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Abstract

We consider the problem of edge clique cover on sparse

networks and study an application to the identification

of overlapping protein complexes for a network of binary

protein-protein interactions. We first give an algorithm

whose running time is linear in the size of the graph,

provided the treewidth is bounded. We then provide an

algorithm for planar graphs with bounded branchwidth upon

which we build a PTAS for planar graphs. Empirical studies

show that our algorithms are both efficient and practical on

actual simulated and biological networks, and that the clique

covers obtained on real networks yield biological insights.

1 Introduction

Given a graph G = (V,E), the (edge) clique cover
problem asks for a smallest collection Q of cliques in
G such that every edge1 of G is covered by at least
one clique in Q. If each edge is required to be covered
by precisely one clique in Q, the problem is known as
the clique partition problem. These problems have a
large number of applications in diverse disciplines. Here
we consider one prominent example from computational
biology. Protein-protein interaction (PPI) networks
are traditionally modelled as graphs whose vertices
represent proteins, and vertices are joined by an edge
if and only if the two corresponding proteins interact
with each other. Recent studies [3], however, have
discovered a number of interactions involving more than
2 proteins. A protein complex is a set of interacting
proteins, involving anywhere from 2 to 50 proteins, and
forming cliques (or, at least, very dense subgraphs)
in the network. A number of algorithms have been
proposed to detect these complexes by various clique or
dense-subgraph discovery algorithms [19, 28]. Because a
protein can often belong to different complexes, cliques
typically overlap, and thus computational biologists
have extended their algorithms to allow for overlapping
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be covered by the clique cover. This vertex clique cover problem
is equivalent to the well-studied graph colouring problem.

cliques [1, 3, 22]. To our knowledge, however, none
of these algorithms are guaranteed to exactly solve the
problem they are designed for.

As well as graph theoretic aspects, the clique cover
problem has been studied extensively from the stand-
point of computational complexity. In particular, there
are numerous studies concerning approximability and
fixed-parameter tractability. In terms of approximation,
clique cover is NP-hard in general [25], and even when
the input graph is planar [8] or has bounded degree [17].
Furthermore, Lund and Yannakakis have shown that
clique cover is not approximable within a factor of |V |ε
for some ε > 0 unless P = NP [23], thereby remov-
ing the hope of good approximation algorithms in the
general case. In the case of clique partition problem,
the problem has also been shown to be NP-complete for
various restricted classes of graphs [7, 13, 14, 18].

A parameterized problem is fixed-parameter
tractable (FPT) if it can be solved in f(k) · |I|O(1)

time, where f is a computable function depending on
some parameter k, independent of the input size |I|.
Recently, Gramm et al. [15] showed that the clique
cover problem is FPT when the size of the cover is
chosen for the parameter k. Similarly, Mujuni and
Rosamond [24] have shown that the clique partition
problem is FPT with the output size chosen as the
parameter. These algorithms run in polynomial time
in the input size but exponential time in the number
of cliques in the solution. As a result, these algorithms
are well suited for dense graphs where a few cliques
can cover the entire graph, but they are not suitable
for sparse graphs that require a large number of small
cliques in the solution.

In this paper, we fill the gap by designing efficient
algorithms for such sparse graphs. We first introduce
some definitions and related results in Section 2. Then,
in Section 3, we will design an exact algorithm for clique
cover when the input graph has bounded treewidth.
Section 4 discusses the problem restricted to planar
graphs, and we provide a polynomial time approxima-
tion scheme. Finally, we show the performance of our
algorithm from experimental studies in Section 5. In
particular, our algorithm shows efficient and practical
running time when computing for both real and simu-
lated biological networks. Furthermore, our PTAS for
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planar graphs shows a clear trade-off between approxi-
mation ratio and the running time when tested against
random planar graphs.

2 Preliminaries

In this paper, we study the clique cover problem for
sparse networks. Where possible, we shall discuss how
the algorithms for the clique cover problem can be
modified to solve the clique partition problem. Various
measures of network sparsity have been proposed in the
past, with possibly the best known being treewidth.

