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Abstract. We consider the complexity of decision making with regards
to predatory pricing in multimarket oligopoly models. Specifically, we
present multimarket extensions of the classical single-market models of
Bertrand, Cournot and Stackelberg, and introduce the War Chest Mini-
mization Problem. This is the natural problem of deciding whether a firm
has a sufficiently large war chest to win a price war. On the negative side
we show that, even with complete information, it is hard to obtain any
multiplicative approximation guarantee for this problem. Moreover, these
hardness results hold even in the simple case of linear demand, price, and
cost functions. On the other hand, we give algorithms with arbitrarily
small additive approximation guarantees for the Bertrand and Stackel-
berg multimarket models with linear demand, price, and cost functions.
Furthermore, in the absence of fixed costs, this problem is solvable in
polynomial time in all our models.

1 Introduction

This paper concerns price wars and predatory pricing in markets. We focus
on multiple markets (or a single segmentable market) as it allows us to model a
broader and more realistic set of interactions between firms. A firm may initiate a
price war in order to increase market share or to deter other firms from competing
in particular markets. The firm suffers a short-term loss but may gain large future
profits, particularly if the price war forces out the competition and allows it to
price as a monopolist.

Price wars (and predatory pricing) have been studied extensively from both
an economic and a legal perspective. A detailed examination of all aspects of
price wars is far beyond the scope of this paper. Rather, we focus on just one im-
portant aspect: the complexity of decision making in oligopolies (e.g. duopolies).
Specifically, we consider the budget required by a firm in order to successfully
launch a price war. This particular question is fundamental in determining the
risk and benefits arising from predatory practices. Moreover, it arises naturally
in the following two scenarios:
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Entry Deterrence: How much of a war chest must a monopolist or
cartel have on hand so that they are able to successfully repel a new
entrant?

Competition Reduction: How much money must a firm or cartel
have to force another firm out of business? For example, in a duopoly
how much does a firm need to save before it can defeat the other to
create a monopoly?

We formulate the War Chest Minimization Problem as a generalization of both
of these scenarios and study the computational complexity of and approximation
algorithms for this more general problem.

1.1 Background

Price wars and predatory pricing are tools that have been long associated with
monopolies and cartels. The literature on these topics is vast and we touch upon
just a small sample in this short background section.

Given the possible rewards for monopolies and cartels engaging in predatory
behaviour, it is not surprising that it has been a recurrent theme over time. The
late 19th century saw cartels engaging in predation in a plethora of industries.
Prominent examples include the use of “fighting ships” by the British Shipping
Conferences ([36], [30]) to control trade routes, the setting up of phoney inde-
pendents by the American Tobacco Company to undercut smaller competitors
[9]. Perhaps the most infamous instance, though, of a cartel concerns Standard
Oil under the leadership of John D. Rockefeller ([27], [35], [12]). More recent
examples of price wars include the cigarette industry [15], the airline industry
[7], and the retail industry [8]. In the computer industry, Microsoft regularly
faces accusations of predatory practices ([18], [25], [26]).

Antitrust legislation has been introduced in many countries to prevent an-
ticompetitive behaviour like predatory pricing or oligopolistic collusion3. In the
United States, the most important such legislation is the Sherman Act of 1890.
One of the Act’s earliest applications came in 1911 when the Supreme Court or-
dered the break-up of both Standard Oil and American Tobacco; more recently,
it was applied when the Court ordered the break-up of American Telephone and
Telegraph (AT&T) in 1982.4

Given that such major repercussions may arise, there is a need for a cloak
of secrecy around any act of predation. This has meant the extent of predatory
pricing is unknown and has been widely debated in the literature. Indeed, early

3 Whilst it is easy to see the negative aspect of cartels, it is interesting to note that
there may even be some positive consequences. For example, it has been argued [17]
that the predatory actions of cartels may increase consumer surplus.

4 In 2000, a lower court also ordered the breakup of Microsoft for antitrust violations
under the Sherman Act. On appeal, this punishment was removed under an agreed
settlement in 2002.



economic work of McGee [27] suggested that predatory pricing was not ratio-
nal. However, in Stigler’s seminal work on oligopolies [39], price wars can be
viewed as a break-down of a cartel, albeit they do not arise in equilibria because
collusion can be enforced via punishment mechanisms. Moreover, recent models
have shown how price wars can be recurrent in a “functioning” cartel! For ex-
ample, this can happen assuming the presence of imperfect monitoring [22] or of
business cycles [33]. This is particularly interesting as recurrent price wars were
traditionally seen as indicators of a healthy competitive market5.

Based primarily on the work of McGee, the US Supreme court now considers
predatory pricing to be generally implausible6. As a result of this, and in an
attempt to strike a balance between preventing anti-competitive behaviour and
overly restricting normal competition, the Court applied the following strict
definition to test for predatory practices.

(a) The predator is pricing below its short-run costs.

(b) The predator has a strong chance or recouping the losses incurred during
the price-war.

The established way for the Court to test for the first requirement is the
Areeda-Turner rule of 1975 [2] which established marginal cost (or, as an ap-
proximate surrogate, average variable cost) as the primary criteria for predatory
pricing.7 We will incorporate the Areeda-Turner rule as a legal element in our
multimarket oligopoly models in Section 2.2. The second requirement essentially
states that the “short-run loss is an investment in prospective monopoly profits”
[14]. This requirement is typically simpler to test for in practice, and will be
implicit in our models.

Finally, we remark that we are not aware of any other work concerning the
complexity of price wars. One interesting related pricing strategy is that of loss-
leaders which Balcan et al. [4] examine with respect to profit optimization. For
the scale and type of problem we consider, however, using strategies that corre-
spond to ”loss-leaders” is illegal. Alternative models for oligopolistic competition
and collusion in a single market setting can be found in the papers of Ericson
and Pakes [16] and Weintraub et al. [43].

