confluent if every undecided node has zero incoming
flow. (Note that this propery implies that every flow path P contains at most one undecided node,
namely the first node of the path.) We will prove in Theorem 26 below that every such flow can
be rounded to a confluent flow while increasing the congestion of every sink by at most dmax. The
proof uses a simple rounding technique in the spirit of [17]. To complete the proof of Theorem 23,
we then establish the following existence theorem for nearly confluent flows in k-connected graphs.

Theorem 25 Let G be a directed graph with sinks S = {s1, . . . , sk}, demands d : V → � + and total
demand D. Suppose that G is k-connected to S. Given any non-negative target values t1, . . . , tk
summing to D, there is a nearly confluent flow f in G such that C(si) = ti for all i.

The proof of Theorem 25 is non-constructive, making use of techniques originally introduced by
Lovász in proving Theorem 24. The idea of the proof is topological: the set of nearly confluent flows
constitutes a topological space K, the function which maps a nearly confluent flow to the vector
of congestions (C(s1), . . . , C(sk)) is a continuous function from K to

� k , and we aim to prove that
there exists a point of K which maps to a designated point (t1, t2, . . . , tk) ∈

� k . For a continuous
function from K to

�
, we could hope to establish the existence of such a point using the intermediate

value theorem, provided that K is path-connected (i.e., any two points of K can be joined using a
continuous path). For our purposes, we need to use a multi-dimensional version of the intermediate
value theorem (see Theorem 29) and we need the space K to satisfy higher-dimensional connectivity
properties in addition to path-connectivity. These higher-dimensional connectivity properties are
expressed using homology theory [13], and for k-connected graphs they were established by Lovász
in the course of proving Theorem 24.

6.1 Rounding nearly confluent flows

Theorem 26 If f is a nearly confluent flow in G, then f may be rounded to a confluent flow f̃
such that Cf̃ (si) < Cf (si) + dmax for all i.

Proof: We describe an algorithm for rounding f to f̃ . In describing this algorithm it will be
useful to adjoin to G a vertex â with one incoming edge from each vertex in the set of sinks
S = {s1, . . . , sk}. The flow f is extended to this augmented graph by specifying that the flow on
the edge from si to â is Cf (si).

Delete all edges e with f(e) = 0 from G. Let U ⊆ V (G) denote the set of nodes with outdegree
greater than 1; as above, we will call these the undecided nodes. The algorithm will select undecided
nodes one by one, and will re-route all the flow from the selected node along one of its outgoing
edges. It follows that the flow value will never increase on an edge which is not downstream from
an undecided node; call such edges safe, and the other edges of G active. (Here, we say that a
node v is downstream of a node u if there is a directed path in G from u to v; we also express this
relation by saying u is upstream from v.)

Throughout this proof, we will use the term weak cycle to refer to a sequence of vertices
v0, v1, . . . , vn−1, vn = v0 in V (G) such that for i = 1, 2, . . . , n, either (vi−1, vi) or (vi, vi−1) is a
directed edge of G. (In the former case, we call (vi−1, vi) a forward edge of the weak cycle; in the
latter case we call it a reverse edge.) When G contains a weak cycle C with a positive flow value
on each edge, we can augment the flow along this cycle by adding some positive amount ε > 0 to
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the flow value on each forward edge and subtracting the same amount ε from each reverse edge.
As long as G contains a weak cycle which does not pass through â, we can modify f by finding
an edge on this cycle with minimum flow value fmin, performing an augmentation along the cycle
with ε = fmin, and deleting all edges whose flow value is now zero. Each such operation diminishes
|E| by at least one, and doesn’t alter the congestion of any vertex in S. (The congestion of si is
equal to the flow value on the edge from si to â, and this edge is not in the augmenting cycle, so
the augmentation doesn’t change its flow value.) After finitely many such operations it will be the
case that every weak cycle in G passes through â.

Now we claim there exists a vertex si ∈ S with only one undecided vertex upstream from it.
This can be proved by considering the undirected bipartite graph B with vertex set U ∪ S whose
edge set consists of all pairs {u, s} such that u ∈ U, s ∈ S, and G contains a directed path from u to
s. This bipartite graph B must be a forest: for any simple cycle C in B, the edges of C correspond
to paths in G whose union contains a weak cycle that does not pass through â, contradicting our
earlier assumption. Moreover, every vertex u ∈ U has at least two neighbors in B. This is because
u has at least two outgoing edges in G, each of these edges is the beginning of a directed path
leading to a sink, and these sinks must be distinct because otherwise the union of the two directed
paths in G would contain a weak cycle which does not pass through â, again contradicting our
assumption. It follows that every leaf of the forest B is a sink si ∈ S. By the definition of B, this
implies that si has only one undecided vertex upstream from it in G.

