
Routing regardless of Network Stability

Bundit Laekhanukit∗ Adrian Vetta† Gordon Wilfong‡

October 24, 2013

Abstract

How effective are interdomain routing protocols, such as the Border Gateway Protocol, at
routing packets? Theoretical analyses have attempted to answer this question by ignoring the
packets and instead focusing upon protocol stability. To study stability, it suffices to model only
the control plane (which determines the routing graph) – an approach taken in the Stable Paths
Problem. To analyse packet routing requires modelling the interactions between the control
plane and the forwarding plane (which determines where packets are forwarded), and our first
contribution is to introduce such a model. We then examine the effectiveness of packet routing
in this model for the broad class next-hop preferences with filtering. Here each node v has a
filtering list D(v) consisting of nodes it does not want its packets to route through. Acceptable
paths (those that avoid nodes in the filtering list) are ranked according to the next-hop, that
is, the neighbour of v that the path begins with. On the negative side, we present a strong
inapproximability result. For filtering lists of cardinality at most one, given a network in which
an equilibrium is guaranteed to exist, it is NP-hard to approximate the maximum number of
packets that can be routed to within a factor of n1−ε, for any constant ε > 0. On the positive
side, we give algorithms to show that, in two fundamental cases, there exist activation sequences
under which every packet will route. The first case is when each node’s filtering list contains
only itself, that is, D(v) = {v}; this is the fundamental case in which a node does not want
its packets to cycle. Moreover, every packet will be routed before the control plane reaches an
equilibrium. The second case is when all the filtering lists are empty, that is, D(v) = ∅. Thus,
every packet will route even when the nodes do not care if their packets cycle! Furthermore,
under these activation sequences, every packet will route even when the control plane has no
equilibrium at all. Our positive results require the periodic application of route verification.
To our knowledge, these are the first results to guarantee the possibility that all packets get
routed without stability. These positive results are tight – for the general case of filtering lists
of cardinality one, it is not possible to ensure that every packet will eventually route.

1 Introduction

In the Stable Paths Problem (SPP) [5], we are given a directed graph G = (V,A) and a sink (or
destination) node r. Furthermore, each node v has a ranked list of some of its paths to r. The

∗School of Computer Science, McGill University. Supported by a Dr. and Mrs. Milton Leong Fellowship and by
NSERC grant 288334. Email: blaekh@cs.mcgill.ca
†Department of Mathematics and Statistics and School of Computer Science, McGill University. Supported in

part by NSERC grants 288334 and 429598. Email: vetta@math.mcgill.ca
‡Bell Laboratories. Email: gtw@research.bell-labs.com

1

lowest ranked entry in the list is the “empty path”1; paths that are not ranked are considered
unsatisfactory. This preference list is called v’s list of acceptable paths. A set of paths, one path
P(v) from each node v’s list of acceptable paths, is termed stable if

(i) they are consistent: if u ∈ P(v), then P(u) must be the subpath of P(v) beginning at u, and

(ii) they form an equilibrium: for each node v, P(v) is the path ranked highest by v of the form
vP(w) where w is a neighbour of v.

The stable paths problem asks whether a stable set of paths exists in the network. The SPP has
risen to prominence as it is viewed as a static description of the problem that the Border Gateway
Protocol (BGP) is trying dynamically to solve. BGP can be thought of as trying to find a set of
stable routes to r so that routers can use these routes to send packets to r.

There are two major drawbacks to this approach that motivate our work. First, even if a stable
solution exists, packets may not reach the sink because the corresponding stable routing tree is not
spanning. Second, what happens to the packets before the network converges (if it does at all) to
a stable solution? In particular, the main focus of our paper is to investigate packet routing under
network dynamics.

To understand the basic combinatorial model, we use to do this. Observe that each node uses it
preference list to select at most one outgoing arc. Given an initial routing graph, we will allow each
node, one at a time, to change its outgoing arc based upon its preferences and current information.
We call this process a round. During the course of a round inconsistencies may form and the
resultant new routing graph may contain cycles – packets that do not reach the sink may now
be at nodes in these cycles. At the end of the round, we assume that the nodes learn the new
routing graph (route verification) and we repeat the process. We want to know if every packet will
eventually reach the sink.

Given this brief overview, let’s elaborate on this discussion and the relationships to BGP.

(1) Even if a stable solution exists, the routing tree induced by a consistent set of paths might not
be spanning. Hence, a stable solution may not actually correspond to a functioning network
– there may be isolated nodes that cannot route packets to the sink! Disconnectivities arise
because nodes may prefer the empty-path to any of the paths offered by its neighbours; for
example, a node might not trust certain nodes to handle its packets securely or in a timely
fashion, so it may reject routes traversing such unreliable domains. This problem of non-
spanning routing trees has quite recently been studied in the context of a version of BGP
called iBGP [19]. In Section 3, we show that non-connectivity is a very serious problem (at
least, from the theoretical side) by presenting an n1−ε hardness result for the combinatorial
problem of finding a maximum cardinality stable subtree.

(2) The SPP says nothing about the dynamic behaviour of BGP. Stable routings are significant
for many practical reasons (e.g., network operators want to know the routes their packets are
taking) but, while BGP is operating at the control plane level, packets are being sent at the
forwarding plane level without waiting for stability (if, indeed, stability is ever achieved).2

Thus, it is important to study network performance in the dynamic case. For example, what
happens to the packets whilst a network is unstable?

1Clearly, the empty path is not a real path to the sink; we call it a path for clarity of exposition.
2The control plane is where BGP exchanges routing information between routers. The forwarding plane is where

routers use the routing information to forward packets towards their destinations.

2

In our model, we define a distributed protocol, inspired by BGP, that stops making changes to
the routing graph (i.e., becomes stable) if it achieves a stable solution to the underlying instance
of SPP. The current routing graph itself is determined by the control plane but the movement of
packets is determined by the forwarding plane. Thus, our distributed protocol provides a framework
under which the control and forwarding planes interact. Under this framework we analyse the
resulting trajectory of packets.

We have seen that in a stable solution, a node in the stable tree containing the sink would
have its packets route whereas an isolated node would not. For unstable networks, or for stable
networks that have not converged, things are much more complicated. Here the routes selected by
nodes are changing over time and, as we shall see, this may cause the packets to cycle. If packets
can cycle, then keeping track of them is highly non-trivial. Our main results, however, are that
for two fundamental classes of preference functions (i.e., two ways of defining acceptable paths and
their rankings) there exist activation sequences for which every packet will route. That is, there
is an execution of our distributed protocol such that every packet in the network will reach the
destination (albeit, possibly, slowly) even in instances where the network has no stable solution.3

Furthermore, when the network does have a stable solution, we are able to guarantee packet routing
even before the time when the network converges.

These positive results on the routing rate are to our knowledge, the first results to guarantee
the possibility of packet routing without stability. The results are also tight in the sense that, for
any more expressive class of preference function, our hardness results show that guaranteeing that
all packets eventually route is not possible – thus, packets must be lost.

To avoid overloading the reader with practical technicalities, we focus in the main text on the
combinatorial aspects of packet routing. We refer the interested reader to the Appendix where we
discuss more technical aspects and present a motivating sample of the vast literature on BGP. We
emphasise here, however, one key distinction between our model and BGP. Our results require the
period application of route verification (that is, the learning phase at the end of each round). Route
verification is not a standard feature of BGP.

2 The Model and Results

We represent a network by a directed graph G = (V,A) on n nodes. The destination node in the
network is denoted by a distinguished node r called a sink node. We assume that, for every node
v ∈ V , there is at least one directed path in G from v to the sink r, and that the sink r has no
outgoing arc. At any point in time t, each node v chooses at most one of its out-neighbours w as
its chosen next-hop; thus, v selects one arc (v, w) or selects none. These arcs form a routing graph
Nt, each component of which is a 1-arborescence, an in-arborescence4 T plus possibly one arc (v, w)
emanating from the root v of T ; for example, T and T ∪ {(v, w)} are both 1-arborescences. (If the
root of a component does select a neighbour, then that component contains a unique cycle.) When
the context is clear, for clarity of exposition, we abuse the term tree to mean a 1-arborescence, and
we use the term forest to mean a set of trees. A component (tree) in a routing graph is called a
sink-component if it has the sink r as a root; all other components are called non-sink components.

3Note that we are ignoring the fact that in BGP packets typically have a time-to-live attribute meaning that after
traversing a fixed number of nodes the packet will be dropped.

4An in-arborescence is a graph T such that the underlying undirected graph is a tree and every node has a unique
path to a root node.

3

Each node selects its outgoing arc according to its preference list of acceptable paths. We
examine the case where these lists can be generated using two of the most common preference
criteria in practice: next-hop preferences and filtering. For next-hop preferences, each node v ∈ V
has a ranking on its out-neighbours, nodes w such that (v, w) ∈ A. We say that w is the k-th choice
of v if w is an out-neighbour of v with the k-th rank. For k = 1, 2, . . . , n, we define a set of arcs Ak
to be such that (v, w) ∈ Ak if w is the k-th choice of v, i.e., Ak is the set of the k-th choice arcs.
Thus, A1, A2, . . . , An partition the set of arcs A, i.e., A = A1 ∪ A2 ∪ . . . ∪ An. We call the entire
graph G = (V,A) an all-choice graph. A filtering list, D(v), is a set of nodes that v never wants
its packets to route through. We allow nodes to use filters and otherwise rank routes via next-hop
preferences, namely next-hop preferences with filtering.

To be able to apply these preferences, each node v ∈ V is also associated with a path P(v),
called v’s routing path. The routing path P(v) may not be the same as an actual v, r-path in the
routing graph. We say that a routing path P(v) is consistent if P(v) is a v, r-path in the routing
graph; otherwise, we say that P(v) is inconsistent. Similarly, we say that a node v is consistent if
its routing path P(v) is consistent; otherwise, we say that v is inconsistent. A node v is clear if the
routing path P(v) 6= ∅, i.e., v believes it has a path to the sink; otherwise, v is opaque. We say that
a neighbouring node w is valid for v or is a valid choice for v if w is clear and P(w) contains no
nodes in the filtering list D(w). If w is a valid choice for v, and v prefers w to all other valid choices,
then we say that w is the best valid choice of v. A basic step in the dynamic behaviour of BGP is
that, at any time t, some subset Vt of nodes is activated; this means that every node v ∈ Vt chooses
the highest ranked acceptable path P(v) that is consistent with one of its neighbours’ routing paths
at time t− 1. The routing graph Nt consists of the first arc in each routing path at time t.