5 Therefore, should such behaviour also arise in practice it would pose intriguing ques-
tions for policy makers. Specifically, when is a price war indicative of competition
and when is it indicative of the presence of a cartel or a predatory practice?

6 See the 1986 case Matsushita Electric Industrial Company vs Zenith Radio

Corporation and the 1993 case Brooke Group Limited vs Brown and Williamson

Tobacco Corporation.
7 We note that the Areeda-Turner rule may be inappropriate in high-tech industries

because fixed costs there are typically high. Therefore, measures of variable costs may
not be reflective of the presence of a price-wars. In fact, hi-tech industries may be
particularly susceptible to predatory practices as large marginal profits are required
to cover the high fixed costs. Consequently, predatory pricing can be used to inflict
great damage on smaller firms.



1.2 Our Results

A firm with price-making power belongs to an industry that is a monopoly
or oligopoly. In Section 2, after reviewing the classical single-market models of
Bertrand, Cournot and Stackelberg, we develop three multimarket models of
oligopolistic competition. We then introduce the Minimum War Chest Prob-
lem to capture the essence of the Entry Deterrence and Competition Reduction
scenarios outlined above.

In Section 3, we prove that this problem is NP-Hard in all three multimar-
ket models under the legal constraints imposed by the Areeda-Turner rule. We
emphasise that decision making is hard even under complete information. These
hardness results utilise the fact that we have multiple markets. This assumption,
however, is not essential. Decision-making can be hard in single-markets if either
the number of firms is large or if the number of strategic options available to a
firm is large. We give a simple example to illustrate this in Section 5.

The hardness results of Section 4.3 imply that no multiplicative approxima-
tion guarantee can be obtained for the Minimum War Chest Problem, even in
the simple case of linear cost, price, and demand functions. The situation for
potential predators is less bleak than this result appears to imply. To see this we
present two positive results in Section 4, assuming linear cost, price, and demand
functions. First, the problem can be solved in polynomial time if the predator
faces no fixed costs. In addition, for the Bertrand and Stackelberg models there
is a natural way to separate the markets into two types, those where player one
is making a profit and those in which she is truly fighting a price war. Our second
result states that in these models, we can solve the problem on the former set of
markets exactly and can find a fully polynomial time approximation scheme for
the problem on the latter markets. This leads to a polynomial time algorithm
with an arbitrarily small additive guarantee.

2 Models

2.1 Three Classical Models of Oligopoly

Before presenting our models, in this section we review the classical Bertrand,
Cournot, and Stackelberg models for competition within an oligarchy.

The Bertrand Model The Bertrand is a natural model of price competition
between firms (henceforth referred to as “players”) in an oligarchy [6]. We will
define the model for the duopoly case, but the generalization to more firms is
obvious. Suppose we have two players each producing identical goods that are
not differentiated by any consumers. Player i has marginal cost ci to produce one
unit of the good and chooses a price pi at which to sell one unit in the market.
Since the goods are not differentiated, each consumer simply purchases the good
from whomever charges the least. If both players charge the same price, then
the market is shared evenly.



So, if D(p) is the market demand function, this gives rise to the following
profit function for player i:

Πi(pi, pj) = (pi − ci)Di(pi, pj)

where Di(pi, pj) is the demand for player i’s good under the current prices and
is defined by

Di(pi, pj) =







D(pi) if pi < pj
1
2D(pi) if pi = pj

0 if pi > pj

A natural consequence of this model is that there is only one Nash equilibrium
and in it the player with the lower marginal cost gets the entire market by
charging the best price that is at least the other player’s marginal cost. Thus, if
she is player i, she makes a profit of (cj − ci)D(cj) and the other player makes
no profit.

Our hardness results will apply even when the demand functions are linear.
So, unless stated otherwise, for the remainder of this paper we will assume our
demand functions are of the form D(p) = a − bp. In addition, we will allow
for more general cost functions. Specifically, we will assume that Player i has
a fixed cost fi for competing in the market. Thus, its cost function becomes
Ci(qi) = ciqi + fi for qi > 0.

The Cournot Model Economists have considered a number of alternative
models for competition [40]. One prominent alternative is the Cournot model,
formulated by Augustin Cournot in 1838 [11]. This model again assumes players
selling identical, nondifferentiated goods, but studies competition in terms of
quantity instead of price. Again, we will only define the model for a duopoly and
leave the generalization to the reader.

In this model, each player chooses some quantity of good to produce, qi, and
pays some cost to produce it, Ci(qi). The price for the good is then set as a
function of the quantities produced by both players, P (qi + qj). Each player i
makes profit:

Πi(qi, qj) = qiP (qi + qj) − Ci(qi).

Again, we will typically assume that the price and cost functions are linear.
In particular, we will only consider cost functions of the form Ci(qi) = ciqi + fi

for qi > 0 where ci is a constant marginal cost and fi is a fixed cost. We will
also only consider price functions of the form P (q) = a−q. Since our complexity
results are negative ones, they still apply if we allow for more general price and
cost functions.

In the absence of fixed costs, this model then has only has one equilibrium,
called the Cournot equilibrium, where qi = (a − 2ci + cj)/3 for every player.
If both players play this equilibrium strategy, then they will each make profit
Πi(qi, qj) = q2

i . If there are positive fixed costs then the model may have multiple
equilibria.



The Stackelberg Model The Stackelberg model was formulated by Heinrich
von Stackelberg in 1934 as an adaptation of the Cournot model of quantity
competition [38]. The profit functions, price functions, and cost functions are
identical to the above model. The Stackelberg model, however, separates the
players into two types: leaders and followers. In the duopoly case, the model
assumes that leader chooses its quantity first and commits to it, after which
follower make its choice with perfect information about the leader’s choice.