Having found a vertex si ∈ S with only one undecided vertex u ∈ U upstream from it, we take
all of the demand at u, re-route it along the path from u through si to â, delete u from the set of
undecided vertices, and delete the edges of this path from the set of active edges. The algorithm
continues in this manner until U is empty, at which time f has been rounded to a confluent flow.
We then delete â and all of its incoming edges to obtain a confluent flow f̃ in the original graph G.

Note that if si ∈ S, then the congestion of si only increases during the step when the edge
e = (si, â) changes from an active edge into a safe edge. At this step, the increase in congestion
is less than d(u), the amount of demand at the undecided vertex which re-routed its flow along a
path through e. Since the initial congestion of si is Cf (si) and the final congestion of e is Cf̃ (si),
we obtain Cf̃ (si) < Cf (si) + dmax, as desired.

6.2 The arborescence complex of a directed graph

The remaining steps in the proof of Theorem 23 rely heavily on methods from algebraic topology,
especially homology theory. In the following proofs, we assume familiarity with the definition of
homology and relative homology groups, as well as basic facts about homology groups such as the
excision theorem and the long exact sequence of a pair. For an exposition of these topics, we refer
the reader to Hatcher’s textbook on algebraic topology [13].

In [19] a topological space K is associated with each directed graph G with distinguished vertex
â, known as the arborescence complex of G relative to â. It can be modeled as a CW complex 4 whose
vertices (the 0-cells of K, in the terminology of CW complexes) are in one-to-one correspondence
with the arborescences of G rooted at â. In this section we present a definition of the arborescence
complex which is equivalent to the original, but makes clearer the relation with confluent flows.

4CW complexes are a generalization of simplicial complexes, in which the n-dimensional building blocks (“n-
cells”) of the space are homeomorphic to n-dimensional simplices, but their boundaries may be attached to the
lower-dimensional cells using arbitrary continuous mappings, unlike in the case of a simplicial complex X, whose
n-dimensional cells have boundaries made up of (n− 1)-dimensional simplices each of which is identified (homeomor-
phically) with one of the (n − 1)-dimensional simplices of X. For a precise definition of CW complexes, we refer the
reader to Hatcher’s book [13].
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Definition 27 Let G = (V,E) be a directed acyclic graph with distinguished vertex â. Assume
every v ∈ V (G) has a directed path to â. Represent each â-rooted arborescence by a function F :
E(G)→ � where F (e) = 1 if e belongs to the arborescence, 0 otherwise. A fractional arborescence
in G is a function F : E(G)→ [0, 1] which is a convex combination of arborescences.

A fractional arborescence is called a near-arborescence if it satisfies the following property: if
v is a vertex such that F (e) > 0 for at least two distinct outgoing edges e, then F (e) = 0 for all
incoming edges e. In other words, a near-arborescence is a convex combination of arborescences,
any of which can be transformed into any other by disconnecting and reattaching some leaves. The
set of all near-arborescences in G is a subspace K ⊆ � E(G) called the arborescence complex of G
relative to â.

Definition 27 constitutes a precise description of the arborescence complex K as a topological space.
As an aid in visualization, there is a natural decomposition of K as a union of polyhedral pieces,
which we now describe. (This decomposition also serves to specify the CW-complex structure of
K.) For a near-arborescence F , we may define the support of F to be the set of edges e ∈ E such
that F (e) > 0. If E0 ⊆ E is an edge set, let us consider the set K[E0] of all near-arborescences with
support E0. This set is empty if there is a vertex with at least one incoming edge and two outgoing
edges in E0. Otherwise, K[E0] is equal to the set of all ways of assigning positive real-valued weights
to the edges in E0 such that the sum of the weights of the edges exiting every vertex except â is
exactly 1. In other words,

K[E0] =
∏

v∈V (G)\â

int(∆d0(v)−1),

where d0(v) denotes the number of outgoing edges of a vertex v and int(∆k) denotes the standard
open simplex

int(∆k) = {(x0, x1, . . . , xk) |x0 + . . . + xk = 1, x0, x1, . . . , xk > 0}.
Thus K can be partitioned into subsets K[E0] indexed by certain edge sets E0, each such subset
is the interior of a convex polytope of dimension |E0| − |V (G)| + 1, and the boundary of K[E0] is
equal to the union of K[E ′] as E′ runs through all the subsets of E0. For future reference, when F
is a near-arborescence in K[E0] we will refer to a vertex v as undecided if d0(v) > 1.