Definition 2.1. [26] Tree decomposition of a graph
G = (V,E) is a pair (X = {Xi|i ∈ I}, T = (I, F ))
where each node i ∈ I is associated with a set of vertices
Xi ⊆ V , such that

(1) Each vertex belongs to at least one node:
⋃
i∈I Xi =

V .

(2) Each edge is induced by at least one node: ∀(v, w) ∈
E, there is an i ∈ I with v, w ∈ Xi.

(3) For each v ∈ V , the set of nodes {i ∈ I|v ∈ Xi}
induces a subtree of T .

The width of a tree decomposition (X,T ) is defined
as maxi∈I |Xi| − 1, and the treewidth of a graph G,
denoted tw(G), is the minimum width over all tree
decompositions of G. In general, it is NP-Complete to
determine the treewidth of a graph [2]. However, when
k is fixed, graphs with treewidth k can be recognized,
and width k tree decompositions can be constructed, in
linear time [6].

From the empirical studies of our input PPI data
(shown in Section 5, Table 1), the treewidth of PPI
networks is often small compared to the network sizes.
We thus assume, where applicable, that the input graph
has a bounded treewidth, and its optimum tree decom-
position can be constructed efficiently. Furthermore, for
simplicity of discussions, we assume that the decompo-
sition tree T admits a nice structure as defined below.

Definition 2.2. [20] A tree decomposition (X,T ) is
called nice if the tree T is rooted, and for each node
i ∈ I, one of the following holds:

1. Leaf: node i is a leaf of T , and |Xi| = 1.

2. Join: node i has exactly two children j1 and j2 such
that Xi = Xj1 = Xj2 .

3. Introduce: node i has exactly one child j, and
Xi = Xj ∪ {v}.

4. Forget: node i has exactly one child j, and Xj =
Xi ∪ {v}.

It is not hard to see that if tw(G) ≤ k, then G also
admits a nice tree decomposition of width ≤ k, with
O(n) tree nodes: given an arbitrary decomposition tree
T , one can repeatedly split each node Xi until all nodes
satisfy the conditions above.

Another closely related graph parameter is branch-
width.

Definition 2.3. [27] A branch decomposition (T, φ) of
a graph G is characterized by a ternary tree2 T , and a
bijection φ from the leaves of T onto the edges of G.

Let e be a tree edge in T . Removing e from T
partitions into T1 and T2, and this partition induces a
partition of edges in G, called an e-separation, associ-
ated with the leaves of T1 and T2. The set of vertices
in G that are shared by both G1 and G2 is called the
middle-set of e, and the width of this separation is the
number of vertices in the middle-set.

Given a branch decomposition (T, φ), the width
of this branch decomposition is the maximum width
over all e-separations in T , and the branchwidth of G,
denoted bw(G), is the minimum width over all branch
decompositions. It is well known that the branchwidth
is closely related to the treewidth of graph [27]: bw(G) ≤
tw(G) + 1 ≤ 3

2bw(G). For planar graphs, Fomin and
Thilikos gave an upperbound on the branchwidth:

Theorem 2.1. [12] For any planar graph G, bw(G) ≤√
4.5n ≈ 2.122

√
n.

3 Clique Cover for Graphs with Bounded
Treewidth

In this section, we design a dynamic programming
algorithm for finding a minimum clique cover for a graph
G where a nice tree decomposition (X,T ) is given. Let
k denote the width of that decomposition. First, let
us define E(Xi) to be the set of edges in the subgraph
induced by the vertices in Xi. Furthermore, we let Vi
denote the union of all vertices in Xi and its descendent
nodes. Similarly, let Gi denote the subgraph of G
induced by the vertices Vi. Finally, for some v ∈ V (G),
let δ(v) denote the set of edges that are incident to v in
G.