Being able to commit first gives the leader an enormous advantage, as it forces
the follower to optimize her profit on the leader’s terms. Thus, with the linear
price and cost functions described above and zero fixed costs, the equilibrium is
for the leader to choose quantity q1 = (a + c2 − 2c1)/2 and for the follower to
choose quantity q2 = (a − 3c2 + 2c1)/4. Then the leader’s equilibrium profit is
Π1(q1, q2) = 1

2q2
1 while the follower’s is Π2(q1, q2) = q2

2 . Notice that the leader
makes more profit than in the Cournot model, while the follower makes less.
Again, more complicated equilibria are possible if we have positive fixed costs.

2.2 Multimarket Models of Oligopoly

In this section, we formulate the multimarket Bertrand, Cournot, and Stackel-
berg models. These allow for the investigation of more numerous and assorted
interactions between firms.

A Multimarket Bertrand Model Let us consider the following generaliza-
tion of the asymmetric Bertrand model to multiple markets8. We will describe
the model for the duopoly case, but again all of the definitions are easily general-
izable. Suppose we have two players and n markets m1,m2, ...,mn. Every player
i has a budget Bi where a negative budget is thought of as the fixed cost for the
firm to exist and a positive budget is thought of as a war chest available to that
firm in the round. Every market mk has a demand curve Dk(p) and each player
i also has a marginal cost, cik, for producing one unit of good in market mk. In
addition, each player i has a fixed cost, fik, for each market mk that she pays if
and only if she enters the market, i.e. if she sets some finite price.

We model the price war as a game between the two players. A strategy for
player i is a complete specification of prices in all the markets. Both players
choose their strategies simultaneously. If pik < ∞ then we will say that player i
enters market mk. If player i chooses not to enter market mk, this is signified by
setting pik = ∞. The demand for each market then all goes to the player with
the lowest price. If the players set the same price, then the demand is shared
equally. Thus analogously to Section 2.1, if player i participates, then she gets
profit Πik in market mk where

Πik(pik, pjk) = (pik − cik)Dik(pik, pjk) − fik

8 We remark that this multimarket Bertrand model is also a generalization of the
multiple market model used in the facility location game of Vetta [42].



and where Dik is the demand for player i’s good in market mk and is defined as

Dik(pik, pjk) =







Dk(pik) if pik < pjk
1
2Dk(pik) if pik = pjk

0 if pik > pjk

If player i chooses not to participate then her revenue and costs are both
zero; thus, she gets 0 profit.

The sum of these profits over all markets is added to each player’s budget.
A player is eliminated if her budget is negative at the end of the round.

Multimarket Cournot and Stackelberg Models We now formulate a mul-
timarket version of the Cournot model. Again we will restrict ourselves to the
case of the duopoly as the generalization is obvious. In this Cornout model,
there are n independent Cournot markets m1, ...,mn. Each market mk has a
price function Pk(q) = ak − q. Each player also has a budget Bi, which serves
the same role as in the Bertrand case. Each player also has a cost function in
every market Cik(qik).

As before we model the price war as a game. This time, a strategy for each
player i is a choice of quantities qik for each market mk. Again, both players
choose a strategy simultaneously. We say that player i enters market mk if
qik > 0. Analogously to Section 2.1, player i then makes a profit in market mk

equal to

Πik(qik, qjk) = qikPk(qik + qjk) − Cik(qik).

Again, each player’s total profit is added to their budget at the end of the
round. As above, a player is eliminated if her resulting budget is negative. The
multimarket Stackelberg model can then simply be adapted from the Cournot
model. We define all of the quantities and functions as above. However, we now
consider one player to be the leader and one to be the follower. The game is no
longer simultaneous, as the leader gets to commit to a production level before
the follower moves.

2.3 The War Chest Minimization Problem

We will examine the questions of entry deterrence and competition reduction in
the two-firm setting. Thus, we focus on the computational problems facing (i)
a monopolist fighting against a potential market entrant (entry deterrence) and
(ii) a firm in a duopoly trying to force out the other firm (competition reduction).
We model both these situations using the same duopolistic multimarket models
of Section 2.2.

We remark that our focus on a firm rather than a cartel does not effect the
fundamental computational aspects of the problem. This restriction, however,
will allow us to avoid the distraction arising from the strategic complications
that occur in ensuring coordination amongst members of a cartel.



Our game is then as follows. We assume that players one and two begin with
budgets B1 and B2, respectively. They then play one of our three multimarket
games. The goal of firm one is to stay/become a monopoly; if it succeeds it will
subsequently be able to act monopolistically in each market. To achieve this goal
the firm needs a non-negative payoff at the end of the game whilst its opponent
has a negative payoff (taking into account their initial budgets). This gives us
the following natural question:

War Chest Minimization Problem: How large a budget B1 does player one

need to ensure that it can eliminate an opponent with a budget B2 < 0.

The players can play any strategy they wish provided it is legal, that is, they
must abide by the Areeda-Turner Rule. All our results will be demonstrated un-
der the assumptions of this rule, as it represents the current legal environment.
However, similar complexity results can be obtained without assuming this rule.

Areeda-Turner Rule: It is illegal for either player to price below their marginal

cost in any market.

Before presenting our results we make a few comments about the problem
and what the legal constraints mean in our setting. First, notice that we specify
a negative budget for player two but place no restriction on the budget for player
one. This is natural for our models. We can view the budget as the money a firm
initially has at its disposable minus the fixed costs required for it to operate;
these fixed costs are additional to the separate fixed costs required to operate
in any individual market. Consequently, if the second firm has a positive budget
it cannot be eliminated from the game as it has sufficient resources to operate
(cover its fixed costs) even without competing in any of the individual markets;
thus we must constrain the second firm to have a negative budget. On the other
hand, for the first firm no constraint is needed. Even if its initial budget is
negative, it is plausible that it can still eliminate the second firm and end up
with a positive budget at the end of the game, by making enough profit from
the individual markets. Specifically, the legal constraints imposed by the Areeda-
Turner rule may ensure that the second firm cannot maliciously bankrupt the
first firm even if the first firm has a negative initial war-chest.