For example the vertices of the arborescence complex are the arborescences in G rooted at â.
Two such arborescences A1, A2 are joined by a line segment in K if there is a vertex v in G with
two outgoing edges e, e′, and an arborescence A in G−{v}, such that A1 = A∪ {e}, A2 = A∪ {e}.
Similarly, K contains a triangle for every three arborescences obtained by taking a vertex v with
three outgoing edges e, e′, e′′, and an arborescence A in G − {v}, and joining v to A using each of
the three edges; and K contains a square for every four arborescences obtained by taking a pair of
vertices v1, v2, each with two outgoing edges, and an arborescence A in G − {v1, v2}, and joining
v1, v2 to A in each of the four possible combinations.

In Figure 6 we have illustrated the arborescence complex for a six-vertex graph G. In this case,
a fractional arborescence is determined by specifying, for each of the three topmost vertices of G,
a convex combination of the two outgoing edges. Thus the space of fractional arborescences in G
is a cube: a product of three copies of ∆1, one for each of the three topmost vertices. The near-
arborescences are those in which the topmost vertex does not feed any weight into an undecided
vertex. The arborescence complex K is the subset of the cube where this criterion holds. It is
an octagon consisting of eight edges of the cube; these eight edges are denoted by solid lines in
Figure 6.

The fundamental fact about the topology of arborescence complexes is the following theorem
from [19].
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Theorem 28 ([19], Theorem 4) Let G be a digraph, â ∈ V (G), and assume that G is k-
connected to â (k ≥ 2). Then the arborescence complex K of G relative to â satisfies H̃0(K) =
. . . = H̃k−2(K) = 0, where H̃ denotes reduced homology with integer coefficients.

Here, as in [19], the importance of Theorem 28 is that it enables us to apply a generalized inter-
mediate value theorem to obtain a near-arborescence with desired properties.
Proof of Theorem 25: Given a graph G with demands d : V (G) → � + and sinks s1, . . . , sk,
extend it to a graph Ĝ by adjoining an auxiliary vertex â with incoming edges e1, . . . , ek from
s1, . . . , sk. In terms of Ĝ, we want to show that there is a nearly confluent flow f in Ĝ satisfying
f(ei) = ti for i = 1, . . . , k.

If one is given demands d : V (Ĝ)→ � + and a near-arborescence F , this data naturally defines
a flow f : E(Ĝ)→ � + , routing all the demands to the sink vertex â, according to the prescription
that each vertex v distributes its outgoing flow in the proportions specified by F . (Note that the set
of edges e with F (e) > 0 must contain no directed cycles in order for this flow to be well-defined. If
F is a near-arborescence, it is automatic that this edge set contains no directed cycles.) For a fixed
set of demands, the mapping which associates to each near-arborescence F the corresponding flow
f constitutes a continuous function from K to the space of all flows in G. If F is an arborescence,
the corresponding flow f is a confluent flow. If F is a near-arborescence, the corresponding flow is
nearly confluent.

Let ∆ ⊆ � k denote the (k − 1)-simplex

∆ =

{
(x1, . . . , xk) ∈

� k
+ :

k∑

i=1

xi = D

}
.

If K is the arborescence complex of Ĝ relative to â, we may map K to ∆ by mapping a near-
arborescence F to the vector (f(e1), f(e2), . . . , f(ek)), where f is the flow corresponding to F . This
is a continuous function φ : K → ∆, and the theorem asserts that there is a point F ∈ K which maps
to (t1, . . . , tk). The existence of such a point is proved using the following generalized intermediate
value theorem, whose proof is given below.

Theorem 29 Let X be a finite-dimensional cellular complex. Suppose φ : X → ∆r is a continuous
map to an r-dimensional simplex, such that for every s-dimensional face σs ⊆ ∆r, the subspace
Y = φ−1(σs) ⊆ X is a non-empty subcomplex satisfying H̃0(Y ) = . . . = H̃s−1(Y ) = 0. Then φ is a
surjection, i.e. every point of ∆r is the image of some point in X under φ.

To explain why we refer to this as a generalized intermediate value theorem, consider the case
r = 1,∆r = [0, 1]. Then the hypotheses of the theorem amount to:

• f−1(0) is non-empty.

• f−1(1) is non-empty.

• H̃0(X) = 0, i.e. X is path-connected.

In other words, the theorem asserts that if a continuous function on a path-connected space takes
the values 0 and 1, then it also takes every value between 0 and 1. This is standard intermediate
value theorem.