See Figure 1 for an example of how the protocol works, and how inconsistent information may
arise and cycles form in the routing graph.

Activate(a)Initial Activate(c)

P (a)= adcr

P (b)= bar

P (c)= cr

P (d)= dcr

P (a)= cdar

P (b)= abr

P (c)= abcr

P (d)= dcr

d

a

b

r

c

2 2

11

11

d

a

b

r

c

d

a

b

r

c

Figure 1: Given the initial consistent state, activate the node a and then c. The information
becomes inconsistent and a cycle forms in the routing graph.

Protocol variations result from such things as restricting Vt so that |Vt| = 1, specifying the
relative rates that nodes are chosen to be activated and allowing other computations to occur
between these basic steps. In our protocol, we assume that activation orderings are fair in that
each node activates exactly once in each time period – a round. The actual ordering, however, may
differ in each round. While our protocol is not intended to model exactly the behaviour of BGP, we
tried to let BGP inspire our choices and to capture the essential coordination problem that makes
successful dynamic routing hard. A detailed discussion on these issues and on the importance of a

4

fairness-type criteria is deferred to the Appendix.

Procedure 1 Activate(v)

Input: A node v ∈ V − {r}.
1: if v has a valid choice then
2: Choose the best valid choice w of v.
3: Change the outgoing arc of v to (v, w).
4: Update P(v) := vP(w) (the concatenation of v and P(w)).
5: else
6: Update P(v) := ∅.
7: end if

Procedure 2 Protocol(G,r,N0)

Input: A network G = (V,A), a sink node r and a routing graph N0

1: Initially, every node generates a packet.
2: for round t := 1 to . . . do
3: Generate a permutation πt of nodes in V − {r} using an external algorithm A.
4: Control Plane: Apply Activate(v) to activate each node in the order in πt. This forms a

routing graph Nt.
5: Forwarding Plane: Ask every node to forward the packets it has, and wait until every

packet is moved by at least n hops (forwarded n times) or gets to the sink.
6: Route-Verification: Every node learns which path it has in the routing graph, i.e., update

P(v) := v, r-path in Nt.
7: end for

This entire mechanism can thus be described using two algorithms as follows. Once activated,
a node v updates its routing path P(v) using the algorithm in Procedure 1. The generic protocol
is described in Procedure 2. This requires an external algorithm A which acts as a scheduler
that generates a permutation – an order in which nodes will be activated in each round. We will
assume that these permutations are independent and randomly generated. Our subsequent routing
guarantees will be derived by showing the existence of specific permutations that ensure all packets
route. These permutations are different in each of our models, which differ only in the filtering
lists. Again, we remark that our model is incorporated with a route-verification step, but this is
not a feature of BGP (see the Appendix for a discussion).

With the model defined, we examine the efficiency of packet routing for the three cases of
next-hop preferences with filtering:

• General Filtering. The general case where the filtering list D(v) of any node v can be an
arbitrary subset of nodes.

• Not me! The subcase where the filtering list of node v consists only of itself, D(v) = {v}.
Thus, a node does not want a path through itself, but otherwise has no nodes it wishes to
avoid.

• Anything Goes! The case where every filtering list is empty, D(v) = ∅. Thus a node does
not even mind if its packets cycle back through it!

5

2.1 Our Results.

We partition our analyses based upon the types of filtering lists. Our first result is a strong hardness
result presented in Section 3. Not only can it be hard to determine if every packet can be routed
but the maximum number of packets that can be routed cannot be approximated well even if the
network can reach equilibrium. Specifically,

Theorem 1. For filtering lists of cardinality at most one, it is NP-hard to approximate the maxi-
mum cardinality stable subtree to within a factor of n1−ε, for any constant ε > 0.

Corollary 2. Suppose a network eventually reaches a stable state, the protocol runs for infinitely
many rounds, and every node generates a single packet in each round. For filtering lists of cardinal-
ity at most one, it is NP-hard to approximate the maximum number of packets that can be routed
to within a factor of n1−ε, for any constant ε > 0.

However, for its natural subcase where the filtering list of a node consists only of itself (that is,
a node does not want to route via a cycle!), we obtain a positive result in Section 5.

Theorem 3. If the filtering list of each node consists only of itself, then there exists an activation
sequence that produce a stable spanning tree in n rounds. Moreover, every packet will be routed in
n
2 rounds, that is, before stability is obtained!

Interestingly, we can route every packet in the case D(v) = ∅ for all v ∈ V ; see Section 4. Thus,
even if nodes do not care whether their packets cycle, the packets still get through!

Theorem 4. If the filtering list is empty, then there exists an activation sequence that routes every
packet in 3 rounds, even when the network has no equilibrium.

Theorems 3 and 4 are the first theoretical results showing that packet routing can be done in
the absence of stability. For example, every packet will be routed even in the presence of dispute
wheels [5]. Indeed, packets will be routed even if some nodes never actually have paths to the sink.
These results imply that if the permutations for each round are drawn independently and uniformly
at random, then every packet will eventually route with probability one. It is a nice open problem
to obtain high probability guarantees for fast packet routing under such an assumption.

3 General Filtering.

Here we consider hardness results for packet routing with general filtering lists. As discussed,
traditionally the theory community has focused upon the stability of N – the routing graph is
stable if every node is selecting their best valid neighbour (and is consistent). For example, there
are numerous intractability results regarding whether a network has an equilibrium; e.g., see [6, 2].
However, notice that the routing graph may be stable even if it is not spanning! There may be
singleton nodes that prefer to stay disconnected rather than take any of the offered routes. Thus,
regardless of issues such as existence and convergence, an equilibrium may not even route the
packets. This can be particularly problematic when the nodes use filters. Consider our problem of
maximising the number of nodes that can route packets successfully. We show that this cannot be
approximated to within a factor of n1−ε, for any ε > 0 unless P = NP. The proof is based solely
upon a control plane hardness result: it is NP-hard to approximate the maximum cardinality stable

6

tree to within a factor of n1−ε. Thus, even if equilibria exist, it is hard to determine if there is one
in which the sink-component (the component of N containing the sink) is large.

Formally, in the maximum cardinality stable tree problem, we are given a directed graph G =
(V,E) and a sink node r; each node v ∈ V has a ranking of its neighbours and has a filtering list
D(v). Given a tree T ⊆ G (note that by “tree”, we mean an in-arborescence), we say that a node
v is valid for a node u if (u, v) ∈ E and a v, r-path in T does not contain any node of D(v). We
say that T is stable if for every arc, say (u, v), of T we have that v is valid for u, and u prefers
v to any of its neighbours in G that are valid for u (w.r.t. T). Our goal is to find a stable tree
(sink-component) with the maximum number of nodes. We will show that even when |D(v)| = 1
for all nodes v ∈ V , the maximum-size stable tree problem cannot be approximated to within a
factor of n1−ε, for any constant ε > 0, unless P = NP.

The proof is based on the hardness of 3SAT [10]: given a CNF-formula on N variables and
M clauses, it is NP-hard to determine whether there is an assignment satisfying all the clauses.
Take an instance of 3SAT with N variables, x1, x2, . . . , xN and M clauses C1, C2, . . . , CM . We now
create a network G = (V,A) using the following gadgets:

• Variable-Gadget: For each variable xi, we have a gadget H(xi) with four nodes ai, u
T
i , u

F
i , bi.

The nodes uTi and uFi have first-choice arcs (uTi , ai), (uFi , ai) and second-choice arcs (uTi , bi),
(uFi , bi). The node ai has two arcs (ai, u

T
i) and (ai, u

F
i); the ranking of these arcs can be

arbitrary. Each node in this gadget has itself in the filtering list, i.e., D(v) = {v} for all nodes
v in H(xi).

• Clause-Gadget: For each clause Cj with three variables xi(1), xi(2), xi(3), we have a gadget
Q(Cj). The gadget Q(Cj) has five nodes sj , q1,j , q2,j , q3,j , tj . The nodes q1,j , q2,j , q3,j have
first-choice arcs (q1,j , tj), (q2,j , tj), (q3,j , tj). The node sj has three arcs (sj , q1,j), (sj , q2,j),
(sj , q3,j); the ranking of these arcs can be arbitrary, so we may assume that (sj , qz,j) is a
zth-choice arc. Define the filtering list of sj and tj as D(sj) = {d0} and D(tj) = {d0}. (The
node d0 will be defined later.) For z = 1, 2, 3, let uTi(z) and uFi(z) be nodes in the corresponding

Variable-Gadget H(xi(z)). The node qz,j has a filtering list D(qz,j) = {uTi(z)}, if assigning

xi(z) = False satisfies the clause Cj ; otherwise, D(qz,j) = {uFi(z)}.

To build G, we first add a sink node r and a dummy “sink” d0. We then connect d0 to r by a
first-choice arc (d0, r). We number the Variable-Gadgets and Clause-Gadgets in any order. Then
we add a first-choice arc from the node a1 of the first Variable-Gadget H(x1) to the sink r. For
i = 2, 3, . . . , N , we add a first-choice arc (bi, ai−1) joining gadgets H(xi−1) and H(xi). We join the
last Variable-Gadget H(xN) and the first Clause-Gadget Q(C1) by a first-choice arc (t1, aN). For
j = 2, 3, . . . ,M , we add a first-choice arc (tj , sj−1) joining gadgets Q(Cj−1) and Q(Cj). This forms
a line of gadgets. Then, for each node qz,j of each Clause-Gadget Q(Cj), we add a second-choice
arc (qz,j , d0) joining qz,j to the dummy sink d0. Finally, we add L padding nodes d1, d2, . . . , dL
and join each node di, for i = 1, 2, . . . , L, to the last Clause-Gadget Q(CM) by a first-choice arc
(di, sM); the filtering list of each node di is D(di) = {d0}, for all i = 0, 1, . . . , L. The parameter L
can be any positive integer depending on a given parameter. Observe that the number of nodes in
the graph G is 4N + 5M + L+ 2, and |D(v)| = 1 for all nodes v of G. The reduction is illustrated
in Figure 2.

The correctness of the reduction is proven in the next theorem.

7

Q(C
j
)

s
i

d
0

r

u
i
T

u
i
Fa

i
b

i

q
1, j

t
i

q
2, j

q
3, j

H(x
i
)d

1
,d
2
,...,d

L

Figure 2: The hardness construction.

Theorem 5. For any constant ε > 0, given an instance of the maximum-size stable tree problems
with a directed graph G on n nodes and filtering lists of cardinality |D(v)| = 1 for all nodes v, it
is NP-hard to distinguish between the following two cases of the maximum cardinality stable tree
problem.