Second, since we are assuming that player one wishes to ensure success re-
gardless of the strategy player two chooses, we will analyze the game as an
asynchronous game where player two may see player one’s choices before mak-
ing her own. Player two will then first try to survive despite player one’s choice
of strategy. If she cannot do so, she will undercut player one in every market
in an attempt to eliminate her also. To win the price war, player one must find
strategies that keep herself safe and eliminate player two irrespective of how
player two plays. Therefore, an optimal strategy for player one has maximum
profit (i.e. minimum negative profit) amongst the collection of strategies that
achieve these goals, assuming that player two plays maliciously.



Finally, the Areeda-Turner Rule has a straightforward interpretation in the
Bertrand model of price competition, that is, neither player can set the price in
any market below their marginal cost in that market! In models of quantity com-
petition, however, the interpretation is necessarily less direct. For the Cournot
model of quantity competition, we interpret the rule as saying that neither player
can produce a quantity that will result in a price less than their marginal costly
assuming the other player produces nothing, in other words qik < ak − cik. This
is the weakest interpretation possible for this simultaneous game. Finally, for the
Stackelberg game, we assume that the restriction imposed by the Areeda-Turner
rule is the same for player one as in the Cournot model, as she acts first and
player two has not set a quantity when player one decides. Player two on the
other hand, must produce a quantity so that her marginal price is greater than
her marginal cost, given what player one has produced. In other words, for the
Stackelberg game q1k < ak − c1k and q2k < ak − q1k − c2k.

3 Hardness Results

We are now in a position to show that the War Chest Minimization Problem is
hard in all three models.

Theorem 1. The War Chest Minimization Problem is NP-hard for the multi-

market Bertrand model, even in the case with linear demand functions.

Proof. We give a reduction from the knapsack problem. There we have n items,
each with value vi and weight wi, and a bag which can hold weight at most W .
In general, it is NP-hard to decide whether we can pack the items into the bag
so that

∑

wi ≤ W and
∑

vi > V for some constant V (where the sums are
taken over packed items).

We will now create a multimarket Bertrand game based on the above in-
stance. First suppose that there are n markets and each market mk has the
linear demand function

Dk(p) = 5
√

vk − p.

Set player two’s fixed costs to f2k = 0 for all k and her marginal costs to
c2k = 3

√
vk for all k. Also set player one’s marginal costs to c1k = 0 for all k and

her fixed costs to f1k = (25/4)vk + wk for all k. Set the budgets to be B1 = W
and B2 = V − ∑n

k=1 vk.
First, we calculate the monopoly prices for player one and player two. If

player i wins market mk at price pik then their profit in that market is

Πik(pik) = (pik − cik)Dk(pik) − fik = −p2
ik + (cik + 5

√
vk)pik − 5

√
vkcik − fik.

Taking derivatives, we see that the monopoly price for player i in market mk is

p∗ik =
cik + 5

√
vk

2
≥ cik.



In particular, notice that the monopoly price for player one is

p∗1k =
5

2

√
vk < 3

√
vk = c2k.

Moreover
p∗2k = 4

√
vk > 3

√
vk = c2k.

Thus, if player one enters market mk then she can price at her monopoly
price without fear that player two will undercut her. If she does not enter, then
player two could price at her monopoly price to maximize revenue, as her fixed
costs are zero. In the first case, player two earns 0 profit and player one earns
monopoly profit

Π1k(p∗1k) = −p∗1k
2 + (c1k + 5

√
vk)p∗1k − 5

√
vkc1k − f1k

= −p∗1k
2 + 5

√
vkp∗1k − f1k = −wk

In the second case, player one earns zero profit while player two earns her
monopoly profit

Π2k(p∗2k) = −p∗2k
2 + (c2k + 5

√
vk)p∗2k − 5

√
vkc2k − f2k

= p∗2k(8
√

vk − p∗2k) − 5
√

vkc2k = vk

Thus, if player one could solve the War Chest Minimization Problem then she
could determine whether or not there exists a set of indices K of markets that
she should enter such that both of the following equations hold simultaneously:

W −
∑

k∈K

wk ≥ 0

V −
n

∑

k=1

vk +
∑

k/∈K

vk < 0

Rearranging these equations, we obtain the conditions of the knapsack equations,
namely

∑

k∈K wk ≤ W and
∑

k∈K vk > V .

Theorem 2. The War Chest Minimization Problem is NP-hard for the multi-

market Cournot model, even in the case of linear price and cost functions.

Proof. We again reduce from an instance of the knapsack problem. The Cournot
game we create is as follows. Set ak = 6

√
vk, then for each market mk let the

price function be Pk(q) = ak − q. We now set player one’s marginal cost in
market mk to be c1k = 0 and her fixed cost to be f1k = 4vk + wk. Player two’s
marginal cost in market mk is set to be c2k = 2ak/3 = 4

√
vk and her fixed cost

is set to be f2k = 0.
Suppose now that player one has chosen which markets to enter and has, in

particular, chosen to enter market mk by producing quantity q1k > 0. Consider
player two’s response. At first, player two will try to survive and will thus try
to maximize her profit, given player one’s quantity. She will consequently try



to choose q2k that maximizes Π2k(q1k, q2k), call this quantity q+
2k. By taking

derivatives, we can calculate q+
2k to be (ak − 3q1k)/6.