To apply Theorem 29 to the arborescence complex K and the mapping φ : K → ∆k−1 defined
by F 7→ (f(e1), . . . , f(ek)), we must verify that φ−1(σs) satisfies the homological vanishing criterion
specified in the theorem, for each face σs ⊆ ∆k−1. Each such face is determined by specifying s+1
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of the incoming edges at â — without loss of generality, say e1, . . . , es+1 — and requiring the flow
to be zero on ei for all i > s + 1. Thus φ−1(σs) is the arborescence complex of G ∪ {e1, . . . , es+1}
relative to â. In this graph, no v 6= â can be separated from â by removing fewer than s+1 vertices,
so Theorem 28 ensures the vanishing of the required homology groups.

Proof of Theorem 29: Suppose we are given a map φ : X → ∆r satisfying the homological
vanishing criterion of Theorem 29, i.e. for any face σs ⊆ ∆r, the inverse image Y = φ−1(σs)
satisfies H̃0(Y ) = . . . = H̃s−1(Y ). We will prove φ is surjective by induction on r. When r = 0
there is nothing to prove, as ∆r consists of a single point. For r > 0, we may apply the induction
hypothesis on each face of the boundary ∂∆r to conclude that the image of φ contains every point
of ∂∆r. So now assume that φ misses some point p in the interior of ∆r; we’ll derive a contradiction
in a manner similar to the proof of Brouwer’s fixed point theorem.

The starting point is a homological computation encapsulated in the following lemma.

Lemma 30 The map φ∗ : H̃r−1(φ
−1(∂∆r))→ H̃r−1(∂∆r) = � is a surjection.

Proof: We will prove the following more general claim: if A ⊆ ∆r is an s-dimensional subcomplex
containing the (s − 1)-skeleton of ∆r (i.e. the union of all faces of dimension < s) then the map
φ∗ : H̃j(φ

−1(A)) → H̃j(A) is an isomorphism for j < s and a surjection for j = s. The proof is
by induction on s and on the number of s-dimensional cells of A. In the base case, s = 0, the
functor H̃0 associates to each space a free abelian group whose rank is one less than the number
of connected components of that space; the claim now follows from the observation that φ−1(v) is
non-empty for each 0-simplex (i.e. vertex) v ∈ ∆r. For the induction step, suppose s > 0, let σs be
any s-simplex of A, and let B = A−σs. We have the following commutative diagram whose top and
bottom rows are exact sequences (the homology long exact sequences of the pairs (φ−1(A), φ−1(B))
and (A,B), respectively), and whose vertical arrows are homomorphisms induced by φ.

H̃j(φ
−1(B))

����

// H̃j(φ
−1(A))

��

// H̃j(φ
−1(A), φ−1(B))

��

∂ // H̃j−1(φ
−1(B))

≈
��

H̃j(B) // H̃j(A) // H̃j(A,B)
∂ // H̃j−1(B)

By the induction hypothesis, the vertical map on the right is an isomorphism, and the one on the
left is an isomorphism for j < s and a surjection for j = s. If we can prove that the third vertical
map, φ∗ : H̃j(φ

−1(A), φ−1(B))→ H̃j(A,B), is an isomorphism for j < s and a surjection for j = s,
then the 5-Lemma from homological algebra [13] will imply that the same conclusion holds for the
second vertical map, as desired.

By the excision theorem [13], we have a commutative diagram

H̃j(φ
−1(σs), φ−1(∂σs))

φ∗

��

≈ // H̃j(φ
−1(A), φ−1(B))

φ∗

��

H̃j(σ
s, ∂σs)

≈ // H̃j(A,B)

in which the horizontal maps are isomorphisms. Thus it suffices to prove that the homomorphism
φ∗ : H̃j(φ

−1(σs), φ−1(∂σs))→ H̃j(σ
s, ∂σs) is an isomorphism for j < s, and a surjection for j = s.
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This will be done using the long exact sequence of the pairs (φ−1(σs), φ−1(∂σs)) and (σs, ∂σs).

H̃j(φ
−1(σs))

����

// H̃j(φ
−1(σs), φ−1(∂σs))

��

∂ // H̃j−1(φ
−1(∂σs))

≈
��

// H̃j−1(φ
−1(σs)) = 0

≈
��

0 = H̃j(σ
s) // H̃j(σ

s, ∂σs) // H̃j−1(∂σs) // H̃j−1(σ
s) = 0

The fourth vertical map is the isomorphism 0 → 0, while the third vertical map is an isomor-
phism by the induction hypothesis. The first vertical map is the isomorphism 0 → 0 for j < s,
and is a surjection for j = s (trivially, because the target group is 0), so the 5-Lemma implies the
desired conclusion for φ∗ : H̃j(φ

−1(σs), φ−1(∂σs))→ H̃j(σ
s, ∂σs).