We shall in fact design an algorithm for a general-
ization of the clique cover problem, where we are given
a subset S of edges that are already covered, i.e., our
solution need not cover S, but may use these edges in
the cliques. Then, the original clique cover problem is a

2A tree T is a ternary tree if every non-leaf node has degree 3.
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special case where S = ∅. Since our dynamic program-
ming is formulated around the decomposition tree T ,
we often speak of a subgraph Gi where a certain subset
S of edges is already covered, denoted by Gi(S). Now
we can define a cost function:

Ci(S) = minimum size of clique cover for Gi where

S is already covered.

Then, our final solution is precisely Cr(∅) where r is
the root of T . Our dynamic programming algorithm will
proceed from the leaves of T up to its root, computing,
for each node Xi, the value of Ci(S) for every possible
subset S of E(Xi). Depending on the type of node,
Ci(S) is computed differently.

Leaf node. Suppose i is a leaf node. Then, by the
definition of nice tree decomposition, |Xi| = 1, and thus
Ci(S) = 0 for all S ⊆ E(Xi), trivially.

Forget node. Suppose i is a forget node. Then, it has
one descendant Xj = Xi ∪ {v} for some unique vertex
v.

Lemma 3.1. If i is a Forget node, then for any subset
S ⊆ E(Xi), Ci(S) = Cj(S).

Proof. Note that since Xi ⊂ Xj , the corresponding
graphs Gi and Gj are the same. Furthermore, since
v is not in Xi, S ∩ δ(v) = ∅. Therefore, S ∩ E(Xi) =
S ∩ E(Xj) and we have Ci(S) = Cj(S). �

Introduce node. Suppose i is an introduce node.
Then, it has one descendant node Xj such that Xi =
Xj∪{v} for some unique vertex v. Consider an arbitrary
clique cover W for Gi(S). Since the cliques in W
can be partitioned into Qv = cliques containing v and
Qv = W − Qv, the following recurrence relation holds
for each introduce node.

Lemma 3.2. If i is an Introduce node, then for any
subset S ⊆ E(Xi):

Ci(S) = min{ |Qv|+ Cj(S ∪ E(Qv)) :

Qv is a clique cover for δ(v)− S }

Proof. Let W be a clique cover for Gi(S). We partition
the cover W = Qv ∪ Qv as defined, and consider the
edgeset in Qv. Since these edges are covered by Qv,
Qv needs only cover Gi − (S ∪ Qv). Moreover, since
the cliques in Qv do not contain v, Qv is a cover for
Gj − (S ∪Qv). Therefore, |Qv| ≥ Cj(S ∪Qv), and the
lemma follows. �

To compute Ci(S), we need to consider all possible
clique covers, Qv, for δ(v) − S. Since |Xi| ≤ k, this is

the number of ways to partition k vertices, and is given
by the kth Bell number B(n) ≤ k!2k.

Join node. Finally, suppose i is a join node. Then, it
has two children nodes j1 and j2 such that Xi = Xj1 =
Xj2 , and Gi = Gj1 ∪ Gj2 . Therefore, a clique cover
for Gi contains cliques that belong to Gj1 or Gj2 . We
need to ensure not to double count cliques that belong
in both Gj1 and Gj2 .

Lemma 3.3. Let S ⊆ E(Xi) be the set of already
covered edges, and let R = E(Xi)−S be the edges to be
covered. Then,

Ci(S) = min{ Cj1(S ∪R2) + Cj2(S ∪R1) :

∀R1 ⊆ R and R2 = R−R1}

Proof. Assuming S is already covered, let W be a
minimum clique cover for Gi(S) with cost Ci(S). By
definition, any clique that belongs to both Gj1 and Gj2
must also belong to Xi. Thus, the cliques in W can be
partitioned as W = Q1 ∪Q2 ∪Q3, where

Q1 = {q ∈ W | q ⊆ Vj1 and q 6⊆ Xi}
Q2 = {q ∈ W | q ⊆ Vj2 and q 6⊆ Xi}
Q3 = {q ∈ W | q ⊆ Xi}.