• Yes-Instance: The graph G has a stable tree spanning all the nodes.

• No-Instance: The graph G has no stable tree spanning nε nodes.

Proof. We apply the above reduction from 3SAT with a parameter L = J1/ε − J , where J =
4N + 5M + 2. Thus, the graph G has n = J1/ε nodes and has nε = J non-padding nodes.

First, we show that there is a one-to-one mapping between choices of each Variable-Gadget
H(xi) and an assignment of xi. Consider any Variable-Gadget H(xi). To connect to the next
gadget, nodes uTi and uFi of H(xi) must choose at least one second-choice arc. However, in a stable
tree, they cannot choose both second-choice arcs (uTi , bi) and (uFi , bi); otherwise, uTi or uFi would
prefer to choose the node ai. Thus, the gadget G(xi) must choose either arcs

(1) (uTi , bi), (u
F
i , ai), (ai, u

T
i) or (2) (uFi , bi), (u

T
i , ai), (ai, u

F
i).

These two cases correspond to the assignments xi = True and xi = False, respectively. Thus, there
is a one-to-one mapping between the choices of gadget H(xi) in the stable tree and the assignment
of xi. We refer to each of these two alternatives as an assignment of xi.

Now, we prove the correctness of the reduction.

Yes-Instance: Suppose there is an assignment satisfying all the clauses. We will construct a
stable spanning tree T corresponding to such an assignment. Within Variable-Gadget, we select
arcs in accordance with the assignment as detailed above. We also choose the arc (d0, r) and all
the horizontal arcs connecting adjacent gadgets in the line (or from the first Variable-Gadget to
the sink r). For each Clause-Gadget Q(Cj) and each z = 1, 2, 3, we choose the first-choice arc
(qz,j , tj) if the assignment to xi(z) satisfies Cj ; otherwise, we choose the second-choice arc (qz,j , d0).
For the node sj of Q(Cj), we choose an arc (sj , qz,j), where z is the smallest number such that
the assignment to xi(z) satisfies Cj (i.e., qz,j chooses tj); since the given assignment satisfies all the
clauses, sj has at least one valid choice. Also, sj makes the best valid choice (and thus is stable)
because D(sj) = {d0}. Now, we have that the node sM of the last Clause-Gadget Q(Cj) has a
path P(sM) to the sink r that does not contain the dummy sink d0. Thus, every padding node can
choose sM and, therefore, is in the stable tree T . This implies that T spans all the nodes.

No-Instance: Suppose there is no assignment satisfying all the clauses. Let T be any stable tree
of G. As in the previous discussion, the choices of nodes in Variable-Gadgets correspond to the

8

assignment of variables of 3SAT.
Consider any Clause-Gadget Q(CM). Since D(sM) = {d0}, the node sM of Q(CM) has a path

to the sink r only if

(1) a tM , r-path P(tM) in T does not contain the dummy sink d0, and

(2) one of q1,M , q2,M , q3,M chooses tM .

We claim that these two conditions hold only if T corresponds to an assignment satisfying Cj .
Suppose the first condition holds. Then P(tM) has to visit either vFi or vTi of every Variable-Gadget
H(xi), depending on the assignment of xi. Thus, by the construction of D(qz,M), tM is valid for
qz,M only if the assignment to xi(z) satisfies CM . Since there is no assignment satisfying all the
clauses, a node s` of some Clause-Gadget Q(C`) is not in T . This means that nodes in the remaining
Clause-Gadget have to use the dummy sink d0 to connect to the sink r. Thus, the node sM of
the last Clause-Gadget Q(CM) is not in T and neither are any of the padding nodes d1, d2, . . . , dL.
Therefore, the size of T is at most J = nε, proving the theorem.

Corollary 2 then follows. Moreover, it also follows that, from the perspective of the nodes, it
is NP-hard to determine whether adding an extra node to its filtering list can lead to solutions
where none of its packets ever route. In other words, it cannot avoid using an intermediate node
it dislikes! More precisely, consider the following filtering problem. For a specific node v ∈ V −{r}
and a subset of nodes Sv ⊆ V − {v, r}, can we add a node from Sv to the filtering list D(v) so
that v can still connect to the sink at equilibrium? Using the construction above, it can be shown
that this problem is NP-complete. In particular, we can choose v = aN and Sv = {uTN , uFN}; the
problem is then equivalent to 3SAT.

4 Filtering: Anything-Goes!

Now we present our positive results. In this section, we consider the case where every node
has an empty filtering list. This case is conceptually simpler than the case of non-empty filter-
ing lists, but there are still many technical difficulties involved in tracking packets when nodes
become mistaken in their connectivity assessments. In this case, networks with no equilibrium
can exist. Figure 3 presents such an example. Moreover, in this example, fair activation se-
quences exist where the node v will never be in the sink component. For example, suppose we
start with the routing graph N0 = {(x, r), (y, r), (u, x), (w, y)} and then repeatedly activate nodes
according to the permutation (v, u, w, x, y). The routing graph at the end of Round 1 is then
N1 = {(x, r), (y, r), (u,w), (w, u), (v, w)}, and at the end of Round 2 is N2 = N0. Thus, the routing
graph never stabilises and the node v is never in the sink component. Despite this, every packet
will route in two rounds! To see this, observe that a packet that originates at v will be stuck in
the cycle {u,w} at the end of Round 1. But, both of these nodes are in the sink-component at the
end of Round 2, so the packet will then reach the sink. This example nicely illustrates the need to
track packets if we want to understand the efficacy of BGP-like protocols. This can be achieved for
this class of preference functions. Specifically, we present a fair activation sequence of three rounds
that routes every packet, even when there is no equilibrium.

Observe that when filtering lists are empty, a node v only needs to know whether its neighbour
u has a path to the sink, as v will never discount a path because it contains a node it dislikes.
Thus, we can view each node as having two states: clear or opaque. A node is clear if it is in the

9

w

x

u

r

v

y

1 1

1

1
1

22

All-choice graph

w

x

u

r

v

y

Begin

w

x

u

r

v

y

End

Round 1

w

x

u

r

v

y

Begin

w

x

u

r

v

y

End

Round 2

Figure 3: A network with no stable spanning tree. The top-left graph is the all-choice graph
where arc numbers indicate rankings (e.g., the number 2 on the arc (u, x) means that x is the
second choice of u). Two rounds using the activation sequence (v, u, w, x, y) are shown on the right,
along with the location of a packet originating at v.

sink-component (the nomenclature derives from the fact that a packet at such a node will then
reach the sink – that is, “clear”); otherwise, a node is opaque. Of course, as nodes update their
chosen next-hop over time, they may be mistaken in their beliefs (inconsistent) as the routing graph
changes. In other words, some clear nodes may not have “real” paths to the sink. After the learning
step at the end of the round, these clear-opaque states become correct again.

In this section, we show there is an activation sequence which routes every packet in three
rounds. For each round, the activation permutation produces a red-blue colouring of the nodes.
At the end of the round, the red nodes will be forced to lie in the sink-component and the blue
nodes forced to lie in non-sink components. Intuitively, therefore, to route the packets we desire a
permutation (activation sequence) that produces as many red nodes as possible. The problem with
this basic approach is that any un-routed packet will now be located in a cycle formed by the blue
nodes, that is, the non-sink components. But, if we are not careful the locations of such cycles are
essentially arbitrary and, consequently, keeping track of the packets becomes extremely difficult.

To rectify this, we will design the permutation judiciously so that we are able to restrict the
collection of cycles in which a packet can become stuck – these cycles are the collection of first-class
cycles (defined below). Given this structure, we will be able to keep track of the packets and prove

10

that three rounds are sufficient to route each packet.

4.1 A First Class Network.

As discussed, our algorithm will keep track of the packets by maintaining a relationship between
the current routing graph and the network formed by the first-choice arcs, called the first class
network. We say that an arc (u, v) of G is a first-choice arc if v is the most preferred neighbour of
u. We denote the first class network by F = (V,A1), where A1 is the set of the first-choice arcs.
As in a routing graph N , every node in F has one outgoing arc. Thus, every component of F is
a 1-arborescence, a tree-like structure with either a cycle or a single node as a root. We denote
the components of F by F0, F1, . . . , Fk, where F0 is the component containing the sink r. Each
Fj has a unique cycle Cj , called a first class cycle. We may assume the first class cycle in F0 is a
self-loop at the sink r; we may also assume that F0 is the singleton node r because we can easily
make nodes in F0 choose their first-choices by activating them in increasing distance from the sink.
(Furthermore, after doing so F0 becomes a stable subgraph.) Thus, in what follows, we need not
take F0 into account; so, when referring to first-class components, we will mean F1, F2, . . . , Fk. The
routing graph at the beginning of round t is denoted by Nt. We denote by Kt and Ot the set of
clear and the set of opaque nodes at the start of round t.

We now describe how to route every packet in three rounds. The proof has two parts: a co-
ordination phase and a routing phase. In the first phase, in Section 4.2, we give a coordination
procedure that generates a permutation producing a red-blue colouring of the nodes that is “coor-
dinated” with the first-class network. In the second phase, in Section 4.3, we show that two further
applications of the coordination procedure will route every packet.

4.2 The Coordination Phase.

The algorithm Coordinate(K) presented in Procedure 3 constructs a red-blue colouring of the nodes.
(Throughout the paper, we assume that all network information and all preferences lists are part
of the input to our procedures.) Furthermore, this partition (R,B) of V (where v ∈ R means that
v is coloured red and v ∈ B means that v is coloured blue) also has the following properties:

(i) The colouring is coordinated: for each Fj , every node in Fj has the same colour. That is, the
first choice of any node v ∈ R is also in R and the first choice of any node u ∈ B is also in B.

(ii) If the first class cycle Cj of Fj contains a clear node, then every node in Fj must be coloured
blue.

Some remarks are in order here. First, nodes are clear if they are in the sink component at the
start of the current round (end of the previous round). Otherwise, they are opaque. Nodes will be
red if they are in the sink component at the end of the current round (start of the next round).
Otherwise, they will be blue. Second, as discussed, Properties (i) and (ii) will be useful to us as they
will allow us to (approximately) keep track of the packets. Now, observe that the initial partition
(R0, B0) from Line 1 of Coordinate(K) does satisfy (i) and (ii). However, the reason we cannot
just stop there is that we cannot create from K an activation sequence (permutation) that will
produce the partition (R0, B0). Thus, the remainder of the procedure Coordinate(K) is designed
to construct a partition (Rq

∗
, Bq∗) for which we can construct a feasible activation sequence.

11

Procedure 3 Coordinate(K)

Input: A set of clear nodes K.
Output: A partition (R,B) of V .