If player two calculates that she can’t survive by choosing q+
2k in every market,

then she will try to undercut player one in every market in an attempt to also
drive her out. She will therefore choose q2k = q−2k, the quantity which minimizes
Π1k(q1k, q2k). This can be achieved by making q2k as large a possible; given the
constraints of the Areeda-Turner rule this implies that q−2k = ak − c2k. Thus, we
calculate q−2k = ak/3 = 2

√
vk.

Now, if we assume that player one enters market mk (i.e. assume q1k > 0)
then by calculating the partial derivatives of Π2k(q1k, q+

2k) and Π1k(q1k, q−2k) with
respect to q1k, we see that the quantity q∗1k = ak/3 = 2

√
vk minimizes the former

and maximizes the latter. Therefore if player one chooses to enter market mk

she will produce quantity q∗1k. So if player one enters market mk then she, in the
worst case, makes profit

Π1k(q∗1k, q−2k) = q∗1k(Pk(q∗1k + q−2k) − c1k) − f1k

= q∗1k((6
√

vk − 4
√

vk) − 0) − f1k = −wk

Against this, player two, in her best case, plays q+
2k = (ak − 3q∗1k)/6 = 0. This

clearly gives her a profit Π2k(q∗1k, q+
2k) = 0. On the other hand, if player one

doesn’t enter market mk then she makes profit 0 in that market and player two
makes her monopoly profit, which in this case is

Π2k(0, q∗2k) = q∗2k(Pk(q∗2k) − c2k) − f2k = q∗2k(2
√

vk − q∗2k) − 0 = vk

The proof follows.

A similar proof holds for the Stackelberg case. We include the proof as it will
be needed in Section 4.2.

Theorem 3. The War Chest Minimization Problem is NP-hard for the multi-

market Stackelberg model if player one is the Stackelberg leader, even in the case

linear price and cost functions.

Proof. We again reduce from the knapsack problem. Take any instance of the
knapsack problem and define the quantities n, W , V , the wis, and the vis as in the
proof of Theorem 1. We will now create a multimarket Stackelberg game based
on the above instance. Set ak = 4

√
vk, and suppose that there are n markets and

each market has price function Pk(q) = ak−q. We now set player one’s marginal
cost in market mk to be c1k = 0 and her fixed cost to be f1k = 4vk + wk.
Player two’s marginal cost in market mk is set to be c2k = ak/2 = 2

√
vk and

her fixed cost is set to be f2k = 0. Finally, set the budgets to be B1 = W and
B2 = V − ∑n

k=1 vk as before.
Now consider the decision player one faces when deciding whether or not

to enter market mk. First notice that her monopoly quantity is q∗1k = ak/2 =
2
√

vk which we can calculate by maximizing Π1k(q1k, 0) through simple calculus.
Notice also that ak − q∗1k − c2k = 0 and so, by the Areeda-Turner rule, player
two cannot produce in any market in which player one is producing.



Thus, if player one enters any market then she will produce her monopoly
quantity in that market and player two will not enter that market. In this case,
player one makes profit

Π1k(q∗1k, 0) = q∗1k(Pk(q∗1k) − c1k) − f1k = 2
√

vk(2
√

vk − 0) − (4vk + wk) = −wk

and player two makes profit Π2k(q∗1k, 0) = 0. On the other hand, if player one
does not enter the market then player two will produce her monopoly quantity,
q∗2k = ak/4 =

√
vk, and will make profit

Π2k(0, q∗2k) = q∗2k(Pk(q∗2k) − c2k) − f2k =
√

vk(3
√

vk − 2
√

vk) − 0 = vk

Since player one did not enter, she will make profit 0. Thus we find ourselves
back in the exact circumstances of the proof of Theorem 1. The rest of the proof
follows.

4 Algorithms

In this section, we explore algorithms for solving the War Chest Minimization
Problem. We highlight a case where the problem can be solved exactly and
explore the approximability of the problem in general. For the entirety of this
section, we assume linear cost, demand, and price functions.

4.1 A Polynomial Time Algorithm in the Absence of Fixed Costs

All of the complexity proofs in Section 3 have a similar flavor. We essentially
use the fixed costs in the markets to construct weights in a knapsack problem.
In this section, we demonstrate that in the absence of fixed costs, it is computa-
tionally easy for a player to determine if they can win a multimarket price war
even under the restrictions of the Areeda-Turner rule. This rule adds additional
complications in this Stackelberg model, so we analyse that model first here.
Again, we assume player one is the Stackelberg leader. Without fixed costs, the
profit functions of both players in each market mk are particularly simple:

Πik(qik, qjk) = qik(ak − q1k − q2k − cik)

As discussed, there are two strategies that player two may employ to prevent
player one from winning the price war. She may play so as to survive or, if that
is destined to fail, she may play so as to leave player one with a negative budget.
In the former strategy, she will choose in every round and in every market the
quantity, q+

2k, that maximizes her own profit. In the latter strategy she will
choose the quantity, q−2k, that minimizes player one’s profit (while obeying the
Areeda-Turner rule). By consider the partial derivatives of the players’ profits,
one can calculate q+

2k and q−2k as functions of q1k:



q+
2k =

ak − q1k − c2k

2

q−2k =

{

ak − q1k − c2k if q1k < a − c2k

0 otherwise

The latter case for q−2k occurs if player one chooses a quantity so high that
player two can choose nothing by the Areeda-Turner rule; this can only occur
if c1k < c2k as otherwise the Areeda-Turner rule itself prevents player one from
choosing a sufficiently high quantity.