Thus, |W| = |Q1|+ |Q2|+ |Q3|. Now, the edgeset R can
be partitioned to R = R1 ∪R2 such that:

R1 = {e ∈ R | e covered by Q1 or Q3 }
R2 = {e ∈ R | e covered only by Q2 } = R−R1

By definition, Q1 ∪ Q3 needs to cover the edges in
R1. Furthermore, Q3 needs to cover the edges in
Gj1 − E(Xj1), and thus |Q1 ∪ Q3| ≥ Cj1(S ∪ R2). On
the other hand, the cliques in Q2 only need to cover
the edges in R2 together with Gj2 − E(Xj2), and thus
|Q2| ≥ Cj2(S ∪R1), and the result follows. �

Therefore, we can compute Ci(S) for any given
subset S ⊆ E(Xi). Observe that the recurrence relation
looks at all possible bipartitions of R. Since the number
of edges in E(Xi) is at most

(
k
2

)
, we need to check at

most 2(k
2) different partitions of R. Once the bipartition

of R is fixed, it takes constant time to look up the values
from Cj1 and Cj2 .

Note that, while these recurrence relations calculate
the size of clique covers, they are also constructive: a
little bookkeeping at each node will allow us to construct
the optimal cover at the root node.

3.1 Running time. For each node i ∈ I, we compute
Ci(S) for every S ⊆ E(Xi). Since tw(G) = k, each node
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contains at most k vertices. Let ρ denote the maximum
number of edges induced in any node. Then we need
to consider 2ρ cases. Then, for each fixed S ⊆ E(Xi),
we carry out one of the four recurrence relations. Leaf
nodes and Forget nodes can be computed in constant
time. An Introduce node can be computed in O(B(k)·k)
time, where B(k) is kth Bell number. Finally, a Join
node takes O(2ρ) to compute. Therefore, the dynamic
programming algorithm takes 2ρ · max{B(k) · k, 2ρ} ·
O(n) = O(4ρn) time overall. While ρ can be as large
as
(
k
2

)
in theory, this is rarely the case as shown in our

experimental tests (see Section 5, Table 1).

Theorem 3.1. There is a linear time algorithm for
computing minimum clique cover for graphs with fixed
treewidth k.

3.2 Modifications for clique partition problem.
It is straightforward to modify the above algorithm to
solve the clique partition problem: instead of assuming
that edges already covered can be re-used to form other
cliques, we simply delete those edges and solve for
remaining edgeset. If we redefine the cost function
Ci(S) to be the size of the minimum clique partition for
the graph Gi − S, the same recurrence holds for each
node type. The only difference is when, at an Introduce
node, finding a local solution for δ(v), we look for a
clique partition rather than a cover.

4 Planar Clique Cover

In this section, we study the clique cover problem
restricted to planar graphs, and present a PTAS for
planar graphs. While planar graphs are possibly the
most restricted class of interest for the clique cover
problem (the largest clique being just K4), the problem
remains NP-hard [30]. Furthermore, as treewidth is
unbounded in planar graphs [16, 26], simply applying
our algorithm from Section 3 would result in exponential
running time, and since tree decompositions do not
depend on planarity of the input graph, and it may be
difficult to specialize the algorithm to planar graphs.

Instead, we shall design an exact polynomial time
algorithm for planar graphs with bounded branchwidth.
As we shall see, the algorithm runs in O(2kn) time with
k being the branchwidth, and since bw(G) ≤

√
4.5n

when G is planar, this would be the first subexponential
algorithm for the clique cover problem on planar graphs.

Then, we will use our exact algorithm to construct
a polynomial time approximation scheme. Baker [4] has
proposed a divide-and-conquer technique to design ap-
proximation schemes for various optimization problems
on planar graphs. We will show that her technique can
be applied to the planar clique cover problem, using our

exact algorithm as a subroutine, resulting in a (1 + ε)
approximation algorithm.