1: Let B0 :=
⋃
i≥1:V (Ci)∩K6=∅ V (Fi) be the set of nodes contained in an F -component whose first

class cycle Ci has a clear node, and let R0 = V −B0.
2: Initialise q := 0.
3: repeat {Outer Iteration}
4: Initialise ` := 0, Rq0 = {r} and U q0 := V − (Bq ∪ {r}) = Rq − {r}.
5: while ∃ a node uq` ∈ U

q
` that prefers some node τ q` in Rq` to every node in Bq ∪ (U q` ∩K) do

{Inner Iteration}
6: Rq`+1 := Rq` ∪ {u

q
`}.

7: U q`+1 := U q` − {u
q
`}.

8: Update ` := `+ 1.
9: end while

10: Define `q∗ := `.
11: Let Bq+1 := Bq ∪ U q

`q∗
and Rq+1 := Rq

`q∗
.

12: Update q := q + 1.
13: until Bq = Bq−1.
14: Define q∗ := q;
15: return (Rq∗ , Bq∗).

Second, observe that Coordinate(K) contains many loops. Thus, we essentially derive (Rq
∗
, Bq∗)

via q∗ permutations. Of course, we wish to generate a single activation sequence π from (Rq
∗
, Bq∗).

We will show how such a permutation π can be obtained in Section 4.2.4.

4.2.1 An Example Run.

An example run of the procedure Coordinate is shown in Figures 4 and 5.
Figure 4 illustrates a run of the inner iteration. In the figure, the green arcs are the arcs

in the routing graph; the green nodes are are the nodes that were clear at the beginning of the
round, that is, the nodes in K. The solid arcs are first-choice arcs, and the dashed arcs are second-
choice arcs. The inner loop starts by defining sets B0 and R0

0 = {r}. Then the procedure grows
R0

1,R0
2,R0

3, . . . ,R0
13, and the loop terminates with R0

13 since, at this point, no node prefers a node
in R0

13 to every node in B0 ∪ (K ∩ U0
13). Thus, the procedure stops and constructs B1 and R1.

Figure 5 illustrates the run of the outer iteration. The outer iteration constructs partitions
(B0, R0), (B1, R1), (B2, R2), . . . where with each iteration the red set Rq decreases its size. The
loop then terminates when R3 remains the same set as R2. Observe that the outer iteration
terminates with the partition (B3, R3) of V .

4.2.2 Key Facts.

We begin by proving a collection of facts about the ordered-pairs (R1, B1), (R2, B2), . . . , (Rq∗ , Bq∗)
constructed in the procedure Coordinate(K).

Fact 6. (Bq, U q` ,R
q
`) is a partition of V , for all q = 0, 1, . . . , q∗ and all ` = 0, 1 . . . , `q∗.

12

R 0
1

R 0
2

R 0
3

R 0
0

r

B0
B1

R1 = R 0
13

u0
1

u0
2

u0
3

u0
4

u0
5

u0
6

u0
7

u0
8

u0
9

u0
10

u0
11

u0
12

u0
13

Figure 4: An example of a run of the inner iteration of Coordinate.

r

B0

B1

R1B2=B3

R2 = R3

R0

Figure 5: An example of a run of the outer iteration of Coordinate.

Proof. Observe that the procedure maintains the invariant Rq` ∪ U
q
` = V − Bq and maintains

Rq` ∩ U
q
` = ∅, for all q, ` ≥ 0. Therefore, any node must be exclusively in Bq or Rq` or U q` .

Fact 7. (Rq, Bq) is a partition of V , for all q = 0, 1, . . . , q∗.

13

Proof. We have that (B0, R0) is a partition of V by definition. Now, from Line 11, we have
Bq+1 = Bq ∪ U q

`q∗
and Rq+1 = Rq

`q∗
. Thus, (Bq+1, Rq+1) is a partition of V by Fact 6.

Fact 8. B0 ⊂ B1 ⊂ . . . ⊂ Bq∗−1 = Bq∗.

Proof. Since Bq+1 = Bq∪U q
`q∗

, for q = 0, 1, . . . , q∗−1, we have by construction that Bq ⊆ Bq+1. The

terminating condition of the outer iteration is Bq = Bq+1. This implies that these containments
are strict for q < q∗ − 1 and tight for q = q∗ − 1.

Fact 9. R0 ⊃ R1 ⊃ . . . ⊃ Rq∗−1 = Rq∗.

Proof. This is an immediate consequence of Fact 7 and Fact 8.

Fact 10. The graph Hq = (Rq+1, E′), where E′ = {(uq` , τ
q
`) : 0 ≤ ` ≤ `q∗}, is an arborescence rooted

at r.

Proof. Consider the outer iteration q and the node uq` ∈ Rq+1 − {r} (where 0 ≤ ` ≤ `q∗). Then
uq` ∈ R

q+1 − {r} was added to Rq`+1 during the inner iteration ` because it preferred a node τ q` in
Rq` = {r, uq0, . . . , u

q
`−1} to every node in Bq ∪ (U q` ∩ K) ⊇ Bq. Thus, every node in Hq − {r} has

out-degree one and is connected by a directed path to the sink r. Therefore, Hq is an arborescence
on the node set Rq+1 = Rq

`q∗
.

Fact 11. Hq∗−1 is an arborescence rooted at r and uq∗−1
` prefers τ q∗−1

` to any node in B.

Proof. That Hq∗−1 is an arborescence follows from Fact 10 applied to the final outer iteration q∗−1.
By construction, uq∗−1

` prefers τ q∗−1
` to any node in Bq∗−1 ∪ (U q∗−1

` ∩ K) ⊇ Bq∗−1 = B.

4.2.3 Structural Lemmas.

With these facts in hand, we prove the following three structural lemmas.

Lemma 12 (Monotonicity Lemma). Let (R,B) and (R̃, B̃) be generated by Coordinate(K) and
Coordinate(K̃), respectively. If K̃ ⊆ K, then B̃ ⊆ B.

Proof. We show, by induction, that B̃q ⊆ Bq for all q ≥ 0. For the base case, we have

B̃0 :=
⋃

i≥1:V (Ci)∩K̃6=∅

V (Fi) ⊆
⋃

i≥1:V (Ci)∩K6=∅

V (Fi) = B0

Now assume B̃q ⊆ Bq and consider the qth outer iteration of Coordinate(K). By Fact 10, Hq is an
arborescence on Rq+1 and each node uq` prefers τ q` to every node in Bq ∪ (U q` ∩ K). Let uq` be the

first node we add to Rq` but not to R̃q` . Thus, at this iteration, we have Rq` = R̃q` . Now observe
that

Bq ∪ (U q` ∩ K) = (Bq ∪ U q`) ∩ (Bq ∪ K)

= (V −Rq`) ∩ (Bq ∪ K)

⊇ (V − R̃q`) ∩ (B̃q ∪ K̃)

= (B̃q ∪ Ũ q`) ∩ (B̃q ∪ K̃)

= B̃q ∪ (Ũ q` ∩ K̃)

14

Here the containment follows by induction, the assumption that K̃ ⊆ K, and the fact that Rq` = R̃q` .
But, this implies that uq` can be added to R̃qk, for any k ≥ `. Thus, uq` ∈ R̃

q+1 and so Rq+1 ⊆ R̃q+1.

Therefore, by Fact 7, we have that B̃q+1 ⊆ Bq+1.

Lemma 13 (Coordination Lemma). The partition (R,B) generated by Coordinate(K) is a coordi-
nated colouring.

Proof. We know (R,B) is a partition by Fact 7. Thus, it suffices to show that each Fi is either
all red or all blue. If not, there is an Fi containing both red and blue nodes. Then there are two
alternatives.

(i) There is a red node v ∈ Fi whose first choice is a blue node w. Observe that w ∈ Bq∗−1

because of the terminating condition Bq = Bq+1. But then, at the inner iteration q∗, we are not
allowed to add v to Rq∗` , a contradiction.

(ii) There is a blue node v ∈ Fi whose first choice is a red node w. We may assume that
v ∈ B −B0 because B0 consists only of first-class components that are monochromatic blue. So, v
must have been added to Bq+1 in some outer iteration q ≥ 0. By Fact 9, R ⊆ Rq+1 and therefore
w ∈ Rq+1. Thus, in the outer iteration q, there is an inner iteration ` in which w = uq` is added
to Rq` . But then as v has its first choice in Rq` , it too will be added to Rq+1 rather than Bq+1, a
contradiction.

Lemma 14 (Regeneration Lemma). If (R,B) is generated by Coordinate(K), then it is also gen-
erated by Coordinate(B).

Proof. When we run Coordinate(K), we terminate with Bq∗−1 = Bq∗ = B. By Lemma 13, we know
that (R,B) is a coordinated colouring. Thus, B consists of a collection of first-class components.
So, if we run Coordinate(K̃) with K̃ = B, then we initiate

B̃0 :=
⋃

i≥1:V (Ci)∩K̃6=∅

V (Fi) =
⋃

i≥1:V (Ci)∩B 6=∅

V (Fi) = B

We now claim that, in the first outer iteration of Coordinate(K̃ = B), every node of V − B will
be added to R̃1. Thus, B̃1 = B̃0 and the procedure will terminate immediately with the partition
(R,B).

Consider the set R̃1
` for some inner iteration `. We know that Ũ1

` = V − R̃1
` ⊆ R because

B̃0 = B. If Ũ1
` = ∅, then we are done as B̃1 = B̃0 = B. So, we assume that Ũ1

` 6= ∅. By Fact 10,

Coordinate(K) terminated with the property that the arcs (uq∗−1
` , τ q∗−1

`) form an arborescence on

R rooted at the sink. Note that r 6∈ Ũ1
` . So, Ũ1

` ⊂ R. Consequently, there must be one node

u1
` ∈ Ũ1

` that has a neighbour τ1
` ∈ R̃1

` that u1
` prefers to every node in B̃0 (as B̃0 = B). This

means that every node in V − B is added to R̃1 as the inner iteration will not stop until Ũ1
` is

empty. Therefore, Coordinate(B) generates (R,B) as required.

4.2.4 Constructing an Activation Sequence.

We now construct an activation sequence π that will produce the coordinated partition (R,B).
The sequence will be defined by breaking the nodes into three groups.

The first group of nodes in the activation sequence π will be the nodes in B0. Recall B0 =⋃
i≥1:Ci∩K6=∅ V (Fi), the components Fi whose first class cycles contain at least one clear node.