We now partition the markets into two sets: let k ∈ A denote the set of
markets for which c1k ≤ c2k and let k ∈ B denote those markets where c1k > c2k.
For the first subset A of markets, we will show that there is a natural choice
of quantity for player one in every market. Namely, q+

1k = max{q∗1k, ak − c2k},
where q∗1k = ak−c1k

2 is player one’s monopoly quantity. Clearly player one will
never choose more than this as either (i) she is at her monopoly and player two
can’t enter or (ii) she is at a quantity that prevents player two from entering
and increasing her quantity can only decrease her profit (since her profit is a
concave quadratic). She will also never choose less than q+

1k as she is either
(i) at her monopoly quantity and preventing player two from entering or (ii)
decreasing her quantity allows player two to enter the market with quantity
ak − q1k − c2k, resulting in player one selling fewer goods at a lower (or equal)
price. Thus, in those markets A where player one is more competitive than player
two, she will always enter at quantity q+

1k and will always make a positive profit.
Consequently, the optimal strategy for player one in these markets is clear. The
problem, therefore, reduces to selecting quantities only in the subset B of markets
where player one is less competitive.

So take a market k ∈ B. Then q−2k = ak − q1k − c2k always. Thus player one’s
profit, in the worst case is given by the linear function q1k(c2k − c1k). So, again
assuming that player two will first try to survive in every market and then try
to undercut player one, the War Chest Minimization Problem for these markets
is equivalent to the following quadratically constrained program:

min
∑

k∈B q1k(c1k − c2k)
s.t.

∑

k∈B(ak−q1k−c2k

2 )2 ≤ B2

0 ≤ q1k ≤ ak − c1k

We can solve this convex program in polynomial time. The Bertrand case and
Cournot case are similar, the former reduces to a linear program and the latter
reduces to convex program, this time with a convex quadratic objective function.
Thus we have shown the following.

Theorem 4. In the absence of fixed costs and assuming linear cost, price, and

demand functions, the War Chest Minimization Problem in the Cournot, Bertrand,

and Stackelberg models can be solved in polynomial time.



4.2 An Inapproximability Result

In this section, we will explore approximation algorithms for the War Chest Min-
imization Problem. A first inspection is disheartening for would-be predators, as
demonstrated by the following theorem.

Theorem 5. It is NP-hard to obtain any approximation algorithm for the War

Chest Minimization Problem under the Bertrand, Stackelberg, and Cournot mod-

els.

Proof. We prove this for the Stackelberg model - the other cases are similar. Let
n,W, V,wi, and vi be an instance of the knapsack problem. Construct markets
m1, ...,mn exactly as in Theorem 3, with identical price functions, fixed costs,
and marginal costs. Let W ∗ denote the optimal solution to the War Chest Min-
imization Problem in this case. Notice that W ∗ > 0 since all player one makes a
negative profit in all of her markets. We now construct a new market mn+1 as
follows. Let Pn+1(q) = 2

√
W ∗ − q be the price function. Let player one’s fixed

and marginal costs be c1,n+1 = f1,n+1 = 0. Let player two’s marginal cost be

c2,n+1 = 2
√

W ∗ and let her fixed cost be an arbitrary nonnegative value. Then
player one will clearly enter the market and produce her monopoly quantity,
q1,n+1 =

√
W ∗, thereby forcing player two not to stay out of the market, by the

Areeda-Turner rule. Thus player one will earn her monopoly quantity of W ∗ in
this market. Consequently, the budget required for this War Chest Minimiza-
tion Problem is zero. Any approximation algorithm would then have to solve
this problem, and thereby the knapsack problem, exactly.

4.3 Additive Approximation Guarantees

Observe that the difficulty in obtaining a multiplicative approximation guarantee
arises due to conflict between markets that generate a loss for player and markets
that generate a profit. Essentially the strategic problem for player one is to
partition the markets into two groups, α and β, and then conduct a price war
in the markets in group α and try to gain revenue to fund this price war from
markets in group β. This is still not sufficient because, in the presence of fixed
costs, the optimal way to conduct a price war is not obvious even when the group
α has been chosen. However, in this section we will show how to partition the
markets and generate an arbitrarily small additive guarantee in the Bertrand
and Stackelberg cases.

Given an optimal solution with optimal partition {α∗, β∗}, let wα∗ be the
absolute value of the sum of the profits of the markets with negative profit, and
let wβ∗ be the sum of the profits in positive profit markets. Then the optimal
budget for player one is simply OPT = wα∗ − wβ∗ . For both the Bertrand
and Stackelberg models, we will present algorithms that produce a budget of
most (1 + ǫ)wα∗ − wβ∗ , for any constant ǫ. Observe this can be expressed as
OPT + ǫwα∗ , and since wα∗ represents the actual cost of the price war (which
takes place in the markets in α∗), our solution is then at most OPT plus epsilon
times the optimal cost of fighting the price war. Let’s begin with the Bertrand
model.



Theorem 6. There is an algorithm that solves the War Chest Minimization

Problem for the Bertrand model within an additive bound of ǫwα∗ , and runs in

time polynomial in the input size and 1
ǫ , assuming linear demand functions.

Proof. We begin by proving that we can find the optimal partition {α∗, β∗} of
the markets. Towards this goal we show that there is a optimal pricing scheme
for any market, should player one choose to enter the market. Using this scheme
we will be able to see which markets are revenue generating for player one and
which are not. This will turn out to be sufficient to obtain {α∗, β∗}. This is
because, in the Bertrand model, player two cannot make a profit in a market
if player one does and vice versa and because player one needs a strategy that
maintains a non-negative budget even if player two acts maliciously (but legally).

The pricing scheme for player one should she choose to enter market mk is
p+
1k = max{c1k,min{p∗1k, c2k − γ}}, where γ is the minimum increment of price

and p∗1k is player one’s monopoly price. Certainly, she should not price below p+
1k

as either (i) it is illegal by the Areeda-Turner rule or (ii) she cannot increase her
profit by doing so (as the profit function for player one is a concave quadratic in
p1k). She also should not price above p+

1k. If she did then either (i) she cannot
increase her profit (due to concavity) or (ii) player two could undercut her or
increase her own existing profits in the market. Indeed, it is certain that player
two will try to undercut her if player one succeeds in keeping player two’s budget
negative.