4.1 Clique cover for planar graphs with
bounded branchwidth. As with its counterpart,
treewidth, it is NP-complete to determine if a graph
has a branch decomposition of width at most k in gen-
eral, but this decomposition can be found in linear time
when k is fixed. We thus assume that the input graph
G is given together with a branch decomposition (T, φ)
of width at most k. Now pick an arbitrary edge e of
T , and subdivide it to create a root node r. Then each
tree nodeX is associated with a subset of edges in E(G),
namely the leaf nodes of the subtree rooted at X. We
let E(S) denote the edges in the subgraph induced by
a subset of vertices S.

Define the middle-set of X, denoted by mid(X),
to be the middle-set of the edge between X and its
parent node. Since the root node r has no parent, set
mid(r) = ∅. Then, we create a table WX [·] indexed by
a subset F of edges as follows:

WX [F ] =minimum clique cover for edges in X

with F already covered.

Since mid(X) is a cutset in G, we can paste together
solutions from each subproblem by computing only
the entries WX [F ] where F is a subset of edges in
E(mid(x)).

Before describing the recurrence relation for this ta-
ble, we study the middle-set of three adjacent edges.
Consider the sphere-cut branch decomposition for pla-
nar graphs, as studied by Dorn et al. [11]; here, each
middle-set defines a closed curve (noose) on the planar
embedding of the input graph that intersects only the
vertices in the middle-set. LetX be a tree node with two
children nodes X1 and X2. The three edges adjacent to
X define 3 middle-sets which we denote by OP , OL, OR
for parent edge, left and right child edge, respectively.
Since OR−(OP ∪OL) = ∅ and OL−(OP ∪OR) = ∅, the
vertices of OP ∪OL ∪OR can be partitioned as follows:

• Portal vertices P = OL ∩OR ∩OP

• Intersection vertices I = OL ∩OR − P

• Symmetric Difference vertices D = OP − (P ∪ I)

Lemma 4.1. The table WX [F ] can be calculated as

WX [F ] = min{WX1 [F ∪ F2] +WX2 [F ∪ F1] :

F1 ∪ F2 is a partition of E(I ∪ P )}

Proof. For an arbitrary clique cover for X with F
already covered, consider the cliques covering the edges
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E(I ∪ P ). Observe that, by planarity of G, any clique
intersecting with I ∪ P only contains either vertices
of X1 or vertices of X2. Therefore, we can partition
the edges in E(I ∪ P ) into F1 and F2, where F1 is
to be covered by cliques in X1, and F2 is covered by
cliques in X2. For each partition, the solution from the
subproblem WX1

[F∪F2] together with the solution from
WX2

[F ∪ F1] gives the solution for WX [F ]. Since we
consider all possible partitions of E(I ∪P ), the formula
follows. �

The algorithm runs in a bottom-up manner. Ob-
serve that to compute each state F of a node, we need
to consider all bipartitions of E(I ∪ P ). Since G is pla-
nar, and I ∪P ⊆ mid(X1), |E(I ∪P )| = O(k), and thus
there are 2O(k) such partitions. Moreover, to compute
for all states F , we consider 2O(k) subsets of edges in
E(mid(X)). Altogether, the above dynamic program-
ming algorithm runs in 2O(k)O(n) time.

Lemma 4.2. There is a linear time algorithm to com-
pute a minimum clique cover for planar graphs with
bounded branchwidth.

4.2 Modifications for clique partition problem.
As with our treewidth-based algorithm, the above algo-
rithm can be easily modified to solve the clique partition
problem: rather than assuming F is already covered,
one can simply delete those edges and solve for the re-
maining edges.

4.3 Baker’s technique on planar graphs.
Baker [4] has proposed a general approach to design ap-
proximation algorithms for various NP-hard problems
on planar graphs. Here, we show how this technique,
together with our exact algorithm in Section 4.1, results
in a (1 + ε) approximation algorithm.

Baker’s technique is a divide-and-conquer approach,
where the input graph is decomposed into layers of
subgraphs defined by the distance from a chosen vertex.
Applying this technique to the planar clique cover
problem, we construct the following scheme.

1. Arbitrarily choose a vertex r of G and execute a
breadth-first search on G, starting at r.

2. Let k = d2/εe. For i = 0, 1, . . . , k − 1 and j =
0, 1, 2 . . ., let Gij denote the subgraph of G induced
by the vertices at levels jk+ i through (j+ 1)k+ i,
and compute a minimum clique cover Cij for Gij .