15

Within this group we order the nodes as follows. For each Fi with V (Fi) ⊆ B0, take a clear node
wi ∈ Ci ∩ K. Then activate the nodes of Fi (except wi) in increasing order of distance from wi in
Fi and, after that, activate wi.

The second group of nodes in the activation sequence π will be the nodes in B −B0. We order
the nodes of B−B0 in a greedy manner. Specifically, suppose we have a partial activation ordering
where X is the subset of nodes in B − B0 that have not yet been activated. Then the next node
in the ordering is a node x ∈ X which has a neighbour µx ∈ (B −X) ∪ (K ∩X) that x prefers to
every node in R; we prove in Lemma 15 below that such a node x always exists.

Finally, the third group of nodes in the activation sequence π will be the nodes in R. We
activate the nodes in R in the same order as they were added to R = Rq∗−1 in the outer iteration
q∗ − 1 of Coordinate.

As stated, to show that this activation sequence π is well-defined we require the following lemma.

Lemma 15. For any non-empty subset X ⊆ B−B0, there is a node x ∈ X that prefers some node
µx ∈ (B −X) ∪ (X ∩ K) to every node in R = V −B.

Proof. Let X be a subset of B −B0. Consider an outer iteration q, where q is the largest number
such that Bq ⊆ V −X; such a q exists because B0 ⊆ V −X. Therefore, X ∩ (Bq+1−Bq) = X ∩U q

`q∗
is non-empty. By the terminating condition, Line 5, of the inner iteration, for each node u ∈ U q

`q∗
either (a) u has a neighbour µu in Bq ∪ (U q

`q∗
∩ K) that it prefers to every node in Rq

`q∗
= Rq+1, or

(b) u has no neighbour in Rq
`q∗

= Rq+1.

Suppose there is a node x ∈ X ∩ U`q∗ of the former type (a). So, x prefers µx to every node
in Rq

`q∗
⊇ R. There are two possibilities. First, assume µx ∈ Bq ⊂ B. Then, since Bq ⊆ V − X,

we have µx ∈ B − X ⊆ (B − X) ∪ (X ∩ K), as desired. Second, assume µx ∈ U q
`q∗
∩ K. Now

U q
`q∗

= Bq+1 −Bq ⊆ B and thus µx ∈ B ∩ K ⊆ (B −X) ∪ (X ∩ K), as desired.

On the other hand, assume that every node v ∈ X ∩ U q
`q∗

is of the latter type (b). Such a node

v has no neighbour in Rq
`q∗

= Rq+1. Since r ∈ R and every node has a path to r in the all-choice

graph, every path P from v to r must contain a node of Bq+1−X. Hence, there must exist a node
x ∈ X ∩U q

`q∗
that has a neighbour µx ∈ Bq+1−X ⊆ B−X. Since x has no neighbour in Rq+1 ⊇ R,

it certainly prefers µx to all nodes in R.

Now, as desired, we obtain a feasible activation sequence π that produces the coordinated
partition (R = Rq

∗
, B = Bq∗) from K.

Lemma 16. Given a partition (R,B) from Coordinate(K), the activation sequence π associated
with (R,B) induces a sink-component on R and non-sink-components on B.

Proof. First, let’s verify that each node in R ends up in the sink-component under the activation
sequence π. This follows immediately from Fact 11 since uq

∗−1
` ∈ R will choose to connect to τ q

∗−1
` .

Next, let’s show that the nodes in B0 do not end up in the sink-component. So, take a first class
component Fi with V (Fi) ⊆ B0. Recall we activate the nodes of Fi − {wi} in increasing distance
from wi, where wi ∈ Ci is initially clear. Thus, each node in Fi − wi will have its first-choice
available for selection (clear) when it is activated. Thus, each node in Fi − wi will select its first
choice. Then so will wi, when it is activated last. Consequently, Fi will be a subgraph of the
non-sink-components of the routing graph under the activation sequence π.

16

Finally, consider the nodes in B − B0. Upon their activation under π all the nodes in B0 are
activated and are currently clear. Let X ⊆ B − B0 be a set of non-activated nodes as in the
construction of the permutation π. If X = B − B0, then by Lemma 15, there is a node x ∈ X
whose most preferred valid choice is µx in B−X = B0. This node µx is a clear node in a non-sink-
component and so x attaches to this non-sink-component. Inductively, assume that all nodes in
B −X are clear. Then, Lemma 15 implies that there is a node x ∈ X that has its most preferred
valid choice in B −X, and x must attach to a non-sink component.

4.3 The Routing Phase.

Now, we apply the coordination algorithm three times to route all the packets. For each round
t = 1, 2, 3, we denote by Kt and (R[t], B[t]) the set of clear nodes at the beginning of round t and the
red-blue partition generated by calling Coordinate(Kt). Thus, if we consider only the generation of
partitions, then our algorithm can be described as

(R[t], B[t]) := Coordinate(Kt), for t = 1, 2, 3

Before proceeding to the main theorem, we remark that any for a cycle C to form in the routing
graph at round t+1 it must contain at least one clear node from Kt. In fact, we will now show that
if (K, V −K) is a coordinated colouring then the only cycles that can be formed are the first-class
cycles. This fact implies that if a packet gets stuck, then it must be stuck in a first class cycle –
this, in turn, will allow us to (approximately) keep track of where any lost packet must be.

Formally, we have the following property of each permutation π generated by our algorithm.

Lemma 17. Suppose the routing graph is coordinated, i.e., the set of clear nodes K at the be-
ginning of the round forms a coordinated colouring (K, V − K). Then, if (R,B) is generated by
Coordinate(K), any cycle in the routing graph N (formed by the corresponding activation sequence
π) is a first-class cycle in K.

Proof. Since (K, V − K) is coordinated, we initialise B0 = K in Coordinate(K). By the proof of
Lemma 16, under the activation sequence π we have that each Fi in B0 forms a component in the
routing graph N . Thus, (i) every first class cycle Ci contained in K must appear in the routing
graph N , and (ii) any other cycle in N , if one exists, must be disjoint from B0. But, Lemma 16
also tells us the red nodes R form the sink-component N . Thus, (iii) any other cycle in N , if one
exists, must also be disjoint from R.

So, suppose that B − B0 induces a cycle C in N . By Lemma 16, the nodes of B − B0 are
in non-sink components. Note that, because (K, V − K) is a coordinated colouring, all nodes in
B−B0 are opaque at the beginning of the round. Now let v be the first node of C that is activated
by π. So, at the time v is activated, all the nodes of C are opaque and thus cannot be chosen by
v, a contradiction.

To show every packet routes, it suffices to consider only the red-blue partitions generated from
the coordinate algorithm. We will now prove the main theorem of this section.

Theorem 18. In three rounds, every packet routes.

Proof. Let’s carefully examine where the packets are after each of the three rounds.
• Round 1: (R[1], B[1]) := Coordinate(K1).

17

r
Round 1 B1 R1

r
Round 2 B2 R2

r
Round 3 B3 R3

rInitial

Figure 6: The illustration of the proof of Theorem 18. In the first two rounds, the packet ends up
in a non-sink component. In the third round, it is in the sink-component.

The first round t = 1 is simply the coordination phase. Any packet that does not route
is now stuck in B[1] by Lemma 16.

• Round 2: (R[2], B[2]) := Coordinate(R[1]).

By Lemma 16, K2 = R[1]. Now (K2, V −K2) = (R[1], B[1]) is coordinated by Lemma 13.
Since (K2, V −K2) forms a coordinated colouring, we initialise B[2]0 = K2 = R[1]. Thus,

18

Round 1

B1 R1

Round 2

R1 B2

Round 3

B3 R3

B1
0

B2
0

B3
0 R1

Figure 7:

because B[2]0 ⊆ B[2], we have R[1] ⊆ B[2]. Therefore, by Fact 7, R[2] ⊆ B[1].

Next, since (R[1], B[1]) is coordinated, Lemma 17 implies that any packet that does not
route is now stuck in R[1].

• Round 3: (R[3], B[3]) := Coordinate(R[2]).

By the Regeneration Lemma (Lemma 14), (R[1], B[1]) is generated both by Coordinate(K1)
and Coordinate(B[1]).

By Lemma 16, K3 = R[2]. We have seen R[2] ⊆ B[1]. Therefore, by the Monotonic-
ity Lemma (Lemma 12), Coordinate(K3) generates a smaller (or equal) blue set than
Coordinate(B[1]). The latter generates the blue set B[1] itself. Thus, B[3] ⊆ B[1] and,
by Fact 7, R[1] ⊆ R[3].

Therefore, because every packet that does not route in Round 2 is in R[1], any such
packet is now in the sink-component R[3] and is routed successfully.

This completes the proof.

Figure 6 illustrates this proof for our running example. Note that, in general, we will have
R1 ⊂ R3; an abstract illustration of that more standard type is shown in Figure 7.

19

5 Filtering: Not-Me!

So, even if no attempt to deter the formation of cycles is encoded into the preference lists every
packet will route. In practice, the preference lists are designed to discourage cycles forming in
the routing graph of a network. To achieve this, loop-detection is implemented in the BGP-4
protocol [17]. The “Not-Me!” filtering encodes loop-detection in the BGP-4 protocol simply by
having a filtering list D(v) = {v}, for every node v. For this class of preference function, we again
show that every packet will route. Recall, this is in contrast to Theorem 5, which says that it is
NP-hard to determine whether we can route every packet for general filtering lists of cardinality
one.

Clearly, when filtering lists are non-empty, we have an additional difficulty: even if w is the most
preferred choice of v and w has a non-empty routing path P , v still may not be able to choose w
because P contains a node on v’s filter list (in this case, v itself). This can cause the routing graph
to evolve in ways that are very difficult to keep track of. Thus, the key idea is to design activation
sequences that manipulate the routing graph in a precise and minor fashion in each round. To do
this, we search for a spanning tree with a Strong Stability Property.

5.1 Strong Stability

Recall the definition of a stable spanning tree.

Definition 19 (Stability). A (consistent) spanning tree S is stable if and only if each node v ∈ V
prefers its parent p(v) in S to any non-descendant.

Our goal here is to give a constructive way to obtain a stable spanning tree S over n rounds
(interestingly, we will prove that all of the packets will actually route before stability is obtained).
To show this, we will maintain a stronger stability property, and to define this strengthening we
will need the following definitions. Given a graph H and nodes U ⊆ V , let H[U] = {(u, v) : u, v ∈
U, (u, v) ∈ H} be the subgraph of H induced by U . We denote by H+[U] = {(u, v) : u ∈ U, (u, v) ∈
R}, the subgraph of arcs of H induced by U plus all the arcs leaving U . Given a set of nodes
Φ ⊆ V , the S[Φ]-subtree of v is the maximal subtree rooted at v of the forest S[Φ].

v
w

r

x y

s

t

Figure 8: Maximal S[Φ]-subtrees.