To complete the proof of Theorem 29, assume by way of contradiction that φ misses an interior
point p ∈ ∆r, and let π : ∆r −{p} → ∂∆r denote the continuous map which radially projects each
point q of ∆r − {p} to the boundary by drawing a ray from p through q and continuing until the
ray hits ∂∆r. Then we have a commutative diagram:

φ−1(∂∆r)
�

� i //

φ

��

X

φ

��

∂∆r ∆r − {p}π
oo

Applying the functor H̃r−1 to the above diagram we obtain

H̃r−1(φ
−1(∂∆r))

i∗ //

φ∗

��

H̃r−1(X) = 0

φ∗

��

� = H̃r−1(∂∆r) H̃r−1(∆
r − {p})π∗

oo

According to this diagram, the left vertical map φ∗ : H̃r−1(φ
−1(∂∆r)) → � factors through

H̃r−1(X) = 0, so it is the zero map. This contradicts Lemma 30, which says that it is a sur-
jection.

7 Open problems

We conclude by listing some directions for research in confluent flows that we believe warrant
further attention.

1. Route in rounds. Our focus in this paper has been on congestion minimization and demand
maximization. Another natural goal is to determine the minimum number of rounds needed
to route a given set of demands to a given sink, under the constraint that the routes within
each round form a confluent flow of congestion 1. Formally, we would like to partition the set
V of vertices into r subsets V1, · · · , Vr, such that the demands in each subset Vi can be satisfied
by a confluent flow in G with congestion at most 1, and r is minimized. We have a trivial
O(log k) approximation, based on the congestion minimization results; thus, r = O(log k). If
G admits a splittable flow of congestion at most 1, does r = 2 always suffice?

2. Remove “almost” from the title. Tighten any of the following gaps:
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(a) Hk vs. 1 + ln(k) for the worst-case ratio of splittable to confluent congestion.

(b) lg(k)/2 vs. 1 + ln(k) for the optimal approximation ratio of polynomial-time algorithms
for min-congestion confluent flow.

(c) 2 vs. 3 for the optimal approximation ratio of polynomial-time algorithms for the demand
maximization problem.

3. Remove “existence” from the title. Supply a constructive argument (ideally one which implies
a polynomial-time algorithm) for finding confluent flows of congestion C+dmax in k-connected
graphs with k sinks.

4. Generalize the result for k-connected graphs with k sinks. In an `-connected graph with k
sinks, admitting a splittable flow with congestion 1, does there exist a confluent flow with
congestion O(log(k/`))? An example which demonstrates a lower bound of Ω(log(k/`)) is
obtained by modifying the example displayed in Figure 1 as follows. Add an edge between
every pair of vertices in consecutively numbered rows as well as between the last row of round
vertices and the sinks, then delete the topmost ` rows of vertices.

5. Consider heterogeneous capacities. An interesting direction for future research is to extend
some or all of our results to graphs with heterogeneous capacities. (In such graphs, the
congestion of a vertex or an edge is defined as the load divided by capacity.) Such questions
are intrinsically more difficult than the ones we have considered so far, because it is no longer
the case that the most congested vertex in any confluent flow is always one of the sinks.

6. Study variants of confluent flows. We are also interested in studying the notion of edge-
confluence [2], in which all flows arriving at a vertex along an incoming edge depart the
vertex on a single outgoing edge. Thus, every confluent flow (as defined and studied in this
paper) is also edge-confluent; the converse, however, is not true. Another variation is to allow
the flow leaving a vertex to use a constant number of outgoing edges, instead of one outgoing
edge in the confluent setting. For instance, one interesting question is the following: if the
graph admits a splittable flow of congestion 1, can we always achieve congestion O(1) using
a flow in which each vertex uses only O(1) outgoing edges?

7. Obtain improved results for special graphs. It may be possible to obtain improved approxi-
mations for special classes of graphs, e.g., planar graphs. (Our arguments for the hardness of
approximation in Section 3 do not immediately extend to planar graphs.)
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G

G1

Ĝ

H

Figure 5: Construction of graph G1 in the parsimonious sink deactivation step. The four figures
represent, from top to bottom, the dag G, the graph Ĝ constructed in Algorithm Conflt, the
graph H defined in the proof of Lemma 7, and the definition of G1. In the above figures, directed
cycles of length two have been represented as bidirected edges, for convenience. Circles represent
frontier nodes, squares represent sinks, and the curved lines represent collections of paths traversing
nodes that are neither frontier nodes nor sinks. The rectangular boxes in the bottom two figures
represent the strongly connected components of Ĝ.
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a

Figure 6: A graph and its arborescence complex. All edges of the graph are directed downward.
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