3. For i = 0, 1, . . . , k − 1, let Ci =
⋃
j Cij , and return

whichever of C0, . . . , Ck−1 that has the least weight.

Lemma 4.3. A solution from the above approximation
scheme has weight at most (1 + ε) OPT.

Proof. Let Q∗ denote the optimum solution, and given
some congruence class i mod k, let us assume that the
above approximation scheme divides the problem into
m pieces. Since the solution for each piece is solved
exactly, we have

|Ci| =
m∑
j=1

|Cij | ≤
m∑
j=1

|Q∗ij |,

where Q∗ij denotes the optimum solution restricted to
the graph Gij . We therefore need to compare the two
values

∑m
j=1 |Q∗ij | and |Q∗|. To compare these, consider

the number of cliques in Q∗ that contain vertices at
levels i mod k. For planar graphs, each clique belongs
to at most 2 consecutive levels. Therefore, for at least
one value of i, 0 ≤ i ≤ k, there are at most d 2k e|Q

∗|
cliques containing a vertex at level i mod k. Since these
cliques are double counted in the sum

∑m
j=1 |Q∗ij |, we

have
m∑
i=1

|Q∗i | ≤ (1 +
2

k
)|Q∗|

and it follows that |Ci| ≤ (1 + 2
k )|Q∗|. �

According to Tamaki’s theorem [29], a graph has
a branchwidth at most the radius of the face-incidence
graph3 of G. Since the face-incidence graph of the sub-
graph Gij has a bounded radius, each Gij is a planar
graph with bounded branchwidth. Therefore, our al-
gorithm from Lemma 4.2 can compute the minimum
clique cover for the subgraph in each layer.

Recall that our dynamic programming algorithm for
graphs with branchwidth ≤ k runs in time 2O(k)O(n).
Due to Theorem 2.1, directly applying this algorithm
to planar graphs gives an exact solution in time
2O(
√
n)O(n). On the other hand, the PTAS using

Baker’s technique involves decomposing the graph into
n/k layers, and solving each piece exactly in time
2O(k)O(n/k). Trying for every congruent classes be-
tween 1 and k − 1, the overall algorithm takes k · dnk e ·
2O(k)O(n/k) ≈ 2O(k)O(n

2

k ) to obtain a solution of value
at most (1 + 2

k )OPT . Therefore, while our PTAS pro-
vides an approximation with varying degree of approx-
imation ratio, if one wants to get a solution any closer
than (1 + 1√

n
)OPT , one may be better off running our

dynamic programming algorithm directly to the graph
to obtain an exact solution. This trade-off is clearly
shown empirically in Table 2.

Theorem 4.1. There is a polynomial time approxima-
tion scheme for planar clique cover.

3Given a plane-embedded graph G, the face-incidence graph

G̃ = (Ṽ , Ẽ) consists of vertices Ṽ from faces of G, and two vertices
in Ṽ are joined by an edge if and only if the corresponding faces
in G share a vertex.
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n m tw ρ tree decomp. clique cover algo. # of cliques
(hh:mm) (hh:mm)

Krogan 323 742 11 21 2:13 6:08 482
PAM 300 634 14 29 2:41 9:21 421
DM 300 794 21 43 4:13 17:47 583

Table 1: Performance of treewidth-based exact clique cover algorithm; we show the treewidth of each graph,
maximum # of edges per tree node (ρ), time taken to compute an optimal tree decomposition and a clique cover,
and size of the solution.