This concept is illustrated in Figure 8. There is a spanning tree S and a subset of nodes Φ
coloured in yellow. The dashed lines encompass maximal S[Φ]-subtrees. An important observation

20

is that the roots of two disjoint maximal S[Φ]-subtrees may form an ancestor-descendent pair. For
example, for the maximal subtrees {w, v, x, y} and {s, t} we have that w is an ancestor of s.

With this concept at hand, we may now define strong stability.

Definition 20 (Strong Stability). A (consistent) spanning tree S is strongly stable on Φ ⊆ V if
and only if each node v ∈ Φ prefers its parent p(v) in S to every node outside the S[Φ]-subtree
rooted at v.

To illustrate this concept, consider again Figure 8 and suppose that the spanning tree S is
strongly stable on Φ. Then w must prefer r = p(w) to every node in V −{v, x, y}; similarly, v must
prefer w = p(v) to every node in V − {x, y}.

Strong stability is indeed a strengthening of stability. To see this, note that if S is strongly
stable on Φ = V (or on Φ = V − {r}), then S is a stable tree. This observation leads to the basic
approach used by our algorithm. A stable tree will route every packet and to find a stable tree
it suffices to exhibit a set of fair activation sequences that allow for strong stability on a growing
set of nodes Φ1 ⊂ Φ2 ⊂ · · · ⊂ Φn = V . (In fact, our analysis will actually show that every packet
routes before stability is guaranteed.)

Before formally describing the algorithm, let’s understand, at a high level, why strong stability is
required during the intermediary stages rather than just the stability property on nodes in Φt. The
algorithm will target a specific stable spanning tree S (it is easy to find such a tree in polynomial
time). Specifically, it will find activation sequences π1, π2, . . . , πn such that in round t every node
v ∈ Φt makes the same choice as in S. Furthermore, since we will have Φt ⊂ Φt+1, the choice of
each node in Φt will become permanent after round t.

However, stability is insufficient to make this permanence property hold. The problem is that
the stability property is with respect to the entire subtree rooted at a node v. Since such subtrees
may contain nodes outside Φt, we cannot ensure these subtrees grow with each round. Some
descendant w of v in S that lies outside Φt might become valid for v, and this then means that v
can now choose w if v prefers w over its parent p(v) in S. So, we lose the control over choices of
nodes in Φt. For a concrete example, consider the tree S in Figure 9. If the tree is stable, then we

x

y

v

r

b

a

u w

x

y

v

r

b

a

u w

c d c d

Figure 9: The figure illustrates a tree with strong stability on {v, u}. The node v prefers y to
a, b, c, d, w, x (but not u). So, even if w changes its parent to x, v still has y as its best-choice.

21

know that v prefers y to {r, a, b, x}. Assume we are in round t, say, and consider the node w /∈ Φt.
Since we only have stability on the nodes in Φt, it is possible that w will now change its parent
from v to x. But, if it does so, the subtree rooted at v will then be reduced in size. Furthermore, w
is now a valid choice for v as it lies outside of v’s subtree. Therefore, if v prefers w (or a descendent
of w if one exits) to p(v) = y, then the stability property for v becomes violated. In contrast,
suppose that S is strongly stable on Φt. Then the subtree of Φt rooted at v is just {v, u}. Hence,
we know that v prefers y to {r, a, b, c, d, w, x}. Thus, strong stability property for v will hold even
if w changes its parent. Therefore, strong stability will ensure that the choices of nodes in Φt can
be maintained and the maximal S[Φt]-subtrees can only grow.

Since in each round we can make the strong stability property span at least one additional
node, it follows that after n rounds we have a stable tree and every packet will route. We remark
that our procedure actually guarantees a stronger property: if in some round we cannot route all
the packets, then the strong stability property spans at least two additional nodes. Thus, in 1

2n
rounds, every packet will route, but we need n rounds to obtain guarantee stability.

5.2 Finding a Strongly Stable Tree

We now formally implement the algorithm outlined above. Again, Ot and Kt denote the set of
opaque and clear nodes, respectively, at the beginning of round t. It turns out to be fairly easy to
obtain the strong stability property on the opaque nodes, that is, on the set Ot. Hence, in each
round, we grow Φt by ensuring the strong stability of Ot and adding Ot to Φt+1. (In fact, we also
add to Φt+1 an additional node for which we can also guarantee the strong stability property.) The
problem is that the resulting tree may not be a spanning tree. If it is spanning, then all the packets
will route as this tree contains the sink.

Therefore, we need a method that allows us to expand a non-spanning tree to a spanning tree
whilst maintaining strong stability. With this aim, we introduce a notion of a skeleton.

Definition 21 (Skeleton). A spanning tree S is a skeleton of a (non-spanning) tree T on Φ if:
• T ⊆ S, and
• For every (maximal) subtree F ⊆ S[Φ], either S+[V (F)] ⊆ T or V (T) ∩ V (F) = ∅.

See Figure 10 for an example of a skeleton. We are now ready to present a subroutine for
finding a spanning tree with the strong stability property on a set of nodes. Specifically, the input
of this algorithm (see Procedure 4) is a sink-component Tin and a spanning tree Sin with the strong
stability property on a given set of nodes Φ. The algorithm expands the strong stability property
to also hold on O, the set of nodes not in the sink-component Tin.

Before proving the correctness of the procedure FindStable(Tin, Sin, Φ), we prove some basic
facts.

Lemma 22 (Union Lemma). Let S be a spanning tree that is strongly stable on A ⊆ V and also
on B ⊆ V . Then S is strongly stable on Q = A ∪B.

Proof. Without loss of generality, take a node v ∈ A ⊆ Q. Let FA and FQ be the (maximal)
S[A]-subtree and S[Q]-subtree of v, respectively. Then V (FA) ⊆ V (FQ) because A ⊆ Q. By the
strong stability property of S on A, we have that v prefers its parent w in S to any other node in
V − V (FA). But, V − V (FQ) ⊆ V − V (FA). It follows that S is strongly stable on Q = A∪B.

The next lemma proves an important property of a skeleton of a tree T on a set of nodes Φ.

22

r

Figure 10: A skeleton S of a (non-spanning tree) tree T on Φ. The black arcs denote arcs of the
tree T (which are also arcs of S); the grey arcs are arcs of S that do not belong to T . The yellow
nodes denote the set Φ. Each subtree of S[Φ] is either contained in T or is disjoint from T .

Lemma 23 (Skeleton Lemma). Let T be any tree. Let S be a spanning tree that is strongly stable
on a set of nodes Φ and is a skeleton of T on Φ. Let O = V − V (T). Then, for any spanning tree
T ′ such that T ⊆ T ′, the tree T ′ is strongly stable on Φ−O.

Proof. Consider any node v ∈ Φ − O. Let Fv be the S[Φ]-subtree of v. By the definition of
skeleton, for any (maximal) subtree F ⊆ S[Φ], either (i) S+[V (F)] ⊆ T or (ii) V (F) ∩ V (T) = ∅.
Since v ∈ V (T)∩Φ, it must be that S+[V (Fv)] ⊆ T ⊆ T ′. Thus, V (Fv) ⊆ Φ−O as V (T) = V −O.
Therefore, Fv is also the S[Φ − O]-subtree of v. By the strong stability property of S on Φ, we
know that v prefers its parent w in S to any node in V − V (Fv). So, S has the strong stability
property on Φ−O.

The next lemma shows the correctness of the procedure FindStable(Tin, Sin,Φ).

Lemma 24. The procedure FindStable(Tin, Sin,Φ) outputs a spanning tree Sout with the strong
stability property on Φ ∪ O where O = V − V (Tin).

Proof. To begin, we show that Sout is a spanning tree throughout the procedure. Initially Sout =
Tin ∪ S+

in[O]. Therefore, Sout contains every node since O = V − V (Tin). Let’s see that Sout is
also connected. As Sin is a spanning tree, we have that each component F of S+

in[O] is a tree
(arborescence). Furthermore, as the sink r is not in O, there is exactly one arc in S+

in[O] leaving
F (from its root) and entering V (Tin). Thus, Sout = Tin ∪ S+

in[O] (after Line 2 of FindStable) is a
spanning tree.

Now consider how Sout changes during the loop phase of the procedure. No node in V − O is
considered during this phase, so Sout never contains any arc leaving V − O and entering O. As a
result, the Sout[O]-subtree of v (chosen in Line 5 of FindStable) coincides exactly with the set of all
descendants of v in Sout. Hence, in Line 6 of FindStable, node v never selects a descendant node
to be w. So, we can safely replace the arc (v, y) ∈ Sout by the arc (v, w) without creating a cycle.
This shows that Sout is always a spanning tree.

Next, we show that Sout has the strong stability property both on Φ − O and on O. By
Lemma 22, this will imply that Sout is strongly stable on Φ ∪ O. Now, Sin is strongly stable on
Φ and is a skeleton of Tin on Φ. Furthermore, Tin ⊆ Sout because, by construction, only outgoing

23

Procedure 4 FindStable(Tin, Sin, Φ)

Input: A sink-component Tin and a spanning tree Sin such that
(1) The tree Sin has the strong stability property on Φ, and
(2) Sin is a skeleton of Tin on Φ.

Output: A stable spanning tree Sout with the strong stability property on Φ ∪ O, where O =
V − V (Tin).

1: Let O = V − V (Tin) be the set of nodes not in the sink component Tin.
2: Initialise Sout := Tin ∪ S+

in[O].
3: Initialise C1 := Sout[O].
4: for iteration t := 1 to |O| do
5: Pick an arbitrary leaf v of Ct.
6: Pick a node w ∈ V (Sout) such that (1) w is not in a descendant of v in Sout and (2) v prefers

w to any other node not its descendants in Sout.
7: Replace the arc (v, y) in Sout by the arc (v, w).
8: Update Ct+1 := Ct − {v}.
9: end for

10: return Sout.

arcs of Sout[O] are changed in the for-loop, and O = V − V (Tin). Thus, applying Lemma 23, we
have that Sout is strongly stable on Φ−O. It only remains to show that Sout is strongly stable on
O. To achieve this, we show by induction that Sout is strongly stable on Lt = O − V (Ct) in each
iteration t. (Note that, on termination, Lt = O.) This is true for t = 1 as L1 = ∅. Now, consider
iteration t > 1, and assume that strong stability holds on Lt−1. Observe that no node u ∈ O−Lt−1

has a parent x ∈ Lt−1; otherwise, x would have not been added to Lt−1. Since v is a leaf of Ct, all
the nodes in the Sout[O]-subtree of v must be in Lt−1. Because nodes in Lt−1 cannot change their
parents after this time, every descendant of v in O will remain a descendant of v. Consequently, v
prefers w to any other non-descendant in Sout throughout the rest of the procedure. Thus, Sout is
strongly stable on Lt.