Given that we have the optimal pricing scheme for player one, we may cal-
culate the profit she could make on entering a market assuming that player two
acts maliciously. Let α be the set of markets where she makes a negative profit
under these conditions, and let β be the set of markets where she makes a non-
negative profit. Since all markets in β give player one a non-negative profit even
if player two is malicious, she will clearly always enter all of them. Consequently,
as we are in the Bertrand model, player two cannot make any profit from mar-
kets in β. Thus by entering every market in β player one will earn wβ profit,
and this must be the optimal for player one if the goal is to put player two out
of business. So {β, α} = {β∗, α∗} is an optimal partition.

It remains only to show that there is a fully polynomial time approximation
scheme for the markets in α. We will prove this result by demonstrating an
approximation preserving reduction of the War Chest Minimization Problem
with only α-type Bertrand markets to the Minimization Knapsack Problem.
Define wk to be the negative of the profit earned by player one if she enters the
market mk and assuming player two undercuts if possible. By the above, she
will price at p1k = p+

1k and thus

wk =

{

−(p+
1k − c1k)D(p+

1k) + f1k if c1k < c2k

f1k otherwise.

Recall that wk is non-negative for markets in α. Let p∗2k be player two’s
monopoly price in market mk and let Π∗

2k be her monopoly profit in that market.
We also let vk = Π∗

2k − Π2k(p+
1k), where Π2k(p+

1k) is the maximum profit that
player two can achieve in market mk if player one enters and prices at p+

1k. The



War Chest Minimization Problem is that of maximizing player one’s profit (i.e.
minimizing the negative of her profit) even if player two acts maliciously, while
ensuring that player two’s budget is always negative. So it can be expressed as

min
∑

k wkyk

s.t. B2 +
∑

k(Π∗
2k(1 − yk) + Π2k(p+

1k) · yk) ≤ 0
yk ∈ {0, 1}

Setting the constant C to be the sum of player two’s budget and her monopoly
profit in all of the markets, that is C = B2 +

∑

k Π∗
2k, the problem can be

rewritten as
min

∑

k wkyk

s.t.
∑

k vkyk ≥ C
yk ∈ {0, 1}

Finally, since the wk are non-negative, this formulation is exactly the minimiza-
tion knapsack problem. The reduction is approximation preserving and so we
are done as there is a fully polynomial time approximation scheme for the min-
imization knapsack problem [20].

We now turn to the Stackelberg problem.

Theorem 7. There is an algorithm that solves the War Chest Minimization

Problem for the Stackelberg model within an additive bound of ǫwα∗ , and runs in

time polynomial in the input size and 1
ǫ , assuming linear cost and price functions.

Proof. As we have seen, there are two strategies that player two may employ to
prevent player one from winning the price war. She may play so as to survive
or, if that is destined to fail, she may play so as to leave player one with a
negative budget. As in Section 4.1, define the quantity q+

2k to be the quantity
that maximizes player two’s own profit in every market and q−2k to be the quantity
that minimizes player one’s profit (while obeying the Areeda-Turner rule). As
before, though now adjusting for fixed costs, we get:

q+
2k =

{

ak−q1k−c2k

2 if (ak−q1k−c2k

2 )2 ≥ f2k

0 otherwise

q−2k =

{

ak − q1k − c2k if q1k < a − c2k

0 otherwise.

We initially split the markets of the Stackelberg case into two sets: let k ∈ A
denote the set of markets for which c1k ≤ c2k and let k ∈ B denote those markets
where c1k > c2k. In the former case, if player one enters the market mk then she
will necessarily produce quantity q+

1k = max{q∗1k, ak − c2k}, where q∗1k = ak−c1k

2
is player one’s monopoly quantity. The argument for this is identical to that
in Section 4.1, as the fixed costs here do not change anything. Let β be the
set of all markets for which player one’s worst case profit, Π1k(q+

1k, q−2k), is now
nonnegative. Clearly she will enter all of these markets, and again β = β∗. Let



α = α∗ be the set of markets for which her worst case profit is negative. These
include some of the markets in A and all of the markets in B, since player two
as the follower can always force a price that is less than player one’s marginal
cost in these latter markets.

Again, player two will clearly enter each market in β∗ and produce quantity
q+
1k, earning a positive profit of wβ∗ . Thus, we need only find a fully polynomial

time approximation scheme for the markets in α∗. So for the remainder of the
proof, we will deal solely with the markets of α∗. By scaling, we may also assume
that all of the variables and constants are integral.

As discussed above, the markets in α∗∩A have a canonical choice of quantity
for player one, q+

1k. The worst case profit for player one in these markets will
always be negative, by definition. Now let Π∗

2k be player two’s monopoly profit
in market mk. Define V to be the sum of player two’s monopoly profits in every
market. Also define vk(q1k) to be the difference between player two’s monopoly
profit in market mk and her maximum profit if player one enters the market
with quantity q1k. So, vk(q1k) = Π∗

2k − Π2k(q1k, q+
2k). Notice that vk(q1k) is

monotonically nondecreasing in q1k.
Define wk(q1k) to be player one’s worst case cost (negative profit) if she

chooses to produce quantity q1k in market mk. For those markets where c1k ≤
c2k, there is a natural strategy for player one and so wk(q1k) = Π1k(q+

1k, q−2k) > 0.
For markets with c2k ≤ c1k, we have q−2k = ak − q1k − c2k and so

wk(q1k) =

{

0 if q1k = 0
q1k(c1k − c2k) + f1k otherwise

All of these weights are also non-negative.
The War Chest Minimization Problem requires player one minimize the cost

of the markets she enters while keeping the sum of player two’s budget and
profits below zero. Since player two may “win” either by reducing player one’s
budget below zero or keeping her final budget nonnegative, player one needs to
work with both her worst case costs and player two’s best case profits. Thus the
War Chest Minimization Problem, after some simple algebra, may be formulated
as the problem of finding the integer vector (q11, q12, ..., q1n) that solves

min
∑

k wk(q1k)
s.t

∑

k vk(q1k) ≥ V
q1k ∈ {0, q+

1k} if c1k < c2k

0 ≤ q1k ≤ ak − c1k if c1k ≥ c2k.