5 Experimental Studies

We have implemented the described algorithms and
tested them against both real biological PPI data and
simulated data4. As a comparison, we considered
Gramm et al.’s algorithm [15] for the decision problem
version of clique cover: given the size of clique cover k
as an input parameter, their algorithm works by first
applying a set of reduction rules to reduce the prob-
lem instance, and then using a search tree algorithm on
the reduced instance, in time exponential in k. While
their algorithm works well in cases where the solution
size is small, it would perform poorly against our test
data which contains several hundreds of cliques. This
is mainly because their reduction rules did not signifi-
cantly decrease the size of our input graphs (especially
biological networks): the solutions for the reduced in-
stances would still contain a large number of cliques,
resulting in inefficient running time for the search tree
algorithm. As their input parameter is the size of the
minimum clique cover, it motivates our development of
approaches using edge sparsity for these networks.

5.1 Simulated and biological networks. Each of
our algorithms was tested on both simulated and ac-
tual biological networks. First, Krogan et al. [21] ob-
tained an extensive dataset on protein interactions in
yeast. Taking the largest connected component from
the dataset, with 323 vertices and 742 edges, we formed
a model network, GKrogan. Various studies have shown
that PPI networks exhibit the properties of scale-free
networks [5]. Many generative models for scale-free net-
works have also been proposed, and we used the two
most frequently used models [5, 9] to create test graphs
for our algorithm: (1) preferential attachment model
(denoted by GPAM ), and (2) duplication model (de-
noted by GDM ). In both cases, we set the parameters of
generative models so that the resulting networks show
similar characteristics to that of real PPI data; den-

4http://www.cs.mcgill.ca/∼ethan/work/cliquecover

sity of |E| ≈ 2|V |, and degree distribution P (k) ∼ k−γ

where γ ≈ 1.7.
To investigate the behavior of our algorithms on

denser graphs, we generated a set of partial k-trees.
Recall that a k-tree is a maximal graph with treewidth
k such that no edge can be inserted without increasing
its treewidth, and a graph is a partial k-tree if it is
a subgraph of a k-tree. The partial k-trees of given
treewidth have been generated by first generating a k-
tree, and randomly removing edges to obtain desired
edge density. Since the generation process of k-trees
is similar to that of the preferential attachment model,
this allows us to create graphs with higher density than
GPAM while preserving the treewidth bound.

5.2 Performance of the treewidth and branch-
width based algorithms. Table 1 reports results ob-
tained on real and simulated biological networks. Both
Krogan’s PPI network and simulated networks exhibit
relatively low treewidths for their size. Figure 1 gives
a more comprehensive view of the running times from
empirical testing. As expected, the running time in-
creases linearly with n for graphs with fixed treewidths
(Figure 1(a)), but exponentially with treewidth k but
with fixed graph sizes (Figure 1(b)). Running times for
partial k-trees (Figures 1(c) and (d)) follow the same
trends, although they are somewhat higher due to the
higher edge density.

While our branchwidth-based exact algorithm was
designed for planar graphs, it is easy to modify the
algorithm to handle non-planar graphs with bounded
branchwidth (but at the expense of higher time com-
plexity due to non-planarity). Figure 2 shows that, in
practice, the running time of the treewidth-based algo-
rithm grows slower than that of the branchwidth-based
algorithm, allowing it to handle graphs with larger
treewidths.

5.3 Performance of PTAS for planar graphs.
To test our PTAS on planar graphs, we generated a
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Figure 1: Performance of the treewidth-based algorithm on simulated networks: (a) scale-free networks (PAM)
with fixed treewidth; (b) scale-free networks (PAM) with fixed graph size; (c) partial k-trees with fixed treewidth;
(d) partial k-trees with fixed graph size.
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Figure 2: Performance comparison of treewidth-based algorithm vs. branchwidth-based algorithm on scale-free
networks; y-axes are shown in log scale to exemplify the difference in exponents in the running time. (a) scale-free
networks with 50 vertices; (b) scale-free networks with 100 vertices; Data points with the same treewidth values
in each chart are taken from the same network.

set of random planar graphs using the simple algorithm
by Denise and Vasconcellos [10]. Then, we ran both
our exact branchwidth-based algorithm and the PTAS
with varying values of ε to explore the trade-off between
running time and quality of the solution. As shown in
Table 2, the promised approximation ratios are almost
exactly realized and substantial speed-ups are obtained
for relatively large values of ε, compared to the exact
branch-decomposition based algorithm. The running
time increases exponentially with 1/ε, and the exact
algorithm starts to become faster than the PTAS when
ε becomes sufficiently small.