5.3 Routing Every Packet in n Rounds.

We are now ready to present an algorithm that routes every packet in n rounds (recall that each
round consists of a single fair-activation sequence). In addition to the procedure FindStable, two
procedures (namely, Procedures 5 and 6) based upon a breath-first-search (BFS) algorithm are our
basic building blocks for generating an activation sequence. Given a spanning tree F and a set
of nodes U ⊆ V , the procedure BFS(U,F) activates the nodes of U in breadth-first-search (BFS)
order. That is, the nodes of U are activated in increasing order of distance to the sink r in F .

Procedure 5 BFS(U,F)

Input: A set U ⊆ V and a spanning tree F .
1: Let v1, v2, . . . , vq be nodes in U −{r} sorted in increasing order of distance to the root r of F .
2: for i := 1 to q do
3: Activate vi.
4: end for

24

Similarly, the procedure reverse-BFS(U,F) activates the nodes of U in breadth-first-search
(BFS) reverse-order.

Procedure 6 reverse-BFS(U,F)

Input: A set U ⊆ V and a spanning tree F .
1: Let v1, v2, . . . , vq be nodes in U −{r} sorted in increasing order of distance to the root r of F .
2: for i := q to 1 do
3: Activate vi.
4: end for

Over the course of these n rounds, the main algorithm (Procedure 7) utilises these three proce-
dures on the following two classes of nodes.

(1) The set of nodes that have been clear in every round up to time t, denoted by ∆t ⊆
⋂t
i=1Ki.

(2) The complement of ∆t, which is the set of nodes that have been opaque at least once by time t
plus nodes on which the strong stability hold, denoted by Φt ⊇

⋃t
i=1Oi.

We remark that, to be precise, in each round, we also move one node from ∆t to Φt, but this
is only to make the routing graph become stable faster.

Procedure 7 Fair-Stabilise()

1: Initialise Ŝ0 := an arbitrary spanning tree, ∆̂0 := V and Φ̂0 := ∅.
2: for round t := 1 to n do
3: Let Tt be the sink-component at the beginning of round t.
4: Let Ot = V − V (Tt) be the set of opaque nodes at the beginning of round t.
5: Apply FindStable(Tt, Ŝt−1, Φ̂t−1) to compute a spanning tree St.
6: Update Φt := Φ̂t−1 ∪ Ot and ∆t := V − Φt.
7: Activate BFS(Φt, St).
8: Denote the new routing graph by NΦt .
9: if ∆t 6= ∅ then

10: Activate reverse-BFS(∆t, St).
11: Denote the new routing graph by N∆t .
12: Pick a node vt that is the first node activated by reverse-BFS(∆t, St).
13: Construct a graph Ŝt from St by replacing the arc (vt, p(vt) in St by (vt, wt) the arc chosen

by vt in the routing graph N∆t .
14: Update Φ̂t := Φt ∪ {vt} and ∆̂t := ∆t − {vt}.
15: else
16: Exit the loop.
17: end if
18: end for

Observe that Procedure 7 is clearly fair because ∆t and Φt partition the set of nodes. The basic
intuition behind the method is that if we can make our routing graph Tt+1 look like the spanning
tree St, then every packet will route. Typically, any activation sequence that attempts to do this,
though, will induce inconsistencies. This, in turn, will force nodes to go opaque. But, it turns out

25

that we can make those nodes in Φt choose arcs in accordance with St via the use of BFS(Φt, St).
(It is not at all obvious that this can be done because nodes in Φt may actually be clear, that is,
they need not be in Ot.)

Then the question becomes how do we keep track of the packets. The key point is that nodes
in Φt choose arcs in accordance with the spanning tree St. Therefore, since Φ1 ⊂ Φ2 ⊂ Φ3 ⊂ · · ·
and the containments are strict, we will eventually have Φt = V , and our routing graph will be a
spanning tree. Thus, every packet routes! Moreover, the strong stability property of St on Φt = V
also implies that the final routing graph is a stable spanning tree.

The following lemmas present the key properties we need to prove all this.

Lemma 25. In Fair-Stabilise, assuming that FindStable is called with a valid input, we have that
NΦt = St and that every node is consistent in the network NΦt.

Proof. Line 5 of Fair-Stabilise calls the Procedure FindStable. Thus, we know that St is a spanning
tree that is strongly stable on Φt and that St[V −Ot] = Tt.

Initially, the routing graph consists of the sink-component Tt and a set Ot = V − V (Tt) of
isolated nodes. To obtain NΦt , we only activate the nodes in Φt. It then suffices to show, by
induction on the order of activation within BFS(Φt, St), that every node v ∈ Φt will (i) choose its
parent p(v) in St as its next hop and (ii) become consistent (i.e., v has a “real” path as its chosen
route).

For the base case, consider the first node v activated by BFS(Φt, St). We will show that p(v) is
the best valid choice of x.

First, suppose that p(v) ∈ Tt. Thus, p(v) is clear and is available to be selected by v. By
the strong stability property of St on Φt, we know that v prefers p(v) to any node outside the
St[Φt]-subtree of v, say Fv. Now, suppose that there is a node w ∈ Fv that is a valid choice and is
preferred by v over p(v). If w is valid, then it is clear, that is, w ∈ Tt, and it does not contain v in
its chosen route P(w). If w ∈ Tt, then it is consistent, but then v is an ancestor of w in Tt. Thus,
the consistency of w implies that P(w) does contain v. So, w is not a valid choice. Thus, v does
select p(v). Moreover, after this selection, v is also consistent because Tt is consistent.

Second, suppose p(v) /∈ Tt. Then pv ∈ Ot. But, Ot ⊆ Φt; this contradicts the fact that v was
the first node activated.

For the inductive step, assume that every node activated prior to v ∈ Φt chooses its parent in
St and becomes consistent. First, if p(v) ∈ Tt, then we apply the same argument as above. Second,
suppose p(v) /∈ Tt. Then p(v) ∈ Ot ⊆ Φt, so it has already been activated. Thus, p(v) is now
clear. Again, by the strong stability property of St on Φt, we know that v prefers p(v) to any node
outside the St[Φt]-subtree of v, say Fv. Because p(v) 6∈ Tt, we know that v 6∈ Tt. Therefore, no
node of Fv is in Tt. As a consequence, by the activation ordering, every node in Fv is still opaque.
Thus, v does select p(v) and becomes consistent. This proves that NΦt = St and that every node
is consistent in NΦt .

Lemma 26. At the end of round t of Fair-Stabilise, we have

(a) The spanning tree Ŝt is strongly stable on Φ̂t.

(b) Ŝ+
t [Φ̂t] is contained in the routing graph at the end of round.

Proof. We prove the lemma by induction on t. The base case t = 0 is trivial because Φ̂0 = ∅. Now
assume that the statements hold up to round t − 1 for some t > 0. Our proof is in two parts.

26

First, we prove (a) and (b) hold for the spanning tree St with respect to Φt. Second, we show both
properties are maintained after vt changes its parent and is added to Φt; that is, both (a) and (b)
hold for Ŝt with respect to Φ̂t.
• The properties hold for St with respect to Φt.

By Lemma 24, FindStable(Tt, Ŝt−1, Φ̂t−1) builds a spanning tree St that is strongly stable on Φ̂t.
Thus, Property (a) does hold provided the inputs to FindStable were valid. To be valid, we require
that (i) Ŝt−1 is strongly stable on Φ̂t−1 and (ii) Ŝt−1 is a skeleton of Tt on Φ̂t−1. The first fact (i)
follows immediately from the induction hypothesis. The second fact (ii) also follows by induction
as Property (b) is clearly a stronger property than the skeleton property. Thus, (a) holds.

Given the inputs were feasible, we obtain from Lemma 25 that NΦt = St. After this, before the
end of the round, the node activations are via reverse-BFS(∆t, St). Thus, the nodes in Φt = V −∆t

maintain their selection until the end of the round. So, S+
t [Φt] is in the routing graph and (b)

holds.
• The properties hold for Ŝt with respect to Φ̂t.

To create Ŝt from St, observe that we replace (vt, p(vt)) by (vt, wt). By Lemma 25, the network
NΦt was consistent. Thus, wt is not a descendant of vt in St and, therefore, Ŝt is indeed a spanning
tree.

Now Φ̂t = Φt ∪ {vt}. Since vt selects wt, we have that Ŝ+
t [Φ̂t] is in the routing graph and (b)

holds.
It remains to show (a). By the choice of vt (in Line 10) of Fair-Stabilise, we know that every

descendant of vt in NΦt is in Φt. Thus, strong stability for the node vt is achieved by the choice
of wt. So, let’s verify that the strong stability condition holds for any other node y in Φ̂t, that is,
for each node in Φ̂t − {vt} = Φt. Now vt ∈ ∆t and, hence, it is not contained in the Ŝt[Φt]-subtree
for y. Thus, when we add vt to Φ̂t the resulting Ŝt[Φ̂t]-subtree for y cannot be smaller that the
corresponding Ŝt[Φt]-subtree. Thus, the strong stability is now easier to satisfy for y and so it must
still apply. Property (a) then holds.

Theorem 27. The algorithm produces a stable tree after n rounds.

Proof. By the construction in Line 14 of Fair-Stabilise, we have |Φ̂t+1| ≥ |Φ̂t| + 1, for t ≥ 0.
Lemma 26 then guarantees that the final routing network is stable.

Lemma 28. If at least one packet does not route in round t, then |Φ̂t+1| ≥ |Φ̂t|+ 2.

Proof. If Φ̂t = V − {r}, then by Lemma 26, we have Ŝ+
t [Φ̂t] = Ŝt. Thus, Lemma 26 implies that

N∆t = Ŝt is a stable spanning tree and every packets will route. Consequently, if at least one packet
does not route, then Φ̂t ⊂ V − {r}.

We want to show that in round t+ 1 at least one node y is added to Φ̂t+1 in addition to vt+1. It
suffices to show that there is a node y ∈ Ot+1− Φ̂t. Now Ot+1 is non-empty, otherwise every packet
routed. Thus, the routing graph N∆t (at the end of round t, before the learning phase) contains a
cycle C. By Lemma 26, Ŝ+

t [Φ̂t] is contained in N∆t . The subgraph N+
∆t

[Φ̂t] is thus a forest because

N+
∆t

[Φ̂t] = Ŝ+
t [Φ̂t] and Ŝt is a tree. So, at least one node y of C is not in Φ̂t.