The last constraint comes from the Areeda-Turner rule. We will refer to this
problem as Stackelberg War Chest Minimization (SWCM). The weight of the
vector (q11, q12, ..., q1n) will mean

∑

k wk(q1k) and the value of the vector will
mean

∑

k vk(q1k).
The remainder of this proof will be broken into parts. We first show that

there is a pseudo-polynomial time dynamic program for SWCM. We then show
how to using rounding techniques to obtain a polynomial time approximation
scheme.



So let’s describe the dynamic program. Let W̄ be the maximum attain-
able weight. For each market mi with i ∈ {1, ..., n} and for each weight w ∈
{0, 1, ..., W̄}, let Ui,w denote the vector (q11, ..., q1n) such that q1j = 0 for all
j > i which has total weight w and with the maximum value amongst all such
vectors. Let f(i, w) denote the value of Ui,w; if no such vector exists, then we
set f(i, w) = −∞. It is easy to calculate the base cases f(1, w) for every w. We
then get the recurrence:

f(i + 1, w) = max
q1,i+1

f(i, w − wi+1(q1,i+1)) + vi(q1,i+1)

where the maximum is taken over the feasible values of q1,i+1, where we un-
derstand that f(n,w) = −∞ for all w < 0. Thus we get a dynamic program
that solves SWCM exactly and whose running time is polynomial in n, W̄ , and
ak − c1k for those markets k with c1k ≥ c2k.

This dynamic program is pseudo polynomial. We can make it polynomial by
a suitable scheme to round the quantities and to round the weights. Rounding
the quantities, we shall try to make the running time depend on log(ak − c1k)
instead of ak − c1k, for those markets k with c1k ≥ c2k. To do this, we will
restrict the possible feasible choices of quantity, in each of these market, in
the following manner. First fix some δ0 > 0. For each interval I = [0, ak −
c1k], partition it into the subintervals I0 = {0}, I1 = {1}, I2 = (1, 2], ..., Ii =
(2i−2, 2i−1], ..., I⌈log(ak−c1k)+1⌉ = (2⌈log(ak−c1k)−1⌉, ak − c1k]. Each subinterval Ii,
i > 1, is further partitioned into the minimum number of subintervals Jij whose
lengths are at most δ02

i−2. For each i, there are at most ⌈ 1
δ0
⌉ subintervals. For

each quantity q1k let hk(q1k) be the maximum value of the Jij subinterval that
contains q1k (we define hk(0) = 0 and hk(1) = 1). Thus hk maps the integer
values of the interval [0, ak − c1k] into a set of O( 1

δ0
log(ak − c1k)) integers.

Now let q = (q11, ..., q1n) be any solution to SWCM. Since the objective
function is linear, by replacing each q1k with hk(q1k) we change the weight of
the resulting vector by at most δ0w(q). By standard arguments, using these
rounded quantities gives a (1 + δ0) approximate algorithm whose running time
is polynomial in n, 1

δ0
, W̄ and log(ak − c1k) for those markets k with c1k ≥ c2k.

We can round the weights using a similar trick to obtain a (1 + ǫ) approx-
imation algorithm for SWCM whose running time is polynomial in n, log(a1 −
c11), ..., log(an − c1n), 1

ǫ and log(W̄ ). This completes the proof.

The approach taken here does not apply directly to the Cournot model. In
particular, a more subtle rounding scheme is required there when player one is
more competitive than player two. We conjecture, however, that a similar type
of additive approximation guarantee is possible in the Cournot model.

5 Single Market Case

Clearly, our hardness results require that there be a large number of markets
(or submarkets). Whilst the multimarket problem is the most interesting one



in our opinion, we remark that hardness results can be obtained even in the
single-market case, provided that each firm has a sufficient number of strategic
choices available to it. For example, in the appendix, we introduce a very simple
modified single market model, where firms are able to invest in themselves by
increasing their fixed cost to decrease their marginal cost. Despite the simplicity
of this model, the War Chest Minimization Problem is trivially hard, indicating
that more complex and realistic single market models will typically also be hard.
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A Single Market Case

Suppose player one and player two are competing in a single Bertrand market.
Player two has a certain marginal cost c2. Player one begins with a marginal
cost c1. However, she may choose to invest in any subset of n technologies each
of which will cost her a fixed cost fi but will reduce her marginal cost by λi.
Suppose player one begins with a budget B1 and may not spend more than this
budget in technology investment. Player one wins the market from player two if
she can reduce her marginal cost c1 to below player two’s c2 within her budget
constraints. This produces the problem:

Single Market War Chest Minimization Problem: If the initial c1 and c2

are fixed, what is the minimum budget B1 that player one needs so that she can

win the market from player two?

Theorem 8. This problem is NP-hard but has a fully polynomial time approxi-

mation scheme.

Proof. We prove the theorem by showing that this problem is completely equiv-
alent to the minimization knapsack problem in an approximization preserving
way. Notice that the problem can be formulated as

min
∑

i fixi

s.t. c1 −
∑

i λixi < c2

xi ∈ {0, 1}

But then if we write vi = fi, wi = λi, C = c1 − c2 then we have reduced
the problem to the minimization knapsack problem as seen in Section 4.3. This
reduction clearly preserves approximation.