ε # of cliques time (hh:mm:ss)
0.5 159 00:12:08
0.2 124 00:39:17
0.1 116 02:36:18
0.05 113 03:53:42
OPT 109 02:46:31

Table 2: Performance of PTAS for planar graph with
n = 200,m = 407, tw = 10. OPT was obtained using
the branch-decomposition based algorithm.

5.4 Analysis of the clique cover of a biolog-
ical network. When executed on the yeast protein-
protein interaction network of Krogan et al. [21], our
treewidth-based algorithm finds a clique cover that in-
cludes 93 cliques of size 5 or more. While the PPI data
may not admit a unique clique cover on the network,
we manually verified that most discovered cliques cor-
respond to known complexes, such as the RNA poly-
merase II, the RSC complex, the mediator complex, and
the 20S proteasome. In addition, three highly overlap-
ping complexes, SWR1 (a chromatin remodelling com-
plex), NuA4 (a histone acetyltransferase complex), and
INO80 (another chromatin remodelling complex) are
correctly identified, despite the fact that SWR1 and
NuA4 share three subunits (ARP4, GOD1, and YAF9)
and SWR1 and INO80 share four (ARP4, GOD1, RVB1,
RVB2). This suggests that our algorithm is capable of
identifying biologically relevant protein complexes, even
those that share a significant number of subunits.

6 Conclusions and Future Work

In this paper, we study the clique cover problem on
sparse networks as measured by treewidth and branch-
width, with an application to protein-complex discovery
in protein-protein interaction networks. We give exact
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polynomial-time algorithms for graphs with bounded
treewidth and bounded branchwidth, and build on the
latter using Baker’s technique to obtain a polynomial
time approximation scheme for planar graphs.

Our empirical studies show that the biological net-
works as well as synthetic networks with similar char-
acteristics (e.g. edge density, degree distribution) in-
deed exhibit low treewidth, and our algorithms showed
practical running times on various synthetic networks as
well as biological networks. Moreover, our branchwidth
based PTAS algorithm shows practical running time for
computing solutions close to the optimal.

In proteomics research, existing experimental meth-
ods for detecting binary interactions often suffer from
false negatives, i.e., some edges are not detected in the
experiments. Therefore, in the direction towards hy-
pergraph modelling of PPI networks, one may wish to
cover the edges with quasi-cliques: Here, the optimiza-
tion function needs to be modified slightly. One possi-
ble formulation may be to find a minimum cardinality
quasi-clique cover, where a quasi-clique is defined by
some lowerbound on the edge density. On the other
hand, there may be classes of graphs other than the
ones discussed here that admit polynomial time exact
algorithms, for example, graphs with bounded genus or
bounded degree.
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meier. “Data reduction and exact algorithms for clique
cover”. ACM Journal of Experimental Algorithmics,
13:2, 2009.

[16] Rudolf Halin. “s-functions for graphs”. Journal of
Geometry, 8:171–186, 1976. 10.1007/BF01917434.

[17] D. N. Hoover. “Complexity of graph covering problems
for graphs of low degree”. Journal of Combinatorial
Mathematics and Combinatorial Computing, 11:187–
208, 1992.

[18] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan,
and R. E. Stearns. “The complexity of planar counting
problems”. SIAM Journal on Computing, 27(4):1142–
1167 (electronic), 1998.

[19] A. D. King, N. Przulj, and I. Jurisica. “Protein com-
plex prediction via cost-based clustering”. Bioinfor-
matics (Oxford, England), 20(17):3013–3020, Novem-
ber 2004.

[20] T. Kloks. “Treewidth: Computations and Approxima-
tions (Lecture Notes in Computer Science)”. Springer,
1 edition, September 1994.

[21] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo,
A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikui-
sis, T. Punna, J. M. Peregŕın-Alvarez, M. Shales,
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