It is immediate from Lemma 28 that we can route every packet in bn/2c rounds, and that the
network becomes stable in n rounds. Moreover, we can deduce a stronger failure guarantee. We
say that round t is an imperfect round if we cannot route every packet. Then there can be at most
bn/2c imperfect rounds (note that these may not be consecutive rounds) even if the routing graph
is not yet stable.

27

Theorem 29. There is an activation sequence that routes every packet in bn/2c rounds, gives a
stable spanning tree in n rounds, and guarantees that there are at most bn/2c imperfect rounds.

Acknowledgements. We thank Michael Schapira and Sharon Goldberg for interesting discussions
on this topic.

References

[1] Thomas Erlebach, Alexander Hall, Alessandro Panconesi, and Danica Vukadinovic. Cuts and
disjoint paths in the valley-free model. Internet Mathematics, 3(3):333–359, 2007. 31

[2] Alex Fabrikant and Christos H. Papadimitriou. The complexity of game dynamics: BGP oscil-
lations, sink equilibria, and beyond. In Proceedings of the 19th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 844–853, 2008. 6

[3] Alex Fabrikant, Umar Syed, and Jennifer Rexford. There’s something about MRAI: Timing
diversity can exponentially worsen BGP convergence. In Proceedings of the 30th IEEE In-
ternational Conference on Computer Communications (INFOCOM), pages 2975–2983, 2011.
30

[4] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination.
IEEE/ACM Transactions on Networking, 9(6):681–692, 2001. 30

[5] Timothy Griffin, F. Bruce Shepherd, and Gordon T. Wilfong. The stable paths problem and
interdomain routing. IEEE/ACM Transactions on Networking, 10(2):232–243, 2002. 1, 6, 29,
30

[6] Timothy Griffin and Gordon T. Wilfong. An analysis of BGP convergence properties. In
Proceedings of the ACM SIGCOMM 1999 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM), pages 277–288, 1999. 6,
29

[7] Timothy G. Griffin and Brian J. Premore. An experimental analysis of BGP convergence time.
In Proceedings of the 9th International Conference on Network Protocols (ICNP), pages 53–61,
2001. 30

[8] John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas E. Anderson, and Arun
Venkataramani. Consensus routing: The internet as a distributed system. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design & Implementation (NSDI), pages
351–364, 2008. 31

[9] Howard J. Karloff. On the convergence time of a path-vector protocol. In Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 605–614, 2004.
30

[10] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972. 7

28

[11] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M. Maggs. R-BGP: Staying
connected in a connected world. In Proceedings of the 4th Symposium on Networked Systems
Design and Implementation (NSDI), 2007. 30

[12] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed internet routing
convergence. IEEE/ACM Transactions on Networking, 9(3):293–306, 2001. 30

[13] Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games. SIAM
Journal on Computing, 40(6):1892–1912, 2011. 31

[14] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H. Katz. Towards an accurate
AS-level traceroute tool. In Proceedings of the ACM SIGCOMM 2003 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM),
pages 365–378, 2003. 31

[15] Dan Pei, Matt Azuma, Daniel Massey, and Lixia Zhang. BGP-RCN: improving BGP conver-
gence through root cause notification. Computer Networks, 48(2):175–194, 2005. 30

[16] Michael Schapira, Yaping Zhu, and Jennifer Rexford. Putting BGP on the right path: a case
for next-hop routing. In Proceedings of the 9th ACM Workshop on Hot Topics in Networks
(HotNets), page 3, 2010. 30, 31

[17] John W. Stewart, III. BGP4: Inter-Domain Routing in the Internet. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998. 20, 29

[18] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route oscillations in
inter-domain routing. Computer Networks, 32(1):1–16, 2000. 29

[19] Stefano Vissicchio, Luca Cittadini, Laurent Vanbever, and Olivier Bonaventure. iBGP decep-
tions: More sessions, fewer routes. In Proceedings of the 31st IEEE International Conference
on Computer Communications (INFOCOM), pages 2122–2130, 2012. 2

Appendix: Interdomain Routing and Model Technicalities.

The Internet is a union of subnetworks called domains or Autonomous Systems (ASes). The inter-
domain routing protocol used in the Internet today is called the Border Gateway Protocol (BGP),
and it works as follows [17]. For destination r and router v, each neighbouring router of v announces
to v the route to r that it has chosen and from amongst these announced routes, v chooses the
route P(v) that it ranks highest. The router v then in turn announces to its neighbouring routers
its routing path P(v). This process continues until an equilibrium is reached in which each router
has chosen a route and for each router v, no neighbour of v announces a route that v would rank
higher than its current routing path. The ranking of routes at a router depends on a number of
route attributes such as which neighbour announced the route, how long the route is, and which
domains the route traverses. In fact, the ranking of routes at v is a function of v’s traffic engineering
goals as well as the Service Level Agreements (SLAs), that is, the economic contracts v has made
with its neighbours.

It is well known that BGP can be thought of as a game [5] and that BGP as a game may
have no Nash equilibrium [18, 6]. There is now a vast literature studying the conditions under

29

which BGP will or will not have an equilibrium (for example [5, 4]). It has been shown that in a
BGP instance, the absence of a structure known as a dispute wheel implies that the BGP instance
will have a unique equilibrium [5]. There have been a number of papers analysing the worst-case
convergence time of BGP instances having no dispute wheel [9, 3, 16]. There have also been many
experimental papers measuring BGP convergence times [12, 7] and papers offering modifications
to BGP with the goal of speeding up convergence [15, 11].

However, BGP convergence is only a step towards the ultimate goal of successfully delivering
packets to the destination. In fact, routers perform operations simultaneously on two basic levels:
(1) on the control plane (i.e., where BGP exchanges routing information with other routers as
described above) and (2) on the forwarding plane where routers use the routing information from
BGP to forward packets to neighbouring routers towards the packets’ ultimate destinations. That
is, packets are being forwarded during the time that the control plane is attempting to settle on an
equilibrium.

Recall our model in Section 2. We base our idealised routing protocols on BGP and two
particularly important attributes that a router uses to rank its available routes. Firstly, a router
might not trust certain domains to handle its packets securely or in a timely fashion, so it may
reject routes traversing such unreliable domains. This motivates a (no-go) filtering, which will
filter out any route that goes through an undesirable domain (i.e., a domain on the router’s no-go
filtering list). Secondly, it has been argued that perhaps the most important attribute in how a
router v ranks routes is the neighbour of v announcing the route to v [16]. That is, one can think
of each router ordering its neighbours and ranking any route from a lower ordered router over any
route from a higher ordered router. This is called next-hop routing. Thus, in our protocols, a node
ranks routes by first filtering out any route that goes through nodes on its filtering list and then
choosing from amongst the remaining routes the one announced by the lowest ordered neighbour
(next-hop preference with filtering).

As discussed, to analyse stability, it suffices to consider only the control plane. But, to under-
stand packet routing, we need to understand the interaction between the forwarding and control
planes. Thus, we need to incorporate the actions of the forwarding plane into the standard model
of the control plane [5]. To do so, some assumptions must be made, particularly concerning the
synchronisation between the planes. In setting up a model for a practical problem, it is impor-
tant to examine how the modelling assumptions relate to reality. So, here we briefly address some
technical aspects:

• Synchronisation of the Planes. Observe that, in our model, the control plane and the
forwarding plane operate at a similar speed. Given fair activation sequences (see below),
this assumption is the worst case in that it maximises the rate at which inconsistencies are
produced between the nodes routing paths. In practice, updates in the control plane are much
slower than the rate of packet transfer.

• Packet Cycling. When a packet gets stuck in a cycle, we will assume that, at the start of
the next round, an adversary can position the packet at whichever node in the cycle they
wish.

• Fair Activation Sequences. We insist that activation sequences in the control plane are fair
in that all nodes update their routes at a similar rate. Clearly, the use of permutations ensures
fairness. From the theoretical point of view, fairness is important as it avoids artificially

30

routing packets by the use of unnatural and pathological activation sequences. For example,
it prohibits the use of activation sequences that are biased towards nodes in regions where
disconnectivities arise and attempts to fix this by “freezing” other nodes until consistency is
obtained. Moreover, in practice, routers timings in the control plane are similar.

• Routing in Rounds. The use of rounds (defined by permutations) for routing is not vital
and is used for clarity of exposition and to emphasise fairness. Also, packet forwarding is
clearly not delayed until the end of a “round” in practice but, again, this is also not needed
for the model. The assumption is made as it clarifies the arguments needed in the analyses.
For example, forwarding at the end of a round can be shown to be equivalent to forwarding
continuously throughout the round with the planes in sync; that is, packets are forwarded
immediately and, within a round, the routing path at a node is updated just before the first
packet a node sees is about to leave it.

• Route-Verification. Route-verification at the end of the round is our one non-worst case
assumption and is not a standard aspect of BGP, albeit one that can be incorporated in a
fairly simple fashion by tools such as traceroute or an AS-level traceroute tool such as that
described by Mao et al. [14]. Route-verification is the focus of the influential paper of John et
al. [8] on consensus routing. It is also used in the theory literature on incentives under BGP
[13]. Due to the manipulative power provided by unfair activation sequences, it is not hard to
simplify our algorithms and omit the route-verification step given the use of unfair activation
sequences; see also [16]. It remains an interesting open problem to obtain consistency using
fair sequences without route-verification.

• Filtering. In this paper, we assume that each node can apply what is known as import
filtering – that is, not accepting certain routes from its neighbours. This implicitly assumes
that each node announces its routing path to all of its neighbours. In reality, each node may
choose to apply export filtering – that is, it may announce any particular route to only a
subset of its neighbours (e.g., in order to assure “valley-free routing” [1]).

Export filtering can be incorporated into our model by allowing for neighbour specific import
filtering rules, where a node v can have a filtering list D(v, w) for each neighbour w. Of
course, our lower bounds would still hold for this more general model, but it would allow for
more special cases to explore.

31

	Introduction
	The Model and Results
	Our Results.

	General Filtering.
	Filtering: Anything-Goes!
	A First Class Network.
	The Coordination Phase.
	An Example Run.
	Key Facts.
	Structural Lemmas.
	Constructing an Activation Sequence.

	The Routing Phase.

	Filtering: Not-Me!
	Strong Stability
	Finding a Strongly Stable Tree
	Routing Every Packet in n Rounds.

